高考数学专题复习-函数的零点

高考数学专题复习-函数的零点
高考数学专题复习-函数的零点

【标题01】对零点这个概念没有理解清楚

【习题01】函数23)(2

+-=x x x f 的零点是 ( ) A .()0,1 B .()0,2 C .()0,1,()0,2 D .1,2 【经典错解】解方程2320x x -+=得1x =或x=2,所以函数的零点是()0,1,()0,2,故选

C .

【详细正解】由()0232

=+-=x x x f 得,x =1和2,故选D .

【习题01针对训练】已知函数()?

?

?>+≤-=,1,log 2,1,222x x x x f x 则函数()f x 的零点为( ) A .4

1

和1 B .4-和0 C .41 D .1

【标题02】误认为()()0f a f b ?<时函数在区间(,)a b 至少有一个零点 【习题02】已知函数1

()f x x x

=+,且(1)2f -=-,(1)2f =,(1)(1)0f f -<,则()f x 在(1,1)-内____.

A .有且只有一个零点

B .至少有一个零点

C .只有两个零点

D .没有零点 【经典错解】由零点定理得()f x 在(1,1)-内至少有一个零点,故选B .

【详细正解】函数()f x 的定义域是{|0}x x ≠ ,所以它在区间(1,1)-上不是连续函数,所以不能利用零点定理,当0x < 时,()0f x < ,当0x >时,()0f x >,所以()f x 在(1,1)-内与x 轴没有交点,故选D .

【深度剖析】(1)经典错解错在误认为()()0f a f b ?<时函数在区间(,)a b 至少有一个零点.

(2)零点定理的使用必须满足两个条件:①函数在区间[,]a b 上连续;②()()0f a f b < ,才能得到一个结论:函数在区间(,)a b 内至少有一个零点.所以解答零点定理的题目时,一定要认真审题,认真分析,才能做出判断.错解就是没有注意到函数1

()f x x x

=+在(1,1)-不是连续函数,因为0x ≠,所以不能使用零点定理分析解答.

【习题02针对训练】单调函数()f x 在区间[,]a b 上的图象是连续不断的,且

()()0f a f b <,用二分法求零点时,取02

a b

x +=

,若计算得0()0f x =,则有______. A .函数()f x 的零点在0(,)a x 内 B .函数()f x 的零点在0(,)x b 内 C .函数()f x 在(,)a b 内无零点 D .函数()f x 的零点为0x

【标题03】误认为()()0f a f b ?>时函数在区间(,)a b 没有零点

【习题03】对于函数()2

f x x mx n =++,若()()0,0f a f b >>,则函数()f x 在区间

(),a b 内( )

A . 一定有零点

B . 一定没有零点 C. 可能有两个零点 D. 至多有一个零点 【经典错解】由于不满足()()0f a f b ?<, 所以函数()f x 在区间(),a b 内没有零点,故选

B .

【详细正解】画出二次函数的草图,可以观察得到()f x 在区间(),a b 内可能有两个零点,也可能有一个零点,也可能没有零点,故选C .

【习题03针对训练】关于x 的方程32

30x x a --=有三个不同的实数解,则实数a 的取值

范围是________.

【标题04】误认为分段函数就没有零点

【习题04】下列函数图像与x 轴均有交点,其中不能用二分法求图中函数零点的是( )

A .

B .

C .

D .

【经典错解】由于选择支D 是一个分段函数,所以不能用二分法求图中函数的零点. 【详细正解】由于选择支C 中所有函数值()0f x ≥ 恒成立,所以不满足()()0f a f b <,所以不能利用二分法求图中函数的零点.

【习题04针对训练】下列函数图象与x 轴均有交点,其中不能用二分法求函数零点近似值

的是( )

【标题05】对方程的类型判断错误导致漏解

【习题05】若关于x 的方程2210ax x --=只有一个实数根,则实数a 的取值是 .

【经典错解】由180a ?=+=.得18a =-. 故填1.8

-

【详细正解】当0a =时方程化为10x --=,1x =-,满足题意;当0a ≠时,由

180a ?=+=得18a =-. 所以a =18-或0. 故填1

0.8

-或

【深度剖析】(1)经典错解错在对方程的类型判断错误导致漏解.(2)错解误认为

20ax bx c ++=就是关于x 的一元二次方程,没有注意考查a 的范围.如果加上0a ≠,方

程20ax bx c ++=才是一元二次方程.(3)今后大家看到方程20ax bx c ++=,马上要想到看a 的范围,如果没有限制,该方程只能是“一元二次型”方程,如果加上0a ≠,方程

20ax bx c ++=才是一元二次方程.(4)类似的,不等式20ax bx c ++≥也不一定是二次

不等式,要分类讨论.

【习题05针对训练】已知集合{}{}

(2)(1)0,(1)()0A x x x B x ax x a =++≤=-+>,

,A B ?且 a 求的范围.

【标题06】对零点定理理解不透彻函数的图像分析错误

【习题06】已知210mx x ++=有且只有一根在区间(0,1)内,求m 的取值范围. 【经典错解】设2

()1f x mx x =++∵210mx x ++=有且只有一根在区间(0,1)内∴

(0)(1)0f f ?<

所以m <-2 .

【详细正解】设2

()1f x mx x =++,(1)当m =0时方程的根为1-,不满足条件.

(2)当m ≠0∵2

10mx x ++=有且只有一根在区间(0,1)内,又(0)f =1>0 ∴有两种

可能情形①(1)0f <得m <-2或者②1

(1)02f m

=-且0<<1得m 不存在.综上所得m <-2 .

(4)对于二次函数的零点问题,一般从四个方面来考虑:抛物线开口方向、对称轴的位置、判别式的大小和端点的函数值大小.(5)对于二次函数的问题,一般都是通过图像分析,这样简洁快捷.

【习题06针对训练】已知函数2

()21(0)f x ax x a =-+≠. (1)若函数()f x 有两个零点,求a 的取值范围;

(2)若函数()f x 在区间(0,1)与(1,2)上各有一个零点,求a 的取值范围.

