陕西2019中考数学优质大题训练(PDF版)
完整版)2019年永州市中考数学试题、答案(解析版)

完整版)2019年永州市中考数学试题、答案(解析版)2019年永州市中考数学试题答案(解析版)一、选择题1.绝对值的定义是一个数到0的距离,因此|-2|=2,选项D。
2.轴对称图形的特点是对称轴上的点不动,因此选项C。
3.科学记数法表示的形式是a×10^n,其中1≤a<10,因此选项C。
4.根据图形,可以得到西瓜的三视图分别为圆、椭圆和三角形,因此选项D。
5.选项A是错误的,应为a2×a3=a5;选项B是错误的,应为a5=a3×a2;选项C是错误的,应为(a+b)2=a2+2ab+b2;选项D是正确的。
6.题目中给出的数据有6个,因此中位数是第3个数,即3.已知中位数是3,因此x的值只能为4,选项D。
7.选项A是正确的,因为两边和一角相等的两个三角形是全等的;选项B是正确的,因为对角线相等且对边平行的四边形是平行四边形,而平行四边形中对角线相等的四边形是矩形;选项C是错误的,因为一个角的补角等于90度,而不是45度;选项D是正确的,因为点到直线的距离就是该点到该直线的垂线段的长度。
8.根据对角线平分四边形的性质,可以得到AC=BD=8.根据余弦定理,可以得到cos ABD=cos CDB=-1/3.因此AB^2=AD^2+BD^2-2AD×BD×cos ABD=25+64/3,AC^2=AB^2+BC^2-2AB×BC×cos ABC=25+64/3+25-10×8/3×(-1/3)=200/3,四边形ABCD的面积为1/2×AC×BD=40,选项A。
9.假设修建总仓库的位置为x,甲、乙、丙、丁四个基地的产量分别为4a、5a、4a和2a。
由于各基地之间的距离比为2:3:4:3:3,因此修建总仓库的位置x满足2x+3(5-x)+4(9-x)+3(13-x)+3x=24,解得x=9.因此最佳位置为丙,选项C。
人教版九年级数学上册 第二十四章 圆 填空题—2019年中考真题汇编(一)(解析版)

第二十四章圆填空题—2019年中考真题汇编(一)1.(2019•辽阳)如图,A,B,C,D是⊙O上的四点,且点B是的中点,BD交OC于点E,∠AOC =100°,∠OCD=35°,那么∠OED=.2.(2019•鄂尔多斯)如图,△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作DF⊥AC于点F.若AB=6,∠CDF=15°,则阴影部分的面积是.3.(2019•青海)如图在正方形ABCD中,点E是以AB为直径的半圆与对角线AC的交点,若圆的半径等于1,则图中阴影部分的面积为.4.(2019•鞍山)如图,AC是⊙O的直径,B,D是⊙O上的点,若⊙O的半径为3,∠ADB=30°,则的长为.5.(2019•营口)圆锥侧面展开图的圆心角的度数为216°,母线长为5,该圆锥的底面半径为.6.(2019•铁岭)如图,点A,B,C在⊙O上,∠A=60°,∠C=70°,OB=9,则的长为.7.(2019•盘锦)如图,△ABC内接于⊙O,BC是⊙O的直径,OD⊥AC于点D,连接BD,半径OE⊥BC,连接EA,EA⊥BD于点F.若OD=2,则BC=.8.(2019•莱芜区)用一块圆心角为120°的扇形铁皮,围成一个底面直径为10cm的圆锥形工件的侧面,那么这个圆锥的高是cm.9.(2019•锦州)如图,正六边形ABCDEF内接于⊙O,边长AB=2,则扇形AOB的面积为.10.(2019•湘潭)《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章计算弧田面积所用的经验公式是:弧田面积=(弦×矢+矢2).孤田是由圆弧和其所对的弦围成(如图中的阴影部分),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,运用垂径定理(当半径OC ⊥弦AB时,OC平分AB)可以求解.现已知弦AB=8米,半径等于5米的弧田,按照上述公式计算出弧田的面积为平方米.11.(2019•铜仁市)如图,四边形ABCD为⊙O的内接四边形,∠A=100°,则∠DCE的度数为;12.(2019•内江)如图,在平行四边形ABCD中,AB<AD,∠A=150°,CD=4,以CD为直径的⊙O交AD于点E,则图中阴影部分的面积为.13.(2019•陕西)若正六边形的边长为3,则其较长的一条对角线长为.14.(2019•娄底)如图,C、D两点在以AB为直径的圆上,AB=2,∠ACD=30°,则AD=.15.(2019•雅安)如图,△ABC内接于⊙O,BD是⊙O的直径,∠CBD=21°,则∠A的度数为.16.(2019•吉林)如图,在扇形OAB中,∠AOB=90°.D,E分别是半径OA,OB上的点,以OD,OE为邻边的▱ODCE的顶点C在上.若OD=8,OE=6,则阴影部分图形的面积是(结果保留π).17.(2019•包头)如图,BD是⊙O的直径,A是⊙O外一点,点C在⊙O上,AC与⊙O相切于点C,∠CAB=90°,若BD=6,AB=4,∠ABC=∠CBD,则弦BC的长为.18.(2019•柳州)在半径为5的圆形纸片上裁出一个边长最大的正方形纸片,则这个正方形纸片的边长应为.19.(2019•梧州)如图,已知半径为1的⊙O上有三点A、B、C,OC与AB交于点D,∠ADO=85°,∠CAB=20°,则阴影部分的扇形OAC面积是.20.(2019•贵阳)如图,用等分圆的方法,在半径为OA的圆中,画出了如图所示的四叶幸运草,若OA =2,则四叶幸运草的周长是.21.(2019•绥化)半径为5的⊙O是锐角三角形ABC的外接圆,AB=AC,连接OB、OC,延长CO交弦AB于点D.若△OBD是直角三角形,则弦BC的长为.22.(2019•鸡西)如图,在⊙O中,半径OA垂直于弦BC,点D在圆上且∠ADC=30°,则∠AOB的度数为.23.(2019•贵港)如图,在扇形OAB中,半径OA与OB的夹角为120°,点A与点B的距离为2,若扇形OAB恰好是一个圆锥的侧面展开图,则该圆锥的底面半径为.24.(2019•河池)如图,P A,PB是⊙O的切线,A,B为切点,∠OAB=38°,则∠P=°.25.(2019•广西)《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为寸.26.(2019•烟台)如图,分别以边长为2的等边三角形ABC的三个顶点为圆心,以边长为半径作弧,三段弧所围成的图形是一个曲边三角形,已知⊙O是△ABC的内切圆,则阴影部分面积为.27.(2019•贺州)已知圆锥的底面半径是1,高是,则该圆锥的侧面展开图的圆心角是度.28.(2019•绥化)用一个圆心角为120°的扇形作一个圆锥的侧面,若这个圆锥的底面半径恰好等于4,则这个圆锥的母线长为.29.(2019•齐齐哈尔)将圆心角为216°,半径为5cm的扇形围成一个圆锥的侧面,那么围成的这个圆锥的高为cm.30.(2019•鸡西)若一个圆锥的底面圆的周长是5πcm,母线长是6cm,则该圆锥的侧面展开图的圆心角度数是.31.(2019•哈尔滨)一个扇形的弧长是11πcm,半径是18cm,则此扇形的圆心角是度.32.(2019•海南)如图,⊙O与正五边形ABCDE的边AB、DE分别相切于点B、D,则劣弧所对的圆心角∠BOD的大小为度.33.(2019•荆州)如图,AB为⊙O的直径,C为⊙O上一点,过B点的切线交AC的延长线于点D,E 为弦AC的中点,AD=10,BD=6,若点P为直径AB上的一个动点,连接EP,当△AEP是直角三角形时,AP的长为.34.(2019•十堰)如图,AB为半圆的直径,且AB=6,将半圆绕点A顺时针旋转60°,点B旋转到点C 的位置,则图中阴影部分的面积为.35.(2019•广元)如图,△ABC是⊙O的内接三角形,且AB是⊙O的直径,点P为⊙O上的动点,且∠BPC=60°,⊙O的半径为6,则点P到AC距离的最大值是.36.(2019•荆门)如图,等边三角形ABC的边长为2,以A为圆心,1为半径作圆分别交AB,AC边于D,E,再以点C为圆心,CD长为半径作圆交BC边于F,连接E,F,那么图中阴影部分的面积为.37.(2019•福建)如图,边长为2的正方形ABCD中心与半径为2的⊙O的圆心重合,E、F分别是AD、BA的延长线与⊙O的交点,则图中阴影部分的面积是.(结果保留π)38.(2019•咸宁)如图,半圆的直径AB=6,点C在半圆上,∠BAC=30°,则阴影部分的面积为(结果保留π).39.(2019•河南)如图,在扇形AOB中,∠AOB=120°,半径OC交弦AB于点D,且OC⊥OA.若OA=2,则阴影部分的面积为.第二十四章圆填空题—2019年中考真题汇编(一)参考答案与试题解析1.【分析】连接OB,求出∠D,利用三角形的外角的性质解决问题即可.【解答】解:连接OB.∵=,∴∠AOB=∠BOC=50°,∴∠BDC=∠BOC=25°,∵∠OED=∠ECD+∠CDB,∠ECD=35°,∴∠OED=60°,故答案为60°.【点评】本题考查圆周角定理,圆心角,弧,弦之间的关系等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.2.【分析】根据S阴影部分=S扇形OAE﹣S△OAE即可求解.【解答】解:连接OE,∵∠CDF=15°,∠C=75°,∴∠OAE=30°=∠OEA,∴∠AOE=120°,S△OAE=AE×OE sin∠OEA=×2×OE×cos∠OEA×OE sin∠OEA=,S阴影部分=S扇形OAE﹣S△OAE=×π×32﹣=3π﹣.故答案3π﹣.【点评】本题考查扇形的面积公式,等腰三角形的性质,三角形的面积等知识,解题的关键是学会用分割法求阴影部分的面积.3.【分析】直接利用正方形的性质结合转化思想得出阴影部分面积=S△CEB,进而得出答案.【解答】解:如图所示:连接BE,可得,AE=BE,∠AEB=90°,且阴影部分面积=S△CEB=S△ABC=S正方形ABCD=×2×2=1故答案为1【点评】本题考查正方形的性质,扇形的面积等知识,解题的关键是学会把不规则图形转化为规则图形,属于中考常考题型.4.【分析】根据圆周角定理求出∠AOB,得到∠BOC的度数,根据弧长公式计算即可.【解答】解:由圆周角定理得,∠AOB=2∠ADB=60°,∴∠BOC=180°﹣60°=120°,∴的长==2π,故答案为:2π.【点评】本题考查的是圆周角定理、弧长的计算,掌握圆周角定理、弧长公式是解题的关键.5.【分析】设该圆锥的底面半径为r,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到2πr=,然后解关于r的方程即可.【解答】解:设该圆锥的底面半径为r,根据题意得2πr=,解得r=3.故答案为3.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.6.【分析】连接OA,根据等腰三角形的性质求出∠OAC,根据题意和三角形内角和定理求出∠AOB,代入弧长公式计算,得到答案.【解答】解:连接OA,∵OA=OC,∴∠OAC=∠C=70°,∴∠OAB=∠OAC﹣∠BAC=70°﹣60°=10°,∵OA=OB,∴∠OBA=∠OAB=10°,∴∠AOB=180°﹣10°﹣10°=160°,则的长==8π,故答案为:8π.【点评】本题考查的是弧长的计算、圆周角定理,掌握弧长公式是解题的关键.7.【分析】根据垂径定理得到AD=DC,由等腰三角形的性质得到AB=2OD=2×2=4,得到∠BAE=∠CAE=∠BAC=90°=45°,求得∠ABD=∠ADB=45°,求得AD=AB=4,于是得到DC=AD=4,根据勾股定理即可得到结论.【解答】解:∵OD⊥AC,∴AD=DC,∵BO=CO,∴AB=2OD=2×2=4,∵BC是⊙O的直径,∴∠BAC=90°,∵OE⊥BC,∴∠BOE=∠COE=90°,∴=,∴∠BAE=∠CAE=∠BAC=90°=45°,∵EA⊥BD,∴∠ABD=∠ADB=45°,∴AD=AB=4,∴DC=AD=4,∴AC=8,∴BC===4.故答案为:4.【点评】本题考查了三角形的外接圆与外心,圆周角定理,垂径定理,勾股定理,正确的识别图形是解题的关键.8.【分析】求得圆锥的母线的长利用勾股定理求得圆锥的高即可.【解答】解:设圆锥的母线长为l,则=10π,解得:l=15,∴圆锥的高为:=10,故答案为:10【点评】考查了圆锥的计算,解题的关键是了解圆锥的底面周长等于圆锥的侧面扇形的弧长,难度不大.9.【分析】根据已知条件得到∠AOB=60°,推出△AOB是等边三角形,得到OA=OB=AB=2,根据扇形的面积公式即可得到结论.【解答】解:∵正六边形ABCDEF内接于⊙O,∵OA=OB,∴△AOB是等边三角形,∴OA=OB=AB=2,∴扇形AOB的面积==,故答案为:.【点评】本题考查了正多边形与圆及扇形的面积的计算,解题的关键是熟练掌握扇形的面积公式.10.【分析】根据垂径定理得到AD=4,由勾股定理得到OD==3,求得OA﹣OD=2,根据弧田面积=(弦×矢+矢2)即可得到结论.【解答】解:∵弦AB=8米,半径OC⊥弦AB,∴AD=4,∴OD==3,∴OA﹣OD=2,∴弧田面积=(弦×矢+矢2)=×(8×2+22)=10,故答案为:10.【点评】此题考查垂径定理的应用,关键是根据垂径定理和扇形面积解答.11.【分析】直接利用圆内接四边形的性质:外角等于它的内对角得出答案.【解答】解:∵四边形ABCD为⊙O的内接四边形,∴∠DCE=∠A=100°,故答案为:100°【点评】考查圆内接四边形的外角等于它的内对角.12.【分析】连接OE,作OF⊥DE,先求出∠COE=2∠D=60°、OF=OD=1,DF=OD cos∠ODF=,DE=2DF=2,再根据阴影部分面积是扇形与三角形的面积和求解可得.【解答】解:如图,连接OE,作OF⊥DE于点F,∵四边形ABCD是平行四边形,且∠A=150°,则∠COE=2∠D=60°,∵CD=4,∴CO=DO=2,∴OF=OD=1,DF=OD cos∠ODF=2×=,∴DE=2DF=2,∴图中阴影部分的面积为+×2×1=+,故答案为:+.【点评】本题考查的是扇形面积计算、平行四边形的性质,掌握扇形面积公式:S=是解题的关键.13.【分析】根据正六边形的性质即可得到结论.【解答】解:如图所示为正六边形最长的三条对角线,由正六边形性质可知,△AOB,△COD为两个边长相等的等边三角形,∴AD=2AB=6,故答案为6.【点评】该题主要考查了正多边形和圆的性质及其应用问题;解题的关键是灵活运用正多边形和圆的性质来分析、判断、解答.14.【分析】利用圆周角定理得到∠ADB=90°,∠B=∠ACD=30°,然后根据含30度的直角三角形三边的关系求求AD的长.【解答】解:∵AB为直径,∴∠ADB=90°,∵∠B=∠ACD=30°,∴AD=AB=×2=1.故答案为1.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.15.【分析】直接利用圆周角定理得出∠BCD=90°,进而得出答案.【解答】解:∵△ABC内接于⊙O,BD是⊙O的直径,∴∠BCD=90°,∵∠CBD=21°,∴∠A=∠D=90°﹣21°=69°.故答案为:69°【点评】此题主要考查了三角形的外接圆与外心,正确掌握圆周角定理是解题关键.16.【分析】连接OC,根据同样只统计得到▱ODCE是矩形,由矩形的性质得到∠ODC=90°.根据勾股定理得到OC=10,根据扇形的面积公式和矩形的面积公式即可得到结论.【解答】解:连接OC,∵∠AOB=90°,四边形ODCE是平行四边形,∴▱ODCE是矩形,∴∠ODC=90°.∵OD=8,OE=6,∴OC=10,∴阴影部分图形的面积=﹣8×6=25π﹣48.故答案为:25π﹣48.【点评】本题考查了扇形的面积的计算,矩形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.17.【分析】连接CD,由圆周角定理得出∠BCD=90°=∠CAB,证明△ABC∽△CBD,得出=,即可得出结果.【解答】解:连接CD,如图:∵BD是⊙O的直径,∴∠BCD=90°=∠CAB,∵∠ABC=∠CBD,∴△ABC∽△CBD,∴=,∴BC2=AB×BD=4×6=24,∴BC==2;故答案为:2.【点评】本题考查了圆周角定理、相似三角形的判定与性质;熟练掌握圆周角定理,证明三角形相似是解题的关键.18.【分析】先根据题意画出图形,再连接OB、OC,过O作OE⊥BC,设此正方形的边长为a,由垂径定理及正方形的性质得出OE=BE=,再由勾股定理即可求解.【解答】解:如图所示,连接OB、OC,过O作OE⊥BC,设此正方形的边长为a,∵OE⊥BC,∴OE=BE=,即a=5.故答案为:5.【点评】本题考查的是正多边形和圆,解答此类问题的关键是根据题意画出图形,利用数形结合求解.19.【分析】根据三角形外角的性质得到∠C=∠ADO﹣∠CAB=65°,根据等腰三角形的性质得到∠AOC =50°,由扇形的面积公式即可得到结论.【解答】解:∵∠ADO=85°,∠CAB=20°,∴∠C=∠ADO﹣∠CAB=65°,∵OA=OC,∴∠OAC=∠C=65°,∴∠AOC=50°,∴阴影部分的扇形OAC面积==,故答案为:.【点评】本题考查了扇形面积的计算,由等腰三角形的性质和三角形的内角和求出∠AOC是解题的关键.20.【分析】由题意得出:四叶幸运草的周长为4个半圆的弧长=2个圆的周长,求出圆的半径,由圆的周长公式即可得出结果.【解答】解:由题意得:四叶幸运草的周长为4个半圆的弧长=2个圆的周长,连接AB、BC、CD、AD,则四边形ABCD是正方形,连接OB,如图所示:则正方形ABCD的对角线=2OA=4,OA⊥OB,OA=OB=2,∴AB=2,过点O作ON⊥AB于N,则NA=AB=,∴圆的半径为,∴四叶幸运草的周长=2×2π×=4π;故答案为:4π.【点评】本题考查了正多边形和圆、正方形的性质以及圆周长公式;由题意得出四叶幸运草的周长=2个圆的周长是解题的关键.21.【分析】如图1,当∠ODB=90°时,推出△ABC是等边三角形,解直角三角形得到BC=AB=5,如图2,当∠DOB=90°,推出△BOC是等腰直角三角形,于是得到BC=OB=5.【解答】解:如图1,当∠ODB=90°时,即CD⊥AB,∴AD=BD,∴AC=BC,∵AB=AC,∴△ABC是等边三角形,∴∠DBO=30°,∵OB=5,∴BD=OB=,∴BC=AB=5,如图2,当∠DOB=90°,∴∠BOC=90°,∴△BOC是等腰直角三角形,∴BC=OB=5,综上所述:若△OBD是直角三角形,则弦BC的长为5或5,故答案为:5或5.【点评】本题考查了三角形的外接圆与外心,等边三角形的判定和性质,等腰直角三角形的性质,正确的作出图形是解题的关键.22.【分析】利用圆周角与圆心角的关系即可求解.【解答】解:∵OA⊥BC,∴=,∴∠AOB=2∠ADC,∵∠ADC=30°,∴∠AOB=60°,故答案为60°.【点评】此题考查了圆周角与圆心角定理,熟练掌握圆周角与圆心角的关系是解题关键.23.【分析】利用弧长=圆锥的底面周长这一等量关系可求解.【解答】解:连接AB,过O作OM⊥AB于M,∵∠AOB=120°,OA=OB,∴∠BAO=30°,AM=,∴OA=2,∵=2πr,∴r=故答案是:【点评】本题运用了弧长公式和圆的周长公式,建立准确的等量关系是解题的关键.24.【分析】由切线的性质得出P A=PB,P A⊥OA,得出∠P AB=∠PBA,∠OAP=90°,由已知得出∠PBA=∠P AB=90°﹣∠OAB=52°,再由三角形内角和定理即可得出结果.【解答】解:∵P A,PB是⊙O的切线,∴P A=PB,P A⊥OA,∴∠P AB=∠PBA,∠OAP=90°,∴∠PBA=∠P AB=90°﹣∠OAB=90°﹣38°=52°,∴∠P=180°﹣52°﹣52°=76°;故答案为:76.【点评】本题考查了切线的性质、直角三角形的性质、等腰三角形的性质以及三角形内角和定理;利用切线的性质来解答问题时,解此类问题的一般思路是利用直角来解决问题.25.【分析】设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r﹣1,OA=r,则有r2=52+(r﹣1)2,解方程即可.【解答】解:设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r﹣1,OA=r,则有r2=52+(r﹣1)2,解得r=13,∴⊙O的直径为26寸,故答案为:26.【点评】本题考查垂径定理、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.26.【分析】连接OB,作OH⊥BC于H,如图,利用等边三角形的性质得AB=BC=AC=2,∠ABC=60°,再根据三角形内切圆的性质得OH为⊙O的半径,∠OBH=30°,再计算出BH=CH=1,OH=BH =,然后根据扇形的面积公式,利用阴影部分面积=3S弓形AB+S△ABC﹣S⊙O=3(S扇形ACB﹣S△ABC)+S△ABC﹣S⊙O进行计算.【解答】解:连接OB,作OH⊥BC于H,如图,∵△ABC为等边三角形,∴AB=BC=AC=2,∠ABC=60°,∵⊙O是△ABC的内切圆,∴OH为⊙O的半径,∠OBH=30°,∵O点为等边三角形的外心,∴BH=CH=1,在Rt△OBH中,OH=BH=,∵S弓形AB=S扇形ACB﹣S△ABC,∴阴影部分面积=3S弓形AB+S△ABC﹣S⊙O=3(S扇形ACB﹣S△ABC)+S△ABC﹣S⊙O=3S扇形ACB﹣2S△ABC﹣S⊙O =3×﹣2××22﹣π×()2=π﹣2.故答案为π﹣2.【点评】本题考查了三角形的内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.也考查了等边三角形的性质和扇形面积公式.27.【分析】先根据勾股定理求出圆锥的母线为4,进而求得展开图的弧长,然后根据弧长公式即可求解.【解答】解:设圆锥的母线为a,根据勾股定理得,a=4,设圆锥的侧面展开图的圆心角度数为n°,根据题意得2π•1=,解得n=90,即圆锥的侧面展开图的圆心角度数为90°.故答案为:90.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.28.【分析】根据底面周长等于圆锥的侧面展开扇形的弧长列式计算即可.【解答】解:设圆锥的母线长为l,根据题意得:=2π×4,解得:l=12,故答案为:12.【点评】考查了扇形的弧长公式;圆的周长公式;用到的知识点为:圆锥的弧长等于底面周长.29.【分析】圆锥的底面圆的半径为r,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到2πr=,解得r=3,然后根据勾股定理计算出圆锥的高.【解答】解:设圆锥的底面圆的半径为r,根据题意得2πr=,解得r=3,所以圆锥的高==4(cm).故答案为4.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.30.【分析】利用圆锥的底面周长和母线长求得圆锥的侧面积,然后再利用圆锥的面积的计算方法求得侧面展开扇形的圆心角的度数即可.【解答】解:∵圆锥的底面圆的周长是5πcm,∴圆锥的侧面展开扇形的弧长为5πcm,∴=5π,解得:n=150故答案为150°.【点评】本题考查了圆锥的计算,解题的关键是根据圆锥的侧面展开扇形的弧长等于圆锥的底面周长来求出弧长.31.【分析】直接利用弧长公式l=即可求出n的值,计算即可.【解答】解:根据l===11π,解得:n=110,故答案为:110.【点评】本题考查了扇形弧长公式计算,注意公式的灵活运用是解题关键.32.【分析】根据正多边形内角和公式可求出∠E、∠D,根据切线的性质可求出∠OAE、∠OCD,从而可求出∠AOC,然后根据圆弧长公式即可解决问题.【解答】解:∵五边形ABCDE是正五边形,∴∠E=∠A==108°.∵AB、DE与⊙O相切,∴∠OBA=∠ODE=90°,∴∠BOD=(5﹣2)×180°﹣90°﹣108°﹣108°﹣90°=144°,故答案为:144.【点评】本题主要考查了切线的性质、正五边形的性质、多边形的内角和公式、熟练掌握切线的性质是解决本题的关键.33.【分析】根据切线的性质得出△ABD是直角三角形,DB2=CD•AD,根据勾股定理求得AB,即可求得AE,然后分两种情况求得AP的长即可.【解答】解:∵过B点的切线交AC的延长线于点D,∴AB⊥BD,∴AB===8,当∠AEP=90°时,∵AE=EC,∴EP经过圆心O,∴AP=AO=4;当∠APE=90°时,则EP∥BD,∴=,∵DB2=CD•AD,∴CD===3.6,∴AC=10﹣3.6=6.4,∴AE=3.2,∴=,∴AP=2.56.综上AP的长为4和2.56.故答案为4和2.56.【点评】本题考查了切线的性质,勾股定理的应用,垂径定理的应用,平行线的判定和性质,分类讨论是解题的关键.34.【分析】根据图形可知,阴影部分的面积是半圆的面积与扇形ABC的面积之和减去半圆的面积.【解答】解:由图可得,图中阴影部分的面积为:=6π,故答案为:6π.【点评】本题考查扇形面积的计算、旋转的性质,解答本题的关键是明确题意,利用数形结合的思想解答.35.【分析】过O作OM⊥AC于M,延长MO交⊙O于P,则此时,点P到AC距离的最大,且点P到AC距离的最大值=PM,解直角三角形即可得到结论.【解答】解:过O作OM⊥AC于M,延长MO交⊙O于P,则此时,点P到AC的距离最大,且点P到AC距离的最大值=PM,∵OM⊥AC,∠A=∠BPC=60°,⊙O的半径为6,∴OP=OA=6,∴OM=OA=×6=3,∴PM=OP+OM=6+3,∴则点P到AC距离的最大值是6+3,故答案为:6+3.【点评】本题考查了三角形的外接圆与外心,圆周角定理,解直角三角形,正确的作出辅助线是解题的关键.36.【分析】过A作AM⊥BC于M,EN⊥BC于N,根据等边三角形的性质得到AM=BC=×2=,求得EN=AM=,根据三角形的面积和扇形的面积公式即可得到结论.【解答】解:过A作AM⊥BC于M,EN⊥BC于N,∵等边三角形ABC的边长为2,∠BAC=∠B=∠ACB=60°,∴AM=BC=×2=,∵AD=AE=1,∴AD=BD,AE=CE,∴EN=AM=,∴图中阴影部分的面积=S△ABC﹣S扇形ADE﹣S△CEF﹣(S△BCD﹣S扇形DCF)=×2×﹣﹣×﹣(×﹣)=+﹣,故答案为:+﹣.【点评】本题考查了扇形的面积的计算,等边三角形的性质,正确的作出辅助线是解题的关键.37.【分析】延长DC,CB交⊙O于M,N,根据圆和正方形的面积公式即可得到结论.【解答】解:延长DC,CB交⊙O于M,N,则图中阴影部分的面积=×(S圆O﹣S正方形ABCD)=×(4π﹣4)=π﹣1,故答案为:π﹣1.【点评】本题考查了扇形面积的计算,正方形的性质,正确的识别图形是解题的关键.38.【分析】根据题意,作出合适的辅助线,即可求得CD和∠COB的度数,即可得到阴影部分的面积是半圆的面积减去△AOC和扇形BOC的面积.【解答】解:连接OC、BC,作CD⊥AB于点D,∵直径AB=6,点C在半圆上,∠BAC=30°,∴∠ACB=90°,∠COB=60°,∴AC=3,∵∠CDA=90°,∴CD=,∴阴影部分的面积是:=3π﹣,故答案为:3π﹣.【点评】本题考查扇形面积的计算、圆周角定理,解答本题的关键是明确题意,利用数形结合的思想解答.39.【分析】根据题意,作出合适的辅助线,然后根据图形可知阴影部分的面积是△AOD的面积与扇形OBC的面积之和再减去△BDO的面积,本题得以解决.【解答】解:作OE⊥AB于点F,∵在扇形AOB中,∠AOB=120°,半径OC交弦AB于点D,且OC⊥OA.OA=2,∴∠AOD=90°,∠BOC=30°,OA=OB,∴∠OAB=∠OBA=30°,∴OD=OA•tan30°=×=2,AD=4,AB=2AF=2×2×=6,OF=,∴BD=2,∴阴影部分的面积是:S△AOD+S扇形OBC﹣S△BDO==+π,故答案为:+π.【点评】本题考查扇形面积的计算,解答本题的关键是明确题意,利用数形结合的思想解答.。
