力矩计算
力矩计算

力矩:力与力臂的乘积称为旋转轴上的力力矩,即M = f * L.其中m是施加到旋转轴O的力F的力矩。
如果物体沿逆时针方向旋转,则视为正转矩,否则为负转矩。
单位:在国际单位制中,力矩的单位是牛顿*米,缩写为:n * m,符号:n *M。
开发资料:1,定义在物理学中,转矩是指使物体绕其轴或支点旋转的力的趋势。
力矩的单位是牛顿米。
此刻的希腊字母是tau。
矩的概念起源于阿基米德对杠杆的研究。
旋转扭矩也称为扭矩或扭矩。
扭矩会导致物体改变其旋转运动。
推或拉涉及力量,而扭力涉及力矩。
力矩等于径向矢量和力的叉积。
2,自然1.指向点O的力矩F不仅取决于力的大小,而且取决于力矩中心的位置。
力矩随力矩中心的位置而变化。
2.当力为零或力臂为零时,力矩为零;3.当力沿其作用线移动时,由于力的大小,方向和臂没有改变,因此力矩保持不变。
4.两个平衡力到同一点的力矩的代数和等于零。
力矩:力与力臂的乘积称为作用在旋转轴上的力矩。
也就是说,M = f * L其中m是施加到旋转轴O的力F的力矩。
如果物体沿逆时针方向旋转,则视为正转矩,否则为负转矩。
单位:在国际单位制中,力矩的单位是牛顿*米,缩写为:n * m,符号:n * M扩展信息扭矩:力(f)与力臂(L)(m)的乘积。
也就是说,M = f·L。
扭矩是描述物体旋转效果的物理量。
只有当物体的旋转状态改变时,才能确定它受到扭矩的影响当物体绕固定轴旋转时,只有两个可能的转矩方向,因此,作用在具有固定轴的旋转体上的多个力矩的合力矩等于它们的代数和。
这一代总和将确定身体是否处于平衡状态在国际单位制中,力矩的单位是牛顿米。
注意它不能写成焦耳。
焦耳是能量的单位。
扭矩和能量是两个不同的概念在力矩的计算中,注意臂是从旋转轴到力的作用线在垂直于旋转轴的平面上的垂直距离。
力矩和扭矩计算公式

力矩和扭矩计算公式
力矩公式:M=LxF。
扭矩公式:驱动力=扭矩×变速箱齿比×主减速器速比×机械效率÷轮胎半径(单位:米)。
扭矩是使物体发生转动的一种特殊的力矩。
扩展资料
什么是力矩
力矩是力对物体产生转动作用的物理量。
可以分为力对轴的矩和力对点的'矩。
即:M=LxF。
其中L是从转动轴到着力点的距离矢量,F 是矢量力;力矩也是矢量。
转动力矩又称为转矩或扭矩。
力矩能够使物体改变其旋转运动。
推挤或拖拉涉及到作用力,而扭转则涉及到力矩。
力矩等于径向矢量与作用力的叉积。
力矩做功计算公式

力矩做功计算公式力矩是物体在受到力的作用下产生的旋转效应的物理量,它描述了力对物体旋转的影响。
力矩做功计算公式可以用来计算力矩所做的功。
下面将详细介绍力矩做功的计算公式以及相关概念。
让我们来了解一下什么是力矩。
力矩是指力对物体产生旋转效应的能力,它与力的大小和力的作用点到物体转轴的距离有关。
力矩的计算公式是M = Fd,其中M表示力矩,F表示力的大小,d表示力的作用点到转轴的距离。
根据力矩的定义,力矩的方向垂直于力的方向和力的作用点到转轴的连线。
如果力矩的方向与物体的旋转方向相同,那么力矩将使物体发生顺时针旋转;如果力矩的方向与物体的旋转方向相反,那么力矩将使物体发生逆时针旋转。
力矩做功的计算公式为W = Mθ,其中W表示力矩所做的功,M表示力矩的大小,θ表示物体旋转的角度。
根据这个公式,可以看出力矩的大小和旋转角度是决定力矩做功大小的关键因素。
当物体受到力的作用时,如果力的方向与物体的移动方向相同,那么力矩所做的功将是正的;如果力的方向与物体的移动方向相反,那么力矩所做的功将是负的。
这是因为力矩的方向和物体的旋转方向相同或相反,决定了力矩所做的功是正还是负。
力矩做功的计算公式可以用来计算力矩所做的功。
根据这个公式,可以得出以下几个结论:1. 当力的方向与物体的移动方向相同时,力矩所做的功是正的。
这意味着力矩使物体发生顺时针旋转,并且做了正的功。
2. 当力的方向与物体的移动方向相反时,力矩所做的功是负的。
这意味着力矩使物体发生逆时针旋转,并且做了负的功。
3. 当力的方向与物体的移动方向垂直时,力矩所做的功为零。
这意味着力矩对物体的旋转没有影响,不做功。
4. 力矩做功的大小与力矩的大小和物体旋转的角度有关。
当力矩的大小和角度增大时,力矩做的功也增大。
通过力矩做功的计算公式,我们可以计算出力矩所做的功的大小。
这对于理解物体在受到力的作用下发生的旋转现象非常重要。
力矩做功的计算公式为W = Mθ,它描述了力矩所做的功与力矩的大小和物体旋转的角度之间的关系。
力矩计算