【标题07】研究二次函数的图像及性质忽略了对称轴位置导致出错

【习题07】是否存在这样的实数k ,使得关于x 的方程2

(23)(31)0x k x k +---=有两个实数根,且两根都在0与2之间?如果有,试确定k 的取值范围;如果没有,试说明理由. 【经典错解】令2

()(23)(31)f x x k x k =+---那么由条件得到

2(23)4(31)0(0)130

(2)42(23)(31)0k k f k f k k ??=-+-≥?

=->??=+--->?

即此不等式无解即不存在满足条件的k 值. 【详细正解】令2

()(23)(31)f x x k x k =+---那么由条件得到

2

(23)4(31)0(0)130(2)42(23)(31)0230

22

k k f k f k k k ??=-+-≥?=->???=+--->?

-?<

1313722

k k k k ?+≥??

>??<

【习题07针对训练】设函数()

f x 2(1)1x m x =+-+在区间[0,2]上有两个零点,则实数

m 的取值范围是________ .

【标题08】研究零点的策略选择错误 【习题08】函数()x

x x f 1

+

=的零点个数为 ( ) A. 0 B. 1 C. 2 D. 3 【经典错解】由题得(1)2f = ,(1)2f -=-,所以,所以函数()y f x =零点的个数为1,故选B .

【详细正解】令()1

0f x x x

=+

=,由于方程没有实数解,所以函数的零点个数0,故选A. 【深度剖析】(1)经典错解错在研究零点的策略选择错误.(2)在利用零点存在定理进行判断时,一定要考虑函数的图象是不是连续的,并结合函数的图像及性质加以判断.这里函数

()x

x x f 1

+

=的图像是不连续的,所以不能用零点判定定理,只能通过解方程或画函数的图像来解决.

【习题08针对训练】设函数244,1()43,1

x x f x x x x -≤?=?-+>?,则函数1

()()2g x f x =+的零点个

数为__________个.

【标题09】分析图像考虑问题不严谨漏掉了零点

【习题09】已知函数()f x 是定义在R 上的奇函数,且()()f x T f x +=(T 是非零常数),则方程()0f x =在区间[],T T -上根的个数可能是( )

A. 1

B.2

C. 3

D.5 【经典错解】由于函数()f x 是定义在R 上的奇函数,所以(0)0f =,所以

()()0f T f T =-=,所以方程()0f x =在区间[],T T -上根的个数可能是3,故选C .

【详细正解】由于函数()f x 是定义在R 上的奇函数,所以(0)0f =,所以

()()0f T f T =-=,因为()()

f x T f x +=,令x =,()()222

T T T

f T f -

∴-+=

()()()()()022222T T T T T f f f f f ∴-=∴-=∴=()()22T T

f f ∴-=,所以一共有5个零

点,故选D .

【习题09针对训练】若函数()()y f x x R =∈满足()()2f x f x +=,且[]1,1x ∈-时,

()21f x x =-;函数()lg g x x =,则函数()y f x =与()y g x =的图象在区间[]6,6-内

的交点个数共有 个.

【标题10】忽略了变量的范围和对数函数的真数的限制条件

【习题10】若方程2

lg(3)lg(3)x x m x -+-=-在(0,3)x ∈内有唯一解,求实数m 的取值范围.

【经典错解】原方程可以化为233x x m x -+-=-有唯一解,即2430x x m -++=有唯一解,所以164(3)01m m ?=-+=∴=

【详细正解】原方程可化为2

(2)1(03)x m x --+=<<,2

1(2)1(03),y x x =--+<<

2y m =,在同一坐标系下画出它们的图像,由于方程在(0,3)内有唯一的解,所以函数12

,y y 的图像只有一个公共点,可见m 的取值范围是30m -<≤或1m =.又2

30x x m -+->在

(0,3)x ∈内恒成立,所以23m x x <-+在(0,3)x ∈内恒成立,所以0m ≤,综合得m 的取

值范围为30m -<≤.

【习题10针对训练】设a 是实数,讨论关于x 的方程lg(1)lg(3)lg()x x a x -+-=-的实数解的个数.

【标题11】研究函数问题忽略了函数的定义域导致命题转化错误解答错误

【习题11】已知直线m x y l +=:与曲线21x y -=有两个公共点,则实数m 的取值范围是( )

A .(2,2)-

B .(1,1)-

C .)2,1[

D .(2,2)- 【经典错解】由题得2

22221()12210x m x x m x x mx m +=-∴+=-∴++-=

因为直线和曲线有两个公共点,所以2

2

2

2

48(1)0482m m m m ?=-->∴->-∴<

22m ∴-<< 所以选择D .

【详细正解】因为21x y -=,所以2

2

2211(11,0)y x

x y x y =-∴+=-≤≤≥,它表

示单位圆的上半圆.画出图象,当直线l 经过点A 、C 时,1m =,此时直线l 与曲线

21x y -=有两个公共点;当直线l 与曲线相切时,2m =.因此当12m ≤<时,直

线m x y l +=:与曲线21x y -=有两个公共点.

【习题11针对训练】直线y x b =+与曲线21x y =-有且只有一个公共点,则b 的取值范围是( ) A .||2b =

B .112b b -<<=-或

C .11b -<≤

D .112b b -<≤=-或

高中数学经典错解深度剖析及针对训练第08讲:函数的零点参考答案 【习题01针对训练答案】D

【习题01针对训练解析】令220x

-=,∴1x =;令22log 0x +=,∴14x =

,而1

14

<,∴综上可知1x =,所以函数()f x 的零点为1.故选D . 【习题02针对训练答案】D

【习题02针对训练解析】根据零点定理和单调函数的性质,可以得到函数()f x 的零点为0x ,故选D

.

【习题04针对训练解析】由于选择支B 中所有函数值()0f x ≥恒成立,所以不满足

()()0f a f b <,所以不能利用二分法求图中函数的零点.

【习题05针对训练答案】112a a ?

?-

<

【习题05针对训练解析】由题意,得{}

21A x x =-≤≤- ①0a =时,{}

0B x x =<满足A B ?; ②0a >时,1B x x x a a ?

?

=>

<-???

?或,∵A B ?,∴10

a a ->-??>?01a ?<< ③0a <时,1B x x a a ??