中考试题 因式分解(解析版)2019数学全国中考真题

2019全国中考数学真题知识点05因式分解(解析版)一、选择题8.(2019·株洲)下列各选项中因式分解正确的是( )A .221(1)x x -=-B .3222(2)a a a a a -+=-C .2242(2)y y y y -+=-+D .222(1)m n mn n n m -+=-【答案】D【解析】选项A 是平方差公式应该是(x+1)(x-1),所以错误;选项B 公因式应该是a ,所以错误;选项C 提取公因式-2y 后,括号内各项都要变号,所以错误;只有选项D 是正确的。
1. (2019·无锡市)分解因式224x y 的结果是 ( )A.(4x +y )(4x -y )B.4(x +y )(x -y )C.(2x +y )(2x -y )D.2(x +y )(x -y )【答案】C【解析】本题考查了公式法分解因式,4x 2-y 2=(2x -y )(2x +y ),故选C.2. (2019·潍坊)下列因式分解正确的是( )A .22363(2)ax ax ax ax -=-B .22()()x y x y x y -+=-+-- C .22224(2)a ab b a b ++=+ D .222(1)ax ax a a x -+-=--【答案】D【解析】选项A :2363(2)ax ax ax x -=-;选项B :22()()x y x y x y -+=-++;选项C 不能分解因式;选项D 正确;故选择D .二、填空题11.(2019·广元)分解因式:a 3-4a =________.【答案】a(a+2)(a -2)【解析】a 3-4a =a(a 2-4)=a(a+2)(a -2).12.(2019·苏州)因式分解:x 2-xy = .【答案】x (x -y )【解析】本题考查了提公因式法分解因式,x 2-xy = x (x -y ),故答案为x (x -y ).11.(2019·温州)分解因式:m 2+4m+4= .【答案】(m+2)2【解析】本题考查了运用完全平方公式分解因式,解题的关键是掌握完全平方公式的特征.原式=(m+2)2.11.(2019·绍兴 )因式分解:=-12x .【答案】(x+1)(x-1)11.(2019·嘉兴)分解因式:x 2﹣5x = .【答案】(5)x x -11.(2019·杭州)因式分解:1-x 2=_________.【答案】(1-x)(1+x)【解析】直接应用平方差公式进行因式分解,1-x 2=(1-x)(1+x),故填:(1-x)(1+x).14.(2019·威海)分解因式:2x 2-2x +12= . 【答案】2122x ⎛⎫- ⎪⎝⎭ 【解析】先提取公因式2,再根据完全平方公式进行二次分解.2x 2-2x +12=2(x 2-x +14)=2122x ⎛⎫- ⎪⎝⎭. 10.(2019·盐城)分解因式:21x -= .【答案】(1)(1)x x -+【解析】直接利用平方差公式分解因式,进而得到答案.7.(2019·江西)因式分解:12-x = .【答案】(x+1)(x-1)【解析】12-x =(x+1)(x-1)14.(2019·长沙,14,3分)分解因式:am 2-9a= .【答案】a(m+3)(m-3).【解析】先提取公因式a ,再应用平方差公式进行分解因式. am 2-9a=a(m+3)(m-3).13.(2019·衡阳)因式分解:2a 2-8= .【答案】2(a +2)(a =2)【解析】2a 2-8=2(a +2)(a =2),故答案为2(a +2)(a =2).11.(2019·黄冈)分解因式3x 2-27y 2= .【答案】3(x+3y )(x-3y )【解析】先提取公因数3,然后利用平方差公式进行分解,即3x 2-27y 2=3(x 2-9y 2)=3(x+3y )(x-3y )。
2019中考数学专题复习《二次函数与线段最值问题》含解析

2019中考数学专题复习二次函数与线段最值问题含解析二次函数与线段最值问题一.填空题1.如图,P是抛物线y=﹣x2+x+2在第一象限上的点,过点P分别向x轴和y轴引垂线,垂足分别为A,B,则四边形OAPB周长的最大值为 .二.解答题2.已知函数y=(m+2)x2+kx+n.(1)若此函数为一次函数;①m,k,n的取值范围;②当﹣2≤x≤1时,0≤y≤3,求此函数关系式;③当﹣2≤x≤3时,求此函数的最大值和最小值(用含k,n的代数式表示);(2)若m=﹣1,n=2,当﹣2≤x≤2时,此函数有最小值﹣4,求实数k的值.3.如图,二次函数y=﹣x2+2(m﹣2)x+3的图象与x、y轴交于A、B、C三点,其中A(3,0),抛物线的顶点为D.(1)求m的值及顶点D的坐标;(2)当a≤x≤b时,函数y的最小值为,最大值为4,求a,b应满足的条件;(3)在y轴右侧的抛物线上是否存在点P,使得三角形PDC是等腰三角形?如果存在,求出符合条件的点P的坐标;如果不存在,请说明理由.4.已知点A(t,1)为函数y=ax2+bx+4(a,b为常数,且a≠0)与y=x图象的交点.(1)求t;(2)若函数y=ax2+bx+4的图象与x轴只有一个交点,求a,b;(3)若1≤a≤2,设当x≤2时,函数y=ax2+bx+4的最大值为m,最小值为n,求m﹣n的最小值.5.已知y关于x的函数y=nx2﹣2(m+1)x+m+3(1)若m=n=﹣1时,当﹣1≤x≤3时,求函数的最大值和最小值;(2)若n=1,当m取何值时,抛物线顶点最高?(3)若n=2m>0,对于任意m的值,当x<k时,y随x的增大而减小,求k的最大整数;(4)若m=2n≠0,求抛物线与x轴两个交点之间的最短距离.6.如图,二次函数y=﹣x2+2(m﹣2)x+3的图象与x,y轴交于A,B,C三点,其中A(3,0),抛物线的顶点为D.(1)求m的值及顶点D的坐标.(2)连接AD,CD,CA,求△ACD外接圆圆心E的坐标和半径;(3)当x≤n时,函数y所取得的最大值为4,最小值为1,求n的取值范围.7.如图,抛物线y=ax2+bx+2与x轴交于A、B两点,点A的坐标为(﹣1,0),抛物线的对称轴为直线.点M为线段AB上一点,过M作x轴的垂线交抛物线于P,交过点A的直线y=﹣x+n于点C.(1)求直线AC及抛物线的解析式;(2)若,求PC的长;(3)过P作PQ∥AB交抛物线于点Q,过Q作QN⊥x轴于N,若点P在Q左侧,矩形PMNQ的周长记为d,求d的最大值.8.如图,抛物线y=ax2+bx+2与x轴交于A、B两点,点A的坐标为(﹣1,0),抛物线的对称轴为直线x=1.5,点M为线段AB上一点,过M作x轴的垂线交抛物线于P,交过点A的直线y=﹣x+n于点C.(1)求直线AC及抛物线的解析式;(2)M位于线段AB的什么位置时,PC最长,并求出此时P点的坐标;(3)若在(2)的条件下,在x轴上方的抛物线上是否存在点Q,使,求点Q的坐标.9.如图,抛物线y=﹣x2﹣2x+3 的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.(1)求A、B、C的坐标;(2)点M为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N.若点P在点Q左边,当矩形PMNQ的周长最大时,求△AEM的面积;(3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ.过抛物线上一点F 作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=2DQ,求点F的坐标.10.如图,抛物线y=﹣x2+bx+c的图象交x轴于A(﹣2,0),B(1,0)两点.(1)求抛物线的解析式;(2)点M为线段AB上一点(点M不与点A,B重合),过点M作x轴的垂线,与抛物线交于点P,过点P作PC∥AB交抛物线于点C,过点C作CD⊥x轴于点D.若点P在点C的左边,当矩形PCDM的周长最大时,求点M的坐标;(3)在(2)的条件下,当矩形PCDM的周长最大时,连接AC,我们把一条抛物线与直线AC的交点称为该抛物线的“恒定点”,将(1)中的抛物线平移,使其平移后的顶点为(n,2n),若平移后的抛物线总有“恒定点”,请直接写出n的取值范围.11.如图,在平面直角坐标系中,抛物线y x2x+2与x轴交于B、C两点(点B 在点C的左侧),与y轴交于点A,抛物线的顶点为D.(1)填空:点A的坐标为( , ),点B的坐标为( , ),点C的坐标为( , ),点D的坐标为( , );(2)点P是线段BC上的动点(点P不与点B、C重合)①过点P作x轴的垂线交抛物线于点E,若PE=PC,求点E的坐标;②在①的条件下,点F是坐标轴上的点,且点F到EA和ED的距离相等,请直接写出线段EF的长;③若点Q是线段AB上的动点(点Q不与点A、B重合),点R是线段AC上的动点(点R不与点A、C重合),请直接写出△PQR周长的最小值.12.如图,抛物线与直线相交于A,B两点,若点A在x轴上,点B的坐标是(2,4),抛物线与x轴另一交点为D,并且△ABD的面积为6,直线AB与y轴的交点的坐标为(0,2).点P是线段AB(不与A,B重合)上的一个动点,过点P作x轴的垂线,交抛物线与点Q.(1)分别求出抛物线与直线的解析式;(2)求线段PQ长度的最大值;(3)当PQ取得最大值时,在抛物线上是否存在M、N两点(点M的横坐标小于N的横坐标),使得P、D、M、N为顶点的四边形是平行四边形?若存在,求出MN的坐标;若不存在,请说明理由.13.如图,抛物线y x2x﹣4与x轴交于A,B两点(点B在点A的右侧),与y轴交于点C,连接BC,以BC为一边,点O为对称中心作菱形BDEC,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q.(1)求点A,B,C的坐标.(2)当点P在线段OB上运动时,直线l分别交BD于点M,求线段MQ长度的最大值.(3)当点P在线段EB上运动时,是否存在点Q,使△BDQ为直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.(4)当点P在线段EB上运动时,直线l与菱形BDEC的某一边交于点S,是否存在m 值,使得点C、Q、S、D为顶点的四边形是平行四边形?如果存在,请直接写出m值,不存在,说明理由.14.如图,已知二次函数y=﹣x2﹣2x+3的图象交x轴于A、B两点(A在B左边),交y 轴于C点.(1)求A、B、C三点的坐标和直线AC的解析式;(2)点P是直线AC上方抛物线上一动点(不与A,C重合),过点P作x轴平行线交直线AC于M点,求线段PM的最大值.15.(1)如图,已知二次函数y=﹣x2+2x+3的图象交x轴于A,B两点(A在B左边),直线y=x+1过点A,与抛物线交于点C,点P是直线AC上方抛物线上一动点(不与A,C重合),过点P作y轴平行线交直线AC于Q点,求线段PQ的最大值.(2)在(1)条件下,过点P作y轴垂线交直线AC于Q点,求线段PQ的最大值.16.如图1,抛物线y=﹣x2﹣4x+5与x轴交于点A、B两点,与y轴交于点C,点D为抛物线的顶点.(1)求直线AC的解析式及顶点D的坐标;(2)连接CD,点P是直线AC上方抛物线上一动点(不与点A、C重合),过P作PE∥x轴交直线AC于点E,作PF∥CD交直线AC于点F,当线段PE+PF取最大值时,在抛物线对称轴上找一点L,在y轴上找一点K,连接OL,LK,PK,求线段OL+LK+PK的最小值,并求出此时点L的坐标.(3)如图2,点M(﹣2,﹣1)为抛物线对称轴上一点,点N(2,7)为直线AC上一点,点G为直线AC与抛物线对称轴的交点,连接MN,AM.点H是线段MN上的一个动点,连接GH,将△MGH沿GH翻折得到△M′GH(点M的对称点为M′),问是否存在点H,使得△M′GH与△NGH重合部分的图形为直角三角形,若存在,请求出NH的长,若不存在,请说明理由.17.如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与A重合),过点P作PD∥y轴交直线AC于点D.(1)求抛物线的解析式;(2)当D在线段AC上运动时,求点P在运动的过程中线段PD长度的最大值;(3)在抛物线对称轴上是否存在点M使|MA﹣MC|最大?若存在请求出点M的坐标,若不存在请说明理由.18.如图,在平面直角坐标系xOy中,直线y x交x轴于点A,交y轴于点B,经过点A的抛物线y x2+bx+c交直线AB另一点D,且点D到y轴的距离为8.(1)求抛物线解析式;(2)点P是直线AD上方的抛物线上一动点,(不与点A、D重合),过点P作PE⊥AD于E,过点P作PF∥y轴交AD于F,设△PEF的周长为L,点P的横坐标为m,求L与m的函数关系式,并直接写出自变量m的取值范围;(3)在图(2)的条件下,当L最大时,连接PD.将△PED沿射线PE方向平移,点P、E、F的对应点分别为Q、M、N,当△QMN的顶点M在抛物线上时,求M点的横坐标,并判断此时点N是否在直线PF上.(参考公式:二次函数y=ax2+bx+c(c≠0).当x时,y最大(小)值)19.如图,已知抛物线y=ax2+bx+c(a≠0)过点A(3,0),B(1,0),且与y轴交于点C(0,﹣3),点P是抛物线AC间上一动点,从点C沿抛物线向点A运动(点P 与A、C不重合),过点P作PD∥y轴,交AC于点D.(1)求该抛物线的函数关系式;(2)当△ADP是直角三角形时,直接写出点P的坐标;(3)求线段PD的最大值,并求最大值时P点的坐标;(4)在问题(3)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由.20.已知二次函数y=ax2+bx+c与x轴只有一个交点,且系数a、b满足条件:.(1)求y=ax2+bx+c解析式;(2)将y=ax2+bx+c向右平移一个单位,再向下平移一个单位得到函数y=mx2+nx+k,该函数交y轴于点C,交x轴于A、B(点A在点B的右侧),点P是该抛物线上一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作PD∥y轴,交AC于点D.当△ADP是直角三角形时,求点P的坐标;(3)在问题(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由.21.已知如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与点A重合),过点P 作PD∥y轴交直线AC于点D.(1)求抛物线的解析式;(2)求点P在运动的过程中线段PD长度的最大值;(3)△APD能否构成直角三角形?若能请直接写出点P坐标,若不能请说明理由;(4)在抛物线对称轴上是否存在点M使|MA﹣MC|最大?若存在请求出点M的坐标,若不存在请说明理由.22.如图1,抛物线y=﹣x2+bx+c经过点A(2,0),B(0,2),与x轴交于另一点C.(1)求抛物线的解析式及点C的坐标;(2)点P是抛物线y=﹣x2+bx+c在第一象限上的点,过点P分别向x轴、y轴作垂线,垂足分别为D,E,求四边形ODPE的周长的最大值;(3)如图2,点P是抛物线y=﹣x2+bx+c在第一象限上的点,过点P作PN⊥x轴,垂足为N,交AB于M,连接PB,PA.设点P的横坐标为t,当△ABP的面积等于△ABC面积的时,求t的值.23.如图,抛物线y=ax2+bx+c(a,b,c是常数,a≠0)与x轴交于A,B两点,与y轴交于点C,三个交点的坐标分别为A(﹣1,0),B(3,0),C(0,3).(1)求抛物线的解析式及顶点D的坐标;(2)若P为线段BD上的一个动点,过点P作PM⊥x轴于点M,求四边形PMAC面积的最大值和此时P点的坐标;(3)若点P是抛物线在第一象限上的一个动点,过点P作PQ∥AC交x轴于点Q.当点P的坐标为 时,四边形PQAC是平行四边形;(直接写出结果,不写求解过程).24.如图,抛物线y=x2﹣2x﹣3与x轴交A、B两点(A点在B点左侧),直线1与抛物线交于A、C两点,其中C点的横坐标为2.(1)求A、B两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,设P点的横坐标为m.①求线段PE长度的最大值;②点P将线段AC分割成长、短两条线段PA、PC,如果较长线段与AC之比等于,则称P为线段AC的“黄金分割点”,请直接写出使得P为线段AC黄金分割点的m的值.25.如图,抛物线y=x2﹣2x﹣3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.(1)求A、B两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE 长度的最大值;(3)点G抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由.26.如图,抛物线y=x2﹣2x﹣3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.(1)求A、B两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE 长度的最大值.27.如图,抛物线y=x2﹣2x﹣3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.(1)求A、B两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点,(不与A、C重合),过P点作y轴的平行线交抛物线于E点,求线段PE长度的最大值,并直接写出△ACE面积的最大值;(3)点G为抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,直接写出所有满足条件的F点坐标;如果不存在,请说明理由.28.如图,抛物线y=x2﹣2x﹣3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.(1)求A、B两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,当点P运动到什么位置时,△ACE的面积最大?求出此时P点的坐标和S△ACE的最大值;(3)点G是抛物线上的动点,在x轴上是否存在点F,使以A、C、F、G为顶点的四边形是平行四边形?如果存在,直接写出所有满足条件的F点坐标;如果不存在,请说明理由.29.如图,抛物线y=x2﹣2x﹣3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.(1)求A、B两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点.求线段PE 长度的最大值;(3)若点G是抛物线上的动点,点F是x轴上的动点,判断有几个位置能使以点A、C、F、G为顶点的四边形为平行四边形,直接写出相应的点F的坐标.30.如图,抛物线y=﹣x2﹣2x+3与x轴交A、B两点(A点在B点右侧),直线l与抛物线交于A、C两点,其中C点的横坐标为﹣2.(1)求A、B两点的坐标及直线AC的函数表达式;(2)若点P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求当点P坐标为多少时,线段PE长度有最大值,最大值是多少?(3)点G是抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由.二次函数与线段最值问题参考答案与试题解析一.填空题1.如图,P是抛物线y=﹣x2+x+2在第一象限上的点,过点P分别向x轴和y轴引垂线,垂足分别为A,B,则四边形OAPB周长的最大值为 6 .【考点】H5:二次函数图象上点的坐标特征.【分析】设P(x,y)(2>x>0,y>0),根据矩形的周长公式得到C=﹣2(x﹣1)2+6.根据二次函数的性质来求最值即可.【解答】解:∵y=﹣x2+x+2,∴当y=0时,﹣x2+x+2=0即﹣(x﹣2)(x+1)=0,解得x=2或x=﹣1故设P(x,y)(2>x>0,y>0),∴C=2(x+y)=2(x﹣x2+x+2)=﹣2(x﹣1)2+6.∴当x=1时,C最大值=6,.即四边形OAPB周长的最大值为6.故答案是:6.【点评】本题考查了二次函数的最值,二次函数图象上点的坐标特征.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.本题采用了配方法.二.解答题2.已知函数y=(m+2)x2+kx+n.(1)若此函数为一次函数;①m,k,n的取值范围;②当﹣2≤x≤1时,0≤y≤3,求此函数关系式;③当﹣2≤x≤3时,求此函数的最大值和最小值(用含k,n的代数式表示);(2)若m=﹣1,n=2,当﹣2≤x≤2时,此函数有最小值﹣4,求实数k的值.【考点】F5:一次函数的性质;H7:二次函数的最值.【分析】(1)①根据二次项系数为0,一次项系数不为0,常数项为任意实数解答即可;②根据k>0,k<0时x、y的对应关系确定直线经过的点的坐标,求出解析式;③根据一次函数的性质即增减性解答即可;(2)把m=﹣1,n=2代入关系式,得到二次函数解析式,确定对称轴,顶点坐标,分情况讨论求出k的值.【解答】解:(1)①m=﹣2,k≠0,n为任意实数;②当k>0时,直线经过(﹣2,0)(1,3),函数关系式为:y=x+2当k<0时,直线经过(﹣2,3)(1,0),函数关系式为:y=﹣x+1③当k>0时,x=﹣2,y有最小值为﹣2k+nx=3时,y有最大值为3k+n当k<0时,x=﹣2,y有最大值为﹣2k+nx=3时,y有最小值为3k+n(2)若m=﹣1,n=2时,二次函数为y=x2+kx+2对称轴为x,当2,即k≥4时,把x=﹣2,y=﹣4代入关系式得:k=5当﹣22,即﹣4<k<4时,把x,y=﹣4代入关系式得:k=±2(不合题意)当2,即k≤﹣4时,把x=2,y=﹣4代入关系式得:k=﹣5.所以实数k的值为±5.【点评】本题考查了一次函数的概念、一次函数的性质、一次函数最值的应用以及二次函数的性质,综合性较强,需要学生灵活运用性质,把握一次函数的增减性和二次函数的增减性,解答题目.3.如图,二次函数y=﹣x2+2(m﹣2)x+3的图象与x、y轴交于A、B、C三点,其中A(3,0),抛物线的顶点为D.(1)求m的值及顶点D的坐标;(2)当a≤x≤b时,函数y的最小值为,最大值为4,求a,b应满足的条件;(3)在y轴右侧的抛物线上是否存在点P,使得三角形PDC是等腰三角形?如果存在,求出符合条件的点P的坐标;如果不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)先把A(3,0)代入y=﹣x2+2(m﹣2)x+3,得到关于m的方程,解方程求出m的值,再利用配方法将二次函数写成顶点式,即可求出顶点D的坐标;(2)先把y=1代入y=﹣x2+2x+3,得到方程1x2+2x+3,解方程求出x1,x2,再利用二次函数的性质结合图象即可得出a,b应满足的条件;(3)先求出二次函数与y轴交点C的坐标,当三角形PDC是等腰三角形时,分三种情况进行讨论:①当DC=DP时,易求点P坐标为(2,3);②当PC=PD时,过点D 作x轴的平行线,交y轴于点H,过点P作PM⊥y轴于点M,PN⊥DH于点N.