轧制力矩及计算
5轧制力矩解析

χ = 0.42~0.50
χ = 0.33~0.42
二、按接触面摩擦力计算轧制力矩
α
R
设轧件宽为1, 压扁轧辊半径 R′
M z1 M z 2 R x R d R x R d
' '
0
对于全滑动理论 x fpx :
M z1 M z 2 fRR' ( px d px d )
2L1 D( 1 S1)
根据能耗曲线图(如图5-6)得到:
A 75 3600 (a1 a2) G
因能耗曲线中包含附加摩擦力矩,所以有
M z iM m
75 3600 (a1 a2) GD (1 S1 ) 2L1 135 (a1 a2) F 1 D(1 S1 )
复习提问
1.什么叫轧制压力?确定轧制压力有哪些 方法?
2.金属与轧辊的接触面积如何确定? 3.艾克隆德常用单位压力计算公式各考虑 了哪些因素?
5.传动轧辊的力矩
5. 1轧制时传递到主电机上的各种力矩
一、轧制时的各种力矩组成
1. 轧制力矩 M Z 为克服轧件的变形抗力及轧件与辊面间的 摩擦所需的力矩。 2. 附加摩擦力矩 M m 由两部分所组成,即:
(N· m)
GD2——回转体转动惯量
12.4 主电机容量校核
一、轧制图表与静力矩图
为了校核或选择主电机的容量,必须绘制 出表示主电机负荷随时间变化的静力矩图,而 绘制静力矩图时,往往要借助于表示轧机工作 状态的轧制图表。
图12-5 单根过钢时轧制图表与静力矩图(横列式轧机)
四、 动力矩
动力矩只发生在某些轧辊不匀速转动的轧 机上,如在每个轧制道次中进行调速的可逆轧 机。动力矩的大小可按下式确定:
5轧制力矩解读

西姆斯公式:——依据全黏着理论
R' h M z1 KRR' f ( , ) h1 h0
查表5-3即可得到轧制力矩 福特-勃朗特公式: ——依据全滑动理论
M z1 RKh(1
q0 R ) f 5 ( , , b) (q1h1 q0 h0 ) K 2
查表5-4即可得到轧制力矩
n ——电动机转速:
——由电动机到轧机的传动效率。
3.超过电动机基本转速时,应对超过基本转速 部分对应的力矩加以修正,即乘以修正系数。 如果此时力矩图形为梯形,则等效力矩为:
式中 M 1——转速未超过基本转速时的力矩;
的力矩,即 式中
M——转速超过基本转速时乘以修正系数后
n ——超过基本转速时的转速;
四、 动力矩
动力矩只发生在某些轧辊不匀速转动的轧 机上,如在每个轧制道次中进行调速的可逆轧 机。动力矩的大小可按下式确定:
G D 2 d M d J m r ( ) g 2 dt
2
GD 2 2 dn GD 2 dn Md 4 g 60 dt 38.2 dt
χ = 0.42~0.50
χ = 0.33~0.42
二、按接触面摩擦力计算轧制力矩
α
R
设轧件宽为1, 压扁轧辊半径 R′
M z1 M z 2 R x R d R x R d
' '
0
对于全滑动理论 x fpx :
M z1 M z 2 fRR' ( px d px d )
M m2 ( M M m1 - 1) z 1 i 1
式中 M m2 ——换算到主电机轴上的传动机构 的摩擦力矩;
轧制力矩及计算

轧制力矩及计算
轧制时垂直接触面水平投影的轧制总压力与其作用点到轧辊中心线的距离(即力臂)和乘积叫轧制力矩,如图1所示。
图1 简单轧制时作用在轧辊上的力
轧制力矩是驱动轧辊完成轧制过程的力矩。
轧制力矩的计算方法如下:
1)按轧件给轧辊的压力计算
M1=P总a (1)
式中 M1——传动一个轧辊需要的力矩,N•m;
P总——垂直接触面水平投影的轧制总压力,N;
a——P总的作用点到轧辊中心线的距离,m。
根据轧制压力和接触面积的计算公式可知,
P总=p平均S接触=p平均(RΔh)1/2[(B+b)/2] 式中 p平均——平均单位轧制压力,MPa;