=<<-????,∵A B ?∴1

210

a a a ?<-??->-??

102a ?-<<

综合①②③可知a 的取值范围是112a a ??-

<

. 【习题06针对训练答案】(1)(,0)

(0,1)-∞;

(2)3

14

a <<.

【习题07针对训练解析】由题得

216(1)

4031

1023122(0)103(2)42(1)102m m m m m m x R

f m f m ?<->?=-->???-<<-??<-

??-≤<-??∈??

=≥??≥-=+-+≥????

或 【习题08针对训练答案】3

【习题08针对训练解析】令()0g x =,所以1()02f x +

=,所以1

()2

f x =-.所以函数1()()2

g x f x =+

的零点个数即为()y f x =与1

2

y =-的交点个数,在平面直角坐标系中作出两函数图象,

如图可知,函数()y f x =与1

2

y =有3个交点,所以函数1()()2g x f x =+的零点有3个.

【习题09针对训练答案】10

【习题09针对训练解析】由题意知,函数()f x 是以2为周期的周期函数,且当

[]1,1x ∈-时,()21f x x =-,()lg g x x =()lg ,

0lg ,0

x x x x >?=?

-

()y g x =在区间[]6,6-内的图象如下图所示,由图象可知,个函数的图象在区间[]6,6-有

10个公共点.

y

x

O

-1

-3-55

3

1

y=g x ()

y=f x ()

【习题10针对训练答案】当13a <≤或134a =时,原方程只有一个实数解;当1334

a <<时,原方程有两个不同的实数解.

【习题11针对训练答案】D

【习题11针对训练解析】由21x y =-,可化简为2

2

1(0)x y x +=≥,所以表示的图形是以原点为圆心,半径为1的一个半圆,如图所示,要使得与直线y x b =+只有一个公共点,则当y x b =+过点(0,1)和(0,1)-时,此时11b -<≤,当直线y x b =+在第四象限与圆相

切时,此时2b =-b 的取值范围是

112b b -<≤=-或,故选D .

【高考数学专题】函数的零点练习题

函数的零点 班级 ___________ 姓名 __________ 知识必备 1、函数零点定义. 对于函数()D x x f y ∈=,,把使()0=x f 成立的实数x 叫作函数()D x x f y ∈=,的零点。 2、函数的零点与相应方程的根,函数的图像与x 轴交点之间的关系. 方程()0=x f 有实根?函数()x f y =的图像与x 轴交点?函数()x f y =有零点. 3、函数零点的判定(零点存在性定理) 如果函数()x f y =在区间[]b a ,上的图像是一条连续曲线,并且有()()0+-≤-+=0 ,ln 20 ,322x x x x x x f 的零点个数为____________. 5、函数()()2,1≥∈-+=+n N n x x x f n n 在区间?? ? ??121,内的零点个数为______. 6、已知0x 是函数()x x f x -+ =11 2的一个零点,若()()+∞∈∈,,10201x x x x ,则( ) ()()0,0.21<x f x f C ()()0,0. 21>>x f x f D 7、已知a 是()x x f x 2 1log 2-=的零点,若a x <<00,则()0x f 的值满足( ) ()0. 0=x f A ()0.0x f C ()符号不确定 0.x f D 8、若函数()a x x x f -+=2 log 3 在区间()21, 内有零点,则实数a 的取值范围是( ) ()2log 1. 3--,A ()2l o g 0.3,B ()12l o g .3, C ()4l o g 1.3,D 9、若432<<<

专题复习之--函数零点问题

专题复习之--函数零点问题 (一)零点所在区间问题(存在性,根的分布) 1.函数()lg 3f x x x =+-的零点所在区间为( ) A .(0,1) B .(1,2) C .(2,3) D .(3,+∞) 变式:函数b x a x f x -+=)(的零点))(1,(0Z n n n x ∈+∈,其中常数b a ,满足 23,32==b a , 则=n ( ) A. 0 B.1 C.2- D.1- 2.已知a 是实数,函数2 ()223f x ax x a =+--,如果函数()y f x =在区间[]11-,上有零点,则a 的取值范围是____________. (二)零点个数问题(重点,常用数形结合) 3.函数()44f x x x = ++-的零点有 个. 4.讨论函数2()1f x x a =--的零点个数. 5.若存在区间[,]a b ,使函数[]()2(,)f x k x x a b =+ +∈的值域是[,]a b ,则实数k 的范围 是__________. 6. 已知偶函数)(x f 满足)()2(x f x f =-,且当10<≤x 时,x x f =)(,则x x f lg )(=的零点个数是________. 7.(选作思考)函数f (x )=234 20122013123420122013x x x x x x ??+-+-+-+ ?? ? cos2x 在区间[-3,3]上的零点的个数为_________.

(三)复合函数与分段函数零点问题(由里及外,画图分析) 8.已知函数???<≥=) 0()-(log )0(3)(3x x x x f x ,函数)()()()(2R t t x f x f x g ∈++=.关于)(x g 的 零点,下列判断不正确... 的是( ) A.若)(,41x g t =有一个零点 B.若)(,4 12-x g t <<有两个零点 C.若)(,2-x g t =有三个零点 D.若)(,2-x g t <有四个零点 变式一:设定义域为R 的函数1251,0()44,0 x x f x x x x -?-≥?=?++0)()-2(0) x x f x x x x ?=?-≤? 则关于x 的函数1)(3-)(2y 2+=x f x f 的零点的个数为______. 变式三:已知函数(0)()lg()(0) x e x f x x x ?≥=?-0 B. b >-2且c <0 C. b <-2且c =0 D. b 2c=0≥-且