由HD=HC,PC=PD,根据线段垂直平分线的判定与等腰三角形的性质得出HP平分∠MHN,再由线段垂直平分线的性质得出PM=PN.设P(m,﹣m2+2m+3),则m=4﹣(﹣m2+2m+3),解方程求出m的值,得出点P的坐标为或;③当CD=CP时,不符合题意.【解答】解:(1)把A(3,0)代入y=﹣x2+2(m﹣2)x+3,得﹣9+6(m﹣2)+3=0,解得m=3.则二次函数为y=﹣x2+2x+3,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D的坐标为(1,4);(2)把y=1代入y=﹣x2+2x+3,得1x2+2x+3,解得x1,x2,结合图象知a≤1.当a时,1≤b,当a≤1时,b;(3)x=0时,y=3,所以点C坐标为(0,3).当三角形PDC是等腰三角形时,分三种情况:①如图1,当DC=DP时,∵点P与点C关于抛物线的对称轴x=1对称,∴点P坐标为(2,3);②如图2,当PC=PD时,过点D作x轴的平行线,交y轴于点H,过点P作PM⊥y 轴于点M,PN⊥DH于点N.∵HD=HC=1,PC=PD,∴HP是线段CD的垂直平分线.∵HD=HC,HP⊥CD,∴HP平分∠MHN,∵PM⊥y轴于点M,PN⊥DH于点N,∴PM=PN.设P(m,﹣m2+2m+3),则m=4﹣(﹣m2+2m+3),解得m,∴P的坐标为或;③如图3,当CD=CP时,点P在y轴左侧,不符合题意.综上所述,所求点P的坐标为(2,3)或或.【点评】本题是二次函数的综合题型,其中涉及到的知识点有运用待定系数法求二次函数的解析式,抛物线顶点坐标的求法,二次函数的性质,线段垂直平分线的判定与性质,等腰三角形的性质,综合性较强,难度适中.利用数形结合、分类讨论及方程思想是解题的关键.4.已知点A(t,1)为函数y=ax2+bx+4(a,b为常数,且a≠0)与y=x图象的交点.(1)求t;(2)若函数y=ax2+bx+4的图象与x轴只有一个交点,求a,b;(3)若1≤a≤2,设当x≤2时,函数y=ax2+bx+4的最大值为m,最小值为n,求m﹣n的最小值.【考点】H7:二次函数的最值;HA:抛物线与x轴的交点.【分析】(1)把A(t,1)代入y=x即可得到结论;(2)根据题意得方程组,解方程组即可得到结论;(3)把A(1,1)代入y=ax2+bx+4得,b=﹣3﹣a,得到y=ax2﹣(a+3)x+4的对称轴为直线x,根据1≤a≤2,得到对称轴的取值范围x≤2,当x时,得到m,当x=2时,得到n,即可得到结论.【解答】解:(1)把A(t,1)代入y=x得t=1;(2)∵y=ax2+bx+4的图象与x轴只有一个交点,∴,∴或;(3)把A(1,1)代入y=ax2+bx+4得,b=﹣3﹣a,∴y=ax2﹣(a+3)x+4=a(x)2,∴对称轴为直线x,∵1≤a≤2,∴x2,∵x≤2,∴当x时,y=ax2+bx+4的最大值为m,当x=2时,n,∴m﹣n,∵1≤a≤2,∴当a=2时,m﹣n的值最小,即m﹣n的最小值.【点评】本题考查了抛物线与x轴的交点,二次函数的最值,正确的理解题意是解题的关键.5.已知y关于x的函数y=nx2﹣2(m+1)x+m+3(1)若m=n=﹣1时,当﹣1≤x≤3时,求函数的最大值和最小值;(2)若n=1,当m取何值时,抛物线顶点最高?(3)若n=2m>0,对于任意m的值,当x<k时,y随x的增大而减小,求k的最大整数;(4)若m=2n≠0,求抛物线与x轴两个交点之间的最短距离.【考点】H3:二次函数的性质;H7:二次函数的最值;HA:抛物线与x轴的交点.【分析】(1)利用待定系数法即可解决问题;(2)构建二次函数,利用二次函数的性质即可解决问题;(3)抛物线的解析式为y=2mx2﹣2(m+1)x+m+3,对称轴x,因为对于任意m的值,当x<k时,y随x的增大而减小,所以k,由此即可解决问题;(4)构建二次函数,利用二次函数的性质,解决最值问题;【解答】解:(1)当m=n=﹣1时,函数解析式为y=﹣x2+2,顶点坐标为(0,2),函数最大值为2,∵﹣1≤x≤3,x=﹣1时,y=1,x=3时,y=﹣7.∴函数的最大值为2和最小值为﹣7.(2)n=1时,函数解析式为y=x2﹣2(m+1)x+m+3,∵顶点的纵坐标m2﹣m+2,∵﹣1<0,∴m时,抛物线顶点的纵坐标最大,顶点最高.(3)∵n=2m,∴抛物线的解析式为y=2mx2﹣2(m+1)x+m+3,对称轴x,∵对于任意m的值,当x<k时,y随x的增大而减小,∴k,∴k的最大整数为0.(4)∵m=2n,∴抛物线的解析式为y=nx2﹣2(2n+1)x+2n+3,设抛物线与x轴的交点为(x1,0)和(x2,0),则|x1﹣x2|,∴当时,抛物线与x轴两个交点之间的距离最短,最小值为.【点评】本题考查抛物线与x轴的交点、二次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会构建二次函数解决最值问题,所以中考常考题型.6.如图,二次函数y=﹣x2+2(m﹣2)x+3的图象与x,y轴交于A,B,C三点,其中A(3,0),抛物线的顶点为D.(1)求m的值及顶点D的坐标.(2)连接AD,CD,CA,求△ACD外接圆圆心E的坐标和半径;(3)当x≤n时,函数y所取得的最大值为4,最小值为1,求n的取值范围.【考点】HF:二次函数综合题.【分析】(1)把A点坐标代入可求得m的值,可求得二次函数解析式,化为顶点式可求得D的坐标;(2)利用两点间的距离公式可求得AC、CD、AD,可知△ACD为直角三角形,AD为斜边,可知E为AC的中点,可求得E的坐标及半径;(3)当x时,可求得y=1,且当x=1时y=4,根据二次函数的对称性可求得n的范围.【解答】解:(1)∵抛物线过A点,∴代入二次函数解析式可得﹣9+6(m﹣2)+3=0,解得m=3,∴二次函数为y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D为(1,4);(2)由(1)可求得C坐标为(0,3),∴AC3,CD,AD2,∴AC2+CD2=AD2,∴△ACD为直角三角形,∴E为AD的中点,∴E点坐标为(2,2),外接圆的半径r AD;(3)当x时,y=1,当x=1时,y=4,∴当x≤1时,1y≤4,根据二次函数的对称性可知当1≤x时,1y≤4,∴1≤n.【点评】本题主要考查待定系数法求函数解析式及二次函数的顶点坐标、增减性、及直角三角形的判定等知识的综合应用.在(1)中掌握点的坐标满足函数的解析式是解题的关键,在(2)中判定出△ACD为直角三角形是解题的关键,在(3)中利用二次函数的对称性,结合二次函数在对称轴两侧的增减性可确定出n的范围.本题难度不大,注重基础知识的综合,较易得分.7.如图,抛物线y=ax2+bx+2与x轴交于A、B两点,点A的坐标为(﹣1,0),抛物线的对称轴为直线.点M为线段AB上一点,过M作x轴的垂线交抛物线于P,交过点A的直线y=﹣x+n于点C.(1)求直线AC及抛物线的解析式;(2)若,求PC的长;(3)过P作PQ∥AB交抛物线于点Q,过Q作QN⊥x轴于N,若点P在Q左侧,矩形PMNQ的周长记为d,求d的最大值.【考点】HF:二次函数综合题.【分析】(1)将A(﹣1,0)代入y=﹣x+n,运用待定系数法求出直线AC的解析式;根据抛物线的对称轴为x,把点A的坐标代入y=ax2+bx+2,组成关于a、b的二元一次方程组,求解即可得到抛物线的解析式;(2)设M点横坐标为m,则P(m,m2m+2),C(m,﹣m﹣1),得出PMm2m+2,PC m2m+3.由PM,得到m2m+2,即m2=3m+1,m,进而求出PC;(3)设M点横坐标为m,则PM m2m+2,MN=2(m)=3﹣2m,矩形PMNQ的周长d=﹣m2﹣m+10,将﹣m2﹣m+10配方,根据二次函数的性质,即可得出矩形PMNQ的周长的最大值.【解答】解:(1)∵直线y=﹣x+n过点A(﹣1,0),∴0=1+n,解得n=﹣1,∴直线AC的解析式为y=﹣x﹣1;∵抛物线y=ax2+bx+2的对称轴为直线x,经过点A(﹣1,0),∴,解得.∴抛物线的解析式是:y x2x+2;(2)如图,设M点横坐标为m,则P点坐标为(m,m2m+2),C点坐标为(m,﹣m﹣1).∵点M为线段AB上一点,∴﹣1<m<4.∴PM m2m+2,PC=(m2m+2)﹣(﹣m﹣1)m2m+3.∵PM,∴m2m+2,整理,得m2﹣3m﹣1=0,∴m2=3m+1,m,∴PC m2m+3(3m+1)m+3=m,∴当m时,PC;(3)设M点横坐标为m,则PM m2m+2,MN=2(m)=3﹣2m,∴矩形PMNQ的周长d=2(PM+MN)=2(m2m+2+3﹣2m)=﹣m2﹣m+10.∵﹣m2﹣m+10=﹣(m)2,∴当m时,d有最大值.【点评】本题是二次函数的综合题型,其中涉及到的知识点有运用待定系数法求一次函数、二次函数的解析式,平行于坐标轴上的两点之间的距离,矩形的性质,一元二次方程的解法,二次函数最值的求法,综合性较强,难度适中.运用数形结合、方程思想是解题的关键.8.如图,抛物线y=ax2+bx+2与x轴交于A、B两点,点A的坐标为(﹣1,0),抛物线的对称轴为直线x=1.5,点M为线段AB上一点,过M作x轴的垂线交抛物线于P,交过点A的直线y=﹣x+n于点C.(1)求直线AC及抛物线的解析式;(2)M位于线段AB的什么位置时,PC最长,并求出此时P点的坐标;(3)若在(2)的条件下,在x轴上方的抛物线上是否存在点Q,使,求点Q的坐标.【考点】HF:二次函数综合题.【分析】(1)将A(﹣1,0)代入y=﹣x+n,运用待定系数法求出直线AC的解析式;根据抛物线的对称轴为x,把点A的坐标代入y=ax2+bx+2,组成关于a、b的二元一次方程组,求解即可得到抛物线的解析式;(2)设M点横坐标为m,则P(m,m2m+2),C(m,﹣m﹣1),得出PMm2m+2,化成顶点式即可;(3)根据抛物线的对称轴和A的坐标,求得B的坐标,求得AB,从而求得三角形APB的面积,进而求得三角形ABQ的面积,得出Q的纵坐标,把纵坐标代入抛物线的解析式即可求得横坐标,从而求得Q的坐标.【解答】解:(1)∵直线y=﹣x+n过点A(﹣1,0),∴0=1+n,解得n=﹣1,∴直线AC的解析式为y=﹣x﹣1;∵抛物线y=ax2+bx+2的对称轴为直线x,经过点A(﹣1,0),∴,解得.∴抛物线的解析式是:y x2x+2;(2)如图,设M点横坐标为m,则P点坐标为(m,m2m+2),C点坐标为(m,﹣m﹣1).∵点M为线段AB上一点,∴﹣1<m<4.∴PC=(m2m+2)﹣(﹣m﹣1)m2m+3.∵PC m2m+3(m)2,所以,当m时,PC最长,此时P(,),AM;(3)存在;∵抛物线y=ax2+bx+2的对称轴为直线x,经过点A(﹣1,0),∴B(4,0)∴AB=5,∵S△APB AB•PM5,∵,∴S△ABQ,设Q点纵坐标为n,∵S△ABQ AB•n,∴n,(或n这样计算比较方便),∴x2x+2,解得:x或x,∴Q(,)或(,)【点评】本题是二次函数的综合题型,其中涉及到的知识点有运用待定系数法求一次函数、二次函数的解析式,平行于坐标轴上的两点之间的距离,一元二次方程的解法,二次函数最值的求法,综合性较强,难度适中.运用数形结合、方程思想是解题的关键.9.如图,抛物线y=﹣x2﹣2x+3 的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.(1)求A、B、C的坐标;(2)点M为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N.若点P在点Q左边,当矩形PMNQ的周长最大时,求△AEM的面积;(3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ.过抛物线上一点F 作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=2DQ,求点F的坐标.【考点】HF:二次函数综合题.【专题】153:代数几何综合题;16:压轴题.。
2019年中考数学试题汇编 整式(word版有答案解析)

整式一.选择题(共16小题)1.(2019•泰州)若2a﹣3b=﹣1,则代数式4a2﹣6ab+3b的值为()A.﹣1B.1C.2D.3 2.(2019•重庆)按如图所示的运算程序,能使输出y值为1的是()A.m=1,n=1B.m=1,n=0C.m=1,n=2D.m=2,n=1 3.(2019•台湾)小宜跟同学在某餐厅吃饭,如图为此餐厅的菜单.若他们所点的餐点总共为10份意大利面,x杯饮料,y份沙拉,则他们点了几份A餐?()A.10﹣x B.10﹣y C.10﹣x+y D.10﹣x﹣y 4.(2019•邢台二模)若m+n=7,2n﹣p=4,则m+3n﹣p=()A.﹣11B.﹣3C.3D.11 5.(2019•宿迁三模)若(2x+1)4=a0x4+a1x3+a2x2+a3x+a4,则a0+a2+a4的值为()A.82B.81C.42D.41 6.(2019•南安市一模)已知(2x﹣3)7=a0x7+a1x6+a2x5+……+a6x+a7,则a0+a1+a2+……+a7=()A.1B.﹣1C.2D.0 7.(2019•霍邱县二模)2018年电影《我不是药神》反映了用药贵的事实,从而引起了社会的广泛关注.国家针对部分药品进行了改革,看病贵将成为历史.据调查,某种原价为345元的药品进行了两次降价,第一次降价15%,第二次降价的百分率为x,则该药品两次降价后的价格变为多少元?()A.345(1﹣15%)(1﹣x)B.345(1﹣15%)(1﹣x%)C.D.8.(2019•重庆模拟)程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.根据如图所示的计算程序,若输入的值x=﹣2,则输出的值为()A.﹣7B.﹣3C.﹣5D.5 9.(2019•平房区二模)甲、乙两个商家对标价相同的同一件商品进行价格调整,甲的方案是:先提价8%,再降价8%;乙的方案是:先降价8%,再提价8%;则甲、乙两个商家对这件商品的最终定价()A.甲比乙多B.乙比甲多C.甲、乙一样多D.无法确定10.(2019春•南岸区校级月考)根据如图的程序运算:当输入x=50时,输出的结果是101;当输入x=20时,输出的结果是167.如果当输入x的值是正整数,输出的结果是127,那么满足条件的x的值最多有()A.3个B.4个C.5个D.6个11.(2019春•沙坪坝区校级月考)如图是一个计算程序,按这个计算程序的计算规律,若输入的数是9,则输出的数是()A12345B36111827A.50B.63C.83D.100 12.(2019春•兴化市期中)如图,两个正方形的面积分别为25,9,两阴影部分的面积分别为a,b(a>b),则(a﹣b)等于()A.4B.9C.16D.25 13.(2019•柳州模拟)已知a2+2a=1,则代数式3a2+6a﹣1的值为()A.0B.1C.﹣1D.214.(2019春•南京期中)如图,把六张形状大小完全相同的小长方形卡片(如图①)不重叠的放在一个底面为长方形(长为7cm,宽为6cm)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是()A.16cm B.24cm C.28cm D.32cm 15.(2019•慈溪市模拟)把四张形状大小完全相同的小长方形卡片(如图①),分两种不同形式不重叠的放在一个底面长为m,宽为n的长方形盒子底部(如图②、图③),盒子底面未被卡片覆盖的部分用阴影表示,设图②中阴影部分图形的周长为l1,图③中两个阴影部分图形的周长和为l2,若,则m,n满足()A.m=n B.m=n C.m=n D.m=n 16.(2019•鄞州区模拟)如图,4张如图1的长为a,宽为b(a>b)长方形纸片,按图2的方式放置,阴影部分的面积为S1,空白部分的面积为S2,若S2=2S1,则a,b满足()A.a=B.a=2b C.a=b D.a=3b二.填空题(共4小题)17.(2019•河北)如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7则(1)用含x的式子表示m=;(2)当y=﹣2时,n的值为.18.(2019•海安县一模)已知当2≤x≤3时,关于x的多项式x2﹣2kx+k2﹣k﹣1(k为大于2的常数)有最小值﹣2,则常数k的值为.19.(2019•临海市一模)如图,九宫格中横向、纵向、对角线上的三个数之和均相等,请用含x的代数式表示y,y=.20.(2019春•江油市校级月考)当x=1时,代数式ax5+bx3+cx+1=2019,当x=﹣1时,ax5+bx3+cx+1=.三.解答题(共10小题)21.(2019•贵阳)如图是一个长为a,宽为b的矩形,两个阴影图形都是一对底边长为1,且底边在矩形对边上的平行四边形.(1)用含字母a,b的代数式表示矩形中空白部分的面积;(2)当a=3,b=2时,求矩形中空白部分的面积.22.(2019•长安区三模)下列算式是一类两个两位数相乘的特殊计算方法:67×63=100×(62+6)+7×3=4221,38×32=100×(32+3)+8×2=1216.(1)仿照上面方法计算,求44×46和51×59的值44×46=;51×59=;(2)观察上述算式我们发现:十位数字相同,个位数字和为10的两个两位数相乘,可以使用上述方法进行计算.如果用a,b分别表示两个两位数的个位数字,c表示十位上的数字.请用含a,b,c的式子表示上面的规律,并说明其正确性;(3)仿照(1)的计算方法,补充完成3342×3358的计算过程:3342×3358==.23.(2019春•沙坪坝区校级月考)已知A、B、C是数轴上3点,O为原点,A在O右侧,C在B右侧,线段OA=2BC=m,点D在线段BC上,关于x的多项式P的一次项系数为n,BD=nCD,且l6x4+mx=P•(2x﹣1)+7.(1)求m,n的值:(2)若OA、BC中点连线的长度也为m,求线段OB的长;(3)若A、C重合,E是直线OA上一动点,F是线段OA延长线上任意一点,求OE++AE的最小值.24.(2019春•鼓楼区校级期中)某菜农用780元购进某种蔬菜200千克,如果直接批发给菜商,每千克售价a元,如果拉到市场销售,每千克售价b元(b>a).已知该蔬菜在市场上平均每天可售出20千克,且该菜农每天还需支付15元其他费用.假设该蔬菜能全部售完.(1)当a=4.5,b=6时,该菜农批发给菜商和在市场销售获得的销售额分别是多少元?(2)设W1和W分别表示该菜农批发给菜商和在市场销售的利润,用含a,b的式子分别表示出W1和W;(3)若b=a+k(0<k<2),试根据k的取值范围,讨论选择哪种出售方式较好.25.(2019春•瑞安市期中)如图,将一张长方形纸板按图中虚线裁剪成9块,其中有2块是边长都为m厘米的大正方形,2块是边长都为n厘米的小正方形,5块是长为m厘米,宽为n厘米的一模一样的小长方形,且m>n,设图中所有裁剪线(虚线部分)长之和为L厘米.(1)L=(试用m,n的代数式表示)(2)若每块小长方形的面积为10平方厘米,四个正方形的面积和为58平方厘米,求L 的值.26.(2019•河东区一模)某单位要印刷“市民文明出行,遵守交通安全”的宣传材料,甲印刷厂提出:每份材料收1元印刷费,另收150元的制版费;乙印刷厂提出:每份材料收2.5元印刷费,不收制版费设在同一家印刷厂一次印制数量为x份(x为正整数)(1)根据题意,填写下表一次印制数量51020 (x)甲印刷厂收费(元)155…乙印刷厂收费(元)12.5…(Ⅱ)在印刷品数量大于800份的情况下选哪家印刷厂印制省钱?27.(2019春•瑶海区期中)书是人类进步的阶梯!为爱护书一般都将书本用封皮包好,现有一本如图1的数学课本,其长为26cm、宽为18.5cm、厚为1cm,小海宝用一张长方形纸包好了这本数学书,他将封面和封底各折进去xcm封皮展开后如图(2)所示,求:(1)则小海宝所用包书纸的面积是多少?(用含x的代数式表示)(2)当封面和封底各折进去2cm时,请帮小海宝计算一下他需要的包装纸至少需要多少平方厘米?28.(2019春•南关区校级月考)滴滴快车是一种便捷的出行工具,计价规则如下表:计费项目里程费时长费远途费单价 1.8元/公里0.45元/分钟0.4元/公里注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取方式为:行车里程10公里以内(QUOTE 含10公里)不收远途费,超过10公里的,超出部分每公里收0.4元.(1)若小东乘坐滴滴快车,行车里程为20公里,行车时间为30分钟,则需付车费元.(2)若小明乘坐滴滴快车,行车里程为a公里,行车时间为b分钟,则小明应付车费多少元(用含a、b的代数式表示,并化简.)(3)小王与小张各自乘坐滴滴快车,行车里程分别为9.5公里与14.5公里,如果下车时两人所付车费相同,那么这两辆滴滴快车的行车时间相差多少分钟?29.(2018秋•蒸湘区校级期末)甲、乙两家商店出售同样牌子和规格的羽毛球拍和羽毛球,每副球拍定价300元,每盒羽毛球定价40元,为庆祝五一节,两家商店开展促销活动如下:甲商店:所有商品9折优惠;乙商店:每买1副球拍赠送1盒羽毛球.某校羽毛球队需要购买a副球拍和b盒羽毛球(b>a).(1)按上述的促销方式,该校羽毛球队在甲、乙两家商店各应花费多少元?试用含a、b 的代数式表示;(2)当a=10,b=20时,试判断分别到甲、乙两家商店购买球拍和羽毛球,哪家便宜?30.(2018秋•南安市期末)福建省教育厅日前发布文件,从2019年开始,体育成绩将按一定的原始分计入中考总分.某校为适应新的中考要求,决定为体育组添置一批体育器材.学校准备在网上订购一批某品牌足球和跳绳,在查阅天猫网店后发现足球每个定价150元,跳绳每条定价30元.现有A、B两家网店均提供包邮服务,并提出了各自的优惠方案.A网店:买一个足球送一条跳绳;B网店:足球和跳绳都按定价的90%付款.已知要购买足球40个,跳绳x条(x>40)(1)若在A网店购买,需付款元(用含x的代数式表示).若在B网店购买,需付款元(用含x的代数式表示).(2)若x=100时,通过计算说明此时在哪家网店购买较为合算?(3)当x=100时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法,并计算需付款多少元?参考答案与试题解析一.选择题(共16小题)1.【解答】解:4a2﹣6ab+3b,=2a(2a﹣3b)+3b,=﹣2a+3b,=﹣(2a﹣3b),=1,故选:B.2.【解答】解:当m=1,n=1时,y=2m+1=2+1=3,当m=1,n=0时,y=2n﹣1=﹣1,当m=1,n=2时,y=2m+1=3,当m=2,n=1时,y=2n﹣1=1,故选:D.3.【解答】解:x杯饮料则在B和C餐中点了x份意大利面,y份沙拉则在C餐中点了y份意大利面,∴点A餐为10﹣x;故选:A.4.【解答】解:∵m+n=7,2n﹣p=4,∴m+3n﹣p=(m+n)+(2n﹣p)=7+4=11,故选:D.5.【解答】解:令x=1,得34=a0+a1+a2+a3+a4,①令x=﹣1,得1=a0﹣a1+a2﹣a3+a4,②①+②得:2(a0+a2+a4)=82,则a0+a2+a4=41,故选:D.6.【解答】解:当x=1时,(2﹣3)7=a0+a1+a2+……+a6+a7,则a0+a1+a2+……+a7=﹣1,故选:B.7.【解答】解:由题意可得,该药品两次降价后的价格变为:345(1﹣15%)(1﹣x),故选:A.8.【解答】解:当x=﹣2,x2+1=4+1=5.故选:D.9.【解答】解:甲:把原来的价格看作单位“1”,1×(1﹣8%)×(1+8%)=92%×1.08=99.36%;乙:把原来的价格看作单位“1”,1×(1+8%)×(1﹣8%)=92%×1.08=99.36%;则甲、乙两个商家对这件商品的最终定价一样多.故选:C.10.【解答】解:根据题意得:2x+1=127,解得:x=63;2x+1=63,解得:x=31;2x+1=31,解得:x=15;2x+1=15,解得:x=7;2x+1=7,解得:x=3;2x+1=3,解得:x=1,则满足条件x的值有6个,故选:D.11.【解答】解:若输入的数是9,则输出的数为92+2=81+2=83,故选:C.12.【解答】解:设空白出长方形的面积为x,根据题意得:a+x=25,b+x=9,两式相减得:a﹣b=16,故选:C.13.【解答】解:当a2+2a=1时,3a2+6a﹣1=3(a2+2a)﹣1=3×1﹣1=3﹣1=2故选:D.14.【解答】解:设小长方形的长为xcm,宽为ycm(x>y),则根据题意得:3y+x=7,阴影部分周长和为:2(6﹣3y+6﹣x)+2×7=12+2(﹣3y﹣x)+12+14=38+2×(﹣7)=24(cm)故选:B.15.【解答】解:图②中通过平移,可将阴影部分的周长转换为长为m,宽为n的长方形的周长,即图②中阴影部分的图形的周长l1为2m+2n图③中,设小长形卡片的宽为x,长为y,则y+2x=m所求的两个长方形的周长之各为:2m+2(n﹣y)+2(n﹣2x),整理得,2m+4n﹣2m=4n即l2为4n∵,∴2m+2n=×4n整理得,故选:C.16.【解答】解:由图形可知,,,∵S2=2S1,∴a2+2b2=2(2ab﹣b2),∴a2﹣4ab+4b2=0,即(a﹣2b)2=0,∴a=2b,故选:B.二.填空题(共4小题)17.