关于遥感技术未来的发展方向
红外遥感的发展趋势

红外遥感的发展趋势
红外遥感的发展趋势包括以下几个方面:
1. 高分辨率:红外遥感技术的分辨率不断提高,能够获取更精细的地表信息。
通过提高空间分辨率,可以更好地观测地表特征,例如城市热岛效应、土壤湿度等。
2. 多光谱:红外遥感不仅涉及到热红外波段,还包括中红外和远红外波段。
未来的红外传感器将扩展到更多的波段,以获取更多的地表信息。
3. 高灵敏度:红外遥感技术的灵敏度会不断提高,能够捕捉到更微弱的红外辐射信号。
这对于探测地下水、地下矿产等具有重要意义。
4. 实时监测:红外遥感将实现更高的时间分辨率,可以实时监测目标的红外辐射变化。
这对预警和监测自然灾害(如火灾、地震等)具有重要意义。
5. 无人机和卫星应用:红外遥感技术在无人机和卫星平台上的应用也将得到发展。
无人机可以进行较低高度的高分辨率红外遥感观测,而卫星则可以实现大范围的红外遥感监测。
6. 数据融合:红外遥感数据将与其他遥感数据(如光学影像、微波遥感等)进行融合,以获取更全面的地表信息。
这将推动多源遥感数据融合与分析技术的发
展。
7. 应用领域拓展:随着红外遥感技术的不断发展,其在农业、环境监测、城市规划、气候变化等领域的应用也将得到拓展。
当代遥感科技发展的现状与未来展望

综上所述,技术在各个领域已经得到了广泛应用,并取得了显著的成果。未来, 技术将继续发挥重要作用,推动社会的进步和发展。因此,我们应该密切技术 的发展,同时积极应对挑战和问题,为技术的未来发展做好准备。
谢谢观看
2、产业化和商业化进程
未来,遥感科技将进一步推动产业化进程,形成涵盖传感器制造、数据获取、 数据处理、信息提取、应用服务等多个环节的完整产业链。同时,随着遥感技 术的普及和成熟,商业化程度也将不断提高,涌现出一批具有国际竞争力的遥 感企业。
3、科研教育和培训需求
随着遥感科技的快速发展和应用领域的拓展,对相关领域的人才需求也不断增 加。未来,科研教育和培训将成为遥感科技发展的重要支撑。高校和科研机构 应加强遥感科学与技术的学科建设,培养更多具备创新能力和实践经验的遥感 专业人才。
结论
本次演示对遥感科技的发展现状与未来展望进行了探讨。当前,遥感科技在技 术特点和应用领域方面不断取得突破,市场需求和发展趋势呈现积极态势,关 键技术和创新方向也得到不断推进。展望未来,遥感科技将在技术竞争力和市 场前景、产业化和商业化进程、科研教育和培训需求等方面取得新的进展。
为了适应未来发展的需要,我们应当加强遥感科学与技术的学科建设,培养更 多优秀的遥感专业人才,推动遥感科技创新和发展,以满足社会经济发展和人 民生活水平的提高对遥感服务的需求。我们也应知识产权保护和法律建设等重 要议题,为遥感科技的健康发展提供有力保障。
2、应用拓展:多源遥感图像融合技术将在更多领域得到应用,如智慧城市、 地球观测、气候变化研究等。此外,随着商业航天和民用遥感领域的快速发展, 多源遥感图像融合技术将在解决实际问题方面发挥更大的作用。
3、社会影响:多源遥感图像融合技术的发展将促进遥感技术的普及和应用, 从而使更多人受益。例如,在环境保护领域,多源遥感图像融合技术可以帮助 人们更好地了解生态环境的变化和评估环境污染的程度。在社会治理领域,多 源遥感图像融合技术可以为城市规划、灾情监测和公共安全等方面提供有力支 持。
卫星遥感技术的发展趋势