高三数学专题复习 函数的零点与导数的应用关系

高三数学专题复习 函数的零点与导数的应用关系 21、(本题满分14分) 已知函数1()ln ,()f x a x a R x =-∈其中 (1)设()(),h x f x x =+讨论()h x 的单调性。 (2)若函数()f x 有唯一的零点,求a 取值范围。 21.解:(1)1()ln h x a x x x =-+,定义域为(0,)+∞………………1分 22211()1a ax x h x x x x ++'=++=………………2分 令22()1,4g x x ax a =++?=- 当0?≤,即22a -≤≤时()0g x ≥,()0h x '≥此时()h x 在(0,)+∞上单调递增。………………4分 当0?>即2a <-或2a >时,由()0g x =得1x =,2x = ………………5分 若2a >则10x <又1210x x =>所以20x < 故()0h x '>在(0,)+∞上恒成立 所以()h x 在(0,)+∞单调递增……………………6分 若2a <-则20x >又1210x x =>所以20x > 此时当1(0,)x x ∈时()0h x '>;当12(,)x x x ∈时()0h x '<当2(,)x x ∈+∞时()0h x '> 故()h x 在1(0,)x ,2(,)x +∞上单调递增,在12(,)x x 单调递减……………………7分 综上,当2a ≥-时()h x 在(0,)+∞上单调递增 当2a <-时()h x 在1(0,)x ,2(,)x +∞单调递增,在12(,)x x 单调递减……………8分 (2)方法1:问题等价于1ln a x x = 有唯一实根 显然0a ≠则关于x 的方程1ln x x a =有唯一实根……………10分 构造函数()ln x x x ?=,则()1ln x x ?'=+ 由0ln 1'=+=x ?,得e x 1=

高中数学专题练习-函数零点问题

高中数学专题练习-函数零点问题 [题型分析·高考展望] 函数零点问题是高考常考题型,一般以选择题、填空题的形式考查,难度为中档.其考查点有两个方面:一是函数零点所在区间、零点个数;二是由函数零点的个数或取值范围求解参数的取值范围. 常考题型精析 题型一 零点个数与零点区间问题 例1 (1)(·湖北)已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-3x ,则函数g (x )=f (x )-x +3的零点的集合为( ) A.{1,3} B.{-3,-1,1,3} C.{2-7,1,3} D.{-2-7,1,3} (2)(2015·北京)设函数f (x )=??? 2x -a ,x <1,4(x -a )(x -2a ),x ≥1. ①若a =1,则f (x )的最小值为________; ②若f (x )恰有2个零点,则实数a 的取值范围是________. 点评 确定函数零点的常用方法: (1)若方程易求解时,用解方程判定法; (2)数形结合法,在研究函数零点、方程的根及图象交点的问题时,当从正面求解难以入手时,可以转化为某一易入手的等价问题求解,如求解含有绝对值、分式、指数、对数、三角函数式等较复杂的函数零点问题,常转化为熟悉的两个函数图象的交点问题求解. 变式训练1 (·东营模拟)[x ]表示不超过x 的最大整数,例如[2.9]=2,[-4.1]=-5.已知f (x )=x -[x ](x ∈R ),g (x )=log 4(x -1),则函数h (x )=f (x )-g (x )的零点个数是( ) A.1 B.2 C.3 D.4 题型二 由函数零点求参数范围问题 例2 (·天津)已知函数f (x )=??? |x 2+5x +4|,x ≤0,2|x -2|,x >0. 若函数y =f (x )-a |x |恰有4个零点,则实数 a 的取值范围为________. 点评 利用函数零点的情况求参数值或取值范围的方法:

高考数学专题04 函数的零点(第六篇)(解析版)

备战2020年高考数学大题精做之解答题题型全覆盖高端精品 第六篇函数与导数 专题04 函数的零点 【典例1】【辽宁省丹东市2020届模拟】已知设函数()ln(2)(1)ax f x x x e =+-+. (1)若0a =,求()f x 极值; (2)证明:当1a >-,0a ≠时,函数()f x 在(1,)-+∞上存在零点. 【思路引导】 (1)通过求导得到()f x ',求出()0f x '=的根,列表求出()f x 的单调区间和极值. (2)对a 进行分类,当1a >时,通过对()f x '求导,得到()f x '在()1,-+∞单调递减,找到其零点,进而得到()f x 的单调性,找到()0>0f x ,()00f <,可证()f x 在()1,-+∞上存在零点. 当01a <<时,根据(1)得到的结论,对()f x 进行放缩,得到1e 0a f -??> ??? ,再由()00f <,可证() f x 在()1,-+∞上存在零点. 【详解】 (1)当0a =时,()()()ln 21f x x x =+-+,定义域为()2,-+∞,由()1 02 x f x x +'=- =+得1x =-. 当x 变化时,() f x ',()f x 的变化情况如下表:

故当1x =-时,()f x 取得极大值()()()1ln 21110f -=---+=,无极小值. (2)()()1 e 112 ax f x a x x ??= -++?+'?,2x >-. 当0a >时,因为1x >-,所以()() ()2 1 e 1202ax f x a a x x ??=- -++?+'',()1 002 f b -'=-<, 所以有且仅有一个()11,0x ∈-,使()10g x '=, 当11x x -<<时,()0f x '>,当1x x >时,()0f x '<, 所以()f x 在()11,x -单调递增,在()1,x +∞单调递减. 所以()()010f x f >-=,而()0ln210f =-<, 所以()f x 在()1,-+∞存在零点. 当10a -<<时,由(1)得()()ln 21x x +≤+, 于是e 1x x ≥+,所以()e 11ax ax a x -≥-+>-+. 所以()()()()()) e e ln 21e 1ln 21]ax ax ax f x x x x a x -???=+-+>-+++??? . 于是11111 11e e e 1ln e 21]e e 1ln e 1]0a a a a a f a a -------??????????????>+-+->+--=???? ? ? ? ? ???????????????? ???. 因为()0ln210f =-<,所以所以()f x 在1e ,a -?? +∞ ??? 存在零点. 综上,当1a >-,0a ≠时,函数()f x 在()1,-+∞上存在零点. 【典例2】【河南省名校-鹤壁高中2019届高三压轴第二次考试】已知函数()2 23x f x e x x =+-. (1)求函数()f x '在区间[]0,1上零点个数;(其中()f x '为()f x 的导数) (2)若关于x 的不等式()()2 5312 f x x a x ≥+-+在[)1,+∞上恒成立,试求实数a 的取值范围. 【思路引导】