【解答】解:(1)根据约定的方法可得:m=x+2x=3x;故答案为:3x;(2)根据约定的方法即可求出nx+2x+2x+3=m+n=y.当y=﹣2时,5x+3=﹣2.解得x=﹣1.∴n=2x+3=﹣2+3=1.故答案为:1.18.【解答】解:x2﹣2kx+k2﹣k﹣1=(x﹣k)2﹣k﹣1(k>2),①当2<k≤3时,当x=k时取最小值,∴﹣k﹣1=﹣2,∴k=2,不合题意;②当k>3时,当x=3时取最小值,∴9﹣6k+k2﹣k﹣1=﹣2,∴k=4或2.5,∵k>3,∴k=4;综上,k=4;故答案为:4.19.【解答】解:根据题意得:第一行第三列,第二行第二列,第三行第一列的三个数之和为:x+y+7,第一行第一列的数为:x+y+7﹣x﹣4=y+3,第一行第二列的数为:x+y+7﹣(y+3)﹣7=x﹣3,第三行第二列的数为:x+y+7﹣(x﹣3)﹣x=10﹣x+y,第三行的三个数之和为:y+(10﹣x+y)+4=x+y+7,整理得:y=2x﹣7,故答案为:2x﹣7.20.【解答】解:把x=1代入ax5+bx3+cx+1得a+b+c+1=2019,∴a+b+c=2018,再把x=﹣1代入ax5+bx3+cx+1得﹣a﹣b﹣c+1=﹣(a+b+c)+1=﹣2018+1=﹣2017.故答案为:﹣2017三.解答题(共10小题)21.【解答】解:(1)S=ab﹣a﹣b+1;(2)当a=3,b=2时,S=6﹣3﹣2+1=2;22.【解答】解:(1)由题意可得,44×46=100×(42+4)+4×6=2024,51×59=100×(52+5)+1×9=3009,故答案为:100×(42+4)+4×6=2024;100×(52+5)+1×9=3009;(2)(10c+a)×(10c+b)=100(c2+c)+ab,证明如下:(10c+a)×(10c+b)=100c2+10bc+10ac+ab=100c2+10c(b+a)+ab=100c2+100c+ab=100(c2+c)+ab;(3)3342×3358=3342×(3348+10)=3342×3348+33420=100×(3342+334)+2×8+33420=11222436故答案为:100×(3342+334)+2×8+33420;11222436.23.【解答】解:(1)∵l6x4+mx=P•(2x﹣1)+7,设P=8x3+ax2+nx+b,∴16x4+2ax3+2nx2+2bx﹣8x3﹣ax2﹣nx﹣b+7=l6x4+mx,∴a=4,n=2,2b﹣n=m,b=7,∴m=12,n=2;(2)∵m=12,∴OA=12,BC=6,∵O为原点,A在O右侧,∴A表示的数是12,∴OA的中点表示的是6,∵OA、BC中点连线的长度也为m,∴BC中点在数轴上表示的数是18或﹣6,∴B点表示的数是15或﹣9,∴BO=15或BO=9;(3)∵BC=6,n=2,BD=nCD,A、C重合,∴B点表示的数是6,D点表示的数是10,设E点表示的数是a,F点表示的数是b,OE++AE=|a|++|12﹣a|=|a|+|12﹣a|+,当a<0时,OE++AE=17﹣>17;当0≤a≤10时,OE++AE=17﹣,∴12≤OE++AE≤17;当10<a<12时,OE++AE=7+,∴12<OE++AE<13;当a≥12时,OE++AE=﹣17≥13;∴12≤OE++AE,∴OE++AE的最小值是12;24.【解答】解:由题意,可得直接批发商的销售额为200a元,拉到市场的销售额为200b元(1)当a=4.5时,直接批发商的销售额为:200×4.5=900元,当b=6时,拉到市场的销售额为:200×6=1200元(2)由题意,进菜的成本为=3.9元直接批发商的利润为:W1=200(a﹣3.9)=200a﹣780拉到市场的利润为:W=200(b﹣3.9)﹣×15=200b﹣930(3)由题意,当b=a+k(0<k<2)时,W=200(a+k)﹣930=200a+200k﹣930则W﹣W1=200a+200k﹣930﹣(200a﹣780)=200k﹣150∴①当0.75<k<2时,W>W1,选择拉到市场出售比直接给批发商好;②当k=0.75时,W=W1,两种出售方式都可以;③当0<k<0.75时,W<W1,选择直接给批发商比拉到市场出售好;25.【解答】解:(1)L=6m+6n,故答案为:6m+6n;(2)依题意得,2m2+2n2=58,mn=10,∴m2+n2=29,∵(m+n)2=m2+2mn+n2,∴(m+n)2=29+20=49,∵m+n>0,∴m+n=7,∴图中所有裁剪线(虚线部分)长之和为42cm.26.【解答】解:(1)甲每份材料收1元印刷费,另收150元的制版费;故答案为160,170,150+x;乙每份材料收2.5元印刷费,故答案为25,50,2.5x;(2)对甲来说,印刷大于800份时花费大于150+800,即花费大于950元;对乙来说,印刷大于800份时花费大于2.5×800,即花费大于2000元;故去甲更省钱;27.【解答】解:(1)小海宝所用包书纸的面积是:(18.5×2+1+2x)(26+2x)=(38+2x)(26+2x)=4x2+128x+988(cm2);(2)当x=2cm时,S=4×22+128×2+988=1260(cm2).答:需要的包装纸至少是1260平方厘米.28.【解答】解:(1)1.8×20+0.45×30+0.4×(20﹣10)=53.5(元),故答案为:53.5;(2)当a≤10时,小明应付费(1.8a+0.45b)元;当a>10时,小明应付费1.8a+0.45b+0.4(a﹣10)=(2.2a+0.45b﹣4)元;(3)小王与小张乘坐滴滴快车分别为a分钟、b分钟,1.8×9.5+0.45a=1.8×14.5+0.45b+0.4×(14.5﹣10)整理,得0.45a﹣0.45b=10.8,∴a﹣b=24因此,这两辆滴滴快车的行车时间相差24分钟.29.【解答】解:(1)由题意可得,在甲商店购买的费用为:(300a+40b)×0.9=(270a+36b)(元),在乙商店购买的费用为:300a+40(b﹣a)=(260a+40b)(元);(2)当a=10,b=20时,在甲商店购买的费用为:270×10+36×20=3420(元),在乙商店购买的费用为:260×10+40×20=3400(元),∵3420>3400,∴当a=10,b=20时,到乙商店购买球拍和羽毛球便宜.30.【解答】解:依题意(1)A店购买可列式:40×150+(x﹣40)×30=4800+30x在网店B购买可列式:(40×150+30x)×0.9=5400+27x故答案为:4800+30x;5400+27x(2)当x=100时在A网店购买需付款:4800+30x=4800+30×100=7800元在B网店购买需付款:5400+27x=5400+27×100=8100元∵7800<8100∴当x=100时,应选择在A网店购买合算.(3)由(2)可知,当x=100时,在A网店付款7800元,在B网店付款8100元,在A网店购买40个足球配送40个跳绳,再在B网店购买60个跳绳合计需付款:150×40+30×60×90%=7620∵7620<7800<8100∴省钱的购买方案是:在A网店购买40个足球配送40个跳绳,再在B网店购买60个跳绳,付款7620元.。
2019年中考数学知识点过关培优训练卷:垂直平分线的性质应用(附解析)

2019年中考数学知识点过关培优训练卷:垂直平分线的性质应用一.选择题1.如图在△ABC中,BC=8,AB、AC的垂直平分线与BC分别交于E、F两点,则△AEF的周长为()A.2 B.4 C.8 D.不能确定2.如图,DE是线段AC的垂直平分线,下列结论一定成立的是()A.DE=BD B.∠BCD=∠AC.∠B>2∠A D.2∠BAC=180°﹣2∠ADE3.如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,AB的垂直平分线DE的延长线于点E,则DE的长为()A.B.C.D.4.如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于点E,垂足为D,CE平分∠ACB,若BE=4,则AC的长为()A.2 B.2C.2D.5.如图,以C为圆心,以大于点C到AB距离为半径作弧交AB于点D、E,再以D、E为圆心,以大于为半径作弧,两弧交于点F,作射线CF,则()A.CF平分∠ACB B.CF⊥ABC.CF平分AB D.CF垂直平分AB6.如图,△ABC,AB>AC>BC,边AB上存在一点P,使得PA+PC=AB.下列描述正确的是()A.P是AC的垂直平分线与AB的交点B.P是BC的垂直平分线与AB的交点C.P是∠ACB的平分线与AB的交点D.P是以点B为圆心,AC长为半径的弧与边AB的交点7.如图,在△ABC中,BD平分∠ABC,BC的垂直平分线交BC于点E,交BD于点F,连接CF,若∠A=60°,∠ABD=24°,则∠ACF的度数为()A.24°B.30 C.36°D.48°8.如图,在△ABC中,∠C=90°,AB的垂直平分线交AB于D,交BC于E,连接AE,若CE =5,AC=12,且△ACE的周长为30,则BE的长是()A.5 B.10 C.12 D.139.如图,DE是△ABC中AC边的垂直平分线,若BC=6cm,AB=8cm,则△EBC的周长为()A.14cm B.18cm C.20cm D.22cm10.如图,在△ABC中,∠ABC=50°,∠BAC=20°,D为线段AB的垂直平分线与直线BC 的交点,连结AD,则∠CAD=()A.40°B.30°C.20°D.10°二.填空题11.如图,在△ABC中,DE是AC的垂直平分线且分别交BC,AC于点D和E,∠B=60°,∠C=25°,则∠BAD的度数为.12.已知点P在线段AB的垂直平分线上,PA=4cm,则PB=cm.13.如图△ABC中,AC=12,DE为AB的垂直平分线,△BCE的周长为20,则BC的长为.14.如图,在四边形ABCD中,E为AB的中点,DE⊥AB于点E,∠A=66°,∠ABC=90°,BC=AD,则∠C的大小为.15.如图,△ABC中,AC的垂直平分线DE分别交BC于点E,交AC于点D,连接BD,AB=AD,∠CED=45°+∠BAC,△ABD的面积为54,则线段BD的长为.16.如图,已知在锐角△ABC中,AB、AC的中垂线交于点O,则∠ABO+∠ACB=.17.如图,在Rt△ABC中,∠ACB=90°,BC=6,AB的垂直平分线交AB于D,交AC于E,若CD=5,则AE=.18.如图,在△ABC中,∠B=40°,∠C=45°,AB的垂直平分线交BC于点D,AC的垂直平分线交BC于点E,则∠DAE=.19.如图,分别以线段BC的两个端点为圆心,以大于BC长为半径画弧,两弧分别相交于D、E两点,直线DE交BC于点F,点A是直线DE上的一点,连接AB、AC,若AB=12cm,∠C=60°,则CF=cm.20.如图,在平面直角坐标系中,平行于x轴的线段AB上所有点的纵坐标都是﹣1,横坐标x的取值范围是1≤x≤5,则线段A B上任意一点的坐标可以用“(x,﹣1)(1≤x≤5)”表示.若射线CD垂直平分AB于点C,那么按照类似这样的规定,射线CD上任意一点的坐标可以表示为.三.解答题21.如图,△ABC中,AB,AC边的垂直平分线分别交BC于点D,E,垂足分别为点F,G,△ADE的周长为6cm.(1)求△ABC中BC边的长度;(2)若∠BAC=116°,求∠DAE的度数.22.如图,在△ABC中,∠C=90°,边AB的垂直平分线DE交AC于D.(1)若CA=16cm,BC=8cm,求DC的长度;(2)若△BDC的周长是n+2,AB=n,求△ABC的面积.(用含n的代数式表示).23.在△ABC中,DE垂直平分AB,分别交AB、BC于点D、E,MN垂直平分AC,分别交AC、BC于点M、N,连接AE,AN.(1)如图1,若∠BAC=100°,求∠EAN的度数;(2)如图2,若∠BAC=70°,求∠EAN的度数;(3)若∠BAC=α(α≠90°),请直接写出∠EAN的度数.(用含α的代数式表示)24.如图,在四边形ABC D中,M,N分别是CD,BC的中点,且AM⊥CD,AN⊥BC.(1)求证:∠BAD=2∠MAN;(2)连接BD,若∠MAN=70°,∠DBC=40°,求∠ADC.26.如图,C,D是AB的垂直平分线上两点,延长AC,DB交于点E,AF∥BC交DE于点F.求证:(1)AB是∠CAF的角平分线;(2)∠FAD=∠E.27.已知:如图,AF平分∠BAC,BC垂直平分AD,垂足为E,CF上一点P,连结PB交线段AF相交于点M.(1)求证:AB∥CD;(2)若∠DAC=∠MPC,请你判断∠F与∠MCD的数量关系,并说明理由.28.下面是小东设计的“作△ABC中BC边上的高线”的尺规作图过程.已知:△ABC.求作:△ABC中BC边上的高线AD.作法:如图,①以点B为圆心,BA的长为半径作弧,以点C为圆心,CA的长为半径作弧,两弧在BC下方交于点E;②连接AE交BC于点D.所以线段AD是△ABC中BC边上的高线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵=BA,=CA,∴点B,C分别在线段AE的垂直平分线上()(填推理的依据).∴BC垂直平分线段AE.∴线段AD是△ABC中BC边上的高线.参考答案一.选择题1.解:∵AB的中垂线交BC于E,AC的中垂线交BC于F,∴EA=EB,FA=FC,则△AEF的周长=AE+EF+AF=BE+EF+FC=BC=8,故选:C.2.解:∵DE是线段AC的垂直平分线,∴∠BA C=∠DCA,∴2∠BAC=180°﹣2∠ADE,D正确,故选:D.3.解:设CE=x,连接AE.∵DE是线段AB的垂直平分线,∴AE=BE=BC+CE=3+x,∴在Rt△ACE中,AE2=AC2+CE2,即(3+x)2=42+x2,解得x=.在Rt△ABC中,AB==5,∴BD=AD=,在Rt△BDE中,DE==,故选:B.4.解:∵DE是BC的垂直平分线,∴EB=EC,∴∠ECB=∠B=30°,∴DE=BE=2,由勾股定理得,BD==2,∴BC=2BD=4,∵CE平分∠ACB,∴∠ECB=∠ACE=30°,∴∠A=90°,又∠B=30°,∴AC=BC=2,故选:B.5.解:由作图可知:直线CF⊥AB,故选:B.6.解:∵PA+PC=BC,∴PA=PC,∴点P在BC的垂直平分线上,即点P为BC的垂直平分线与AB的交点.故选:B.7.解:∵BD平分∠ABC,∴∠DBC=∠ABD=24°,∵∠A=60°,∴∠ACB=180°﹣60°﹣24°×2=72°,∵BC的中垂线交BC于点E,∴BF=CF,∴∠FCB=24°,∴∠ACF=72°﹣24°=48°,故选:D.8.解:∵CE=5,AC=12,且△ACE的周长为30,∴AE=13.∵AB的垂直平分线交AB于D,交BC于E,∴BE=AE=13,故选:D.9.解:∵DE是△ABC中AC边的垂直平分线,∴AE=CE,∴CE+BE=AB=8cm.∵BC=6cm,∴△EBC的周长=BC+CE+BE=BC+AB=6+8=14(cm).故选:A.10.解:∵D为线段AB的垂直平分线与直线BC的交点,∴DA=DB,∴∠DAB=∠ABC=50°,∴∠CAD=∠DAB﹣∠BAC=50°﹣20°=30°.故选:B.二.填空题11.解:∵DE是AC的垂直平分线且分别交BC,AC于点D和E,∴AD=CD,∴∠C=∠DAC,∵∠C=25°,∴∠DAC=25°,∵在△ABC中,∠B=60°,∠C=25°,∴∠BAC=180°﹣∠B﹣∠C=95°,∴∠BAD=∠BAC﹣∠DAC=95°﹣25°=70°,故答案为:70°.12.解:∵点P在线段AB的垂直平分线上,∴PB=PA,∵PA=4cm,∴PB=4cm.故答案为4cm.13.解:∵DE为AB的垂直平分线,∴AE=BE,∵△BCE的周长为20,∴BC+BE+CE=BC+AE+CE=BC+AC=20cm,∵AC=12,∴BC=8.故答案为:814.解:如图,连接BD.∵AE=EB,DE⊥AB,∴DA=DB,∴∠A=∠DBA=66°,∵∠ABC=90°,∴∠DBC=24°,∵BC=AD,∴BD=BC,∴∠C=∠BDC=(180°﹣24°)=78°,故答案为78°.15.解:如图,作AH⊥BD于H交BC于M,作AK⊥CB交CB的延长线于K,作MP⊥AC于P.∵AB=AD,AH⊥BD,∴∠DAH=∠ABC,设∠DAH=α,则∠CED=45°+α,∵ED⊥AC,∴∠EDC=90°,∴∠C=45°﹣α,∴∠AMB=∠MAC+∠C=45°,∵A M垂直平分线段BD,∴MB=MD,∵MH⊥BD,∴∠BMH=∠DMH=45°,∴BH=MH=DH,设BH=MH=DH=a,∵AK⊥CK,∴∠K=90°,∵∠KMA=∠KAM=45°,∴AK=KM,∵∠DMC=∠K=90°,∴DM∥AK,∵AD=DC,∴KM=CM,设AK=KM=CM=m,则AC=m,∵△CPM∽△CKA,∴==,∴==,∴PM=m,PC=m,∴PA=,∴tan∠PAM===,∵DH=a,∴AH=3a,=•BD•AH=×2a×3a=54,∵S△ABD∴a=3或﹣3(舍弃)∴BD=2a=6.故答案为16.解:∵BE是AC的垂直平分线,∴BA=BC,BE⊥AC,∴∠ACB=∠A,∵∠ABO+∠A=90°,∴∠ABO+∠ACB=90°,故答案为:90°.17.解:如图,连接BE,∵AB的垂直平分线交AB于D,交AC于E,∴AE=BE,∵Rt△ABC中,∠ACB=90°,D是AB的中点,∴AB=2CD=10,又∵BC=6,∴AC=8,设AE=BE=x,则CE=8﹣x,∵∠BCE=90°,∴Rt△BCE中,CE2+BC2=BE2,即(8﹣x)2+62=x2,解得x=,∴AE=,故答案为:.18.解:∵点D、E分别是AB、AC边的垂直平分线与BC的交点,∴AD=BD,AE=CE,∴∠B=∠BAD,∠C=∠CAE,∵∠B=40°,∠C=45°,∴∠B+∠C=85°,∠BAC=95°,∴∠BAD+∠CAE=85°,∴∠DAE=∠BAC﹣(∠BAD+∠CAE)=95°﹣85°=10°,故答案为:10°19.解:由作图可知:AE垂直平分线段BC,∴AB=AC,BF=CF,∴∠B=∠C=60°,∵AB=12cm,∠AFB=90°,∴BF=AB=6(cm)故答案为:6.20.解:∵点A的坐标为(1,﹣1),点B的坐标为(5,﹣1),C是AB的中点,∴点C的坐标为(3,﹣1),∴线CD上任意一点的坐标可以表示为:(3,y)(y≥﹣1),故答案为:(3,y)(y≥﹣1).三.解答题21.解:(1)∵AB的中垂线交BC于D,AC的中垂线交BC于E,∴DA=DB,EA=EC,则△ADE的周长=AD+DE+AE=BD+DE+EC=BC=6(cm),∴BC=6cm,(2)∵∠BAC=116°,∴∠B+∠C=180°﹣116°=64°,∵DA=DB,EA=EC,∴∠B=∠DAB,∠C=∠EAC,∵∠ADE=∠B+∠DAB,∠AED=∠C+∠EAC,∴∠ADE+∠AED=128°,∴∠DAE=180°﹣128°=52°.22.解:(1)∵DE垂直平分线段AB,∴DA=DB,设CD=x,则AD=BD=(16﹣x)cm,在Rt△BDC中,∵BD2=CD2+BC2,∴(16﹣x)2=x2+82,∴x=6,∴CD=6cm.(2)∵△BDC的周长=n+2,∴BD+CD+BC=n+2,∵AD=DB,∴AD+DC+BC=n+2,设BC=x,AC=y,则有:,①2﹣②得到:2xy=4n+4,∴xy=2n+2,=xy=n+1.∴S△ABC23.解:(1)∵DE垂直平分AB,∴AE=BE,∴∠BAE=∠B,同理可得:∠CAN=∠C,∴∠EAN=∠BAC﹣∠BAE﹣∠CAN,=∠BAC﹣(∠B+∠C),在△ABC中,∠B+∠C=180°﹣∠BAC=80°,∴∠EAN=∠BAC﹣(∠BAE+∠CAN)=100°﹣80°=20°;(2)∵DE垂直平分AB,∴AE=BE,∴∠BAE=∠B,同理可得:∠CAN=∠C,∴∠EAN=∠BAE+∠CAN﹣∠BAC,=(∠B+∠C)﹣∠BAC,在△ABC中,∠B+∠C=180°﹣∠BAC=110°,∴∠EAN=∠BAE+∠CAN﹣∠BAC=110°﹣70°=40°;(3)当0°<α<90°时,∠EAN=180°﹣2α;当180°>α>90°时,∠EAN=2α﹣180°.24.(1)证明:连接AC,∵M是CD的中点,AM⊥CD,∴AM是线段CD的垂直平分线,∴AC=AD,又AM⊥CD,∴∠3=∠4,同理,∠1=∠2,∴∠2+∠3=∠BAD,即BAD=2∠MAN;(2)∵AM⊥CD,AN⊥BC.∠MAN=70°,∴∠BCD=360°﹣90°﹣90°﹣70°=110°,∴∠BDC=180°﹣∠DBC﹣∠BCD=30°,∠BAD=2∠MAN=140°,∵AB=AC,AD=AC,∴AB=AD,∴∠ADB=∠ABD=20°,∴∠ADC=∠ADB+∠BDC=50°.25.解:(1)∵DE垂直平分AB,∴AE=BE,∴∠BAE=∠B,同理可得∠CAN=∠C,∴∠EAN=∠BAC﹣∠BAE﹣∠CAN=∠BAC﹣(∠B+∠C),在△ABC中,∠B+∠C=180°﹣∠BAC=70°,∴∠EAN=110°﹣70°=40°.(2)∵DE垂直平分AB,∴AE=BE,∴∠BAE=∠B,同理可得∠CAN=∠C,∴∠EAN=∠BAE+∠CAN﹣∠BAC=(∠B+∠C)﹣∠BAC,在△ABC中,∠B+∠C=180°﹣∠BAC=100°,∴∠EAN=100°﹣80°=20°.(3)当0°<α<90°时,∠EAN=180°﹣2α;当90°<α<180°时,∠EAN=2α﹣180°.26.证明:(1)∵点C是AB的垂直平分线上的点,∴CB=CA,∴∠CB A=∠CAB,∵AF∥BC交DE于点F,∴∠BAF=∠CBA,∴∠BAF=∠CAB.即AB是∠CAF的角平分线.(2)∵点D是AB的垂直平分线上的点,∴DB=DA,∴∠DBA=∠DAB,∵∠DBA=∠E+∠CAB,∠DAB=∠FAD+∠BAF,∠CAB=∠BAF,∴∠E=∠FAD.27.解:(1)∵BC垂直平分AD,∴AC=CD,∠CAD=∠CDA,∵AF平分∠BAC,∴∠CAD=∠BAD,∴∠CDA=∠BAD,∴AB∥C D;(2)结论:∠F=∠MCD,理由:∵∠DAC=∠CDA,∠DAC=∠MPC,∴∠CDA=∠MPC,又∵∠CDA+∠CDM=180°,∠MPC+∠MPF=180°,∴∠CDM=∠MPF;又∵AF平分∠BAC,AE⊥BC,AE=AE.∴△ACE≌△ABE(ASA),∴AC=AB.又∵AF平分∠BAC,AM=AM,∴△ACM≌△ABM(SAS),∴∠AMC=∠AMB,又∵∠AMB=∠PMF.∴∠AMC=∠PMF.又∵∠AMC+∠MCD+∠CDM=180°,∠PMF+∠MPF+∠F=180°,∴∠F=∠MCD.28.解:(1)图形如图所示:(2)理由:连接BE,EC.∵AB=BE,EC=CA,∴点B,点C分别在线段AE的垂直平分线上(到线段两个端点距离相等的点在线段的垂直平分线上),∴直线BC垂直平分线段AE,∴线段AD是△ABC中BC边上的高线.故答案为:BE,EC,到线段两个端点距离相等的点在线段的垂直平分线上.。
2019年中考数学知识点过关培优训练卷:等腰三角形的性质与判定(附解析)