B、b——轧件轧前与轧后的宽度,mm
R——轧辊半径,mm
△h——压下量,mm。
力臂a可按下式计算:
a=Ψ(R△h)1/2×10-3,m (2)
式中Ψ一轧制压力的力臂系数。
将(2)代入(1)可得
M1=p平均R△hΨ[(B+b)/2]×10-3,N•m (3)热轧时力臂系数取值如下:
方形断面轧件Ψ=0.5
圆形断面轧件Ψ=0.6
在简单轧制情况下,即两个轧辊的直径相同,转速相等,双辊驱动,轧件作匀速运动,当轧件性质相同时,在上下两辊的作用下,轧件两面产生的变形一样,这时驱动两个轧辊的轧制力矩为:
M=M1+M2
因 M1=M2
故
M=2P总a
或
M=p平均R△hΨ(B+b)X10-3,N•m
2)按能量消耗计算
M1=A变R/l
式中A变——变形功,J;
R——轧辊半径,mm;
l——轧件轧后长度,mm。
这种方法适用于计算轧制非矩形对称断面轧件的轧制力矩。
第五章-轧制压力及力矩的计算

② 冷轧过程中主要考虑变形程度的影响, 通常采用平均变形程 度来确定变形抗力的大小。可查加工硬化曲线或者用数学模型 进行计算。
0.40 0.61
0 -本道次轧前的预变形量
1 -本道次的轧后总变形量 H0 -冷轧前轧件厚度
0 ( H0 H ) / H0
H -本道次轧前轧件厚度
冷轧时: 加工硬化现象明显,变形程度增加,变形抗力增加 热轧时: 小变形(20~30%以下)时,随变形程度增机,变 形抗力增加迅速,中等变形(>30%)以后,增加速度变缓,当 变形程度很大时,则变形抗力又下降。
5 轧制压及力矩的计算
5.1 轧制压力的工程计算
5.1.3 金属变形抗力的确定方法
变形抗力: 轧制过程中金属抵抗变形的力
2.553
2.57
2.586
2.603
2.62
5 轧制压力及力矩的计算
5.1 轧制压力的工程计算
5.1.2 平均单位压力公式
(3).计算平均单位压力的R·B·西姆斯公式
西姆斯假设接触表面摩擦规律为全粘着(
tx
K )的条件确定外摩擦影响系数 2
Hale Waihona Puke n' ,得出如下的平均单位压力公式
p
n' K
(
2
1 arctan
将的表达式 p带入其中得:
fl ' h
2
fl h
2
2CR
e fl' h 1
f K' h
即:
fl' 2
h
2CR
e fl' h 1
f h
K'
fl h
2
材料成型工程第五讲轧制压力及力矩计算1

• 学习本章目的: 制定合理工艺制度 进行设备强度校核 设计轧机的依据 选择电机容量,确定 电机功率。
4.1轧制压力的概念
• 4.1.1 轧制压力
用测压仪在压下螺丝下实测的总压力,即轧件给轧辊的总 压力的垂直分量。
压下螺丝
压下螺丝
简单轧制情况下,轧件对轧辊的合力方向才是垂直的 非简单轧制合力的方向不垂直,有一个水平分量,此时 轧件作用于轧辊的合力方向是偏向于出口侧 如有张力的轧制等,此时在压下螺丝下用测压仪实测的 力仅为合力的垂直分量Y。
•所以,为了确定轧件给轧辊的总压力,必须正确地确定平 均单位压力和接触面积。
4.1.4基础之上,用计算公式确定单位压力。 通常,首先确定变形区内单位压力分布形式及大小,然 后再确定平均单位压力。 (2)实测法 在轧钢机上放置压力传感器,将力信号转换成电信号记 录下来,获得实测的轧制压力资料。 由实测的轧制总压力除以接触面积求出平均单位压力。 (3)经验公式和图表方法 根据大量的实测统计资料进行一定的数学处理,抓住一 些主要影响因素,以建立起经验公式或图表。 下面重点介绍最常用的理论计算方法 —— T. Karman 方程及 其解
C——积分常数,取决于边界条件
2)积分常数确定
• 以弦代弧,如图
设通过轧件入口、出口 处直线AB的方程式为 y=a x+b 有下面直线方 程为
此式即为和轧制接触区对应的弦的方程式。该式微分 后有下面关系 将dx 代入方程 解有下式