复合函数零点问题专题训练

复合函数零点问题专题训练 1.定义域和值域均为[-a,a](常数a>0)的函数y=f(x)和y=g(x)的图像如图所示,给出下列四个命题中: (1)方程f[g(x)]=0有且仅有三个解;(2)方程g[f(x)]=0有且仅有三个解;(3)方程f[f(x)]=0有且仅有九个解;(4)方程g[g(x)]=0有且仅有一个解。 那么,其中正确命题的个数是 () A .1 B.2 C.3 D.4(第1 题图) 解:选B.(1)方程f[g (x )]=0有且仅有三个解;g (x )有三个不同值,由于y=g (x )是减函数,所以有三个解,正确; (2)方程g[f (x )]=0有且仅有三个解;从图中可知,f (x )∈(0,a )可能有1,2,3个解,不正确; (3)方程f[f (x )]=0有且仅有九个解;类似(2)不正确; (4)方程g[g (x )]=0有且仅有一个解.结合图象,y=g (x )是减函数,故正确.2.已知函数1)(+=x xe x f , 若函数2)()(2 ++=x bf x f y 恰有四个不同的零点,则实数b 的取值范围是 ( ) A.) 22,(--∞ B.) 2,3(-- C.) 3,(--∞ D.(] 2 2,3--解:用求导方法得,f(x)在x =-1取得最大值1,在x=0取得最小值0,故01时,f(x)=a,有1个解,2)()(2 ++=x bf x f y 恰有四个不同的零点,则 2 t +bt+2=0有两个不等根,1个在(0,1)内,另1个根大于1,令g(t)= 2 t +bt+2,于是得, ⊿>0且g (0)>0且g(1)<0,解得b <-3,故选C .思考:已知函数1 )(+=x xe x f ,若函数2)()(2 ++=x bf x f y 恰有6个不同的零点,则 实数b 的取值范围是 ( ) 3.(2013四川,理10)设函数f (x (a ∈R ,e 为自然对数的底数),若曲线 a a x y f(x)O a a a a x y g(x) O a a

高中数学-函数零点问题及例题解析

高中数学-函数零点问题及例题解析 一、函数与方程基本知识点 1、函数零点:(变号零点与不变号零点) (1)对于函数)(x f y =,我们把方程0)(=x f 的实数根叫函数)(x f y =的零点。 (2)方程0)(=x f 有实根?函数()y f x =的图像与x 轴有交点?函数()y f x =有零点。 若函数()f x 在区间[],a b 上的图像是连续的曲线,则0)()(f ,所以由根的存在性定理可知,函数x x x f 2 )1ln()(-+=的零点所在的大致区间是(1,2),选B (二)求解有关函数零点的个数(或方程根的个数)问题。 函数零点的存在性定理,它仅能判断零点的存在性,不能求出零点的个数。对函数零点的个数问题,我们可以通过适当构造函数,利用函数的图象和性质进行求解。如:

专题03 “用好零点”,证明函数不等式-2020年高考数学压轴题之函数零点问题(原卷版)

专题三“用好零点”,证明函数不等式 函数方程思想是一种重要的数学思想方法,函数问题可以利用方程求解,方程解的情况可借助于函数的图象和性质求解.高考命题常常以基本初等函数为载体,主要考查以下三个方面:(1)零点所在区间——零点存在性定理;(2)二次方程根的分布问题;(3)判断零点的个数问题;(4)根据零点的情况确定参数的值或范围;(5)根据零点的情况讨论函数的性质或证明不等式等.本专题围绕高考压轴题中已知零点(零点个数),证明函数不等式问题,例题说法,高效训练. 【典型例题】 类型一设而不求,应用函数零点存在定理 例1.【四川省泸州市2019届高三二诊】已知函数. (1)若曲线在点处的切线与轴正半轴有公共点,求的取值范围; (2)求证:时,. 类型二设而不求,应用不等式性质 例2.【广东省揭阳市2019届高三一模】已知函数(,e是自然对数的底,) (1)讨论的单调性; (2)若,是函数的零点,是的导函数,求证:. 类型三代入零点,利用方程思想转化证明零点之间的关系 例3.【湖南师大附中2019届高三月考试题(七)】已知函数,其中为常数. (1)讨论函数的单调性; (2)若有两个相异零点,求证:. 类型四利用零点性质,构造函数证明参数范围 例4.【山东省临沂市2019届高三2月检测】已知函数. (1)判断的单调性; (2)若在(1,+∞)上恒成立,且=0有唯一解,试证明a<1. 【规律与方法】 应用函数的零点证明不等式问题,从已知条件来看,有两类,一类是题目中并未提及函数零点,二一

类是题目中明确函数零点或零点个数;从要求证明的不等式看,也有两种类型,一类是求证不等式是函数值的范围或参数的范围,二一类是求证不等式是零点或零点的函数值满足的不等关系. 1.由于函数零点存在定理明确的是函数值满足的不等关系,所以,通过设出函数的零点,利用函数零点存在定理,可建立不等关系,向目标不等式靠近,如上述类型一;也可以利用不等式的性质,向目标不等式靠近,如上述类型二,这两类问题突出的一点是“设而不求”. 2. 当求证不等式是零点或零点的函数值满足的不等关系时,则注意将零点代入函数式,构建方程(组),进一步确定零点之间的关系,然后在通过求导、分离参数、构造函数等手段. 【提升训练】 1.【广东省揭阳市2019届高三一模】设函数, (1)讨论的单调性; (2)若函数有两个零点、,求证:. 2.【陕西省西安地区陕师大附中、西安高级中学、高新一中、铁一中学、西工大附中等八校2019届高三3月联考】已知函数有两个零点. 求实数a的取值范围; 若函数的两个零点分别为,,求证:. 3.【宁夏银川市2019年高三下学期检测】已知函数. (1)当时,求函数的单调区间; (2)当时,证明:(其中为自然对数的底数). 4.已知函数f(x)=lnx+a(x﹣1)2(a>0). (1)讨论f(x)的单调性; (2)若f(x)在区间(0,1)内有唯一的零点x0,证明:. 5. 已知函数f(x)=3e x+x2,g(x)=9x﹣1. (1)求函数φ(x)=xe x+4x﹣f(x)的单调区间; (2)比较f(x)与g(x)的大小,并加以证明. 6. 已知函数f(x)=lnx﹣x+1,函数g(x)=ax?e x﹣4x,其中a为大于零的常数. (Ⅰ)求函数f(x)的单调区间; (Ⅱ)求证:g(x)﹣2f(x)≥2(lna﹣ln2). 7.【山东省济南市2019届高三3月模拟】已知函数,其导函数的最大值