负载力矩计算
一、负载驱动机构
1、滚珠螺杆驱动 2、直线运动 3、旋转机构
运动控制新理念
负载力矩计算
二、力矩矩)和加速力矩
M=Ma+Mf M:负载力矩(N.m) Ma:负载加速力矩(N.m) Mf:负载运行力矩(N.m)
运动控制新理念
负载力矩计算
二、力矩计算
运动控制新理念
负载力矩计算
三、负载转动惯量计算
1、滚珠螺杆驱动 Jt=1/2*maR2+m(PB/(2π))2
Jt:负载转动惯量( kg.m2 )
ma:螺杆质量(kg)
R:螺杆半径(m)
m:负载总质量(kg) PB:螺杆螺距(m/rev)
运动控制新理念
负载力矩计算
三、负载转动惯量计算
2、直线运动 Jt=m(A/(2π))2
b.惯量比过大时,则起动、停止时的过 冲和回冲亦变大,因而会影响起动、稳 定时间
c.当负载惯量过大时,需减小加载到马 达转轴的惯量
惯性比大时,起动、停止抖动
运动控制新理念
步进电机应用
一、步进电机选型
3、减小负载&转子惯量比的方法 a.改变负载驱动方式
驱动相同负载,滚珠螺杆驱动与同步轮拖动相比,转动惯量会小 很多
c.旋转机构驱动时,运行力矩极小,可忽略
运动控制新理念
负载力矩计算
二、力矩计算
3、加速力矩计算 Ma=2(Jm+Jt)×π × V/t
Ma:负载加速力矩(N.m) Jm:马达转子转动惯量(kg.m2) Jt:负载转动惯量(kg.m2) V:运行目标速度(rps) t:加速时间(s)
从公式可看出,加速力矩跟负载转动惯量以及加速 度成正比,加速度可根据需要设置,重点在于负载 转动惯量的计算
电机力矩计算公式

电机力矩计算公式
电机的力矩计算公式是T = P / (2πf),其中 T 是力矩(单位:牛顿米N·m),P 是功率(单位:瓦特 W),f 是转速(单位:转/秒)。
力矩是描述电机旋转力度的重要参数,以下我们围绕电机的力矩进行扩展讨论:
一、力矩与功率的关系:电机的力矩和功率是密切相关的。
一般来说,力矩越大,电机输出的功率也就越大。
在电机设计中,经常需要在力矩和功率之间做出平衡,以满足不同的应用需求。
二、额定力矩和峰值力矩:在电机的规格参数中,通常会列出额定力矩和峰值力矩两个参数。
额定力矩是电机在正常工作条件下可以持续输出的力矩;峰值力矩是电机在短时间内可以输出的最大力矩。
理解这两个参数有助于我们更好地选择和使用电机。
三、力矩的控制:在许多应用中,如机器人、电动车等,需要精确地控制电机的力矩。
这通常通过调整电机的电流来实现,因为电机的力矩和电流是成正比的。
电机控制器(如电机驱动器)是实现精确力矩控制的关键部件。
四、力矩与机械负载:电机的力矩必须大于机械负载产生的阻力矩,电机才能正常工作。
否则,电机可能会无法启动或转动。
因此,
在选择电机时,需要根据机械负载的大小来确定电机的力矩需求。
五、电机的类型与力矩:不同类型的电机(如直流电机、交流电机、步进电机等)有不同的力矩特性。
例如,直流电机的力矩与电流成正比,步进电机的力矩随转速的增加而减小。
了解电机的力矩特性有助于我们更好地选择和使用电机。
总之,电机的力矩是影响电机性能的关键参数,对其计算和控制有深入的理解,能够帮助我们更好地选择和使用电机,满足各种应用的需求。
进动力矩计算公式