2019年中考数学知识点过关培优训练卷:等腰三角形的性质与判定一.选择题1.如图,在△ABC中,AB=AC,点D在AC上,DE∥AB,若∠CDE=160°,则∠B的度数为()A.80°B.75 C.65°D.60°2.如图,在△ABC中,CE平分∠ACB,点D在BC的延长线上,CF平分∠ACD,且EF∥BC交AC于M,若CM=5,则CE2+CF2等于()A.75 B.100 C.120 D.1253.如图,在△ABC中,AB=6,AC=4,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC 分别交AB、AC于M、N,则△AMN的周长为()A.12 B.10C.8 D.不确定4.如图,△ABC的面积为9cm2,BP平分∠ABC,AP⊥BP于P,连接PC,则△PBC的面积为()A.3cm2B.4cm2C.4.5cm2D.5cm25.在等腰三角形△ABC(AB=AC,∠BAC=120°)所在平面上有一点P,使得△PAB,△PBC,△PAC都是等腰三角形,则满足此条件的点P有()A.1个B.2个C.3个D.4个6.如图,△ABC的面积为10cm2,BP是∠ABC的平分线,AP⊥BP于P,则△PBC的面积为()A.4cm2B.5cm2C.6 cm2D.7 cm27.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过O点作EF∥BC交AB于点E,交AC于点F,过点O作OD⊥AC于D,下列四个结论.①EF=BE+CF②∠BOC=90°+∠A③点O到△ABC各边的距离相等④设OD=m,AE+AF=mn,正确的结论有()个.=n,则S△AEFA.1个B.2个C.3个D.4个8.如图,△ABC中,BO平分∠ABC,CO平分△ABC的外角∠ACD,MN经过点O,与AB,AC 相交于点M,N,且MN∥BC,则BM,CN之间的关系是()A.BM+CN=MN B.BM﹣CN=MN C.CN﹣BM=MN D.BM﹣CN=2MN 9.如图,△ABC中,AC=DC=3,BD垂直∠BAC的角平分线于D,E为AC的中点,则图中两个阴影部分面积之差的最大值为()A.1.5 B.3 C.4.5 D.910.已知点P是△ABC内一点,且它到三角形的三个顶点距离之和最小,则P点叫△ABC的费马点(Fermatpoint).已经证明:在三个内角均小于120°的△ABC中,当∠APB=∠APC=∠BPC=120°时,P就是△ABC的费马点.若点P是腰长为的等腰直角三角形DEF 的费马点,则PD+PE+PF=()A.2B.1+C.6 D.3二.填空题11.如图,在△ABC中,CD是∠ACB的平分线,DE∥BC交AC于点E,若DE=6cm,AE=5cm,则AC=cm.12.如图,△ABC中,BO平分∠ABC,CO平分∠ACB,MN经过点O,与AB,AC相交于点M,N,且MN∥BC.若AB=7,AC=6,那么△AMN的周长是.13.如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为.14.如图,在Rt△ABC中,∠C=90°,D为AB上的点,BD=CD=5,则AD=.15.在一次夏令营活动中,小明同学从营地A出发,要到A地的北偏东 60°方向的C处,他先沿正东方向走了200m到达B地,再沿北偏东30°方向走,恰能到达目的地C(如图),那么,由此可知,B、C两地相距m.16.如图,已知BD⊥AG,CE⊥AF,BD、CE分别是∠ABC和∠ACB的角平分线,若BF=3,ED =2,GC=5,则△ABC的周长为.17.如图,在△ABC中,AB=AC,点E在CA延长线上,EP⊥BC于点P,交AB于点F,若AF =2,BF=3,则CE的长度为.18.如图,△ABC中,∠B=90°.∠BAC的平分线交BC于点E,CD⊥AE于点D,若AC=13,AD=12,则AB=.19.如图,△ABC中,AD是∠BAC的平分线,DE∥AB交AC于点E,若DE=7,CE=6,则AC 的长为.20.如图,在△ABC中,BC=8cm,∠BPC=118°,BP、CP分别是∠ABC和∠ACB的平分线,且PD∥AB,PE∥AC,则△PDE的周长是cm,∠DPE=°.三.解答题21.如图,△ABC是等腰三角形,AB=AC,点D是AB上一点,过点D作DE⊥BC交BC于点E,交CA延长线于点F.(1)证明:△ADF是等腰三角形;(2)若∠B=60°,BD=4,AD=2,求EC的长,22.已知:在△ABC中,∠ACB=90°,点P是线段AC上一点,过点A作AB的垂线,交BP 的延长线于点M,MN⊥AC于点N,PQ⊥AB于点Q,AQ=MN.求证:(1)△APM是等腰三角形;(2)PC=AN.23.如图,已知在四边形ABCD中,AB=10cm,∠A=∠C=90°,点E、点F分别在边AB、CD上,且EF∥BC,∠DEF=∠FBC.(1)求证:∠AED=∠EBF;(2)当∠EBF=∠FBC时,EF=cm.24.如图,在等腰△ABC中,AB=AC,D为底边BC延长线上任意一点,过点D作DE∥AB,与AC延长线交于点E.(1)则△CDE的形状是;(2)若在AC上截取AF=CE,连接FB、FD,判断FB、FD的数量关系,并给出证明.25.如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,若AN=1.(1)求∠B的度数;(2)求CN的长.26.如图1,在四边形ABCD中,DC∥AB,BD平分∠ABC,CD=4.(1)求BC的长;(2)如图2,若∠ABC=60°,过点D作DE⊥AB,过点C作CF⊥BD,垂足分别为E、F,连接EF.请判断△DEF的形状并证明你的结论.27.如图,在△ABC中,AB=AC,∠BAC=36°,BD是∠ABC的平分线,交AC于点D,E是AB的中点,连接ED并延长,交BC的延长线于点F,连接AF,求证:(1)EF⊥AB;(2)△ACF为等腰三角形.28.如图,在△ABC中,BA=BC,D在边CB上,且DB=DA=AC.(1)如图1,填空∠B=°,∠C=°;(2)若M为线段BC上的点,过M作直线MH⊥AD于H,分别交直线AB、AC与点N、E,如图2①求证:△ANE是等腰三角形;②试写出线段BN、CE、CD之间的数量关系,并加以证明.29.如图,已知BD平分∠ABC,AD∥BC,且AC=AD.(1)求证:△ABD为等腰三角形;(2)判断∠C与∠D的数量关系,并说明理由.30.如图,在四边形ABCD中,∠B=90°,DE∥AB交BC于E,交AC于F,∠CDE=∠ACB=30°.(1)求证:△FCD是等腰三角形;(2)若BC=DE,求∠CAD的度数.31.如图1,在等腰Rt△ABC中,∠C=90°,O是AB的中点,AC=6,∠MON=90°,将∠MON绕点O旋转,OM、ON分别交边AC于点D,交边BC于点E(D、E不与A、B、C重合)(1)判断△ODE的形状,并说明理由;(2)在旋转过程中,四边形CDOE的面积是否发生变化?若不改变,直接写出这个值,若改变,请说明理由;(3)如图2,DE的中点为G,CG的延长线交AB于F,请直接写出四边形CDFE的面积S 的取值范围.参考答案一.选择题1.解:∵∠CDE=160°,∴∠ADE=20°,∵DE∥AB,∴∠A=∠ADE=20°,∴∠B=(180°﹣∠A)=(180°﹣20°)=80°.故选:A.2.解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,∴△EFC为直角三角形,又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,∴CM=EM=MF=5,EF=10,由勾股定理可知CE2+CF2=EF2=100.故选:B.3.解:∵∠ABC和∠ACB的平分线交于点E,∴∠ABE=∠CBE,∠ACE=∠BCE,∵MN∥BC,∴∠CBE=∠BEM,∠BCE=∠CEN,∴∠ABE=∠BEM,∠ACE=∠CEN,∴BM=ME,CN=NE,∴△AMN的周长=AM+ME+AN+NE=AB+AC,∵AB=AC=4,∴△AMN的周长=6+4=10.故选:B.4.解:延长AP交BC于E,∵BP平分∠ABC,∴∠ABP=∠EBP,∵AP⊥BP,∴∠APB=∠EPB=90°,在△ABP和△EBP中,,∴△ABP≌△EBP(ASA),∴AP=PE,∴S△ABP =S△EBP,S△ACP=S△ECP,∴S△PBC =S△ABC=×9cm2=4.5cm2,故选:C.5.解:如图,满足条件的所有点P的个数为2,故选:B.6.解:延长AP交BC于E,∵BP平分∠ABC,∴∠ABP=∠EBP,∵AP⊥BP,∴∠APB=∠EPB=90°,在△ABP 和△EBP 中,,∴△ABP ≌△EBP (ASA ),∴AP =PE ,∴S △ABP =S △EBP ,S △ACP =S △ECP ,∴S △PBC =S △ABC =×10=5(cm 2),故选:B .7.解:∵在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,∴∠OBC =∠ABC ,∠OCB =∠ACB ,∠A +∠ABC +∠ACB =180°,∴∠OBC +∠OCB =90°﹣∠A ,∴∠BOC =180°﹣(∠OBC +∠OCB )=90°+∠A ;故②正确;∵在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,∴∠OBC =∠OBE ,∠OCB =∠OCF ,∵EF ∥BC ,∴∠OBC =∠EOB ,∠OCB =∠F OC ,∴∠EOB =∠OBE ,∠FOC =∠OCF ,∴BE =OE ,CF =OF ,∴EF =OE +OF =BE +CF ,故①正确;过点O 作OM ⊥AB 于M ,作ON ⊥BC 于N ,连接OA ,∵在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,∴ON =OD =OM =m ,∴S △AEF =S △AOE +S △AOF =AE •OM +AF •OD =OD •(AE +AF )=mn ;故④正确;∵在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,∴点O到△ABC各边的距离相等,故③正确.故选:D.8.证明:∵ON∥BC,∴∠MO C=∠OCD∵CO平分∠ACD,∴∠ACO=∠DCO,∴∠NOC=∠OCN,∴CN=ON,∵ON∥BC,∴∠MOB=∠OBD∵BO平分∠ABC,∴∠MBO=∠CBO,∴∠MBO=∠MOB,∴OM=BM∵OM=ON+MN,OM=BM,ON=CN,∴BM=CN+MN,∴MN=BM﹣CN.故选:B.9.解:延长BD交AC于点H.设AD交BE于点O.∵AD⊥BH,∴∠ADB=∠ADH=90°,∴∠ABD+∠BAD=90°,∠H+∠HAD=90°,∵∠BAD=∠HAD,∴∠ABD=∠H,∴AB =AH ,∵AD ⊥B H ,∴BD =DH ,∵DC =CA ,∴∠CDA =∠CAD ,∵∠CAD +∠H =90°,∠CDA +∠CDH =90°,∴∠CDH =∠H ,∴CD =CH =AC ,∵AE =EC ,∴S △ABE =S △ABH ,S △CDH =S △ABH ,∵S △OBD ﹣S △AOE =S △ADB ﹣S △ABE =S △ADH ﹣S △CDH =S △ACD ,∵AC =CD =3,∴当DC ⊥AC 时,△ACD 的面积最大,最大面积为×3×3=.故选:C .10.解:如图:过点D 作DM ⊥EF 于点M ,在△BDE 内部过E 、F 分别作∠MEP =∠MFP =30°,则∠EPF =∠FPD =∠EPD =120°,点P 就是费马点,在等腰Rt △DEF 中,DE =DF =,DM ⊥EF ,∴EF =DE =2∴EM =DM =1,故cos30°=,解得:PE =,则PM =,故DP =1﹣,同法可得PF =则PD +PE +PF =2×+1﹣=+1. 故选:B .二.填空题(共10小题)11.解:∵CD平分∠ACB交AB于D,∴∠ACD=∠DCB,∵DE∥BC,∴∠EDC=∠DCB,∴∠EDC=∠ECD,∴DE=EC=4cm,∵AE=5cm,∴AC=AE+EC=5+6=11(cm).故答案为:11.12.解:∵BO平分∠ABC,CO平分∠ACB,∴∠MBO=∠OBC,∠OCN=∠OCB,∵MN∥BC,∴∠MOB=∠OBC,∠NOC=∠OCB,∴∠MBO=∠MOB,∠NOC=∠NCO,∴MO=MB,NO=NC,∵AB=7,AC=6,∴△AMN的周长=AM+MN+AN=AB+AC=6+7=13.故答案为:13.13.解:如图:可以画出7个等腰三角形;故答案为7.14.解:在Rt△ABC中,∠C=90°,∵BD=DC,∴∠B=∠DCB,∵∠B+∠A=90°,∠DCB+∠DCA=90°,∴∠A=∠DCA,∴AD=DC=5,故答案为5.15.解:∵B在A的正东方,C在A地的北偏东 60°方向,∴∠BAC=90°﹣60°=30°,∵C在B地的北偏东30°方向,∴∠ABC=90°+30°=120°,∴∠C=180°﹣∠BAC﹣∠ABC=180°﹣30°﹣120°=30°,∴∠BAC=∠C,∴BC=AB=200m.故答案为:200.16.解:∵AG⊥BD,AF⊥CE,BD,CE分别是∠ABC和∠ACB的角平分线,∴AB=BG,AC=FC.∴AE=EF,AD=GD∴ED是△AFG中位线,∴FG=2ED=4;∴BG=AB=BF+FG=7,CF=AC=CG+FG=9,=3+7+9+9=28.∴C△ABC17.证明:在△ABC中,∵AB=AC,∴∠B=∠C,∵EP⊥BC,∴∠C+∠E=90°,∠B+∠BFP=90°,∴∠E=∠BFP,又∵∠BFP=∠AFE,∴∠E=∠AFE,∴AF=AE,∴△AEF是等腰三角形.又∵AF=2,BF=3,∴CA=AB=5,AE=2,∴CE=7.18.解:∵∠BAC的平分线交BC于点E,∴∠BAE=∠CAD,∵CD⊥AE,∴∠D=∠B=90°,∵AC=13,AD=12,∴CD=5,∵∠AEB=∠CED,∴∠BAE=∠DCE,∴∠DCE=∠DAC,∵∠D=∠D,∴△CDE∽△ADC,∴=,∴=,∴DE=,∴AE=,∵∠BAE=∠DAC,∠B=∠D,∴△ABE∽△ADC,∴,∴=,∴AB=,故答案为:.19.解:∵△ABC中,AD是∠BAC的平分线,∴∠BAD=∠CAD,∵DE∥AB,DE=7,CE=6,∴∠CAD=∠ADE,∴AE=DE=7,∴AC=AE+CE=7+6=13.故答案为:13.20.解:(1)∵BP、CP分别是∠ABC和∠ACB的角平分线,∴∠ABP=∠PBD,∠ACP=∠PCE,∵PD∥AB,PE∥AC,∴∠ABP=∠BPD,∠ACP=∠CPE,∴∠PBD=∠BPD,∠PCE=∠CPE,∴BD=PD,CE=PE,∴△PDE的周长=PD+DE+PE=BD+DE+EC=BC=8cm.故答案为8(2)∵∠PBD=∠BPD,∠PCE=∠CPE,∠BPC=118°,∴∠DPE=118°﹣∠PBC﹣∠PCB∵∠BPC+∠PBC+∠PCB=180°,∴∠PBC+∠PCB=180°﹣118°,∴∠DPE=118°﹣(∠PBC+∠PCB)=118°﹣180°+118°=56°.故答案为56.三.解答题(共11小题)21.解:(1)∵AB=AC,∴∠B=∠C,∵FE⊥BC,∴∠F+∠C=90°,∠BDE+∠B=90°,∴∠F=∠BDE,而∠BDE=∠FDA,∴∠F=∠FDA,∴AF=AD,∴△ADF是等腰三角形;(2)∵DE⊥BC,∴∠DEB=90°,∵∠B=60°,BD=4,∴BE=BD=2,∵AB=AC,∴△ABC是等边三角形,∴BC=AB=AD+BD=6,∴EC=BC﹣BE=4.22.证明:(1)∵BA⊥AM,MN⊥AC,∴∠BAM=∠ANM=90°,∴∠PAQ+∠MAN=∠MAN+∠AMN=90°,∴∠PAQ=∠AMN,∵PQ⊥AB MN⊥AC,∴∠PQA=∠ANM=90°,∴在△PQA与△ANM中,,∴△PQA≌△ANM(ASA)∴AP=AM,∴△APM是等腰三角形;(2)由(1)知,△PQA≌△ANM,∴AN=PQ AM=AP,∴∠AMB=∠APM∵∠APM=∠BPC,∠BPC+∠PBC=90°,∠AMB+∠ABM=90°∴∠ABM=∠PBC∵PQ⊥AB,PC⊥BC∴PQ=PC(角平分线的性质),∴PC=AN.23.解:(1)∵EF∥BC,∴∠EFB=∠FBC,∵∠DEF=∠FBC,∴∠DEF=∠EFB,∴ED∥BF,∴∠AED=∠EBF;(2)∵EF∥BC,∠A=∠C=90°,∴∠DFE=∠C=∠A=90°,∵DE∥BF,∴∠DEF=∠EFB,∵∠DEF=∠FBC,∴∠EFB=∠FBC,∵∠AED=∠FBC,∴∠AED=∠DEF,在△AED与△FED中,,∴△AED≌△FED(AAS),∴AE=EF,∵∠EBF=∠FBC,∴∠EFB=∠EBF,∴BE=EF,∴AE=BE=AB=5,∴EF=5.故答案为:5.24.解:(1)△CDE是等腰三角形,理由:∵AB=AC,∴∠ABC=∠ACB,∵DE∥AB,∴∠ABC=∠CDE,∴∠DCE=∠CDE,∴△CDE是等腰三角形;故答案为:等腰三角形;(2)BF=DF,理由:∵AB∥DE,∴∠A=∠E,∵AF=CE,∴AF=DE,AF+CF=CE+CF,即EF=AC=AB,在△AFB与△EDF中,∴△ABF≌△EDF(SAS),∴BF=DF.25.解:(1)∵CM平分∠ACB,MN平分∠AMC,∴∠ACM=∠BCM,∠AMN=∠CMN,又∵MN∥BC,∴∠AMN=∠B,∠CMN=∠BCM,∴∠B=∠BCM=∠ACM,∵∠A=90°,∴∠B=×90°=30°;(2)由(1)得,∠AMN=∠B=30°,∠MCN=∠CMN,∠A=90°,∴MN=2AN=2,MN=CN,∴CN=2.26.解:(1)∵DC∥AB,∴∠CDB=∠ABD,∵∠ABD=∠CBD,∴BC=CD=4;(2)△DEF是等边三角形,理由:∵BC=CD,CF⊥BD,∴BF=DF,又∵DE⊥AB,∴EF=BD=DF,∵∠BDE=90°﹣∠EBD=90°﹣×60°=60°,∴△DEF是等边三角形.27.证明:(1)∵AB=AC,∠BAC=36°,∴∠ABC=72°,又∵BD是∠ABC的平分线,∴∠ABD=36°,∴∠BAD=∠ABD,∴AD=BD,又∵E是AB的中点,∴DE⊥AB,即FE⊥AB;(2)∵FE⊥AB,AE=BE,∴FE垂直平分AB,∴AF=BF,∴∠BAF=∠ABF,又∵∠ABD=∠BAD,∴∠FAD=∠FBD=36°,又∵∠ACB=72°,∴∠AFC=∠ACB﹣∠CAF=36°,∴∠CAF=∠AFC=36°,∴AC=CF,即△ACF为等腰三角形.28.解:(1)∵BA=BC,∴∠BCA=∠BAC,∵DA=DB,∴∠BAD=∠B,∵AD=AC,∴∠ADC=∠C=∠BAC=2∠B,∴∠DAC=∠B,∵∠DAC+∠ADC+∠C=180°,∴2∠B+2∠B+∠B=180°,∴∠B=36°,∠C=2∠B=72°,故答案为:36;72;(2)①在△ADB中,∵DB=DA,∠B=36°,∴∠BAD=36°,在△ACD中,∵AD=AC,∴∠ACD=∠ADC=72°,∴∠CAD=36°,∴∠BAD=∠CAD=36°,∵MH⊥AD,∴∠AHN=∠AHE=90°,∴∠AEN=∠ANE=54°,即△ANE是等腰三角形;②CD=BN+CE.证明:由①知AN=AE,又∵BA=BC,DB=AC,∴BN=AB﹣AN=BC﹣AE,CE=AE﹣AC=AE﹣BD,∴BN+CE=BC﹣BD=CD,即CD=BN+CE.29.(1)证明:∵BD平分∠ABC,∴∠ABD=∠DBC,∵AD∥BC,∴∠D=∠BDC,∴∠ABD=∠D,∴△ABD为等腰三角形;(2)∠C=2∠D,理由:∵△ABD为等腰三角形;∴AB=AD,∵AD=AC,∴AB=AC,∴∠ABC=∠C,∴∠C=2∠D.30.(1)证明:∵∠B=90°,∠ACB=30°,∴∠BAC=60°∵AB∥DE,∴∠EFC=∠BAC=60°,∵∠CDE=30°,∴∠FCD=∠EFC﹣∠CDE=60°﹣30°=30°,∴∠FCD=∠FDC,∴FD=FC,即△FCD为等腰三角形;(2)解:∵DE∥AB,∴∠DEC=∠B,在△DCE和△CAB中,,∴△DCE≌△CAB,(ASA),∴CA=CD,∴∠CAD=∠ADC==75°.31.解:(1)△ODE是等腰直角三角形,理由:连接OC,在等腰Rt△ABC中,∵O是AB的中点,∴OC⊥AB,OC平分∠ACB,∴∠OCE=45°,OC=OA=OB,∠COA=90°,∵∠DOE=90°,∴∠AOD=∠COE,在△AOD与△COE中,,∴△AOD≌△COE,(ASA),∴OD=OE,∴△ODE是等腰直角三角形;(2)在旋转过程中,四边形CDOE的面积不发生变化,∵△AOD≌△COE,∴四边形CDOE的面积=△AOC的面积,∵AC=6,∴AB=6,∴AO=OC=AB=3,∴四边形CDOE的面积=△AOC的面积=×3×3=9;(3)当四边形CDFE是正方形时,其面积最大,四边形CDFE面积的最大值=9,故四边形CDFE的面积S的取值范围为:0<S≤9.。
2019-2020年中考数学模拟试卷(四)(I)
2019-2020年中考数学模拟试卷(四)(I)一.仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母在答题卡中相应的方框内涂黑.注意可以用多种不同的方法来选取正确答案.1.下列图形中,既是轴对称图形又是中心对称图形的是()A.正五边形B.正方形C.平行四边形D.正三角形2.下列各式中,计算结果为a6的是()A.a3+a3B.a7﹣a C.a2•a3 D.a12÷a63.用配方法解方程:x2﹣4x+1=0,下列配方正确的是()A.(x﹣2)2=3 B.(x+2)2﹣3=0 C.(x﹣2)2=0 D.x(x﹣4)=﹣14.已知一组数据x1,x2,x3的平均数和方差分别为5和2,则数据x1+1,x2+1,x3+1的平均数和方差分别是()A.5和2 B.6和2 C.5和3 D.6和35.若二次函数y=ax2﹣2x+a2﹣4(a为常数)的图象经过原点,则该图象的对称轴是直线()A.x=1或x=﹣1 B.x=1 C.x=或x=﹣D.x=6.如图,从位于六和塔的观测点C测得两建筑物底部A,B的俯角分别为45°和60°.若此观测点离地面的高度CD为30米,A,B两点在CD的两侧,且点A,D,B在同一水平直线上,则A,B之间的距离为()米.A.30+10 B.40 C.45 D.30+157.如图,在梯形ABCD中,已知AD∥BC,梯形各边长为:AB=6,BC=9,CD=4,DA=3,分别以AB、CD为直径作圆,则这两圆的位置关系是()A.内切 B.相交 C.外离 D.外切8.把5个大小、质地相同的球,分别标号为1,1,2,3,4,放入袋中,随机取出一个小球后不放回,再随机地取出一个小球,则第二次取出小球标号大于第一次取出小球标号的概率是()A. B. C. D.9.如图,正方形ABCD中,点O是对角线AC的中点,点P是线段AO上的动点(不与点A、O重合),连结PB,作PE⊥PB交CD于点E.以下结论:①△PBC≌△PDC;②∠PDE=∠PED;③PC﹣PA=CE.其中正确的有()个.A.0 B.1 C.2 D.310.将直线l1:y=x和直线l2:y=2x+1及x轴围成的三角形面积记为S1,直线l2:y=2x+1和直线l3:y=3x+2及x轴围成的三角形面积记为S2,…,以此类推,直线l n:y=nx+n﹣1和直线l n+1:y=(n+1)x+n及x轴围成的三角形面积记为S n,记W=S1+S2+…+S n,当n越来越大时,你猜想W最接近的常数是()A. B. C. D.二.认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.计算×+=.12.已知一个圆柱的侧面展开图是如图所示的矩形,长为6π,宽为4π,那么这个圆柱底面圆的半径为.13.不等式组的整数解是.14.如图,在边长为4的正三角形ABC中,BD=1,∠BAD=∠CDE,则AE的长为.15.已知一个直角三角形的一边长等于另一边长的2倍,那么这个直角三角形中较小锐角的正切值为.16.如图,点P是反比例函数y=(x>0)的图象上任意一点,PA⊥x轴于A,PD⊥y轴于点D,分别交反比例函数y=(x>0,0<k<6)的图象于点B,C.下列结论:①当k=3时,BC是△PAD的中位线;②0<k<6中的任何一个k值,都使得△PDA∽△PCB;③当四边形ABCD的面积等于2时,k<3;④当点P的坐标为(3,2)时,存在这样的k,使得将△PCB沿CB对折后,P点恰好落在OA上.其中正确结论的编号是.三.全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(1)求多项式ax2﹣a与多项式x2﹣2x+1的公因式;(2)已知关于x的分式方程=3的解是正数,求m的取值范围.18.xx年5月某日,浙江省11个城市的空气质量指数(AQI)如图所示:(1)这11个城市当天的空气质量指数的众数是;中位数是;(2)当0≤AQI≤50时,空气质量为优.若在这11个城市中随机抽取一个,求抽到的城市这一天空气质量为优的概率;(3)求杭州、宁波、嘉兴、温州、湖州五个城市当天的空气质量指数的平均数.19.如图,已知圆上两点A、B.(1)用直尺和圆规作以AB为底边的圆内接等腰三角形(不写画法,保留痕迹);(2)若已知圆的半径R=5,AB=8,求所作等腰三角形底边上的高.20.如图,在△ABC中,D是BC边上的一点,过A点作BC的平行线,截取AE=BD,连结EB,连结EC交AD于点F.(1)证明:当点F是AD的中点时,点D是BC的中点;(2)证明:当点D是AB的中垂线与BC的交点时,四边形AEBD是菱形.21.如图,已知Rt△ABC的两条直角边,AC=6,BC=8,点D是BC边上的点,过D作DE⊥AB 于E,点F是AC边上的动点,连结DF,EF,以DF、EF为邻边构造▱DFEG:(1)证明:△DBE∽△ABC;(2)设CD长为a(0<a<8),用含a的代数式表示DE;(3)若CD=4时,□DFEG的顶点G恰好落在BC所在直线上,求出此时AF的长.22.(1)已知二次函数y=x2﹣2bx+c的图象与x轴只有一个交点:①b、c的关系式为;②设直线y=9与该抛物线的交点为A、B,则|AB|=;③若该抛物线上有两个点C(m,n)、D(m+4,n),求|CD|及n的值.(2)若二次函数y=x2﹣2bx+c的图象与x轴有两个交点E(5,0)、F(k,0),且线段EF(含端点)上有若干个横坐标为整数的点,这些整数之和为18:①b、c的关系式为;②k的取值范围是;当k为整数时,b=.23.如图,在平面直角坐标系中,Rt△ABO的斜边OA在x轴上,点B在第一象限内,AO=4,∠BOA=30°.点C(t,0)是x轴正半轴上一动点(t>0且t≠4):(1)点B的坐标为;过点O、B、A的抛物线解析式为;(2)作△OBC的外接圆⊙P,当圆心P在(1)中抛物线上时,求点C和圆心P的坐标;(3)设△OBC的外接圆⊙P与y轴的另一交点为D,请将OD用含t的代数式表示出来,并求CD的最小值.xx年浙江省杭州市桐庐县三校共同体中考数学模拟试卷(四)参考答案与试题解析一.仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母在答题卡中相应的方框内涂黑.注意可以用多种不同的方法来选取正确答案.1.下列图形中,既是轴对称图形又是中心对称图形的是()A.正五边形B.正方形C.平行四边形D.正三角形【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,也是中心对称图形.故正确;C、不是轴对称图形,是中心对称图形.故错误;D、是轴对称图形,不是中心对称图形.故错误.故选B.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.