卫星遥感技术的发展趋势卫星遥感技术是一种从卫星上获取地表信息的技术,其随着科技的进步得到了广泛的应用。
卫星遥感技术可以为人类提供大量的地理信息,包括气候状况、地形、土壤类型等信息。
随着技术的不断进步,卫星遥感技术也在不断发展。
未来的卫星遥感技术将会在哪些方面得到突破,我们来一起探讨一下。
1、传感器技术的发展传感器是卫星遥感技术最为重要的部分之一。
目前的卫星遥感传感器主要有光学(包括可见光、红外、紫外等波段)、超声波、雷达等多种类型。
在这些传感器中,光学传感器数据体积最大,采集的分辨率也最高。
未来的卫星遥感技术,将会更加注重传感器的高分辨率和高效率。
在传感器方面,未来可能会出现一些新的技术。
比如说,在红外传感器方面,研究人员可以利用超快速激光打破目前传感器的波长上限,使其进一步提高精度和空间分辨率。
此外,还可能出现一些新的传感器技术,如全色光谱成像传感器、微波辐射计等,这些传感器能够提供更多的信息。
2、图像处理技术的发展在卫星遥感技术中,图像处理技术的重要性也不可小觑。
未来卫星遥感图像处理技术将会发生哪些改变呢?我们可以预想到有以下几个方面的变化:首先,在大数据时代,处理海量的数据成为了一项重要的任务。
未来的卫星遥感图像处理技术将强调与云计算技术的结合,能够快速处理海量数据,提高处理效率和精度。
其次,在人工智能技术的引领下,卫星遥感图像处理技术将会越来越智能化,能够自动提取特征,自适应性更强,而不是单纯地依赖人工操作。
最后,在三维建模方面,卫星遥感图像处理技术将会进一步提高,可以快速生成准确的三维建模。
这对于城市规划、环境监测等方面将有极大的帮助。
3、卫星平台技术的发展卫星平台技术是卫星遥感技术的基础,它直接影响并制约了卫星遥感技术的发展。
未来,卫星平台技术可能会出现以下几种变化:首先,在卫星平台技术方面,随着航天技术的不断提高,卫星平台将不再是单一的卫星,而是将包括多颗卫星,组成卫星星座。
卫星星座可以自主地选择卫星位置,避开障碍物,并且能够实现多通道数据收集和多源数据融合处理。
中国农业遥感技术应用现状及发展趋势

中国农业遥感技术应用现状及发展趋势一、本文概述随着科技的飞速发展,遥感技术以其高效、精准的特性,逐渐在农业领域展现出巨大的应用潜力。
本文旨在全面分析中国农业遥感技术应用的当前状况,并探讨其未来发展趋势。
我们将回顾遥感技术在农业领域的应用历程,明确其在农业监测、资源管理、灾害预警等方面的重要作用。
我们将深入探讨当前中国农业遥感技术的主要应用领域和取得的成效,包括作物生长监测、土地利用/覆盖变化、农业气象服务等。
我们将结合国内外遥感技术的发展动态,展望中国农业遥感技术的未来发展趋势,以期为我国农业遥感技术的持续发展和创新提供有益参考。
二、中国农业遥感技术应用现状近年来,随着遥感技术的快速发展,中国农业遥感技术应用取得了显著进展。
目前,遥感技术已广泛应用于农作物监测、农业资源调查、农业灾害评估等多个领域,为农业生产和管理提供了有力支持。
在农作物监测方面,遥感技术通过获取高时空分辨率的遥感影像,实现对作物生长状况的实时监测。
利用遥感数据,可以准确提取作物生长信息,如植被指数、叶面积指数等,为农业生产决策提供科学依据。
同时,遥感技术还可以监测作物病虫害的发生和发展,为病虫害防治提供及时有效的信息支持。
在农业资源调查方面,遥感技术通过对土地利用/覆盖、土壤质量、水资源等方面的监测和评估,为农业资源管理和规划提供重要依据。