高考数学函数零点专题

专题2.函数的零点 高考解读 求方程的根、函数的零点的个数问题以及由零点存在性定理判断零点是否存在,利用函数模型解决实际问题是高考的热点;备考时应理解函数的零点,方程的根和函数的图象与x 轴的交点的横坐标的等价性;掌握零点存在性定理.增强根据实际问题建立数学模型的意识,提高综合分析、解决问题的能力. 知识梳理 1.函数的零点与方程的根 (1)函数的零点 对于函数f (x ),我们把使f (x )=0的实数x 叫做函数f (x )的零点. (2)函数的零点与方程根的关系 函数F (x )=f (x )-g (x )的零点就是方程f (x )=g (x )的根,即函数y =f (x )的图象与函数y =g (x )的图象交点的横坐标. (3)零点存在性定理 如果函数y =f (x )在区间[a ,b ]上的图象是连续不断的一条曲线,且有f (a )·f (b )<0,那么,函数y =f (x )在区间(a ,b )内有零点,即存在c ∈(a ,b )使得f (c )=0, 这个c 也就是方程f (x )=0的根.注意以下两点:①满足条件的零点可能不唯一;②不满足条件时,也可能有零点. (4)二分法求函数零点的近似值,二分法求方程的近似解. 2.在求方程解的个数或者根据解的个数求方程中的字母参数的范围的问题时,数形结合是基本的解题方法,即把方程分拆为一个等式,使两端都转化为我们所熟悉的函数的解析式,然后构造两个函数f (x ),g (x ),即把方程写成f (x )=g (x )的形式,这时方程根的个数就是两个函数图象交点的个数,可以根据图象的变化趋势找到方程中字母参数所满足的各种关系. 高频考点突破 考点一 函数的零点判断 例1、【2017课标3,理11】已知函数211()2()x x f x x x a e e --+=-++有唯一零点,则a = A .1 2 - B .13 C .12 D .1 【变式探究】(1)函数f (x )=e x +1 2 x -2的零点所在的区间是( ) A. )2 1 ,0( B.)1,2 1( C .(1,2) D .(2,3) (2)已知偶函数y =f (x ),x ∈R 满足:f (x )=x 2-3x (x ≥0),若函数g (x )=????? log 2x ,x >0,-1x ,x <0,则y =f (x )-g (x )的零点个数为( ) A .1 B .3 C .2 D .4 【方法技巧】函数零点的求法 (1)直接求零点:令f (x )=0,如果能求出解,则有几个解就有几个零点. (2)零点存在性定理:利用定理不仅要函数在区间[a ,b ]上是连续不断的曲线,且

专题05 挖掘“隐零点”,破解导数压轴题-2019年高考数学压轴题之函数零点问题(解析版)

专题五挖掘“隐零点”,破解导数压轴题 函数方程思想是一种重要的数学思想方法,函数问题可以利用方程求解,方程解的情况可借助于函数的图象和性质求解.高考命题常常以基本初等函数为载体,主要考查以下三个方面:(1)零点所在区间——零点存在性定理;(2)二次方程根的分布问题;(3)判断零点的个数问题;(4)根据零点的情况确定参数的值或范围;(5)根据零点的情况讨论函数的性质或证明不等式等.本专题围绕利用函数的“隐零点”,破解导数压轴问题,例题说法,高效训练. 【典型例题】 类型一挖掘“隐零点”,求参数的最值或取值范围 例1.【浙江省杭州第十四中学2019届高三12月月考】设函数,曲线y=f(x)在x=1处的切线与直线y=3x平行. (1)判断函数f(x)在区间和上的单调性,并说明理由; (2)当时,恒成立,求的取值范围. 【答案】(1)区间单调递增;(2) 【解析】 (1).∵f'(1)=1+b=3,∴b=2,则f'(x)=ln x+4x-1. 因为在单调递增,所以当时 即函数f(x)在区间单调递减;当时 即函数f(x)在区间单调递增; (2)因为,而在(0,1)上递增 存在使得

,当 时单调递减; 当时 单调递增 所以 又因为时则 所以则 类型二 挖掘“隐零点”,证明不等式 例2. 设函数2()ln x f x e a x =-,设()2 0,2a e ∈求证:当(]0,1x ∈时,2()2ln f x a a a ≥+ 【答案】见解析 【解析】()f x 的定义域为(]0,1,222'()2x x a xe a f x e x x -=-= 设2()2x x xe a ?=-,()22()242x x x xe x e ?'==+, 当(]0,1x ∈,()0x ?'>,即()x ?在区间(]0,1为增函数, (2(),2x a e a ??∈--? 又因为( )2 0,2a e ∈,所以2 (0)0,(1)20a e a ??=-<=-> 由零点存在定理可知'()f x 在(]0,1的唯一零点为0x 当0(0,)x x ∈时,'()0f x <,当(]0,1x x ∈,'()0f x > 故()f x 在0(0,)x 单调递减,在(]0,1x 单调递增, 所以当0x x =时,()f x 取得最小值,最小值为0200()ln x f x e a x =-, 由0 2020x x e a -=,即0 202x a e x = ,两边去对数得00ln ln 22 a x x =- 由于,所以00000222()2ln 22ln 2ln 22a a f x ax a ax a a a x a x a a = ++≥?=+

2018届高三数学基础专题练习:导数与零点(答案版)