将及代入左边式 子得积分常数如 下:
3)单位压力分 布结果
4.2.3影响单位压力分布的因素
存在张力 设变形抗力沿接触面为常数,如以qh q H分别代表前、后 张力,应力界条件 当 x=0 时,σx=-qh , ph=K- qh 当 x=l 时, σx =-qH,pH=K-qH 张力和变形抗力均有变化 出: 在x=0 时, ph=Kh- qh 进:在 x=l 时, pH=KH-Qh 显然,不同的边界条件,不同的接触弧方程不同的摩擦规 律代入微分方程,将会得出不同的解 下面先介绍其中的一种,即A .и. 采利柯夫解。
热轧轧制力计算及校核

6 轧制力与轧制力矩计算6.1 轧制力计算6.1.1 计算公式1.S.Ekelund 公式是用于热轧时计算平均单位压力的半经历公式,其公式为〔1〕;))(1ηε++=P k m ( 〔1〕式中:m ——表示外摩擦时对P 影响的系数,hH hh R f m +∆-∆=2.16.1;当t≥800℃,Mn%≤1.0%时,K=10×〔14-0.01t 〕〔1.4+C+Mn+0.3Cr 〕Mpa 式中t —轧制温度,C 、Mn 为以%表示的碳、锰的含量;ε— 平均变形系数,hH R hv+∆=2ε;η—粘性系数,')01.014(1.0C t -=ηMpa.s F —摩擦系数,)0005.005.1(t a f -=,对钢辊a=1,对铸铁辊a=0.8;‘C — 决定于轧制速度的系数,根据表6.1经历选取。
表6.1’C 与速度的关系轧制速度〔m/s 〕<6 6~10 10~15 15~20 系数‘C10.80.650.602.各道轧制力计算公式为p h R b B p F P hH ∆⨯+==26.1.2 轧制力计算结果表6.2粗轧轧制力计算结果道次 1 2 3 4 5 T〔℃〕1148.68 1142.76 1133.93 1117.15 1099.45 H〔mm〕200 160 112 67 43 h(mm) 160 112 67 43 30 Δh(mm)40 48 45 24 13 Ri(mm) 600 600 600 600 600f 0.476 0.479 0.483 0.491 0.500m 0.194 0.266 0.408 0.596 0.755 K(Mpa) 64.3 65.9 68.1 72.4 76.9 ‘C 1 1 1 1 1η0.251 0.257 0.266 0.283 0.301 v(mm/s) 3770 3770 3770 3770 37705.408 7.841 11.536 13.709 15.204P(Mpa) 78.5 85.9 100.2 121.8 143.0B(mm) 1624 1621 1635.4 1623.9 1631.1 Hb(mm) 1621 1635.4 1623.9 1631.1 1615 hP(KN) 19720 23743 26834 23778 20501表6.3 精轧轧制力计算结果道次 1 2 3 4 5 6 7 T(℃)1043.65 1022.38 996.34 967.35 928.58 901.31 880 H(mm) 30.00 18 11.7 8.19 6.14 4.6 3.91 h(mm) 18 11.7 8.19 6.14 4.6 3.91 3.5 Δh(mm)12 6.30 3.51 2.05 1.54 0.69 0.41 Ri(mm) 400 400 400 350 350 350 350f 0.528 0.539 0.552 0.566 0.586 0.599 0.61m 0.920 1.203 1.452 1.522 1.854 1.654 1.511 K(Mpa) 91.23 96.67 103.34 110.76 120.68 127.66 ‘C 1 1 0.8 0.8 0.65 0.6 0.6η0.356 0.378 0.323 0.346 0.306 0.299 0.312 v(mm/s) 3310 5080 7260 9690 12930 15220 17000 ε23.89 42.93 68.38 103.50 159.72 158.82 157.04 P(Mpa) 191.47 248.63 307.47 369.69 484.06 464.92 457.372hH bB+(mm) 1606.16 1606.16 1606.16 1606.16 1606.16 1606.16 1606.16 P(KN) 21307 20047 18505 15905 18050 11604 88006.2 轧制力矩的计算6.2.1 轧制力矩计算公式传动两个轧辊所需的轧制力矩为〔2〕;Pxl M z 2 〔2〕式中:P —轧制力; x —力臂系数; l —咬入区的长度。
轧钢原理公式及名词解释

轧钢原理公式及名词解释Δn:压下量ΔB:展宽量ΔL:延伸量F:接触面积 P:平均单位压力 K:变形抗力H:轧前高度h:轧后高度B:轧前宽度b:轧后宽度L:轧前长度l:轧后长度R:轧辊半径D:轧辊直径S0:原始辊缝S:实际辊缝t:弹跳量y:预压值M:刚性系数C:力臂系数T:张力f:摩擦系数Mˊ:轧制力矩F1:断面积f n:前滑值f H:后滑值α:咬入角β:摩擦角γ:中性角δs:屈服极限n:轧辊转数V:速度ε:累计压下率N:电机功率U:电压A:电流℃:温度i:减速比S:秒min:分KN:千牛Kg:公斤T:吨mm:毫米M:米Σ:总和C:碳M n:锰Si:硅P:磷S:硫Cr:铬Mo:钼V:钒KW:千瓦Pa:帕mm2:平方Max:最大原理计算公式及应用:压下量:轧前高度减去轧后的高度 Δn=H -h宽展量:轧后的宽度减去轧前的宽度 ΔB :b -B延伸量:轧后的长度减去轧前的长度 ΔL :l -L压下率:轧前高度减去轧后高度与轧前高度之比乘百分之百 ε= .%展宽率:轧后宽度减去轧前宽度与轧前宽度之比乘百分之百 ε= .%断面积:轧前高度乘轧前宽度 F= H.B轧件长度:原料高度除辊缝高度乘原料长度 l= .%延伸系数:本架轧件长度除前一架轧件长度延伸系数=轧机秒速度:断面积乘轧制速度(设定速度),除前一架断面积=H -h HHS 0VL秒速度×60=分速度 V/F 1=前滑:变形区出口处,轧件速度大于轧辊线速度 fn=.%后滑:轧件入口速度低于轧辊线速度 fH = .%VCoS α:轧辊线速度水平分量 V H :入口处轧件速度出口厚度:空载辊缝加弹跳预压值 S=S 0+t+y空载辊缝:出口厚度减弹跳 S 0=S -t弹跳量:出口厚度减空载辊缝 t=S -S 0体积不变定律:变形前后金属体积不变 H .B .L=h.b.l 轧辊转数公式: n= minF.V/SF1Vn -VV VCoS α3.14×D秒速度公式: V ≠S温度计算公式:t=ir -C=( -1)C=式中:t ——该道次轧件厚度的温度℃ ir ——进入精轧机前轧件的温度℃ tch ——精轧末架轧机出口带钢温度℃ hr ——进入精轧机前钢板的厚度MM hch ——精轧末架出口带钢厚度MM轧制压力:轧件作用于轧辊通过辊承箱,压下螺丝传递给机架的总的力爱克龙德公式计算轧制力 (1)R=轧辊半径R=1/2(直径-电字+弹跳) (2)Δn=压下量Δh=上架电字-本架电字 (3)l=变形高度3.14×D ×n60 nrn (ir -tch )hch nr -hchl=∨ (4)F=变形面积×变形高度(5)f=摩擦系数f=(1.05-0.0005×开轧温度) (6)V=轧辊圆周速度 V= =米/秒(7)m=外摩擦对单位压力影响系数 m=(8)K=单位变形抗力K=(14-0.01×温度).