通过遥感技术,可以快速获取大范围的土地资源信息,实现土地资源的高效利用。
遥感技术还可以评估土壤质量和水资源状况,为农业可持续发展提供有力支撑。
在农业灾害评估方面,遥感技术通过获取灾害发生前后的遥感影像,可以实现对农业灾害的快速评估和预测。
利用遥感数据,可以准确监测灾害发生的范围、程度和影响,为灾害预警和应急响应提供重要参考。
遥感技术还可以评估灾害对农业生产的影响,为灾后恢复和重建提供科学依据。
总体来看,中国农业遥感技术应用已经取得了显著成效,为农业生产和管理提供了有力支持。
然而,仍存在一些问题和挑战,如遥感数据的获取和处理技术尚需进一步完善、遥感技术在农业生产中的普及程度有待提高等。
遥感技术在精准农业中的现状及发展趋势

遥感技术在精准农业中的现状及发展趋势遥感技术在精准农业中的应用举足轻重,随着科技的不断发展,遥感技术在农业领域的应用也越来越广泛。
精准农业是一种通过科技手段,以精细化、个性化的方式管理农业生产的理念和技术体系,旨在提高农业生产效率、减少资源浪费、实现可持续发展。
而遥感技术的广泛应用,为精准农业的发展提供了重要支撑和保障。
本文将从遥感技术在精准农业中的现状及发展趋势两个方面展开讨论,以便更好地了解遥感技术在精准农业领域的应用现状和未来发展趋势。
1. 遥感技术在农业资源调查中的应用遥感技术可以通过卫星、飞机等载具获取农田的数据信息,包括农田的土壤、植被、水分等情况,这些信息对于精准农业的实施至关重要。
通过遥感技术获取的数据信息,可以为农业生产提供支撑,帮助农业生产者科学合理地利用土地资源,提高土地利用效率,减少农业资源的浪费。
利用遥感技术可以实现对农作物的长势监测、病虫害监测、灾害监测等。
通过对农田的遥感监测,可以及时掌握农田的实际情况,针对性地采取防治措施,提高精准农业的生产效率,保障农业生产的稳定发展。
遥感技术可以实现对农田的动态监测和管理,帮助农业生产者科学合理地管理农田。
通过对农田的遥感监测,可以实现对农田的水分、土壤肥力等情况的动态监测,以便不断调整农田的管理方法,提高农田的利用效率,实现农田资源的可持续利用。
利用遥感技术可以实现对农田的施肥需求的精准测定,以便实现对不同地块的精准施肥。
通过遥感技术获取的农田土壤肥力信息,可以为农业生产者提供科学合理的施肥方案,提高施肥的效率,减少农业生产的成本,增加农作物的产量和质量。
1. 多源数据融合应用随着遥感技术的不断发展,多源遥感数据的融合应用将成为未来的发展趋势。
不同的遥感载具获取的数据信息各具特点,多源数据融合应用可以更准确地获取农田的信息,提高数据的精度和可靠性,有利于精准农业的实施和发展。
2. 高分辨率应用3. 智能化应用随着人工智能技术的快速发展,未来遥感技术在精准农业中的智能化应用将成为一个重要的发展方向。
卫星遥感技术的现状与未来发展

卫星遥感技术的现状与未来发展近年来,随着技术的不断进步与应用需求的增加,卫星遥感技术已经越来越受到人们的重视。
在地表遥感、气象遥感、海洋遥感、环境遥感等领域都有广泛的应用,它为我们提供了各种各样的信息资源,为实现精准农业、自然资源管理、环境监测等领域提供了有力的技术手段。
本文将探讨卫星遥感技术的现状与未来发展。
一、卫星遥感技术的现状1.技术发展卫星遥感技术的起源可以追溯到20世纪60年代。