下列各式中,计算结果为a6的是()A.a3+a3B.a7﹣a C.a2•a3 D.a12÷a6【考点】同底数幂的除法;合并同类项;同底数幂的乘法.【专题】计算题.【分析】A、原式合并得到结果,即可做出判断;B、原式不能合并,错误;C、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;D、原式利用同底数幂的除法法则计算得到结果,即可做出判断.【解答】解:A、原式=2a3,错误;B、原式不能合并,错误;C、原式=a5,错误;D、原式=a6,正确.故选D.【点评】此题考查了同底数幂的乘除法,以及合并同类项,熟练掌握运算法则是解本题的关键.3.用配方法解方程:x2﹣4x+1=0,下列配方正确的是()A.(x﹣2)2=3 B.(x+2)2﹣3=0 C.(x﹣2)2=0 D.x(x﹣4)=﹣1【考点】解一元二次方程-配方法.【分析】把常数项1移项后,应该在左右两边同时加上一次项系数﹣4的一半的平方.【解答】解:x2﹣4x+1=0,移项,得x2﹣4x=﹣1,配方,得x2﹣4x+4=﹣1+4,(x﹣2)2=3.故选:A.【点评】本题考查了用配方法解一元二次方程的应用,解此题的关键是能正确配方,即方程两边都加上一次项系数一半的平方(当二次项系数为1时).4.已知一组数据x1,x2,x3的平均数和方差分别为5和2,则数据x1+1,x2+1,x3+1的平均数和方差分别是()A.5和2 B.6和2 C.5和3 D.6和3【考点】方差;算术平均数.【专题】计算题.【分析】由于数据x1+1,x2+1,x3+1的每个数比原数据大1,则新数据的平均数比原数据的平均数大1;由于新数据的波动性没有变,所以新数据的方差与原数据的方差相同.【解答】解:∵数据x1,x2,x3的平均数为5,∴数据x1+1,x2+1,x3+1的平均数为6,∵数据x1,x2,x3的方差为2,∴数据x1+1,x2+1,x3+1的方差为2.故选B.【点评】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了算术平均数.5.若二次函数y=ax2﹣2x+a2﹣4(a为常数)的图象经过原点,则该图象的对称轴是直线()A.x=1或x=﹣1 B.x=1 C.x=或x=﹣D.x=【考点】二次函数的性质.【分析】根据图象可以知道图象经过点(0,0),因而把这个点代入记得到一个关于a的方程,就可以求出a的值,从而根据对称轴方程求得对称轴即可.【解答】解:把原点(0,0)代入抛物线解析式,得a2﹣4=0,解得a=±2,∴二次函数y=2x2﹣2x或二次函数y=﹣2x2﹣2x,∴对称轴为:x=﹣=±,故选C.【点评】本题考查了二次函数图象上的点的坐标,根据对于函数图象的描述能够理解函数的解析式的特点,是解决本题的关键.6.如图,从位于六和塔的观测点C测得两建筑物底部A,B的俯角分别为45°和60°.若此观测点离地面的高度CD为30米,A,B两点在CD的两侧,且点A,D,B在同一水平直线上,则A,B之间的距离为()米.A.30+10 B.40 C.45 D.30+15【考点】解直角三角形的应用-仰角俯角问题.【分析】在Rt△ACD和Rt△CDB中分别求出AD,BD的长度,然后根据AB=AD+BD即可求出AB的值.【解答】解:由题意得,∠ECA=45°,∠FCB=60°,∵EF∥AB,∴∠CAD=∠ECA=45°,∠CBD=∠FCB=60°,∵∠ACD=∠CAD=45°,在Rt△CDB中,tan∠CBD=,∴BD==10米,∵AD=CD=30米,∴AB=AD+BD=30+10米,故选A.【点评】本题考查了解直角三角形的应用,解答本题的关键是根据俯角构造直角三角形,并利用解直角三角形的知识解直角的三角形.7.如图,在梯形ABCD中,已知AD∥BC,梯形各边长为:AB=6,BC=9,CD=4,DA=3,分别以AB、CD为直径作圆,则这两圆的位置关系是()A.内切 B.相交 C.外离 D.外切【考点】圆与圆的位置关系.【分析】求得梯形的中位线为两圆的圆心距,AB和CD的一半为两圆的半径,利用半径之和和两圆的圆心距的大小关系求解.【解答】解:∵AD=3,BC=9,∴两圆的圆心距为=6,∵AB=6,CD=4,∴两圆的半径分别为3和2,∵2+3<6,∴两圆外离,故选C.【点评】本题考查了圆与圆的位置关系,解题的关键是分别求得两圆的圆心距和两圆的半径,难度不大.8.把5个大小、质地相同的球,分别标号为1,1,2,3,4,放入袋中,随机取出一个小球后不放回,再随机地取出一个小球,则第二次取出小球标号大于第一次取出小球标号的概率是()A. B. C. D.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与第二次取出小球标号大于第一次取出小球标号的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有20种等可能的结果,第二次取出小球标号大于第一次取出小球标号的有9种情况,∴第二次取出小球标号大于第一次取出小球标号的概率为:.故选D.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验;注意概率=所求情况数与总情况数之比.9.如图,正方形ABCD中,点O是对角线AC的中点,点P是线段AO上的动点(不与点A、O重合),连结PB,作PE⊥PB交CD于点E.以下结论:①△PBC≌△PDC;②∠PDE=∠PED;③PC﹣PA=CE.其中正确的有()个.A.0 B.1 C.2 D.3【考点】全等三角形的判定与性质;正方形的性质.【分析】由正方形的性质得出BC=DC,∠BCP=∠DCP,由SAS即可证明△PBC≌△PDC,得出①正确;由三角形全等得出∠PBC=∠PDE,PB=PD,再证出∠PBC=∠PED,得出∠PDE=∠PED,②正确;证出PD=PE,得出DF=EF,作PH⊥AD于H,PF⊥CD于F,由等腰直角三角形得出PA=EF,PC=CF,即可得出③正确.【解答】解:∵四边形ABCD是正方形,∴BC=DC,∠BCP=∠DCP,在△PBC和△PDC中,,∴△PBC≌△PDC(SAS)∴①正确;∴∠PBC=∠PDE,PB=PD,∵PB⊥PE,∠BCD=90°,∴∠PBC+∠PEC=360°﹣∠BPE﹣∠BCE=180°∵∠PEC+∠PED=180°,∴∠PBC=∠PED,∴∠PDE=∠PED,∴②正确;∴PD=PE,∵PF⊥CD,∴DF=EF;作PH⊥AD于点H,PF⊥CD于F,如图所示:则PA=PH=DF=EF,PC=CF,∴PC﹣PA=(CF﹣EF),即PC﹣PA=CE,∴③正确;正确的个数有3个;故选:D.【点评】本题考查了正方形的性质、全等三角形的判定与性质、等腰三角形的判定与性质、三角函数;本题有一定难度,特别是③中,需要作辅助线运用三角函数才能得出结果.10.将直线l1:y=x和直线l2:y=2x+1及x轴围成的三角形面积记为S1,直线l2:y=2x+1和直线l3:y=3x+2及x轴围成的三角形面积记为S2,…,以此类推,直线l n:y=nx+n﹣1和直线l n+1:y=(n+1)x+n及x轴围成的三角形面积记为S n,记W=S1+S2+…+S n,当n越来越大时,你猜想W最接近的常数是()A. B. C. D.【考点】两条直线相交或平行问题.【专题】规律型.【分析】根据题意列出方程组,解出x,y的值,可知无论k取何值,直线l1与l2的交点均为定点,再求出y=nx+n﹣1与x轴的交点和y=(n+1)x+n与x轴的交点坐标,再根据三角形面积公式求出S n,根据公式可求出S1、s2、s3、…,然后可求得w的表达式,从而可猜想出W最接近的常数的值.【解答】解:将y=nx+n﹣1和y=(n+1)x+n联立得:解得:∴无论k取何值,直线l n和直线l n+1均交于定点(﹣1,﹣1)k≠1时l1与l2的图象的示意图,png_iVBORw0KGgoAAAANSUhEUgAAAIgAAACOCAYAAADq40BPAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv 8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABBCSURBVHhe7Z1PiFxFHsdnBOPFfxglZhEF9SB6UONhsxAVREIw6 Rkjih5EPIiKMf7Zne54cGMWxU1Q0IPrdGcOccGDYMCLYDLtwYOHkLB4UbKZGSGsB0UvBg8KyUxtfavq169edf1ev+7M 9NSrVx9s0+91T09Pv0//6le/qldvQkTEysqKubd2qN8h/2tOTYiJiWmxKJbNIxl4F2v/TsZDXILgttqSLPe/Hn7HytJxMTHVHIuU 60lEgvR/k7OvsX5sNQWaPzwjmp3jvd8RqyZRCOI/OB5hVoVlJRmamPklsyv3u9bq964P9clBCh46evSo+PLLL81WMXiZFZl5 7ELzondZZHIU/LpKEZUgPPpbn8Ns/vHHH+Kqq64S1113nbhw4YLe6bBjxw7x8ccfmy0hFudnxXSzY7bipvKC2Ad+ZSU7wK 0GehkTOk+Q4Fs/JbezZkFz8OBBcdttt4mbbrpJtNttszfjt9/Oicsuu0z8+uuvZo8Qs62GmJ1fMFs2cTUvIJ4I4onpx2QiOdXKvulILC EISfXTTz+Ja6+9Vuzdu1c8++yz4vrrr8+JAD755BPx4IMPmi0t2s7JXaZ7q4VYFgtietIRsqi5qxDRNjE4PmgKJqb2mR1CdDqz+r 7hySefFK+99pp444031O25554Te/bsMY9q8Jz33nvPbOnXhHTdjpYNdDttcQbNGBOlbAaJE5pYcSWp5t8e38+rWgVA3aLdXd T35UE4eeo/MmL8STYhv/UE+eWXX1REOX36tHoecpKrr75anD37P7UNEIXsSJH9Up3ntPdNsYLg9csSiibRCNL7QM0d/KO KWRMN1Rw0m1oU4s9/2Srm5ubUfRIEvPPOOyopBV999ZW444471H0O+0AigjSb+ShFQLZbb71VfPPNN2aPQyhGOETbx CgWtSDtzr7ctxoHfsuWLWYrLwgOJJJWHMhXX31VvP7662p/Bp+IoqlZsBJlm48++kjcf//9ZstGyqvK9lrk0Ki+IJ5vXtaOL6ico NccWKB7S+zfv78nCKDH8I0/ceKEuq/JH0D7V1NlFVGk3Z43ezV4PSTA9mvZuQaV7ftZf2GiFITAwZrvWt1R5rmuIODbb79 VB7UM6PYiL6Fbu3vGPKJ5//33xcMPP2y2NLYg84f/JloeiUOg8oKs9H3LdJVTJagUtgskAnYTQ6A+8vzzz6v79OO9lxnwegrz HHSbN27cqITj2Jcr2xvK/I4xEFEOokXRian8JntDNpGXyifI1q1bxeeff262ymEfU4oQeN2nn35a3feBKKeE1huS9W9WbOJOUk viCoIC2uWXX57LU0aBCnFLS3xh5L/zH+aKeaGRBJG4OQi6v9PT02ZrdF555RXVEyoC+QvVZ0IkCSJxI8iuXbtUt/RiOHv2r BoERBSxsZPTC7J5afTK9prWdFhd3iSIxBYElVXfgR0W5B22dD5oVJjGiIhmo8HWU8ZNEkRiC/LZZ5+Je++9V923v+3DgB4 Lcg/0YIqSTrtsb/8mCJIiSEDYgjzzzDOqi3sxoOaB2gdHTzzGv5mpJEhQkCAos6M4RoN1o3Dy5EmxadOmEXtAWopmY0oJM moEW02SIBLqxaAUjnGYUcEBxXgLDQL64A66vbc1pQUJgSSIBHIcOHBAzQ2ZmZkxe4cHg4AYv1leHv3g9sr2hYW+8ZEE kVATg+jx9ddfm73Dc+edd6oZaDGRBJFAjpdeekn1PLiJy4NA7+euu+4yW/GQBJFAkO3bt/fGTNg8wdlP2zQZ6NixY2qb+/ki1 M8M/2NrThJEAkEwq/3TTz81e4aDnwxUAiWFzFkcOUJxJQkiwXTEDRs2qCrqINzogO7sDTfccFG5S8gkQSSPPPKIaiJGAQ Wx3bt3m634SIJIbr/9drFz506zpfHlEe4+lNJRWGMnIkdA7QVBgonmxa5/lE0ykbsUTQaKgdoKQhKg57F582Z1sIehzGSgGKh9 BMHZdA888MDQgmAy0Msvv1w62lSV2guCHggkGUaQH374gZ0MFJswtRbk1KlTqv4BOYYRBHlH/wlVcVILQbhvNaTAy doYqOMEcX8WOUc2GSh+ahNBfJJg7AQrC0EODPmXAZOBDh06ZLbip7ZNDPIInNqAbm7ZJgb1DtQ9fv/9d7MnfmoryAcff CAef/xxdb+sIBhv6XTqsfQUUVtBsMQD5m6g6SkjCCYD3XLLLSrixNZTKaJ2guDgYlDOXndskCD4mXvuuSe3kF1dqGUEcd cdgxxFSao7GShFkMjBumP2aQlFEQRNClYZgiR1pHaC4ICjCopTI4kiQS5qMlAERC8ImgO7SUDdw507ygmCyUCYJ4IE1Uc dmpraRRAMsrllck4QNEONRsNs1ZPaCYKxF4zB2PgEQU8n9slAZaiVINy6Yz5BsI1ktu7USpA333xTDe27QAa7m4v6CBb3j3 0yUBlqJQjWHaNzV2zcCIJVgXwi1ZHaCILJPdy6Y7YgeN5qLCATC7URBJf6ePTRR81WHlsQrA9yMSdwx0ZtBClad4wEcScD+eoc9r5UB4kEdFmvuOIK8fPPP5s9eUgQRJi33nrL7PVDUtRBDlALQTCOsm3bNrPVD+RAUlq3yUBlqIUgmGT87rvvmq1+ 0MVFSb1oXbG6Ep0gbug/f/68igxF645BoGuuuUYN5CXyRCWILy/AWfeD1h278cYb+67GkNBE38Rg3THcOJCfIMKUndVe N6IXpGjdMTQpGPrH5GUkqol+ohYEeQeiA7fq4JEjR9SqytTNTfQTrSDIR9Bz4ZZnQPSgyUC2IHWpb5Ql6giC2gc3lxRdWrq 6ZYogPNEKgmvUYnDOXXcMEQIDdmh6aDJQEoSncoKgAaBGoKgxwLgLxl98TQbK6fbAXRKEp8IRpHi5awiAEVyXc+fO 9U0GSoLwVC+ClMgh0YSgefHN6cBQPob0bZIgPJUQRF2ZelJfk5ZuRdd5w6wxzB5z4SYDJUF4whfERIyZ6UyKxe6/lCTd79 VmHxiZ9Q3bYz9Oe3BJgvAELwiSTFxb1r7438piVwnSdzFiA3oo7oWMi1YGSoLwBCHIoLQCF/9T15Y1T0STw11rltYdc8Ep DJwESZA86ktpkr11F2RZHXX9f45uR1/8j25c5AA4a85uRvCHot6BtVC5tdiTIDzBRhB7HyIGSUFXiuQkoXXHbFAPKZoMlA ThCT4HubB4TExMt8wWxFkU01IQXErUrYXQxYztiT90mTDf6Q5EXQRxi4buto8ABclfOwURo3n4C7MlH1o6riKIr5trrztGY OkGms3OfSApgvCEJ4hzDO3mBdFjSuUh/uvKYtUgWncMYKAOi7/4phLastRJkDJRwyYYQdy3jZ4LIsWkEoJul7BXg6R1x+ xEFPlImZWB6hxBcJ3fIoLPQQZB3wh33TEsOLdlyxazVUxdBHGjB2pCiLD43L777juzV0PPrbwgxBNPPKFyEGBPBgL+oGq KbvLGCdL3c/4XWlfoLfkLBf3NMKCDTz+BHh6S+xdeeEFNk7CJQhAIYa87BlHsaOIn+/BGiSDDtuXjI5/k2xS9Y4iBdevxOdI XDUzQh1Pl21NPPdW7KBAKZRjJxbiL+zzuhp7Offfd531s/4Hs3wP79RW63ees/+3vnn16zRO6r967vOG5B8zzfX8LosjNN9+s pkSgnhSFIBi5pQOMyIGZ7Pbj+oP6h7mvPxT6cPAvBMGNnk83kqNKNy2BuS//Nnt7v/kMim62IN1uN44mhtYdQ9KFAbnFR X4qgK9poA8ng/ITPlyHhO8tDnzbzhPsJsauOldeEHvdMTQvo1xkMC+IP7Ej3AQvBEZ+L+YHIcSVV16pBIkuScW8D+QbmA SEPxKX+RiW/giSsXD8w1wdBqPIweanQ2J3c93pEUTlBcEi+5hB9uKLL3onA4Glbjs/uGcdYNwlQXBfNSuG2VZDSpFVbVfE GVXJtacehEL+7Sz3BjX1mJUespicnOwb5HSXBHWptCCIGuixLCwsqNyDwqP6sMwnRuV5bvQXz/NFECVHY8b65LUkusLr L/WHAtVEVpa+UJVnNZ5lRAG9P6kElRPETjIxa/2xxx5TeQd6Kr1H1B19ANutphruX+o96h7Y5T5BqMzvSoVXyAQZ7oNeL zCW9ddO/8qOZal0BMGZcW+//bZKUtGeuuCb054/LnZN7JSNg0smiitI0Yw1HboblnDrTMHbWJaPzXdauegxLJUVBINyaF4e emiHdzIQpgVgmoCaHiDDLFf5RDimGgmgJombNW/LE2QEoTcl/8Xf0mw0WNnLUBlB3AN89OhRcffdd6sLI/smAzWbetQX ggz6gOwIsmzmm/hyFq7pCZV2a59URAp/ic6ZUPjqAYFKdMcqG0GQd+Aackf+3b+0JWXwdOvvdeTzEEQQVB11PPFHkBX xfdaDwXYgfV3fu6C/n/6G1rSeNjGK2JUUBINzqHnQRQZ74FuBpsVqc1HHoO3eh+l8qm4Oonow1rwTmsUWdNOi5O5H7buI N1xJQbBiECYHuZOBKN+w6c41RcuTpOnPTEcSVxCAXENNUJJi4HY8d5IWDobbG4qTSgqCbisGk2x0UUsfVAql+iBbzQy DT5CEpnKCYDmpSy+9VMzOzpo9NuW/1XbUTYLwVE4QjL1s2LDBOxF51LY2CcJTKUFoWYfdu3ebPdKJEr0J9xnYThGk HJUSBIvSYUVkOznNBCloXgY4lAThqYwgKKVDDkQQ7zm2tgQDhFDgOeZ5SRCeygiCA4hVC9GD8YFjTQUidS4NyusoN Tc7ji/9kSYJwlMJQWhloO3bt4u5uTmzNwP1D0iBriw1OVTc6hXJCnKVJAhPJQTBRKC9e/eq5gWy2AebSuO+OgdqI9ygm61 LEoQneEGwMtDGjRvVmXK+dcdo+P2MOG/2ZKCKWmb8IQnCE4wgXBOAQTkcPMw7PfTPg2avBtFjejJrRhTyZdQr+V/O SxKEJ+gIgom0mEqItU19645RnoFmpLQPnicmQXiCFgQX+cFkoBMnTqhzbV0yQfR8MffYD5aGH6xLaIIVBFIgaqB62lt3zDn ilKD6ptRBHm+CmiLIUAQriL0yEM7doDP1XXSSeklOBjXzCzPSS5IE4QlSEJw0jCYFA3K07hh3USBAUwH1DSc3HZZ7+5 +fDx7ZBJskCE9QglBPBisDYc4pQA6CNU7XkiQIT3ARBE0JBCFwWiBWD7IpqoqOQhKEJ8gmhs6QwwCdu+6YzWqJkgTh CUIQ7kAjctBlw1Y7atgkQXiCjCAE1jy1l0NaK5IgPMEKgh4MBudGWc5hWJIgPMEKgq6unazapCR1fAQliH3gsdrNuA5aEoRn3QWxpbDv07pj4yAJwhNkE4Pru+Ck7HGRBOEJJoLgX7pP646NiyQIT5ARhNYdGxdJEJ7gBPnxxx9V99Z75twakQThCUIQ OznFumP2ZdPHQRKEJ8gmZtwkQXiSIJIkCE8SRJIE4UmCSJIgPEkQSRKEJwkiSYLwJEEkSRCeJIgkCcKTBJEkQXiSIJIkCE 8SRJIE4UmCSDhB7DGiupIEkUAOvZh/wiUJIklNDE8SRJIE4UmCSJIgHEL8H6zbXb40OWClAAAAAElFTkSuQmCC6I+B5 LyY572R∴S n=S△ABC===,当n=1时,结论同样成立.∴w=s1+s2+s3+…+s n=+…+)=(1﹣+﹣+…+)=(1﹣)=当n越来越大时,越来越接近与1.∴越来越接近于∴w越来越接近于.【点评】此题考查了一次函数的综合题;解题的关键是一次函数的图象与两坐标轴的交点坐标特点,与x轴的交点的纵坐标为0,与y轴的交点的横坐标为0.二.认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.计算×+=4.【考点】实数的运算.【分析】利用二次根式的性质以及三次根式的性质化简求出即可.【解答】解:×+=﹣2=6﹣2=4.故答案为:4.【点评】此题主要考查了二次根式的性质和三次根式的性质等知识,正确化简各数是解题关键.12.已知一个圆柱的侧面展开图是如图所示的矩形,长为6π,宽为4π,那么这个圆柱底面圆的半径为2或3.【考点】几何体的展开图.【分析】分底面周长为4π和6π两种情况讨论,求得底面半径.【解答】解:①底面周长为4π时,圆柱底面圆的半径为4π÷π÷2=2;②底面周长为6π时,圆柱底面圆的半径为6π÷π÷2=1.故答案为:2或3.【点评】考查了圆柱的侧面展开图,注意分长为底面周长和宽为底面周长两种情况讨论求解.13.不等式组的整数解是﹣1、0、1.【考点】一元一次不等式组的整数解.【分析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其整数解即可.【解答】解:,解①得:x>﹣,解②得:x<.则不等式组的解集是:﹣,则不等式组的整数解是:﹣1、0、1.故答案是:﹣1、0、1.【点评】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.14.如图,在边长为4的正三角形ABC中,BD=1,∠BAD=∠CDE,则AE的长为.【考点】相似三角形的判定与性质;等边三角形的性质.【专题】计算题.【分析】先根据等边三角形的性质得∠B=∠C=60°,AB=BC=AC=4,则CD=BC﹣BD=3,再根据有两组角对应相等的两三角形相似可判断△ABD∽△DCE,利用相似比计算出CE=,然后利用AE=AC﹣CE进行计算即可.【解答】解:∵△ABC为边长为4的等边三角形,∴∠B=∠C=60°,AB=BC=AC=4,∴CD=BC﹣BD=4﹣1=3,∵∠BAD=∠CDE,∠B=∠C,∴△ABD∽△DCE,∴=,即=,∴CE=,∴AE=AC﹣CE=4﹣=.故答案为.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;在利用三角形相似的性质时,通过相似比计算相应边的长.15.已知一个直角三角形的一边长等于另一边长的2倍,那么这个直角三角形中较小锐角的正切值为.【考点】锐角三角函数的定义;勾股定理.【专题】分类讨论.【分析】根据题意,分两种情况:(1)当直角三角形的斜边等于一条直角边的长度的2倍时;(2)当直角三角形的一条直角边的长度等于另一条直角边的长度的2倍时;然后根据一个角的正切值的求法,求出这个直角三角形中较小锐角的正切值为多少即可.【解答】解:(1)当直角三角形的斜边等于一条直角边的长度的2倍时,设直角三角形的斜边等于2,则一条直角边的长度等于1,∴另一条直角边的长度是:,∴这个直角三角形中较小锐角的正切值为:1÷.(2)当直角三角形的一条直角边的长度等于另一条直角边的长度的2倍时,设一条直角边的长度等于1,则一条直角边的长度等于2,∴这个直角三角形中较小锐角的正切值为:1÷2=.故答案为:.【点评】(1)此题主要考查了锐角三角函数的定义,要熟练掌握,解答此题的关键是要明确:锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数.(2)此题还考查了勾股定理的应用,以及分类讨论思想的应用,要熟练掌握.16.如图,点P是反比例函数y=(x>0)的图象上任意一点,PA⊥x轴于A,PD⊥y轴于点D,分别交反比例函数y=(x>0,0<k<6)的图象于点B,C.下列结论:①当k=3时,BC是△PAD的中位线;②0<k<6中的任何一个k值,都使得△PDA∽△PCB;③当四边形ABCD的面积等于2时,k<3;④当点P的坐标为(3,2)时,存在这样的k,使得将△PCB沿CB对折后,P点恰好落在OA上.