进动力矩计算公式1.力矩:力和力臂的乘积叫做力对转动轴的力矩。
即:M=F*L2.式中M是力F对转动轴O的力矩,凡是使物体产生反时针方向转动效果的,定为正力矩,反之为负力矩。
3.单位:在国际单位制中,力矩单位是牛顿*米,简称:牛*米,符号:N*m。
4.力矩在物理学里是指作用力使物体绕着转动轴或支点转动的趋向。
力矩的单位是牛顿-米。
力矩希腊字母是 tau。
力矩的概念,起源于阿基米德对杠杆的研究。
转动力矩又称为转矩或扭矩。
力矩能够使物体改变其旋转运动。
推挤或拖拉涉及到作用力,而扭转则涉及到力矩。
力矩等于径向矢量与作用力的叉积。
5.力矩 (moment of force) 力对物体产生转动作用的物理量。
可以分为力对轴的矩和力对点的矩。
即:M=LxF。
其中L是从转动轴到着力点的距离矢量, F是矢量力;力矩也是矢量。
6.力对轴的矩是力对物体产生绕某一轴转动作用的物理量,其大小等于力在垂直于该轴的平面上的分量和此分力作用线到该轴垂直距离的乘积。
例如开门时,外力F平行于门轴的分力FП不能对门产生转动作用(图1),因为这力已被固定轴的约束力(见约束)所平衡。
对门能起转动作用的力是F在垂直于门轴的平面上的分力F⊥,其数值F⊥=Fcosα。
自F的作用点A作垂直于轴的平面П,与轴相交于O点。
由实验得知,力F对物体的转动作用与O至F⊥的垂直距离l成正比。
l称为F⊥对轴的力臂,它等于rsinβ,其中r=OA;β是F⊥与OA的夹角。
因此,力F对物体的转动作用由Fcosα和rsinβ的乘积来确定,这个物理量称为力F对轴的矩,它是个代数量。
当α=0°和β=90°时,力F对轴的矩最大,因此,要提高转动效率,作用力F应在轴的垂直平面内,并使其垂直于联线OA。
如果力F在轴的垂直平面内(图2),力对轴的矩为rFsinβ。
此量也可用△OAB面积的二倍来表示,其中AB=F。
7.力对点的矩是力对物体产生绕某-点转动作用的物理量,等于力作用点位置矢和力矢的矢量积。
力矩和扭矩的转换公式

力矩和扭矩的转换公式力矩和扭矩是物理学中常用的两个概念,它们在描述物体运动和力的作用时起着重要的作用。
力矩是指力对物体产生的转动效果,而扭矩则是指物体受到的扭转力。
力矩可以通过以下公式来计算:力矩= 力× 距离。
其中,力是作用在物体上的力的大小,距离是力作用点到物体转轴的距离。
力矩的单位是牛顿·米(N·m)。
扭矩是指物体受到的扭转力,它可以通过以下公式来计算:扭矩= 力× 杠杆臂。
其中,力是作用在物体上的力的大小,杠杆臂是力作用点到物体转轴的垂直距离。
扭矩的单位也是牛顿·米(N·m)。
力矩和扭矩之间存在着一定的关系。
当物体受到的力矩和扭矩相等时,物体将保持平衡状态。
这是因为力矩和扭矩都是描述物体受力情况的物理量,它们的大小和方向都会影响物体的运动状态。
在实际应用中,力矩和扭矩有着广泛的应用。
例如,在机械工程中,力矩和扭矩常用于描述机械装置的运动和力的作用。
在建筑工程中,力矩和扭矩可以用来计算建筑物的结构强度和稳定性。
在物理学和工程学的研究中,力矩和扭矩也是重要的研究对象。
总结起来,力矩和扭矩是物理学中常用的两个概念,它们在描述物体运动和力的作用时起着重要的作用。
力矩是指力对物体产生的转动效果,而扭矩则是指物体受到的扭转力。
它们之间存在着一定的关系,当物体受到的力矩和扭矩相等时,物体将保持平衡状态。
在实际应用中,力矩和扭矩有着广泛的应用,例如在机械工程和建筑工程中。
通过研究力矩和扭矩,我们可以更好地理解物体的运动和力的作用,为实际应用提供理论基础。
结构力学 力矩

结构力学力矩
在结构力学中,力矩是描述物体受到力产生的转动效应的物理量。
力矩可以用数学方式表示为力乘以与力作用位置之间的距离。
假设一个刚体受到一个力F作用,该力作用的位置与刚体某一点O之间的距离为 r。
力矩M可以通过以下公式计算:
M = F × r
其中,M表示力矩,F表示作用力,r表示作用位置到点O的距离。
在结构力学中,力矩通常用于描述物体受到多个力矩的影响产生的平衡和稳定条件。
根据力矩的大小和方向,可以判断物体在作用力下的转动趋势。
力矩的方向通过右手法则确定,即将右手握拳,当手指指向力的方向时,大拇指的方向就是力矩的方向。
力矩在结构设计和分析中具有重要的应用。
通过计算力矩,可以确定结构的平衡条件,预测物体的静力学和动力学特性,以及设计和分析各种机械系统的运动和稳定性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
扭矩和功率及转速的关系式,是电机学中常用的关系式,近期在百度知道上常有看到关于扭矩和功率
及转速的相关计算式的问答,一般回答者都是直接给出计算公式,公式中的常数采用近似值,常数往往不容易记住,本文的目的就是帮助大家方便的记住这些公式,并在工程应用中熟练的使用。
一记住扭矩和功率的公式形式
扭矩和功率及转速的关系式一般用于描述电机的转轴的做功问题,扭矩越大,轴功率越大;转速越高,轴功率越大,扭矩和转速都是产生轴功率的必要条件,扭矩为零或转速为零,输出轴功率为零。
因此,电
机空转或堵转就是轴功率等于零的两个特例。
功率和扭矩及转速成正比,扭矩和功率的关系式具有如下形式:
P=aTN
上式中,a为常数,对应的有:
T=(1/a)(1/N)P
即扭矩和功率成正比,和转速成反比。
记忆方法:
记住扭矩T和功率P成正比,扭矩T和转速N成反比,而系数a不必记忆。
二记住力做功的基本公式
提问者通常都知道上述关系式,问题的焦点在于常数a的具体数值。
如果不是经常使用该公式,的确很难记住这个常数,本人亦是如此。
不过,只要记住扭矩和转速公式的推导方式,可以很快推导出结果,得到系数a的准确值。
我们知道力学中力做功的功率计算公式为:P=FV(2)
上述公式为力做功的基本公式。
然而,基本公式中没有出现扭矩T和转速N。
如果我们注意到:扭矩实际上就是力学上的力矩。
就很容易联想到扭矩T和力F的关系。
由于力矩等于力F和力臂的乘积,而力臂是轴的半径r,因此有:
T=Fr或F=T/r(3)
记忆方法:
N是力的单位,m是长度的单位,因此,力等于扭矩除以长度,而扭矩的单位是N.m,
长度就是半径r。
三掌握角速度和速度的转换方法
第二节告诉我们,扭矩与轴的半径有关,可是,扭矩和功率的关系式(1)中,并无轴半径的参数r,也无力做功基本公式(2)中的速度V。
这就引导我们去思考,将速度V变换为转速N后,转速N与扭矩T相乘,应该可以抵消掉轴半径r。
实际正是如此:
电动机轴面上任意一点的速度与旋转的角速度及轴半径成正比,即:
V=ωr(4)
记忆方法:
圆弧的长度等于角度乘以半径,圆周运动的速度等于角速度乘以半径。
四扭矩和功率的基本公式
将式(3)和(4)代入式(2),得到:
P=Tω(5)
式(5)为扭矩和功率的基本公式,这个公式,我们可以按照上述方式推导,不过最好的办法还是直接记住。
记忆方法:
角速度ω和转速N都可以反映转速,采用角速度时,扭矩和功率成正比,扭矩和转速成反比,且正反比的系数均为1,因此,这是扭矩和功率的基本公式。
五单位转换
至此,我们还是没有得出扭矩和功率关系式(1)中的常数a。
那么,前面的推导,是否过于繁琐呢?
当然不是,实际上,式(5)和式(1)具有相同的含义,区别仅仅在于变量的单位。
而一个公式中,如果单位不确定,常数是没有意义的。
式(5)中,P、T和ω均采用标准单位,分别为瓦特(W)、牛顿.米(N.m)和弧度/秒(rad/s)。
式(1)中,若扭矩和功率的单位不变,转速N采用常用的转/分(r/min)。
由于一圈等于2π弧度,1分钟等于60秒,式(5)变换为:
P=(2π/60)TN
若功率P采用kW为单位,上式变换为:
P=(2π/60000)TN。
60000/2π≈9549代入上式得到:
P≈TN/9549
T≈9549P/N(6)
式(6)就是最常用的扭矩和功率计算公式。
若功率较小,单位采用瓦特,式(6)的常数需要除以1000。
若转速单位采用转每秒,式(6)的常数需要乘以60。
式(6)和式(5)的区别仅仅在于单位的选择,而式(5)才是扭矩和功率的基本公式。
扭矩和功率及转速关系式记忆方法:
扭矩和功率的基本公式为P=Tω,角速度ω可用转速N替代,只要记住使用公式的变量和基本公式中变量的单位转换关系,就可以方便的推导出各种扭矩和功率的计算公式及相关常数的准确数值。