最初的遥感卫星是美国的Landsat卫星,主要用于地表遥感。
然而这些卫星仅能够提供较低分辨率的影像,无法满足林业、地表水资源等更为详细的监测和精准的数据需求。
随着卫星遥感技术的不断发展,全球各国陆续推出了自己的遥感卫星。
2008年,我国首颗自主研发的环境遥感卫星“环境一号”成功发射,标志着中国在该领域的技术实力达到国际先进水平。
现在,全球已经有多达几十颗以上的遥感卫星在运行,其覆盖的领域也涉及到了许多方面。
2.应用领域与价值目前,卫星遥感技术已经广泛应用在气象、海洋、环境、农业、林业、地质勘探等多个领域。
以气象领域为例,卫星遥感数据可以为气象灾害预警、气象预报、农业生产等提供重要的信息支持。
而在环境领域,可以为环境监测、生态保护等工作提供精细化的数据支持。
此外,卫星遥感技术还可以为治理自然资源、保护环境、应对灾害等提供重要的辅助数据资源,具有很大的社会和经济价值。
二、卫星遥感技术未来发展趋势1.分辨率和时间性的提高卫星遥感技术的未来发展主要要面临着分辨率和时间性的提高等技术挑战,这将是遥感卫星发展的重要方向。
遥感卫星应用领域的增多和广泛,对遥感数据的精度和时效提出了更高的要求,因此,遥感卫星将必须借助这些技术的提高来满足各种数据需求。
2.多源数据融合技术多源数据融合技术已成为卫星遥感技术发展的一个热门领域。
多传感器数据融合技术可以结合各自的优点来综合处理不同卫星获取的数据。
将不同的卫星遥感数据融合在一起,可以提高遥感数据的精度和时效性,分析结果也将更具有科学性和可靠性。
遥感科学与技术专业职业生涯规划书

遥感科学与技术专业职业生涯规划书遥感科学与技术专业职业生涯规划一、导言作为一名优秀的大学生,我将以遥感科学与技术专业为基础,为未来职业生涯规划制定明确的目标和计划。
本文将从如下三个方面来说明我在遥感科学与技术领域的职业发展目标和实施计划。
二、职业目标1. 短期目标:在研究生期间深入学习遥感科学与技术的理论知识,掌握研究方法和技能,提高自己的学术水平和科研能力。
2. 中期目标:通过参与相关项目研究和发表高水平的学术论文,积累研究经验和学术声誉,成为行业内的的专家和领军人才。
3. 长期目标:致力于遥感科学与技术的创新研究和应用推广,在国内外学术界和工业界具有一定影响力,为推动遥感技术与社会发展结合做出贡献。
三、职业发展路径1. 学术研究方向选择一个具有前沿性和实用性的研究方向,如遥感影像处理和分析、遥感地球系统建模与环境监测、遥感在农业和资源管理中的应用等。
基于对该领域的深入理解,通过参与相关课题研究和国际学术交流,逐步积累专业知识和研究经验,提高自己的学术造诣。
2. 学术论文发表积极参与学术会议和学术期刊,发表高质量的学术论文。
通过不断完善自己的研究方法和实验设计,提高论文的学术价值和创新性,扩大自己的学术影响力。
3. 学术交流和合作定期参加相关学术会议和研讨会,与同行专家学者进行学术交流和合作,拓宽自己的学术视野。
积极参与国际合作项目,与国际团队进行深入的合作研究,提高自己的国际影响力和竞争力。
4. 科研项目参与主动争取参与国家级和企事业单位的科研项目,通过参与项目的研究和管理,提高自己的科研能力和项目管理能力。
通过科研项目的实施和成果转化,为实现自身职业发展目标积累经验和资源。
四、自我提升和能力培养1. 持续学习保持学习的热情和动力,持续关注遥感科学与技术领域的最新研究进展和应用动态。