其中正确结论的编号是①②③④.【考点】反比例函数综合题.【分析】①设点P的坐标为(m,),然后再求得点C和点B的坐标,从而得出DC=CP,PB=BA;②按照①的方法先求得点C和点B的坐标,从而得出;③先求得△PDA的面积,然后再求得△PCB的面积,根据相似三角形的面积等于相似比的平方,求得△PDA与△PCB的相似比,从而可求得k值;④先求得AD的解析式,然后可求得EP的解析式,从而可求得点E的坐标,然后再求得AB、BE的长度,最后在直角三角形ABE中由勾股定理可求得k的值.【解答】解:①设点p的坐标为(m,),则PD=m,PA=,将x=m代入y=得:y=,∴AB=PA,将y=代入y=得:x=,∴DC=PD,∴当k=3时,BC是△PAD的中位线,故①正确;②设点p的坐标为(m,),PD=m,PA=,将x=m代入y=得:y=,∴PB=﹣=,将y=代入y=得:x=,∴PC=m﹣=,∴=,=,∴,∴△PDA∽△PCB,故②正确;③∵点P的坐标为(3,2),∴△PDA的面积=3,∵四边形ABCD的面积等于2,∴△PBC的面积=1,∴S△PBC:S△PDA=1:3,∴△PBC与△PDA的相似比为:3,∴,解得:k=6﹣2,∵6﹣3<3,∴k<3,故③正确;④如下图所示:∵点P的坐标为(3,2),∴D(0,2)、A(3,0),∴直线AD的解析式为y=+2,∵直线PE⊥AD,∴设直线PE的解析式为y=x+b,将P(3,2)代入得:b=﹣,∴直线PE的解析式为y=x﹣,令y=0得:x=,∴AE=.将x=3代入y=得:y=,∴AB=,PB=2﹣,由轴对称的性质可知:BE=PB=2﹣,在直角△ABE中,由勾股定理得:AE2+AB2=BE2即:,解得:k=,故④正确.故答案为:①②③④.【点评】本题主要考查的是反比例函数,一次函数、勾股定理以及轴对称图形的性质的综合应用,难度较大,熟练掌握相关知识是解题的关键.三.全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(1)求多项式ax2﹣a与多项式x2﹣2x+1的公因式;(2)已知关于x的分式方程=3的解是正数,求m的取值范围.【考点】分式方程的解;公因式.【专题】计算题.【分析】(1)两多项式分解因式后,找出公因式即可;(2)分式方程去分母转化为整式方程,求出整式方程的解表示出解,根据解为正数求出m 的范围即可.【解答】解:(1)先分解因式:ax2﹣a=a(x+1)(x﹣1),x2﹣2x+1=(x﹣1)2,∴公因式是x﹣1;(2)去分母得:2x+m=3x﹣3,解得:x=m+3,根据题意得:m+3>0,∴m>﹣3,∵x=m+3=1是增根,∴m=﹣2时无解,∴m>﹣3且m≠﹣2.【点评】此题考查了分式方程的解,以及公因式,需注意在任何时候都要考虑分母不为0.18.xx年5月某日,浙江省11个城市的空气质量指数(AQI)如图所示:(1)这11个城市当天的空气质量指数的众数是60;中位数是55;(2)当0≤AQI≤50时,空气质量为优.若在这11个城市中随机抽取一个,求抽到的城市这一天空气质量为优的概率;(3)求杭州、宁波、嘉兴、温州、湖州五个城市当天的空气质量指数的平均数.【考点】众数;条形统计图;算术平均数;中位数;概率公式.【分析】(1)根据众数是一组数据中出现次数最多的数据叫做众数;中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数可得答案;(2)从条形统计图中找出这11个城市当天的空气质量为优的城市个数,再除以城市总数即可;(3)根据平均数的计算方法进行计算即可.【解答】解:(1)将11个数据按从小到大的顺序排列为:37,42,43,49,52,55,60,60,63,75,80,60出现了两次,次数最多,所以众数是60,第6个数是55,所以中位数是55.故答案为60,55;(2)∵当0≤AQI≤50时,空气质量为优,由图可知,这11个城市中当天的空气质量为优的有4个,∴若在这11个城市中随机抽取一个,抽到的城市这一天空气质量为优的概率为;(3)杭州、宁波、嘉兴、温州、湖州五个城市当天的空气质量指数的平均数为:(75+63+60+80+52)÷5=66.【点评】此题主要考查了条形统计图,众数、中位数、平均数的定义以及概率公式,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.概率=所求情况数与总情况数之比.19.如图,已知圆上两点A、B.(1)用直尺和圆规作以AB为底边的圆内接等腰三角形(不写画法,保留痕迹);(2)若已知圆的半径R=5,AB=8,求所作等腰三角形底边上的高.【考点】作图—复杂作图;等腰三角形的性质;垂径定理.【分析】(1)作AB的垂直平分线与圆相交于一点,分别与A、B连接即可得到以AB为底边的圆内接等腰三角形;(2)连结OA,先根据垂径定理得到AD的长,再根据勾股定理,以及线段的和差关系即可求解.【解答】解:(1)如图所示:△ABC即为所求.(2)连结OA,∵圆的半径R=5,AB=8,∴OA=OC=5,AD=4,在△AOD中,OD==3,∴CD=OC+OD=5+3=8.故所作等腰三角形底边上的高是8.【点评】本题考查了复杂作图,主要利用了线段垂直平分线的作法,等腰三角形的性质,以及垂径定理.20.如图,在△ABC中,D是BC边上的一点,过A点作BC的平行线,截取AE=BD,连结EB,连结EC交AD于点F.(1)证明:当点F是AD的中点时,点D是BC的中点;(2)证明:当点D是AB的中垂线与BC的交点时,四边形AEBD是菱形.【考点】菱形的判定;全等三角形的判定与性质.【分析】(1)证得△EAF≌△CDF后即可得到DC=AE,然后根据AE=BD得到BD=DC;(2)首先利用一组对边相等且平行的四边形为平行四边形证得平行四边形,然后根据中垂线的性质得到BD=AD,从而利用邻边相等的平行四边形是菱形进行判定即可.【解答】证明:(1)∵AE∥BC,∴∠EAF=∠CDF,又∵F是AD的中点,∴AF=DF,∴∴△EAF≌△CDF,∴DC=AE,∵AE=BD,∴BD=DC;(2)∵AE=BD且AE∥BD,∴四边形AEBD是平行四边形,又∵点D是AB的中垂线与BC的交点,则有BD=AD,∴平行四边形AEBD一组邻边相等,∴四边形AEBD是菱形.【点评】本题考查了菱形的判定及全等三角形的判定与性质,解题的关键是了解菱形的几种判定方法,难度不大.21.如图,已知Rt△ABC的两条直角边,AC=6,BC=8,点D是BC边上的点,过D作DE⊥AB 于E,点F是AC边上的动点,连结DF,EF,以DF、EF为邻边构造▱DFEG:(1)证明:△DBE∽△ABC;(2)设CD长为a(0<a<8),用含a的代数式表示DE;(3)若CD=4时,□DFEG的顶点G恰好落在BC所在直线上,求出此时AF的长.【考点】相似形综合题.【分析】(1)由DE⊥AB,得到∠BED=90°,于是得到∠BED=∠C=90°,由于∠B=∠B,即可证得△DBE∽△ABC;(2)解:在直角三角形ABC中,根据勾股定理求得AB==10,由△DBE∽△ABC,得到,解方程,即可得到结果;(3)如图,顶点G落在BC所在直线上,由四边形DFEG是平行四边形,得到GD∥EF,证得△ABC∽△AFE,得到,代入数值即可得到结果.【解答】(1)证明:∵DE⊥AB,∴∠BED=90°,∴∠BED=∠C=90°,∵∠B=∠B,∴△DBE∽△ABC;(2)解:在直角三角形ABC中,∵AC=6,BC=8,∴AB==10,由(1)知,△DBE∽△ABC,∴,即,∴DE=(3)如图,顶点G落在BC所在直线上,∵四边形DFEG是平行四边形,∴GD∥EF,∴△ABC∽△AFE,∴,∵CD=a=4,∴DE==,∵BC=8,∴BD=4,∴BE==,∴AE=10﹣=,∴AF==.【点评】本题考查了相似三角形的判定和性质,勾股定理,平行四边形的性质,熟练掌握定理是解题的关键.22.(1)已知二次函数y=x2﹣2bx+c的图象与x轴只有一个交点:①b、c的关系式为b2=c;②设直线y=9与该抛物线的交点为A、B,则|AB|=6;③若该抛物线上有两个点C(m,n)、D(m+4,n),求|CD|及n的值.(2)若二次函数y=x2﹣2bx+c的图象与x轴有两个交点E(5,0)、F(k,0),且线段EF(含端点)上有若干个横坐标为整数的点,这些整数之和为18:①b、c的关系式为c=10b﹣25;②k的取值范围是7≤k<8;当k为整数时,b=6.【考点】抛物线与x轴的交点;二次函数图象上点的坐标特征.【分析】(1)①根据二次函数的图象与x轴只有一个交点,则(2b)2﹣4c=0,由此可得到b、c 应满足关系;②把y=9代入y=x2﹣2bx+bc,得到方程x2﹣2bx+bc﹣9=0,根据根与系数的关系和①的结论即可求得;③把A(m,n)、B(m+4,n)分别代入抛物线的解析式,再根据①的结论即可求出n的值;(2)①因为y=x2﹣2bx+c图象与x轴交于E(5,0),即可得到25﹣10b+c=0,所以c=10b ﹣25;②根据①的距离进而得到k=2b﹣5,再根据E、F之间的整数和为18,即可求出k的取值范围和b的值.【解答】解:(1)①∵二次函数y=x2﹣2bx+c的图象与x轴只有一个交点,∴(2b)2﹣4c=0,∴b2=c;故答案为b2=c;②把y=9代入y=x2﹣2bx+c得,9=x2﹣2bx+c,∴x2﹣2bx+c﹣9=0,∵x1+x2=2b,x1x2=c﹣9,。
2019年中考数学知识点过关培优训练:垂径定理的应用(圆)(解析版)
知识点过关培优训练:垂径定理的应用(圆)一.选择题1.一条排水管的截面如图所示,已知排水管的截面圆的半径OB=10dm,水面宽AB是16dm,则截面水深CD是()A.3 dm B.4 dm C.5 dm D.6 dm2.如图,半径为13cm的圆形铁片上切下一块高为8cm的弓形铁片,则弓形弦AB的长为()A.10 cm B.16 cm C.24 cm D.26 cm3.乌镇是著名的水乡,如图,圆拱桥的拱顶到水面的距离CD为8m,水面宽AB为8m,则桥拱半径OC为()A.4m B.5m C.6m D.8m4.如图是一个隧道的截面图,为⊙O的一部分,路面AB=10米,净高CD=7米,则此圆半径长为()A.5米B.7米C.米D.米5.如图为球形灯笼的截面图,过圆心的CD垂直弦AB于D,AB=2dm,CD=4dm,则⊙O半径为()A.2dm B. dm C. dm D. dm6.如图,把直角三角板的直角顶点O放在破损玻璃镜的圆周上,两直角边与圆弧分别交于点M、N,量得OM=8cm,ON=6cm,则该圆玻璃镜的直径是()A. cm B.5cm C.6cm D.10cm7.《九章算术》是我国古代著名数学经典,其中对勾股定理的论述比西方早一千多年,其中有这样一个问题:“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯该材料,锯口深1寸,锯道长1尺.如图,已知弦AB=1尺,弓形高CD=1寸,(注:1尺=10寸)问这块圆柱形木材的直径是()A.13寸B.6.5寸C.26寸D.20寸8.某品牌婴儿罐装奶粉圆形桶口如图所示,它的内直径(⊙O直径)为10cm,弧AB的度数约为90°,则弓形铁片ACB(阴影部分)的面积约为()A.(π﹣)cm2B.(π﹣25)cm2C.(π﹣)cm2D.(25π﹣)cm29.《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆柱形木材的直径是多少?”如图所示,请根据所学知识计算:圆柱形木材的直径AC是()A.13寸B.20寸C.26寸D.28寸10.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=4cm,则球的半径长是()A.2cm B.2.5cm C.3cm D.4cm11.如图,把一个宽度为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),那么光盘的直径是()A.5 cm B.8 cm C.10 cm D.12 cm 12.某校科技实践社团制作实践设备,小明的操作过程如下:①小明取出老师提供的圆形细铁环,先通过在圆一章中学到的知识找到圆心O,再任意找出圆O的一条直径标记为AB(如图1),测量出AB=4分米;②将圆环进行翻折使点B落在圆心O的位置,翻折部分的圆环和未翻折的圆环产生交点分别标记为C、D(如图2);③用一细橡胶棒连接C、D两点(如图3);④计算出橡胶棒CD的长度.小明计算橡胶棒CD的长度为()A.2分米B.2分米C.3分米D.3分米二.填空题13.《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章计算弧田面积所用的经验公式是:弧田面积=(弦×矢+矢2).弧田(如图阴影部分面积)由圆弧和其所对弦围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,现有圆心角为120°,半径等于4的弧田,按照上述公式计算出弧田的面积为.14.位于黄岩西城的五洞桥桥上老街目前正在修复,其中一处中式圆形门,它的平面示意图,已知AB过圆心O,且垂直CD于点B,测得门洞高度AB为1.8米,门洞下沿CD宽为1.2米,则该圆形门洞的半径为.15.在我国古代数学著作《九章算术》中记载了这样一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”其大意为:如图,AB为⊙O的直径,弦CD⊥AB于点E,若AE=1寸,CD=10寸,则⊙O的直径等于寸.16.如图是一个圆环形黄花梨木摆件的残片,为求其外圆半径,小林在外圆上任取一点A,然后过点A作AB与残片的内圆相切于点D,作CD⊥AB交外圆于点C,测得CD=15cm,AB=60cm,则这个摆件的外圆半径是cm.17.如图,某种鱼缸的主视图可视为弓形,该鱼缸装满水时的最大深度CD为18cm,半径OC为13cm,则鱼缸口的直径AB=cm.18.如图是一块圆环形玉片的残片,作外圆的弦AB与内圆相切于点C,量得AB=8cm、点C与的中点D的距离CD=2cm.则此圆环形玉片的外圆半径为cm.19.如图,有一块矩形木板ABCD,AB=13dm,BC=8dm,工人师傅在该木板上锯下一块宽为xdm的矩形木板MBCN,并将其拼接在剩下的矩形木板AMND的正下方,其中M′、B′、C′、N′分别与M、B、C、N对应.现在这个新的组合木板上画圆,要使这个圆最大,则x的取值范围是,且最大圆的面积是dm2.20.小华为了求出一个圆盘的半径,他用所学的知识,将一宽度为2cm的刻度尺的一边与圆盘相切,另一边与圆盘边缘两个交点处的读数分别是“4”和“16”(单位:cm),请你帮小华算出圆盘的半径是cm.三.解答题21.如图1是小明制作的一副弓箭,点A,D分别是弓臂BAC与弓弦BC的中点,弓弦BC=80cm.沿AD方向拉动弓弦的过程中,假设弓臂BAC始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D拉到点D1时,有AD1=40cm,∠B1D1C1=120°.(1)图2中,弓臂两端B1,C1的距离为cm.(2)如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,求出D1D2的长度..22.一些不便于直接测量的圆形孔道的直径可以用如下方法测量.如图,把一个直径为10mm的小钢球紧贴在孔道边缘,测得钢球顶端离孔道外端的距离为8mm,求这个孔道的直径AB.23.在我国古代数学著作《九章算术》中记载了这样一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现代语言表述为:如图,AB为⊙O的直径,弦CD ⊥AB于点E,AE=1寸,CD=10寸,求直径AB的长.请你解答这个问题.24.如图,有一座拱桥是圆弧形,它的跨度AB=60米,拱高PD=18米.(1)求圆弧所在的圆的半径r的长;(2)当洪水泛滥到跨度只有30米时,要采取紧急措施,若拱顶离水面只有4米,即PE=4米时,是否要采取紧急措施?25.图1是某奢侈品牌的香水瓶.从正面看上去(如图2),它可以近似看作⊙O割去两个弓形后余下的部分与矩形ABCD组合而成的图形(点B、C在⊙O上),其中BC∥EF;从侧面看,它是扁平的,厚度为1.3cm.(1)已知⊙O的半径为2.6cm,BC=2cm,AB=3.02cm,EF=3.12cm,求香水瓶的高度h.(2)用一张长22cm、宽19cm的矩形硬纸板按照如图3进行裁剪,将实线部分折叠制作成一个底面积为S MNPQ=9cm2的有盖盒子(接缝处忽略不计).请你计算这个盒子的高度,并且判断上述香水瓶能否装入这个盒子里.26.赵州桥是我国建筑史上的一大创举,它距今约1400年,历经无数次洪水冲击和8次地震却安然无恙.如图,若桥跨度AB约为40米,主拱高CD约10米,(1)如图1,尺规作图,找到桥弧所在圆的圆心O(保留作图痕迹);(2)如图2,求桥弧AB所在圆的半径R.参考答案1.解:由题意知OD⊥AB,交AB于点E,∵AB=16,∴BC=AB=×16=8,在Rt△OBC中,∵OB=10,BC=8,∴OC==6,∴CD=OD﹣OC=10﹣6=4.故选:B.2.解:如图,过O作OD⊥AB于C,交⊙O于D,∵CD=8,OD=13,∴OC=5,又∵OB=13,∴Rt△BCO中,BC==12,∴AB=2BC=24.故选:C.3.解:连接BO,由题意可得:AD=BD=4m,设B半径OC=xm,则DO=(8﹣x)m,由勾股定理可得:x2=(8﹣x)2+42,解得:x=5.故选:B.4.解:∵CD⊥AB,AB=10米,由垂径定理得AD=5米,设圆的半径为r,由勾股定理得OD2+AD2=OA2,即(7﹣r)2+52=r2,解得r=米.故选:D.5.解:∵过圆心的CD垂直弦AB于D,AB=2dm,CD=4dm,∴BD=AD=1dm,在Rt△ODB中,OD2+DB2=OB2,即(4﹣r)2+12=r2,解得:r=dm,故选:C.6.解:∵把直角三角板的直角顶点O放在破损玻璃镜的圆周上,两直角边与圆弧分别交于点M、N,∴线段MN的就是该圆的直径,∵OM=8cm,ON=6cm,∠MON=90°,∴MN=10cm,故选:D.7.解:设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r﹣1,OA=r,则有r2=52+(r﹣1)2,解得r=13,∴⊙O的直径为26寸,故选:C.8.解:连接OA、OB,∵品牌婴儿罐装奶粉圆形桶口如图所示,它的内直径(⊙O直径)为10cm,弧AB的度数约为90°,∴OA=OB=5cm,∠BOA=90°,∴阴影部分的面积S =S 扇形BOA ﹣S △BOA =﹣=(π﹣)cm 2, 故选:A .9.解:设⊙O 的半径为r .在Rt △ADO 中,AD =5,OD =r ﹣1,OA =r ,则有r 2=52+(r ﹣1)2,解得r =13,∴⊙O 的直径为26寸,故选:C .10.解:EF 的中点M ,作MN ⊥AD 于点M ,取MN 上的球心O ,连接OF , ∵四边形ABCD 是矩形,∴∠C =∠D =90°,∴四边形CDMN 是矩形,∴MN =CD =4,设OF =x ,则ON =OF ,∴OM =MN ﹣ON =4﹣x ,MF =2,在直角三角形OMF 中,OM 2+MF 2=OF 2即:(4﹣x )2+22=x 2解得:x =2.5故选:B .11.解:设光盘的圆心为O,如图所示:过点O作OA垂直直尺于点A,连接OB,设OB=x,∵一边与光盘边缘两个交点处的读数恰好是“2”和“10”,∴AB=×(10﹣2)=4,∵刻度尺宽2cm,∴OA=x﹣2,在Rt△OAB中,OA2+AB2=OB2,即(x﹣2)2+42=x2,解得:x=5.∴该光盘的直径是10cm.故选:C.12.解:连接OC,作OE⊥CD,如图3,∵AB=4分米,∴OC=2分米,∵将圆环进行翻折使点B落在圆心O的位置,∴OE=分米,在Rt△OCE中,CE=分米,∴CD=2分米;故选:B.二.填空题(共8小题)13.解:如图所示:由题意可得:OA=4,∵∠AOB=120°,∴∠AOD=60°,∴OD=2,AD=2,∴弧田的面积=,故答案为.14.解:设该圆形门洞的半径为r,∵AB过圆心O,且垂直CD于点B,连接OC,在Rt△OCB中,可得:r2=(1.8﹣r)2+0.62,解得:r=1,故答案为:1米15.解:如图所示,连接OC.∵弦CD⊥AB,AB为圆O的直径,∴E为CD的中点,又∵CD=10寸,∴CE=DE=CD=5寸,设OC=OA=x寸,则AB=2x寸,OE=(x﹣1)寸,由勾股定理得:OE2+CE2=OC2,即(x﹣1)2+52=x2,解得:x=13,∴AB=26寸,即直径AB的长为26寸.故答案为:26.16.解:如图,设点O为外圆的圆心,连接OA和OC,∵CD=15cm,AB=60cm,∵CD⊥AB,∴OC⊥AB,∴设半径为rcm,则OD=(r﹣15)cm,根据题意得:r2=(r﹣15)2+302,解得:r=37.5.∴这个摆件的外圆半径长为37.5cm;故答案为:37.5.17.解:连接OB,∵CD=18cm,OC=13cm,∴OD=5cm,OB=OC=13cm,在Rt△BDO中,BD=cm,∴AB=2BD=24cm,故答案为:24.18.解:如图,连接OA,∵CD=2cm,AB=8cm,∵CD⊥AB,∴OD⊥AB,∴设半径为r,则OD=r﹣2,根据题意得:r2=(r﹣2)2+42,解得:r=5.∴这个玉片的外圆半径长为5cm.故答案为:5.19.解:如图,设⊙O与AB相切于点H,交CD与E,连接OH,延长HO交CD于F,设⊙O的半径为r.在Rt△OEF中,当点E与N′重合时,⊙O的面积最大,此时EF=4,,则有:r2=(8﹣r)2+42,∴r=5.∴⊙O的最大面积为25π,由题意:,∴2≤x≤3,故答案为2≤x≤3,25π.20.解:如图,记圆的圆心为O,连接OB,OC交AB于D,∴OC⊥AB,BD=AB,由图知,AB=16﹣4=12cm,CD=2cm,∴BD=6,设圆的半径为r,则OD=r﹣2,OB=r,在Rt△BOD中,根据勾股定理得,OB2=AD2+OD2,∴r2=36+(r﹣2)2,∴r=10cm,故答案为10.三.解答题(共6小题)21.解:(1)如图1中,连接B1C1交AD1于H.∵AD1=D1B1=40cm,∴D1是所在圆的圆心,在Rt△B1HD1中,HB1=40•sin60°=20,∴B1C1=2HB1=40(cm),故答案为40.(2)如图2中,连接B1C1交AD1于H,连接B2C2交AD2于T.由题意:=π•B2T,∴AT=B2T=(cm),在Rt△B2TD2中,D2T==,∵AH=HD1=20,∴HT=﹣20=,∴D1D2=HD2﹣HD1=+﹣20=﹣.22.解:连接OA,过点O作OD⊥AB于点D,则AB=2AD,∵钢珠的直径是10mm,∴钢珠的半径是5mm,∵钢珠顶端离零件表面的距离为8mm,∴OD=3mm,在Rt△AOD中,∵AD===4mm,∴AB=2AD=2×4=8mm.23.解:如图所示,连接OC.∵弦CD⊥AB,AB为圆O的直径,∴E为CD的中点,又∵CD=10寸,∴CE=DE=CD=5寸,设OC=OA=x寸,则AB=2x寸,OE=(x﹣1)寸,由勾股定理得:OE2+CE2=OC2,即(x﹣1)2+52=x2,解得:x=13,∴AB=26寸,即直径AB的长为26寸.24.解:(1)连结OA,由题意得:AD=AB=30,OD=(r﹣18)在Rt△ADO中,由勾股定理得:r2=302+(r﹣18)2,解得,r=34;(2)连结OA′,∵OE=OP﹣PE=30,∴在Rt△A′EO中,由勾股定理得:A′E2=A′O2﹣OE2,即:A′E2=342﹣302,解得:A′E=16.∴A′B′=32.∵A′B′=32>30,∴不需要采取紧急措施.25.解:(1)作OG⊥BC于G,延长GO交EF于H,连接BO、EO.∵EF∥BC,∴OH⊥EF,∴BG=BC,EH=EF∴GO==2.4;OH==2.08,∴h=2.4+2.08+3.02=7.5cm.(2)设盒子的高为xcm.由题意:(22﹣2x)•=9解得x=8或12.5(舍弃),∴MQ=6,MN=1.5∵2.6×2=5.2<6;1.3<1.5;7.5<8,∴能装入盒子.26.解:(1)如图1所示;(2)连接OA.如图2.由(1)中的作图可知:△AOD为直角三角形,D是AB的中点,CD =10,∴AD=AB=20.∵CD=10,∴OD=R﹣10.在Rt△AOD中,由勾股定理得,OA2=AD2+OD2,∴R2=202+(R﹣10)2.解得:R=25.即桥弧AB所在圆的半径R为25米.。
2019-2020年中考数学专题训练二次函数与反比例函数1
2019-2020年中考数学专题训练二次函数与反比例函数1一、选择题1.抛物线y=(x﹣1)2+2的顶点坐标是()A.(﹣1,2)B.(﹣1,﹣2) C.(1,﹣2)D.(1,2)2.对于二次函数y=﹣x2+2x.有下列四个结论:①它的对称轴是直线x=1;②设y1=﹣x12+2x1,y2=﹣x22+2x2,则当x2>x1时,有y2>y1;③它的图象与x轴的两个交点是(0,0)和(2,0);④当0<x<2时,y>0.其中正确的结论的个数为()A.1 B.2 C.3 D.43.已知抛物线y=ax2+bx+c(a>0)过(﹣2,0),(2,3)两点,那么抛物线的对称轴()A.只能是x=﹣1B.可能是y轴C.可能在y轴右侧且在直线x=2的左侧D.可能在y轴左侧且在直线x=﹣2的右侧4.二次函数y=x2+4x﹣5的图象的对称轴为()A.x=4 B.x=﹣4 C.x=2 D.x=﹣25.已知二次函数y=x2+(m﹣1)x+1,当x>1时,y随x的增大而增大,而m的取值范围是()A.m=﹣1 B.m=3 C.m≤﹣1 D.m≥﹣16.如图,反比例函数y=的图象经过二次函数y=ax2+bx图象的顶点(﹣,m)(m>0),则有()A.a=b+2k B.a=b﹣2k C.k<b<0 D.a<k<07.设二次函数y=(x﹣3)2﹣4图象的对称轴为直线l,若点M在直线l上,则点M的坐标可能是()A.(1,0) B.(3,0) C.(﹣3,0)D.(0,﹣4)8.已知一个函数图象经过(1,﹣4),(2,﹣2)两点,在自变量x的某个取值范围内,都有函数值y随x的增大而减小,则符合上述条件的函数可能是()A.正比例函数B.一次函数 C.反比例函数D.二次函数9.二次函数y=x2﹣2x﹣3的图象如图所示,下列说法中错误的是()A.函数图象与y轴的交点坐标是(0,﹣3)B.顶点坐标是(1,﹣3)C.函数图象与x轴的交点坐标是(3,0)、(﹣1,0)D.当x<0时,y随x的增大而减小10.在下列二次函数中,其图象对称轴为x=﹣2的是()A.y=(x+2)2B.y=2x2﹣2 C.y=﹣2x2﹣2 D.y=2(x﹣2)211.若抛物线y=(x﹣m)2+(m+1)的顶点在第一象限,则m的取值范围为()A.m>1 B.m>0 C.m>﹣1 D.﹣1<m<012.若正比例函数y=mx(m≠0),y随x的增大而减小,则它和二次函数y=mx2+m的图象大致是()A.B.C.D.13.二次函数y=ax2+bx+c的图象如图所示,则一次函数y=ax+b与反比例函数y=在同一平面直角坐标系中的大致图象为()A .B .C .D .14.数形结合是数学中常用的思想方法,试运用这一思想方法确定函数y=x 2+1与y=的交点的横坐标x 0的取值范围是( )A .0<x 0<1B .1<x 0<2C .2<x 0<3D .﹣1<x 0<015.已知二次函数y=a (x ﹣1)2﹣c 的图象如图所示,则一次函数y=ax+c 的大致图象可能是( )A .B .C .D .16.下列三个函数:①y=x+1;②;③y=x 2﹣x+1.其图象既是轴对称图形,又是中心对称图形的个数有( )A .0B .1C .2D .3 17.在同一直角坐标系中,函数y=mx+m 和y=﹣mx 2+2x+2(m 是常数,且m ≠0)的图象可能是( )A .B .C .D .18.一次函数y=ax+b(a≠0)、二次函数y=ax2+bx和反比例函数y=(k≠0)在同一直角坐标系中的图象如图所示,A点的坐标为(﹣2,0),则下列结论中,正确的是()A.b=2a+k B.a=b+k C.a>b>0 D.a>k>0二、填空题19.抛物线y=x2+2x+3的顶点坐标是.20.已知二次函数y=(x﹣2)2+3,当x 时,y随x的增大而减小.21.二次函数y=x2+2x的顶点坐标为,对称轴是直线.22.二次函数y=﹣x2+2x﹣3图象的顶点坐标是.23.函数y=x2+2x+1,当y=0时,x= ;当1<x<2时,y随x的增大而(填写“增大”或“减小”).24.定义:给定关于x的函数y,对于该函数图象上任意两点(x1,y1),(x2,y2),当x1<x2时,都有y1<y2,称该函数为增函数,根据以上定义,可以判断下面所给的函数中,是增函数的有(填上所有正确答案的序号)①y=2x;②y=﹣x+1;③y=x2(x>0);④y=﹣.25.下列函数(其中n为常数,且n>1)①y=(x>0);②y=(n﹣1)x;③y=(x>0);④y=(1﹣n)x+1;⑤y=﹣x2+2nx (x<0)中,y的值随x的值增大而增大的函数有个.26.二次函数y=x2﹣2x+3图象的顶点坐标为.27.二次函数y=x2﹣4x﹣3的顶点坐标是(,).三、解答题28.已知抛物线y=ax2+bx+3的对称轴是直线x=1.(1)求证:2a+b=0;(2)若关于x的方程ax2+bx﹣8=0的一个根为4,求方程的另一个根.29.在平面直角坐标系xOy中,过点(0,2)且平行于x轴的直线,与直线y=x﹣1交于点A,点A关于直线x=1的对称点为B,抛物线C1:y=x2+bx+c经过点A,B.(1)求点A,B的坐标;(2)求抛物线C1的表达式及顶点坐标;(3)若抛物线C2:y=ax2(a≠0)与线段AB恰有一个公共点,结合函数的图象,求a的取值范围.30.已知点A(﹣2,n)在抛物线y=x2+bx+c上.(1)若b=1,c=3,求n的值;(2)若此抛物线经过点B(4,n),且二次函数y=x2+bx+c的最小值是﹣4,请画出点P(x ﹣1,x2+bx+c)的纵坐标随横坐标变化的图象,并说明理由.2019-2020年中考数学专题训练二次函数与反比例函数21.如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于A、D两点,与y轴交于点B,四边形OBCD是矩形,点A的坐标为(1,0),点B的坐标为(0,4),已知点E(m,0)是线段DO上的动点,过点E作PE⊥x轴交抛物线于点P,交BC于点G,交BD于点H.(1)求该抛物线的解析式;(2)当点P在直线BC上方时,请用含m的代数式表示PG的长度;(3)在(2)的条件下,是否存在这样的点P,使得以P、B、G为顶点的三角形与△DEH相似?若存在,求出此时m的值;若不存在,请说明理由.2.如图,已知抛物线y=(x+2)(x﹣4)(k为常数,且k>0)与x轴从左至右依次交于A,B两点,与y轴交于点C,经过点B的直线y=﹣x+b与抛物线的另一交点为D.(1)若点D的横坐标为﹣5,求抛物线的函数表达式;(2)若在第一象限内的抛物线上有点P,使得以A,B,P为顶点的三角形与△ABC相似,求k的值;(3)在(1)的条件下,设F为线段BD上一点(不含端点),连接AF,一动点M从点A出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到D后停止,当点F的坐标是多少时,点M在整个运动过程中用时最少?3.如图,已知抛物线y=ax2+bx+c与x轴的一个交点为A(3,0),与y轴的交点为B(0,3),其顶点为C,对称轴为x=1.(1)求抛物线的解析式;(2)已知点M为y轴上的一个动点,当△ABM为等腰三角形时,求点M的坐标;(3)将△AOB沿x轴向右平移m个单位长度(0<m<3)得到另一个三角形,将所得的三角形与△ABC重叠部分的面积记为S,用m的代数式表示S.4.如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3(a≠0)与x轴交于点A(﹣2,0)、B(4,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)点P从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点Q从B 点出发,在线段BC上以每秒1个单位长度的速度向C点运动,其中一个点到达终点时,另一个点也停止运动,当△PBQ存在时,求运动多少秒使△PBQ的面积最大,最大面积是多少?(3)当△PBQ的面积最大时,在BC下方的抛物线上存在点K,使S△CBK:S△PBQ=5:2,求K点坐标.5.如图,抛物线y=ax2+bx+c经过A(﹣3,0)、C(0,4),点B在抛物线上,CB∥x轴,且AB平分∠CAO.(1)求抛物线的解析式;(2)线段AB上有一动点P,过点P作y轴的平行线,交抛物线于点Q,求线段PQ的最大值;(3)抛物线的对称轴上是否存在点M,使△ABM是以AB为直角边的直角三角形?如果存在,求出点M的坐标;如果不存在,说明理由.6.如图,已知抛物线y=x2+bx+c的顶点坐标为M(0,﹣1),与x轴交于A、B两点.(1)求抛物线的解析式;(2)判断△MAB的形状,并说明理由;(3)过原点的任意直线(不与y轴重合)交抛物线于C、D两点,连接MC,MD,试判断MC、MD是否垂直,并说明理由.7.如图,在平面直角坐标系xOy中,顶点为M的抛物线是由抛物线y=x2﹣3向右平移一个单位后得到的,它与y轴负半轴交于点A,点B在该抛物线上,且横坐标为3.(1)求点M、A、B坐标;(2)连接AB、AM、BM,求∠ABM的正切值;(3)点P是顶点为M的抛物线上一点,且位于对称轴的右侧,设PO与x正半轴的夹角为α,当α=∠ABM时,求P点坐标.8.如图①,直线l:y=mx+n(m<0,n>0)与x,y轴分别相交于A,B两点,将△AOB绕点O逆时针旋转90°得到△COD,过点A,B,D的抛物线P叫做l的关联抛物线,而l叫做P 的关联直线.(1)若l:y=﹣2x+2,则P表示的函数解析式为;若P:y=﹣x2﹣3x+4,则l表示的函数解析式为.(2)求P的对称轴(用含m,n的代数式表示);(3)如图②,若l:y=﹣2x+4,P的对称轴与CD相交于点E,点F在l上,点Q在P的对称轴上.当以点C,E,Q,F为顶点的四边形是以CE为一边的平行四边形时,求点Q的坐标;(4)如图③,若l:y=mx﹣4m,G为AB中点,H为CD中点,连接GH,M为GH中点,连接OM.若OM=,直接写出l,P表示的函数解析式.9.如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,4),与x轴交于点A和点B,其中点A的坐标为(﹣2,0),抛物线的对称轴x=1与抛物线交于点D,与直线BC交于点E.(1)求抛物线的解析式;(2)若点F是直线BC上方的抛物线上的一个动点,是否存在点F使四边形ABFC的面积为17,若存在,求出点F的坐标;若不存在,请说明理由;(3)平行于DE的一条动直线l与直线BC相交于点P,与抛物线相交于点Q,若以D、E、P、Q为顶点的四边形是平行四边形,求点P的坐标.10.如图,在平面直角坐标系中,已知点A的坐标是(4,0),并且OA=OC=4OB,动点P在过A,B,C三点的抛物线上.(1)求抛物线的解析式;(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;(3)过动点P作PE垂直于y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.11.如图,抛物线y=(x﹣3)2﹣1与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为D.(1)求点A,B,D的坐标;(2)连接CD,过原点O作OE⊥CD,垂足为H,OE与抛物线的对称轴交于点E,连接AE,AD,求证:∠AEO=∠ADC;(3)以(2)中的点E为圆心,1为半径画圆,在对称轴右侧的抛物线上有一动点P,过点P作⊙E的切线,切点为Q,当PQ的长最小时,求点P的坐标,并直接写出点Q的坐标.12.如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(﹣3,0)、B(1,0)、C (0,3)三点,其顶点为D,连接AD,点P是线段AD上一个动点(不与A、D重合),过点P作y轴的垂线,垂足点为E,连接AE.(1)求抛物线的函数解析式,并写出顶点D的坐标;(2)如果P点的坐标为(x,y),△PAE的面积为S,求S与x之间的函数关系式,直接写出自变量x的取值范围,并求出S的最大值;(3)在(2)的条件下,当S取到最大值时,过点P作x轴的垂线,垂足为F,连接EF,把△PEF沿直线EF折叠,点P的对应点为点P′,求出P′的坐标,并判断P′是否在该抛物线上.13.如图,抛物线y=ax2+bx+c(a≠0)的图象过点M(﹣2,),顶点坐标为N(﹣1,),且与x轴交于A、B两点,与y轴交于C点.(1)求抛物线的解析式;(2)点P为抛物线对称轴上的动点,当△PBC为等腰三角形时,求点P的坐标;(3)在直线AC上是否存在一点Q,使△QBM的周长最小?若存在,求出Q点坐标;若不存在,请说明理由.14.如图,在平面直角坐标系中,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E (0,4).点A在DE上,以A为顶点的抛物线过点C,且对称轴x=1交x轴于点B.连接EC,AC.点P,Q为动点,设运动时间为t秒.(1)填空:点A坐标为;抛物线的解析式为.(2)在图①中,若点P在线段OC上从点O向点C以1个单位/秒的速度运动,同时,点Q 在线段CE上从点C向点E以2个单位/秒的速度运动,当一个点到达终点时,另一个点随之停止运动.当t为何值时,△PCQ为直角三角形?(3)在图②中,若点P在对称轴上从点A开始向点B以1个单位/秒的速度运动,过点P 做PF⊥AB,交AC于点F,过点F作FG⊥AD于点G,交抛物线于点Q,连接AQ,CQ.当t为何值时,△ACQ的面积最大?最大值是多少?15.如图,抛物线y=x2+bx+c与直线y=x﹣1交于A、B两点.点A的横坐标为﹣3,点B在y 轴上,点P是y轴左侧抛物线上的一动点,横坐标为m,过点P作PC⊥x轴于C,交直线AB 于D.(1)求抛物线的解析式;(2)当m为何值时,S四边形OBDC=2S△BPD;(3)是否存在点P,使△PAD是直角三角形?若存在,求出点P的坐标;若不存在,说明理由.16.如图,已知抛物线y=ax2+bx+c(a>0,c<0)交x轴于点A,B,交y轴于点C,设过点A,B,C三点的圆与y轴的另一个交点为D.(1)如图1,已知点A,B,C的坐标分别为(﹣2,0),(8,0),(0,﹣4);①求此抛物线的表达式与点D的坐标;②若点M为抛物线上的一动点,且位于第四象限,求△BDM面积的最大值;(2)如图2,若a=1,求证:无论b,c取何值,点D均为定点,求出该定点坐标.17.如图,已知抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0),B(4,0),C(0,2)三点.(1)求这条抛物线的解析式;(2)E为抛物线上一动点,是否存在点E,使以A、B、E为顶点的三角形与△COB相似?若存在,试求出点E的坐标;若不存在,请说明理由;(3)若将直线BC平移,使其经过点A,且与抛物线相交于点D,连接BD,试求出∠BDA的度数.18.如图,二次函数y=x2+bx+c的图象交x轴于A、D两点,并经过B点,已知A点坐标是(2,0),B点的坐标是(8,6).(1)求二次函数的解析式.(2)求函数图象的顶点坐标及D点的坐标.(3)该二次函数的对称轴交x轴于C点.连接BC,并延长BC交抛物线于E点,连接BD,DE,求△BDE的面积.(4)抛物线上有一个动点P,与A,D两点构成△ADP,是否存在S△ADP=S△BCD?若存在,请求出P点的坐标;若不存在.请说明理由.19.如图1,抛物线y=ax2+bx﹣1经过A(﹣1,0)、B(2,0)两点,交y轴于点C.点P 为抛物线上的一个动点,过点P作x轴的垂线交直线BC于点D,交x轴于点E.(1)请直接写出抛物线表达式和直线BC的表达式.(2)如图1,当点P的横坐标为时,求证:△OBD∽△ABC.(3)如图2,若点P在第四象限内,当OE=2PE时,求△POD的面积.(4)当以点O、C、D为顶点的三角形是等腰三角形时,请直接写出动点P的坐标.20.如图,抛物线y=ax2+bx+c(a≠0)的顶点为A(﹣1,﹣1),与x轴交点M(1,0).C 为x轴上一点,且∠CAO=90°,线段AC的延长线交抛物线于B点,另有点F(﹣1,0).(1)求抛物线的解析式;(2)求直线AC的解析式及B点坐标;(3)过点B做x轴的垂线,交x轴于Q点,交过点D(0,﹣2)且垂直于y轴的直线于E 点,若P是△BEF的边EF上的任意一点,是否存在BP⊥EF?若存在,求出P点的坐标,若不存在,请说明理由.21.如图,在平面直角坐标系中,抛物线y=ax2+bx+3与x轴交于点A(﹣4,0),B(﹣1,0)两点.(1)求抛物线的解析式;(2)在第三象限的抛物线上有一动点D.①如图(1),若四边形ODAE是以OA为对角线的平行四边形,当平行四边形ODAE的面积为6时,请判断平行四边形ODAE是否为菱形?说明理由.②如图(2),直线y=x+3与抛物线交于点Q、C两点,过点D作直线DF⊥x轴于点H,交QC于点F.请问是否存在这样的点D,使点D到直线CQ的距离与点C到直线DF的距离之比为:2?若存在,请求出点D的坐标;若不存在,请说明理由.22.如图,抛物线y=x2+bx+c与x轴交于A(5,0)、B(﹣1,0)两点,过点A作直线AC⊥x轴,交直线y=2x于点C;(1)求该抛物线的解析式;(2)求点A关于直线y=2x的对称点A′的坐标,判定点A′是否在抛物线上,并说明理由;(3)点P是抛物线上一动点,过点P作y轴的平行线,交线段CA′于点M,是否存在这样的点P,使四边形PACM是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.23.如图,二次函数y=ax2+bx(a≠0)的图象经过点A(1,4),对称轴是直线x=﹣,线段AD平行于x轴,交抛物线于点D.在y轴上取一点C(0,2),直线AC交抛物线于点B,连结OA,OB,OD,BD.(1)求该二次函数的解析式;(2)求点B坐标和坐标平面内使△EOD∽△AOB的点E的坐标;(3)设点F是BD的中点,点P是线段DO上的动点,问PD为何值时,将△BPF沿边PF翻折,使△BPF与△DPF重叠部分的面积是△BDP的面积的?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.如图,在△ABC中,AB=AC,AD是BC边上的中线,请用尺规作图法,在AD上求作一点O,使得点O为△ABC的外接圆的圆心.(不写作法,保留作图痕迹)
(第1题图)解:如解图所示,点O即为所求.
【解法提示】分别以点A、B为圆心,大于12AB长为半径画
弧,两弧在直线AB两侧分别交于点E、F,连接EF交AD于点O,点O即为所求.
(第1题解图)2.如图,已知△ABC为等边三角形,BD=CF,∠EDF=60°.求证:BD=AE.
(第2题图)证明:由题意可得AB=BC=AC,∠B=∠C=60°=∠EDF,∵∠EDC=∠B+∠BED=∠EDF+∠CDF,∴∠BED=∠CDF.在△BDE和△CDF中,
∠BED=∠CDF,∠B=∠C,BD=CF,
∴△BED≌△CDF(AAS).∴BE=CD.∵BD+CD=AE+BE,∴BD=AE.3.为庆祝中华人民共和国成立70周年,弘扬爱国主义精神,
中宣部、中央文明办、教育部、文化和旅游部、中国文联、中国作协联合开展“我和我的祖国”征文活动.某校积极响应号召,在全校范围内举办了“我和我的祖国”征文大赛,赛后随机抽取了部分学生的成绩,并绘制成如下不完整的频数分布表和频数分布直方图.频数分布表成绩(分)频数频率50≤x<6060.1260≤x<7080.1670≤x<8014b80≤x<90a0.2490≤x≤100100.20频数分布直方图(第3题图)请你根据统计图表中的信息,解答下列问题:(1)a=________,b=________;(2)补全频数分布直方图;
(3)本次抽取学生比赛成绩的中位数落在______分数段;
(4)本次参加征文比赛的有300人,若比赛成绩不低于90分为优秀,估计成绩为优秀的学生有多少?解:(1)12,0.28;【解法提示】抽取的学生人数为6÷0.12=50,∴a=50×0.24
=12,b=1450=0.28.(2)补全频数分布直方图如解图;(第3题解图)(3)70≤x<80;【解法提示】∵本次抽取的学生人数为50,∴中位数应为成绩从低到高排列后第25名和第26名学生测试成绩的平均数,由频数分布表或频数分布直方图可知,中位数落在70≤x<80分数段.(4)300×1050=60(人),
答:估计成绩为优秀的学生有60人.4.如图,为了测量某矿山CH的高度,科考组在距离矿山一段距离的B点乘坐直升机垂直上升2000米至A点,在A点观察H点的俯角为35°,然后乘坐直升机从A水平向前飞行500米到E点,此时观察H点的俯角为45°,所有的点都在同一平面内,科考队至此完成了数据监测,请你依据数据计算科考队测得的矿山高度.(结果保留整数,参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,2≈1.41)
(第4题图)(第4题解图)解:如解图,过点H作HP⊥AB,垂足为点P,作HD⊥AE,垂足为点D,∵∠APH=∠ADH=∠PAD=90°,∴四边形APHD为矩形,同理可得四边形PBCH为矩形.设CH=x米,则PB=HC=x,AP=DH=2000-x.在Rt△DEH中,∵∠DEH=45°,∴DE=DH=2000-x.∴AD=500+(2000-x)=2500-x.在Rt△ADH中,∠DAH=35°,AD=2500-x,DH=2000-x,∵tan∠DAH=tan35°=DHAD=0.70,
∴2000-x2500-x=0.70,
解得x≈833.答:科考队测得矿山的高度约为833米.5.中国灯笼又统称为灯彩,每年的农历正月十五元宵节前后,人们都会挂起象征团圆意义的红灯笼.从种类上划分,灯笼可分为宫灯、纱灯、吊灯等等.若购买12个同样的宫灯和15个同样的纱灯共花费1080元,且购买1个纱灯比购买1个宫灯多花45元.(1)求购买一个宫灯,一个纱灯各需多少元?(2)某公司计划购买这种宫灯和纱灯共10个,恰逢商场在搞促销活动,宫灯打九折,纱灯打八五折,若此次购买两种灯笼的总费用不超过300元,则最多可购买多少个纱灯?解:(1)设每个宫灯x元,每个纱灯y元,依题意得12x+15y=1080,y-x=45,解得x=15,y=60,
答:购买一个宫灯15元,一个纱灯60元;(2)设购买a个纱灯,则购买(10-a)个宫灯,根据题意可得,0.85×60×a+0.9×15×(10-a)≤300,解得a≤4.4,又∵a为正整数,∴最多可购买4个纱灯.答:最多可购买4个纱灯.6.某品牌的洗衣机在市场上享有美誉,市场标价为3000元,进价为1800元.市场调研发现,若在市场价格的基础上降价会引起销售量的增加,当销售价格为2900元时,月销售量为340台;当销售价格为2800元时,月销售量为380台.若月
销售量y(台)与销售价格x(元)满足一次函数关系.(1)求y与x之间的函数关系式;(2)公司决定采取降价促销,迅速占领市场的方案,请根据以上信息,判断当销售价格x定为多少元时,公司的月利润W最大,并求出W的最大值.解:(1)设y=kx+b(k≠0),将点(2900,340)和点(2800,380)分别代入y=kx+b中,
得2900k+b=340,2800k+b=380,解得k=-0.4,b=1500,
∴y与x之间的函数关系式为y=-0.4x+1500;(2)由题意得W=(x-1800)(-0.4x+1500)=-0.4x2+2220x-
2700000,
∵-0.4<0,∴当x=-22202×(-0.4)=2775时,W最大.
W最大=-0.4×27752+2220×2775-2700000=380250元.
答:当销售价格定为2775元时,公司的月利润W最大,最大值为380250元.7.2019年3月16日,由中国科协主办的第六届全国青年科普创新实验暨作品大赛启动,重点围绕“智能、环保、教育”三大主题,某中学派出甲、乙两组队伍参加本次大赛,有四个命题供他们选择:①智能:智能控制及人工智能命题(用A表示)②环保:包括生物环境、风能两个命题(分别用B1、B2
表示)
③教育:未来教育命题(用C表示)(1)甲组队伍在四个命题中随机选取一个报名,恰好选择“教
育”主题的概率是多少?(2)若甲、乙两组队伍各随机从四个命题中选一个报名,请用
树状图法或列表法求出他们都选择“环保”主题的概率.解:(1)∵共有A,B1,B2,C四个命题,其中C属于“教育”
主题,
∴P(恰好选择“教育”主题)=14.(2)列表如下:由表格可知,共有16种等可能的情况,其中都选择“环保”主题的情况有4种,
∴P(都选择“环保”主题)=416=14.
8.如图,有两个转盘A、B,转盘A被平均分成4等份,转
盘B被平均分成3等份,且分别标有数字,现小丽和小芳分别转动转盘A,B,转盘停止后(当指针指在边界线上时视为无
甲组乙组AB1B2C
A(A,A)(B
1,A)(B2,A)(C,A)
B1(A,B1)(B1,B1)(B2,B1)(C,B1)
B2(A,B2)(B1,B2)(B2,B2)(C,B2)
C(A,C)(B
1,C)(B2,C)(C,C)效,重转),若将转盘A指针所指的数字记为a,转盘B指针所指的数字记为b,记m=b-a.(1)转动一次转盘A,指针指向数字“1”的概率;
(2)分别转动转盘A、B一次,求m为奇数的概率;
(第8题图)解:(1)∵转盘A被平均分成4等份,
∴P(指针指向数字“1”)=14;
(2)画树状图如解图:
(第8题解图)由树状图可知,共有12种等可能的结果,其中,m为奇数的情况有6种,
∴P(m为奇数)=612=12.
9.如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,切线DE交AC于点E.(1)求证:∠A=∠ADE;(2)若AD=8,DE=5,求BC的长.
(第9题图)(1)证明:如解图,连接OD,∵DE是⊙O的切线,∴∠ODE=90°.∴∠ADE+∠BDO=90°.∵OD=OB,∴∠B=∠BDO.∴∠ADE+∠B=90°.∵∠ACB=90°,∴∠A+∠B=90°.∴∠A=∠ADE;
(第9题解图)(2)解:如解图,连接CD,则∠BDC=90°,∠ADC=90°.∵∠ADE=∠A,∴AE=DE.∵BC是⊙O的直径,∠ACB=90°,∴EC是⊙O的切线.∵DE是⊙O的切线.∴ED=EC.∴AE=EC.∵DE=5,