(1.4+碳0.55+锰0.8+铬0.3) (9)n=粘性系数 公斤/mm 2n=0.01(14-0.01×温度)×1(>6米取0.8、<6米取1) (10)u=平均变形速度1/秒 u= ×103(11)P 平=(1+M) (K+h ×u) Kg/MM 2 (12)轧制力=P 平×F半径×压下量 23.14×辊径×转数601.6×f ×2-1.2×ΔnH + nR H+h轧制力矩公式:Mˊ=∨×轧制力R×Δh电机功率公式:N= Mˊ×n×1.03Mˊ——轧制力矩n——轧辊转数1.03——系数轧制力矩:轧辊一面转数,一面在轧件变形区内变形,若使轧辊在这种情况下维持转动,就要给轧辊一个转动的力量。
轧钢机械(第二章力能参数)(精)

©xuyong
20
§2 接触弧上的单位压力及影响因素
二、轧制时接触弧上px的微分方程式 1、T.Karman px的微分方程式(1925年)
L L
©xuyong
大压下量
小压下量
30
§3 轧制时接触弧上的平均单位压力
, pm= n’n”n”nB
这里介绍几种常用的计算公式
一、采利柯夫公式
三大步: 解Karman方程,求px表达式; 沿接触弧分段积分,求总压力P; 总压力除以面积得pm。
pm= n’K
31
©xuyong
©xuyong
§1 轧制力计算的基本思路与理论
四、金属塑性变形条件——塑性方程式 1、屈服准则 • 屈雷斯卡(H.Trasca)屈服准则 • 蜜赛斯(R.von.Misse)屈服准则
欲使处于应力状态的物体中的某一点进入 塑性状 态,必须使得该点的单位弹性形状变化位能达到材料 所允许的极限值,并且该极限数值与应力状态无关, 而是一个常值。
24
©xuyong
§2 接触弧上的单位压力及影响因素
三、影响单位压力的因素 2、变形阻力的确定 • 金尼克曲线; • 库克曲线; • 北京钢院曲线; • 其他曲线或经验公式。
25
©xuyong
§2 接触弧上的单位压力及影响因素
三、影响单位压力的因素 3、影响应力状态的因素
接触弧上单位摩擦力分布的影响 干摩擦理论 粘着摩擦理论 结论: μ↑则 p↑
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
轧制力矩及计算
轧制时垂直接触面水平投影的轧制总压力与其作用点到轧辊中心线的距离(即力臂)和乘积叫轧制力矩,如图1所示。
图1 简单轧制时作用在轧辊上的力
轧制力矩是驱动轧辊完成轧制过程的力矩。
轧制力矩的计算方法如下:
1)按轧件给轧辊的压力计算
M1=P总a (1)
式中 M1——传动一个轧辊需要的力矩,N•m;
P总——垂直接触面水平投影的轧制总压力,N;
a——P总的作用点到轧辊中心线的距离,m。
根据轧制压力和接触面积的计算公式可知,
P总=p平均S接触=p平均(RΔh)1/2[(B+b)/2]
式中 p平均——平均单位轧制压力,MPa;
B、b——轧件轧前与轧后的宽度,mm
R——轧辊半径,mm
△h——压下量,mm。
力臂a可按下式计算:
a=Ψ(R△h)1/2×10-3,m (2)式中Ψ一轧制压力的力臂系数。
将(2)代入(1)可得
M1=p平均R△hΨ[(B+b)/2]×10-3,N•m (3)热轧时力臂系数取值如下:
方形断面轧件Ψ=0.5
圆形断面轧件Ψ=0.6
在简单轧制情况下,即两个轧辊的直径相同,转速相等,双辊驱动,轧件作匀速运动,当轧件性质相同时,在上下两辊的作用下,轧件两面产生的变形一样,这时驱动两个轧辊的轧制力矩为:
M=M1+M2
因 M1=M2
故
M=2P总a
或
M=p平均R△hΨ(B+b)X10-3,N•m
2)按能量消耗计算
M1=A变R/l
式中A变——变形功,J;
R——轧辊半径,mm;
l——轧件轧后长度,mm。
这种方法适用于计算轧制非矩形对称断面轧件的轧制力矩。