通过阅读学术文献、参加专业培训和研讨会,不断提升自己的专业知识和技能水平。
2. 技术能力深入学习和掌握遥感数据的获取、处理和分析方法,熟练使用遥感软件和相关技术工具。
我国遥感技术的现状及发展趋势

我国遥感技术的现状及发展趋势随着科技的不断进步和应用领域的不断扩大,遥感技术在国内外得到了广泛的应用和关注。
作为现代环境监测、自然资源管理和地理信息系统等领域的基础,遥感技术已经成为国家发展战略中的重要组成部分。
本文将从当前国内遥感技术的现状以及未来的发展趋势两个方面对其进行探讨。
一、我国遥感技术的现状我国的遥感技术发展始于20世纪60年代,经过近几十年的发展,现已成为全球遥感技术的重要力量。
在卫星、航空和地面遥感领域,我国都取得了较为显著的进步。
1. 卫星遥感卫星遥感是目前国内遥感技术研究的重点领域之一。
我国在该领域已经有了自主研发、自主发射和自主运行的遥感卫星,包括光谱卫星、雷达卫星和合成孔径雷达卫星等。
遥感卫星的发射和运行,改变了对地面信息的获取方式,为我国的环境监测和资源调查提供了更高效、精确、可靠的手段。
2. 航空遥感航空遥感技术是指利用飞机、直升机等载具进行遥感数据采集。
我国在该领域已经实现了高分辨率、高频次、大面积覆盖的目标,使得遥感技术在自然资源、城市更新、环境保护和灾害监测等方面发挥着重要作用。
3. 地面遥感地面遥感是指通过在地面接收、采集和处理卫星遥感数据,利用影像处理技术,进行地球观测。
这种方法是最常用的遥感技术手段之一,也是遥感技术的基础。
我国在这方面的研究也非常活跃,通过遥感技术的应用手段,对新能源、生态环境保护等方面进行研究。
二、我国遥感技术的发展趋势1. 遥感技术的智能化和可视化随着大数据、人工智能、云计算和物联网技术的发展,遥感技术在数据分析和处理方面将更加智能化。
未来的遥感技术将实现自动化、高精度、高效率的遥感数据分析,遥感数据的可视化处理也将变得更加人性化、直观和可操作。
2. 遥感技术的高精度化高精度化是遥感技术未来的发展趋势之一,其主要包括两个方面:一是遥感数据获取的精度水平将得到更高的提升,例如超高分辨率、高时空分辨率等;二是遥感影像处理和应用的精度和精细程度将得到更高的提升,例如大数据分析、精准测绘等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于遥感技术未来的发展方向 摘要:遥感技术集合了空间、电子、光学、计算机、生物学和地学等科学的最新成就,是现代高新技术领域的重要组成部分。自从1972年美国第一颗地球资源技术卫星发射成功并获取了大量地球表面的卫星图像后,遥感技术就开始在世界范围内迅速发展和广泛应用。遥感技术的出现揭开了人类从外层空间观测地球的序幕,为人类认识国土、开发资源、监测环境、研究灾害以及分析全球气候变化等提供了新的途径。 关键词:遥感技术 环境科学 应用 3S一体化 发展趋势 遥感是从远离地面的不同工作平台上,如高塔、气球、飞机、火箭、人造地球卫星、宇宙飞船和航天飞机等,通过传感器对地球表面的电磁波辐射信息进行探测,然后经信息的传输、处理和判读分析,对地球的资源与环境进行探测与监测的综合性技术。遥感技术从远距离采用高空鸟瞰的形式进行探测,包括多点位、多谱段、多时段和多高度的遥感影像以及多次增强的遥感信息,能提供综合系统性、瞬时或同步性的连续区域性同步信息,在环境科学领域的应用具有很大优越性。 