导数与函数的零点专题 研究方程根或函数的零点的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等,根据题目要求,画出函数图象的走势规律,标明函数极(最)值的位置,通过数形结合的思想去分析问题,可以使问题的求解有一个清晰、直观的整体展现. 例题精讲 例1、已知函数f (x )=x 3-3x 2+ax +2,曲线y =f (x )在点(0,2)处的切线与x 轴交点的横坐标为-2. (1)求a ;(2)证明:当k <1时,曲线y =f (x )与直线y =kx -2只有一个交点. 解析:f ′(x )=3x 2-6x +a ,f ′(0)=a . 曲线y =f (x )在点(0,2)处的切线方程为y =ax +2,由题设得-2 a =-2,所以a =1. (2)证明 由(1)知,f (x )=x 3-3x 2+x +2,设g (x )=f (x )-kx +2=x 3-3x 2+(1-k )x +4. 由题设知1-k >0. 当x ≤0时,g ′(x )=3x 2-6x +1-k >0,g (x )单调递增,g (-1)=k -1<0,g (0)=4,所以g (x )=0在(-∞,0]有唯一实根. 当x >0时,令h (x )=x 3-3x 2+4,则g (x )=h (x )+(1-k )x >h (x ). h ′(x )=3x 2-6x =3x (x -2),h (x )在(0,2)单调递减,在(2,+∞)单调递增,所以g (x )>h (x )≥h (2)=0. 所以g (x )=0在(0,+∞)没有实根. 综上,g (x )=0在R 有唯一实根,即曲线y =f (x )与直线y =kx -2只有一个交点. 例2、已知函数 . (I)讨论的单调性;(II)若 有两个零点,求a 的取值范围. 【解析】(Ⅰ)()(1)2(1)(1)(2)x x f x x e a x x e a '=-+-=-+. ( i )当0a ≥时,则当1x >时,()0f x '>;当1x <时,()0f x '< 故函数()f x 在(,1)-∞单调递减,在(1,)+∞单调递增. ( ii )当0a <时,由()0f x '=,解得:1x =或ln(2)x a =- ①若ln(2)1a -=,即2 e a =-,则x R ?∈,()(1)()0x f x x e e '=-+≥ 故()f x 在(,)-∞+∞单调递增.

函数零点问题专题

函数零点问题专题 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

专题复习之--函数零点问题 (一)零点所在区间问题(存在性,根的分布) 1.函数()lg 3f x x x =+-的零点所在区间为( ) A .(0,1) B .(1,2) C .(2,3) D .(3,+∞) 2.已知a 是实数,函数2()223f x ax x a =+--,如果函数()y f x =在区间 []11-,上有零点,则a 的取值范围是____________. (二)零点个数问题(重点,常用数形结合) 3.函数()4f x x =+-的零点有 个. 4.讨论函数2()1f x x a =--的零点个数. 5. 若存在区间[,]a b ,使函数[]()(,)f x k x a b =∈的值域是[,]a b ,则实数k 的范围是__________. 6. 已知偶函数)(x f 满足)()2(x f x f =-,且当10<≤x 时,x x f =)(,则x x f lg )(=的零点个数是________. (三)复合函数与分段函数零点问题(由里及外,画图分析) 7:设定义域为R 的函数2lg (>0)()-2(0) x x f x x x x ?=?-≤? 则关于x 的函数1)(3-)(2y 2+=x f x f 的零点的个数为______. 8:已知函数(0)()lg()(0)x e x f x x x ?≥=?-

高中数学常见题型解法归纳 函数的零点个数问题的求解方法

高中数学常见题型解法归纳 函数的零点个数问题的求解方法 【知识要点】 一、方程的根与函数的零点 (1)定义:对于函数()y f x =(x D ∈),把使f(x)=0成立的实数x 叫做函数()y f x =(x D ∈)的零点.函数的零点不是一个点的坐标,而是一个数,类似的有截距和极值点等. (2)函数零点的意义:函数()y f x =的零点就是方程f(x)=0的实数根,亦即函数()y f x =的图像与x 轴的交点的横坐标,即:方程f(x)=0有实数根?函数()y f x =的图像与x 轴有交点?函数()y f x =有零点. (3)零点存在性定理:如果函数()y f x =在区间[,]a b 上的图像是一条连续不断的曲线,并且有 0)()(

高中数学函数零点问题及例题解析2018年高三专题复习-函数

高中数学2017-2018高三专题复习 -函数(3)函数零点问题及例题解析 一、函数与方程基本知识点 1、函数零点:(变号零点与不变号零点) (1)对于函数)(x f y =,我们把方程0)(=x f 的实数根叫函数)(x f y =的零点。 (2)方程0)(=x f 有实根?函数()y f x =的图像与x 轴有交点?函数()y f x =有零点。 若函数()f x 在区间[],a b 上的图像是连续的曲线,则0)()(f ,所以由根的存在性定理可知,函数x x x f 2 )1ln()(-+=的零点所在的大致区间是(1,2),选B (二)求解有关函数零点的个数(或方程根的个数)问题。

高考数学隐零点问题解题技巧

专题三 . 隐零点专题 知识点 一、不含参函数的隐零点问题 已知不含参函数)(x f ,导函数方程0)('=x f 的根存在,却无法求出,设方程0)('=x f 的根为0x ,则①有关系式0)('0=x f 成立,②注意确定0x 的合适范围. 二、含参函数的隐零点问题 已知含参函数),(a x f ,其中a 为参数,导函数方程0),('=a x f 的根存在,却无法求出,设方程0)('=x f 的根为0x ,则①有关系式0)('0=x f 成立,该关系式给出了a x ,0的关系,②注意确定0x 的合适范围,往往和a 的范围有关. 例1.已知函数)2ln()(+-=x e x g x ,证明)(x g >0. 例2.(2017052001)已知函数x a e x f x ln )(-=. (I )讨论)(x f 的导函数)('x f 的零点的个数; (II )证明:当0>a 时,)ln 2()(a a x f -≥. 例3.(2017.全国II.21)已知函数x x ax ax x f ln )(2 --=,且()0f x ≥. (I )求a ; (II )证明:)(x f 存在唯一的极大值点0x ,且2022)(--<时,(2)e 20;x x x -++> (II )证明:当[0,1)a ∈ 时,函数()2 e =(0)x ax a g x x x --> 有最小值.设()g x 的最小值为()h a ,求函数()h a 的值域. 例 5.(2013.湖北.10)已知a 为常数,函数()()ln f x x x ax =-有两个极值点1212,()x x x x <,则 A.21)(,0)(21->>x f x f B.2 1)(,0)(21-<

专题含参函数的零点问题

含参函数的零点问题 含参函数的零点问题常以超越方程、分段函数等为载体,达到考察函数性质、函数零点的个数、参数的范围和通过函数性质求解不等式问题等目的.要注意函数的零点、方程的根、不等式的解集三者之间的关系,进行彼此之间的转化是解决该类题的关键,等价转化是这类问题的难点.解决该类问题的途径往往是根据函数的性质作出示意图,利用数形结合研究分界位置,结合函数、方程、不等式刻画边界位置,其间要注意导数的应用. 例1已知函数f (x )=x 2 +ax (a ∈R),g (x )=? ?? ?? f x , x ≥0, f ′x , x <0. 若方程g (f (x ))= 0有4个不等的实根,则a 的取值范围是________. 例2(1) 若关于x 的方程|x 4 -x 3 |=ax 在R 上存在4个不同的实根,则实数a 的取值范围为________. (2) 已知函数f (x )=x 2 +|x -a |,g (x )=(2a -1)x +a ln x ,若函数y =f (x )与函数y = g (x )的图象恰好有2个不同的交点,则实数a 的取值范围为________. 思维变式题组训练 1. 已知函数f (x )=?? ? 2x -1, x ≥2, 2, 1≤x <2. 若方程f (x )=ax +1恰有一个解时,则 实数a 的取值范围为________.

2. 设函数f (x )=????? x -1e x , x ≥a , -x -1, x 0, 若关于x 的方程f (x )=kx +2有 且只有4个不同解,则实数k 的取值构成的取值集合为________. 强化训练 1. 若方程ln x +x -4=0在区间(a ,b )(a ,b ∈Z ,且b -a =1)上有一根,则a 的值为________.

专题06 重温高考压轴题----函数零点问题集锦-2020年高考数学压轴题之函数零点问题(原卷版)

专题六 重温高考压轴题----函数零点问题集锦 函数方程思想是一种重要的数学思想方法,函数问题可以利用方程求解,方程解的情况可借助于函数的图象和性质求解.高考命题常常以基本初等函数为载体,主要考查以下三个方面:(1)零点所在区间——零点存在性定理;(2)二次方程根的分布问题;(3)判断零点的个数问题;(4)根据零点的情况确定参数的值或范围;(5)根据零点的情况讨论函数的性质或证明不等式等.本专题精选高考压轴题及最新高考模拟压轴题,形成函数零点问题集锦,例题说法,高效训练,进一步提高处理此类问题的综合能力. 【典型例题】 类型一 已知零点个数,求参数的值或取值范围 例1.【2018年理新课标I 卷】已知函数 .若g (x )存在2个零 点,则a 的取值范围是 A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞) 例2.【2018年理数全国卷II 】已知函数. (1)若,证明:当时, ; (2)若 在 只有一个零点,求. 类型二 利用导数确定函数零点的个数 例3.【2018年全国卷II 文】已知函数. (1)若,求 的单调区间; (2)证明: 只有一个零点. 类型三 挖掘“隐零点”,证明不等式 例4.【2017课标II ,理】已知函数()2 ln f x ax ax x x =--,且()0f x ≥. (1)求a ; (2)证明:()f x 存在唯一的极大值点0x ,且()2 202e f x --<<. 类型四 利用函数单调性,确定函数零点关系 例5.【2016高考新课标1理】已知函数2 ()(2)e (1)x f x x a x =-+-有两个零点. (I )求a 的取值范围;

复合函数零点问题专题

复合函数零点问题 例1:设定义域为R 的函数()1 ,111,1x x f x x ?≠? -=??=? ,若关于x 的方程 ()()20f x bf x c ++=由3个不同的解123,,x x x ,则22212 3x x x ++=______ 思路:先作出()f x 的图像如图:观察可发现对于任意的0y ,满足()0y f x =的x 的个数分别为2个(000,1y y >≠)和3个(01y =),已知有3个解,从而可得()1f x =必为 ()()20f x bf x c ++=的根,而另一根为1或者是负数。所以()1i f x =,可解得: 1230,1,2x x x ===,所以222 1235x x x ++= 答案:5 例2:关于x 的方程( ) 2 2 213120x x ---+=的不相同实根的个 数是( ) A. 3 B. 4 C. 5 D. 8 思路:可将21x -视为一个整体,即()21t x x =-,则方程变为2320t t -+=可解得: 1t =或2t =,则只需作出()21t x x =-的图像,然后统计与1t =与2t =的交点总数即 可,共有5个 答案:C 例3:已知函数 11 ()||||f x x x x x =+ --,关于x 的方程2()()0f x a f x b ++=(,a b R ∈)恰有6个不同实数解,则a 的取值范围是 . 思路:所解方程 2 ()()0f x a f x b ++=可视为()()2 0f x a f x b ++=,故考虑作出

()f x 的图像:()2 ,12,01 2,102 ,1x x x x f x x x x x ?>?? <≤?=? --≤时,()()121,0212,22 x x f x f x x -?-<≤? =?->??,则关于x 的方 程()()2 610f x f x --=????的实数根个数为( ) A. 6 B. 7 C. 8 D. 9 思路:已知方程()()2 610f x f x --=????可解,得 ()()1211,23f x f x ==-,只需统计11,23 y y ==- 与()y f x =的交点个数即可。由奇函数可先做出 0x >的图像,2x >时,()()1 22 f x f x = -,则(]2,4x ∈的图像只需将(]0,2x ∈的图像纵坐标缩 为一半即可。正半轴图像完成后可再利用奇函数的性质作出负半轴图像。通过数形结合可得共有7个交点 答案:B 小炼有话说:在作图的过程中,注意确定分段函数的边界点属于哪一段区间。 例5:若函数()32f x x ax bx c =+++有极值点12,x x ,且()11f x x =,则关于x 的方程 ()()()2 320f x af x b ++=的不同实根的个数是( ) A .3 B .4 C .5 D .6

相关文档
最新文档