20世纪90年代以来,环境遥感技术应用越来越广。从陆地的土地覆被变化,城市扩展动态监测评价,土壤侵蚀与地面水污染负荷产生量估算,生物栖息地评价和保护,工程选址以及防护林保护规划和建设。到水域的海洋和海岸带生态环境变迁分析,海面悬浮泥沙、叶绿素含量、黄色物质、海上溢油、赤潮以及热污染等的发现和监测,珊瑚和红树林的现状调查与变化监测,堤坝的规划与水沙平衡分析,水下地形地遥调查以及水域初级生产率的估算。再到大气环境遥感中的城市热岛效应分析,大气污染范围识别与定量评价,大气气溶胶污染特征参数化,全球水、气和化学元素等的循环研究,全球环境变化以及重大自然灾害的评估等,几乎覆盖了整个地球系统。 一、遥感技术在环境科学中的应用 1.遥感技术在水污染监测方面的应用 (1)利用红外扫描仪监视石油污染 全球每年排入海洋的石油及其制品高达1000万吨,利用多光谱航片可对海面石油污染进行半定量分析,将彩色航片同步拍照与近红外片做的彩色密度分割图相比较,更精密地判断和解译信息,参照图片画出不同油膜厚度的大致分级图。通过彩色密度分割图像,特别是数字密度分割图,可以更准确地判断油量的分布情况。通过彩色密度分割可把相差零点零几厚度的海面油膜区分出层次来,这有利于用航空遥感对海面油的扩散分布和半定量研究。浓度大的地方是黄色,往外扩散的油膜变薄,呈黄紫混在一起的颜色,再往外扩散的油膜就更薄些呈紫色。通过对污染发生后各天的气象卫星图像的对比分析,确定油膜的漂移方向,计算出其扩散速度和扩散面积。 (2)利用遥感技术监测水体富营养化 浮游植物中的叶绿素对蓝紫光和红橙光有较强的吸收作用,当水体出现富营养化时,我们就可以利用遥感技术推算出水体中的叶绿素分布情况。赤潮区的海水光谱特征是藻类、泥沙和海水的复合光谱,另外有机或无机颗粒物也会吸收入射光,影响水体的透明度。 (3)通过遥感技术调查废水污染和泥沙污染 废水的颜色与悬浮物性状千差万别,特征曲线上的反射峰位置和强度也不大一样,可以用多光谱合成图像进行监测。水中悬浮泥沙的浓度和粒径增大,水体反射量也会相应增加,反射峰随之红移,定量判读悬浮泥沙浓度的最佳波段是0.65~0.85微米。 (4)应用红外扫描仪监测水体热污染 应用红外扫描仪记录水体的热辐射能量,真实反映其温度差异。在热红外图像上,热水温度高,辐射能量多,呈浅色调。冷水和冰辐射能量少,呈深色调。热排水口处通常呈白色羽流,利用光学技术和计算机对热图像作密度分割,根据少量的同步实测水温,画出水体等温线。 (5)通过遥感技术分析水域的分布变化和水体沼泽化 水体总体反射率较低,选择1.55~1.75微米波段的多时域影像可以分析水域的分布变化。沼泽化在时域图像上反映为水体面积缩小,从水体向边缘有规律变化,显示出不同程度的植被特征。 2.遥感技术在大气环境监测方面的应用 (1)臭氧层 臭氧层位于地球上空25~30千米的平流层中,对0.3米以下紫外区的电磁波有较大吸收,可用紫外波段来测定臭氧层的变化。臭氧层在2.74毫米处也有一个吸收带,可用频率为11O83兆赫兹的地面微波辐射计来测定臭氧在大气中的垂直分布。另外臭氧层会吸收太阳紫外线而升温,可使用红外波段来探测,如用7.75~13.3微米热红外探测器测定臭氧层的温度变化,参照浓度与温度的相关关系,推算出臭氧浓度的水平分布。 (2)大气气溶胶 利用遥感图像可分析大气气溶胶的分布和含量,工业烟雾、火灾浓烟和大规模沙尘暴在遥感图像上都有清晰的图像,可以直接圈定其大致范围。利用周期性气象卫星图可监测沙尘运动,估计其运动速度,及时预报沙尘暴。通过卫星资料可及早发现森林火灾,把灾害损失降到最低。大比例图片可用来调查城市烟囱的数量和分布,还可以通过烟囱阴影的长度来计算其大致高度。应用计算机对影像进行微密度分割,建立烟雾浓度与影像灰度值的相关关系,可测出烟雾浓度的等值线图。 (3)有害气体 彩红外相片可监测有毒气体对污染源周围树木和农作物的危害情况,通过植物对有害气体的敏感性来推断某地区大气污染的程度和性质。一般污染较轻的地区,植被受污染的情况不宜被人察觉,但其光谱反射率却会明显变化,在遥感影像上表现为灰度的差异。正常生长的植物叶片能强烈反射红外线,在彩红外相片上色泽鲜红明亮。受到污染的叶子,其叶绿素遭到破坏,对红外线的反射能力下降,其彩红外相片颜色发暗,如白蜡树受污染后呈紫红色,柳树呈品红色略带蓝灰色。 (4)气候变化 美国、欧盟、日本和俄罗斯的地球同步轨道气象卫星组成的静止气象卫星监测系统昼夜不停地观测地球的气候变化,得到全球范围内的大气参数、海洋参数、地表状况、辐射收支和臭氧分布等信息,对全球变暖、臭氧层空洞以及厄尔尼诺现象的研究非常重要。
3.遥感技术在城市环境监测与管理中的应用 彩红外遥感影像可监测固体废弃物引起的生态环境变化,热红外遥感影像可调查工业废水和废气的排放情况。城市道路宽的呈带状和环状,窄的呈线状,城市广场一般以块状蓝灰色与街道紧密相连于中心地带。居民区呈灰色,高层楼房带有宽长影,平房呈密集排列的小长方块状。水系呈浅蓝色,绿地呈红色。从遥感图像上获取这些信息,对优化城市结构有很大帮助。另外城市里的高大建筑物对太阳辐射和其他热辐射的吸收和释放特性跟以土地和农作物为主要下垫面的郊区有很大不同,利用热红外遥感对城市下垫面进行分析就可以得出城市的热岛效应。 4.应用遥感技术监控生态环境 遥感影像真实记录地貌形态特征并提供各环境参数的组合情况,根据其空间一致性和差异性进行区域环境范围的生态区划。利用遥感卫星相片还可以编制森林树种、生长状况和森林覆盖图,使用计算机集群分类,精度可高达8O% 。一般野生动物环境与森林植被关系最为密切,通过研究植物的分布与长势可大致确定动物的活动繁殖场所,从而编制森林野生动物保护规划。 5.利用遥感技术监测自然灾害 遥感技术对于暴雨、水土流失、地震和山体滑坡等地质灾害的调查与监测也很有效。比如说地震与地球活动构造块体分布及其活动方式密切相关,利用卫星预测地震技术主要集中在电磁波辐射和电离层异常监测、地表形变监测、红外辐射监测以及卫星重力监测等方面。但由于目前技术条件的限制,地震还是不能准确预测,2008年5月的汶川大地震几乎震碎了中国人的心,期待有一天,我们中国人能通过遥感技术准确预测地震灾害,今天的悲剧永远不要发生了。 二、遥感技术的发展趋势 随着科学技术的进步,光谱信息成像化,雷达成像多极化,光学探测多向化,地学分析智能化,环境研究动态化以及资源研究定量化,大大提高了遥感技术的实时性和运行性,使其向多尺度、多频率、全天候、高精度和高效快速的目标发展。 1.遥感影像获取技术越来越先进 (1)随着高性能新型传感器研制开发水平以及环境资源遥感对高精度遥感数据要求的提高,高空间和高光谱分辨率已是卫星遥感影像获取技术的总发展趋势。遥感传感器的改进和突破主要集中在成像雷达和光谱仪,高分辨率的遥感资料对地质勘测和海洋陆地生物资源调查十分有效。 (2)雷达遥感具有全天候全天时获取影像以及穿透地物的能力,在对地观测领域有很大优势。干涉雷达技术、被动微波合成孔径成像技术、三维成像技术以及植物穿透性宽波段雷达技术会变得越来越重要,成为实现全天候对地观测的主要技术,大大提高环境资源的动态监测能力。 (3)开发和完善陆地表面温度和发射率的分离技术,定量估算和监测陆地表面的能量交换和平衡过程,将在全球气候变化的研究中发挥更大的作用。 (4)由航天、航空和地面观测台站网络等组成以地球为研究对象的综合对地观测数据获取系统,具有提供定位、定性和定量以及全天候、全时域和全空间的数据能力,为地学研究、资源开发、环境保护以及区域经济持续协调发展提供科学数据和信息服务。 2.遥感信息处理方法和模型越来越科学 神经网络、小波、分形、认知模型、地学专家知识以及影像处理系统的集成等信息模型和技术,会大大提高多源遥感技术的融合、分类识别以及提取的精度和可靠性。统计分类、模糊技术、专家知识和神经网络分类有机结合构成一个复合的分类器,大大提高分类的精度和类数。多平台、多层面、多传感器、多时相、多光谱、多角度以及多空间分辨率的融合与复合应用,是目前遥感技术的重要发展方向。不确定性遥感信息模型和人工智能决策支持系统的开发应用也有待进一步研究。 3.3S一体化 计算机和空间技术的发展、信息共享的需要以及地球空间与生态环境数据的空间分布式和动态时序等特点,将推动3S一体化。全球定位系统为遥感对地观测信息提供实时或准实时的定位信息和地面高程模型;遥感为地理信息系统提供自然环境信息,为地理现象的空间分析提供定位、定性和定量的空间动态数据;地理信息系统为遥感影像处理提供辅助,用于图像处理时的几何配准和辐射订正、选择训练区以及辅助关心区域等。在环境模拟分析中,遥感与地理信息系统的结合可实现环境分析结果的可视化。3S一体化将最终建成新型的地面三维信息和地理编码影像的实时或准实时获取与处理系统。 4.建立高速、高精度和大容量的遥感数据处理系统 随着3S一体化,资源与环境的遥感数据量和计算机处理量也将大幅度增加,遥感数据处理系统就必须要有更高的处理速度和精度。神经网络具有全并行处理、自适应学习和联想功能等特点,在解决计算机视觉和模式识别等特大复杂的数据信息方面有明显优势。认真总结专家知识,建立知识库,寻求研究定量精确化算法,发展快速有效的遥感数据压缩算法,建立高速、高精度和大容量的遥感数据处理系统。 5.建立国家环境资源信息系统 国家环境资源信息是重要的战略资源,环境资源数据库是国家环境资源信息系统的核心。我们要提高对环境资源的宏观调控能力,为我国社会经济和资源环境的协调可持续发展提供科学的数据和决策支持。 6.建立国家环境遥感应用系统 国家环境遥感应用系统将利用卫星遥感数据和地面环境监测数据,建立天地一体化的国家级生态环境遥感监测预报系统以及重大污染事故应急监测系统,可定期报告大气环境、水环境和生态环境的状况。环境遥感地理信息系统是其支撑系统,在各种应用软件的辅助下实现环境遥感数据的存储、处理和管理;环境遥感专业应用系统是其应用平台,在环境专业模型的支持下实现环境遥感数据的环境应用;环境遥感决策支持系统是其最上层系统,在环境预测评价和决策模型的驱动下进行环境预测评价分析,制定环境保护的辅助决策方案;数据网络环境是其数据输入和输出的开放网络环境,实现环境海量数据的快速流通。 相关范文: