初二数学试卷菱形

合集下载

专题9.7菱形的性质-2020-2021学年八年级数学下册尖子生同步培优题典(原卷版)【苏科版】

专题9.7菱形的性质-2020-2021学年八年级数学下册尖子生同步培优题典(原卷版)【苏科版】

1 / 6 原
2020-2021学年八年级数学下册尖子生同步培优题典【苏科版】
专题9.7菱形的性质
姓名:__________________ 班级:______________ 得分:_________________
注意事项:
本试卷满分100分,试题共24题,选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.
一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.
1.(2020春•昆山市期中)在菱形ABCD 中,AC =12,BD =16,则该菱形的面积是( )
A .10
B .40
C .96
D .192
2.(2020春•海陵区期末)如图,
AC ,BD 是菱形ABCD 的对角线,BH ⊥AD 于点H ,若AC =4,BD =3,则BH 的长为( )
A .2.4
B .2.5
C .4.8
D .5
3.(2020春•邳州市期末)关于菱形,下列说法错误的是( )
A .四条边相等
B .对角线互相垂直
C .四个角相等
D .对角线互相平分
4.(2020•宁蒗县模拟)如图,菱形ABCD 的的边长为6,∠ABC =60°,对角线BD 上有两个动点E 、F (点E 在点F 的左侧),若EF =2,则AE +CF 的最小值为( )
A .2√10
B .4√2
C .6
D .8
5.(2020春•无锡期末)下列性质中,菱形具有而平行四边形不一定具有( )
A .对角线互相平分
B .两组对角相等
C .对角线互相垂直
D .两组对边平行。

中考数学试卷菱形大题答案

中考数学试卷菱形大题答案

一、题目:已知菱形ABCD,对角线AC和BD相交于点O,AB=8cm,AD=6cm,求菱形ABCD的面积。

解答:1. 由菱形的性质可知,对角线互相垂直平分,因此∠AOB=∠COD=90°。

2. 因为AB=8cm,AD=6cm,所以OA=OB=AB/2=4cm,OD=OC=AD/2=3cm。

3. 根据勾股定理,在直角三角形AOB中,AB^2=AO^2+BO^2,即8^2=4^2+BO^2,解得BO=√(8^2-4^2)=√(64-16)=√48=4√3cm。

4. 同理,在直角三角形AOD中,AD^2=AO^2+DO^2,即6^2=4^2+DO^2,解得DO=√(6^2-4^2)=√(36-16)=√20=2√5cm。

5. 因为AC=2OA=8cm,BD=2OD=6cm,所以菱形ABCD的面积S=AC×BD/2=8×6/2=24cm^2。

二、题目:已知菱形ABCD,对角线AC和BD相交于点O,AB=10cm,∠ABC=60°,求菱形ABCD的面积。

解答:1. 由菱形的性质可知,对角线互相垂直平分,因此∠AOB=∠COD=90°。

2. 因为∠ABC=60°,所以∠OAB=∠OBC=(180°-60°)/2=60°。

3. 由菱形的性质可知,菱形ABCD的四条边相等,即AB=BC=CD=DA。

4. 因为∠OAB=∠OBC=60°,所以三角形OAB和OBC是等边三角形,即OA=OB=AB=10cm。

5. 根据勾股定理,在直角三角形OAB中,AB^2=AO^2+BO^2,即10^2=10^2+BO^2,解得BO=0。

6. 因为∠OAB=∠OBC=60°,所以三角形OAB和OBC是等边三角形,所以AC=2OA=20cm。

7. 根据勾股定理,在直角三角形AOD中,AD^2=AO^2+DO^2,即10^2=10^2+DO^2,解得DO=0。

初二数学菱形试题

初二数学菱形试题

初二数学菱形试题1.下列命题中,真命题是()A.对角线互相垂直且相等的四边形是菱形B.对角线互相垂直的平行四边形是菱形C.对角线互相平分且相等的四边形是菱形D.对角线相等的四边形是菱形【答案】B【解析】根据菱形的判定定理依次分析各项即可.对角线互相垂直且平分的四边形是菱形,故A、C、D错误;B、对角线互相垂直的平行四边形是菱形,本选项正确.【考点】本题考查的是菱形的判定点评:解答本题的关键是熟练掌握对角线互相垂直且平分的四边形是菱形,对角线互相垂直的平行四边形是菱形.2.在菱形ABCD中,AE⊥BC于点E,AF⊥CD于点F,且E、F分别为BC、CD的中点,(如图)则∠EAF等于()A.75°B.60°C.45°D.30°【答案】B【解析】首先连接AC,由四边形ABCD是菱形,AE⊥BC于点E,AF⊥CD于点F,且E、F分别为BC、CD的中点,易得△ABC与△ACD是等边三角形,即可求得∠B=∠D=60°,继而求得∠BAD,∠BAE,∠DAF的度数,则可求得∠EAF的度数.连接AC,∵AE⊥BC,AF⊥CD,且E、F分别为BC、CD的中点,∴AB=AC,AD=AC,∵四边形ABCD是菱形,∴AB=BC=CD=AD,∴AB=BC=AC,AC=CD=AD,∴∠B=∠D=60°,∴∠BAE=∠DAF=30°,∠BAD=180°-∠B=120°,∴∠EAF=∠BAD-∠BAE-∠DAF=60°.故选C.【考点】此题考查了菱形的性质,线段垂直平分线的性质以及等边三角形的判定与性质点评:解答本题的关键是熟练掌握菱形的性质,注意掌握辅助线的作法,注意数形结合思想的应用.3.菱形的边长是2 cm,一条对角线的长是2cm,则另一条对角线的长是()A.4 cm B.cm C.2 cm D.2cm【答案】C【解析】根据菱形对角线垂直互相平分,可得BO=OD=cm,且AB2=AO2+BO2,已知AB,BO即可求AO的值,从而得到结果.已知AB=2cm,∵菱形对角线互相平分,∴BO=OD=cm在Rt△ABO中,AB2=AO2+BO2解得AO=1cm,故菱形的另一条对角线AC=2AO=2cm,故选 C.【考点】本题考查了菱形的性质,勾股定理点评:解答本题的关键是熟练掌握菱形的对角线垂直互相平分.4.如图,菱形ABCD中,AC、BD相交于O,若OD=AD,则四个内角为________.【答案】60°,120°,60°,120°【解析】根据菱形的性质可得△ADO为直角三角形,由OA=AD,可得∠ADO=30°,再根据菱形的性质即可得到结果.∵菱形ABCD,∴△ADO为直角三角形,∵OA=AD,∴∠ADO=30°,∵菱形对角线即角平分线,∴∠ADC=60°,∠DAB=180°-60°=120°,则四个内角为60°,120°,60°,120°.【考点】本题考查的是菱形的性质点评:解答本题的关键是熟练掌握菱形对角线互相垂直平分且平分一组对角的性质.5.若一条对角线平分平行四边形的一组对角,且一边长为a时,如图,其他三边长为________;周长为________.【答案】分别为a,4a【解析】根据平行四边形的性质再结合一条对角线平分平行四边形的一组对角,可得其四条边都相等,进而可得出结论.∵一条对角线平分平行四边形的一组对角,∴可得平行四边形的邻边相等,即其为菱形,故其它三边都为a,周长为4a.【考点】本题主要考查了平行四边形的性质点评:解答本题的关键是熟练掌握一条对角线平分平行四边形的一组对角可得这个平行四边形是菱形.6.菱形ABCD中,AC、BD相交于O点,若∠OBC=∠BAC,则菱形的四个内角的度数为______.【答案】90°【解析】根据菱形对角线即角平分线的性质和∠OBC=∠BAC,可以求证∠ABO=∠BAO,根据菱形的性质即可得∠ABO=45°,即可求得结果.菱形对角线平分一组对角,∴∠BAC=∠BAD∵∠OBC=∠BAC∴∠ABO=∠BAO,∵∠AOB=90°,∴∠ABO=45°,∠ABC=90°则菱形的四个内角的度数均为90°.【考点】本题考查的是菱形的性质点评:解答本题的关键是熟练掌握菱形对角线互相垂直平分且平分一组对角的性质.7.若菱形的两条对角线的比为3∶4,且周长为20 cm,则它的一组对边的距离等于__________ cm,它的面积等于________ cm2.【答案】cm,24 cm2【解析】根据菱形的周长即可求菱形的边长,根据对角线的比为3:4,即可求两条对角线的值,根据菱形的面积即可计算菱形的高,根据对角线的长即可计算菱形的面积.设BO=4x,则AO=3x,菱形周长为20cm,则AB=5cm,∴(3x)2+(4x)2=52得x=1,即AO=3cm,BO=4cm,∴菱形的面积为S=×6×8=24cm2,∴AE=cm.【考点】本题考查了菱形的性质,菱形的面积公式点评:解答本题的关键是熟练掌握菱形对角线互相垂直平分,菱形的面积等于对角线乘积的一半.8.判断:对角线互相垂直的四边形是菱形.()【答案】错【解析】根据菱形的判定定理即可判断.对角线互相垂直且平分的四边形是菱形,或对角线互相垂直的平行四边形是菱形,故本题错误.【考点】本题考查的是菱形的判定点评:解答本题的关键是熟练掌握对角线互相垂直且平分的四边形是菱形,对角线互相垂直的平行四边形是菱形.9.判断:菱形的对角线互相垂直平分.()【答案】对【解析】根据菱形的性质即可判断.菱形的对角线互相垂直平分,本题正确.【考点】本题考查的是菱形的性质点评:解答本题的关键是熟练掌握菱形的对角线互相垂直平分.10.已知ABCD中,BE平分∠ABC交AD于E,若CE平分∠DCB,且AB=2,求:ABCD的其余边长.【答案】AB=CD=2,AD=BC=4【解析】由平行四边形的性质及角平分线的性质,通过角之间的转化,即可求出各边的长.过E作EF∥AB交BC于F∵ABCD,∴AD∥BC∴ABFE是平行四边形∴EF=AB,∠1=∠3又∵∠2=∠1∴∠2=∠3∴BF=FE同理EF=FC∴F为BC的中点.又∵BE、CE为∠ABC、∠DCF的平分线,AB∥CD,∴∠EBC+∠ECB=90°∴∠BEC=90°∴EF=BC=AB∴AB=CD=2,AD=BC=2AB=4.【考点】本题主要考查了平行四边形的性质点评:解答本题的关键是熟练掌握一条对角线平分平行四边形的一组对角可得这个平行四边形是菱形.。

2024学年初中名校数学能力提升题专项(菱形的判定)练习(附答案)

2024学年初中名校数学能力提升题专项(菱形的判定)练习(附答案)

2024学年初中名校数学能力提升题专项(菱形的判定)练习班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷满分120分,试题共24题,其中选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2023春•杜尔伯特县期中)菱形的周长为12,一个内角为60°,则较短的对角线长为( )A.2 B.3 C.1 D.2.(2023春•南岗区校级期中)如图,菱形ABCD的两条对角线长分别为AC=9和BD=6,那么菱形ABCD 的面积为( )A.4B.30 C.54 D.273.(2023春•墨玉县期末)如图,菱形ABCD中,AC=8.BD=6.则菱形的面积为( )A.20 B.40 C.28 D.244.(2023春•南召县期末)四边形具有不稳定性,小明将一个菱形ABCD转动,使它形状改变,当转动到使∠B=60°时(如图),测得AC=2;当转动到使∠B=120°时,AC的值为( )A.2 B.C.D.5.(2023春•博兴县期末)如图,菱形ABCD的对角线AC、BD相交于点O,DE⊥AB于点E,若AB=5,DE=4,则在下列结论中正确的是( )A.DB=5 B.AE=4 C.BE=2 D.OA=36.(2023春•承德县期末)如图,在平面直角坐标系中,菱形ABCD的顶点D在x轴上,边BC在y轴上,若点A的坐标为(12,13),则点C的坐标是( )A.(0,﹣8)B.(0,﹣5)C.(﹣5,0)D.(0,﹣6)7.(2023春•丰泽区校级月考)如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DH⊥AB于点H,连接OH,OH=2,若菱形ABCD的面积为12,则AB的长为( )A.10 B.4 C.D.68.(2023秋•合川区校级月考)如图,在菱形ABCD中,M.N分别在AB,CD上,且AM=CN,MN与AC 交于点O,连接BC若∠DAC=28°,则∠OBC的度数为( )A.28°B.52°C.62°D.72°9.(2023秋•胶州市校级月考)如图,在菱形ABCD中,∠A=60°,E、F分别是AB,AD的中点,DE、BF相交于点G,连接BD,CG.有下列结论:①∠BGD=120°;②BG+DG=CG;③△BDF≌△CGB;④,其中正确的结论有( )A.①②③B.①②④C.①③④D.②③④10.(2023春•新抚区期末)如图,点P是菱形ABCD的对角线AC延长线上一点,过点P分别作AD,DC 延长线的垂线,垂足分别为点E,F.若∠B=120°,AB=,则PE﹣PF的值为( )A.2 B.3 C.4 D.6二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2023秋•牡丹区校级月考)如图,菱形ABCD的对角线相交于点O,若AC=24,AB=13,则菱形ABCD 的面积是.12.(2023秋•东明县校级月考)已知菱形的两条对角线长为10cm和24cm,那么这个菱形的周长为,面积为.13.(2023春•杭州期中)如图,菱形ABCD中,AC,BD相交于O,DE⊥BC于E,连接OE,若∠BAD=40°,则∠ODE的度数为.14.(2023春•吴中区校级期中)如图,在菱形ABCD中,AB=2,∠A=120°,E,F分别是边AB和CD 上的点,EF⊥CD于点F,则线段EF的长度为.15.(2023春•集美区校级期中)如图,在菱形ABCD中,∠B=60°,AB=a,点E,F分别是边AB,AD 上的动点,且AE+AF=a,则△CEF面积的最小值为.16.(2023•温江区校级自主招生)如图,四边形ABCD是菱形,对角线AC,BD交于点O,E是边AD的中点,过点E作EF⊥BD,EG⊥AC,点F,G为垂足,若AC=10,BD=24,则FG的长为.17.(2023春•南岗区校级期中)如图,在边长为5的菱形ABCD中,∠BAD=60°,点E、点F分别在AD、CD上,且∠EBF=60°,连接EF,若AE=2,则EF的长度为.18.(2023春•鼓楼区校级期中)如图,在菱形ABCD中,AB=6,∠ABC=120°,点E在边BC上(不与端点重合),AE交BD于点F,以EF为边向外作等边△EFG,连接CF,BG,现给出以下结论:①∠EAB=30°;②△ABF≌△CBF;③直线AB与直线DC的距离是9;④BF+BG=BE.其中正确的是(写出所有正确结论的序号).三、解答题(本大题共6小题,共66分.解答时应写出文字说明、证明过程或演算步骤)19.(2023秋•薛城区月考)如图,已知A,F,C,D四点在同一条直线上,AF=CD,AB∥ED,且AB=ED.(1)求证:△ABC≌△DEF.(2)如果四边形EFBC是菱形,已知EF=3,DE=4,∠DEF=90°,求AF的长度.20.(2023春•姑苏区校级期中)如图,已知菱形ABCD的对角线AC、BD相交于点O,延长AB至点E,使BE=AB,连接CE.(1)求证:四边形BECD是平行四边形;(2)若∠E=60°,BD=8,求菱形ABCD的面积.21.(2023•雨花区校级开学)如图,四边形ABCD是菱形,AE⊥BC于点E,AF⊥CD于点F.(1)求证:△ABE≌△ADF;(2)若AE=4,CF=2,求菱形的面积.22.(2023春•南浔区期末)如图,已知四边形ABCD是菱形,点E、F分别是边AB、BC的中点,连结DE、EF、DF.(1)求证:△DEF是等腰三角形;(2)若AD=10,EF=8,求菱形ABCD的面积.23.(2023春•重庆期末)如图,在菱形ABCD中,∠C=60°,E是对角线BD上一点.(1)如图1,若E是线段BD的中点,且AB=6,求AE的长度;(2)如图2,F是线段AB延长线上一点,且DE=BF,连接AE,EF.求证:AE=EF.24.(2023春•抚远市期末)在菱形ABCD中,∠ABC=60°,P是射线BD上一动点,以AP为边向右侧作等边三角形APE,点E的位置随点P位置的变化而变化,连接CE.(1)如图①,当点E在菱形ABCD内部或边上时,求证:BD=CE+PD;(2)如图②、图③,请分别写出线段BD,CE,PD之间的数量关系,不需证明.。

练习-初二数学周末练习6(菱形的性质与判定)

练习-初二数学周末练习6(菱形的性质与判定)

初二数学周末练习6(菱形的性质与判定)基础性测试题1.下列条件中,能判断四边形是菱形的是()A.对角线相等B.对角线互相平分C.对角线互相垂直D.对角线互相垂直平分2.若菱形的两条对角线长分别是6和8.则它的周长为()A.5 B.10C.20D.403.如图所示,在菱形ABCD中,若∠ADC=120°,则BD:AC等于()A.B.C.D.4.如果菱形的周长为8.4cm,相邻两角之比为5:1,那么菱形的一组对边之间的距离为()A.4.2cm B.2.1cm C.1.05cm D.0.525cm5.给出下列命题:(1)平行四边形的对角线互相平分(2)对角线互相平分的四边形是平行四边形;(3)菱形的对角线互相垂直;(4)对角线互相垂直的四边形是菱形.其中,真命题的个数为()A.4个B.3个C.2个D.1个6.若菱形ABCD的对角线AC=6,BD=8.则菱形的高为________.7.菱形具有而平行四边形不一定具有的性质是________和________.8.菱形的一条对角线与一条边长相等,则这个菱形相邻两个内角的度数分别为________。

巩固性测试题9.下列说法中,正确的是()A.有一个角是60°的四边形是菱形B.有一组邻边相等的四边形是菱形C.有两边相等的平行四边形是菱形D.四条边相等的四边形是菱形10.若菱形的一条对角线长是另一条对角线的2倍,且此菱形的面积为S,则它的边长为()A.B.C.D.11.将菱形ABCD的边AD绕点A旋转60°后,恰好能与AB重合,则当菱形的周长为8时,该菱形的面积为()A.B.C.D.12.已知菱形的边长为6,一个内角为60°,则菱形较短的对角线的长是()A.B.C.3D.613.如图所示,已知ABCD是平行四边形,下列结论中,不一定正确的是()A.AB=CDB.AC=BDC.当AC⊥BD时,它是菱形D.当∠AOB=90°时,它是菱形14.如图所示,在菱形ABCD中,BE⊥AD,BF⊥CD,E、F是垂足.AE=ED,则∠EBF=()A.75°B.60°C.50°D.45°15.过四边形ABCD的各顶点作对角线BD、AC的平行线,围成四边形EFGH.若四边形EFGH是菱形,则原四边形ABCD一定是()A.菱形B.平行四边形C.矩形D.对角线相等的四边形16.同学们玩过万花筒,它是由三块等宽等长的玻璃片围成的.如图是看到的万花筒中的一个图案,图中所示的小三角形均是全等的等边三角形,其中菱形AEFG可以看成是把菱形ABCD以A为中心()A.顺时针旋转60°得到的B.顺时针旋转120°得到的C.逆时针旋转60°得到的D.逆时针旋转120°得到的17.已知一个菱形的面积为平方厘米,且两条对角线的比为,则菱形的边长为________。

人教版八年级数学下册《菱形的判定》150例题及解析

人教版八年级数学下册《菱形的判定》150例题及解析

初二数学下册知识点《菱形的判定》150例题及解析副标题题号一二三四总分得分一、选择题(本大题共65小题,共195.0分)1.如图,点E、F、G、H分别是四边形ABCD边AB、BC、CD、DA的中点.则下列说法:①若AC=BD,则四边形EFGH为矩形;②若AC⊥BD,则四边形EFGH为菱形;③若四边形EFGH是平行四边形,则AC与BD互相平分;④若四边形EFGH是正方形,则AC与BD互相垂直且相等.其中正确的个数是()A. 1B. 2C. 3D. 4【答案】A【解析】解:因为一般四边形的中点四边形是平行四边形,当对角线BD=AC时,中点四边形是菱形,当对角线AC⊥BD时,中点四边形是矩形,当对角线AC=BD,且AC⊥BD时,中点四边形是正方形,故④选项正确,故选:A.因为一般四边形的中点四边形是平行四边形,当对角线BD=AC时,中点四边形是菱形,当对角线AC⊥BD时,中点四边形是矩形,当对角线AC=BD,且AC⊥BD时,中点四边形是正方形,本题考查中点四边形、平行四边形、矩形、菱形的判定等知识,解题的关键是记住一般四边形的中点四边形是平行四边形,当对角线BD=AC时,中点四边形是菱形,当对角线AC⊥BD时,中点四边形是矩形,当对角线AC=BD,且AC⊥BD时,中点四边形是正方形.2.如图,在△ABC中,点D是边BC上的点(与B,C两点不重合),过点D作DE∥AC,DF∥AB,分别交AB,AC于E,F两点,下列说法正确的是()A. 若AD⊥BC,则四边形AEDF是矩形B. 若AD垂直平分BC,则四边形AEDF是矩形C. 若BD=CD,则四边形AEDF是菱形D. 若AD平分∠BAC,则四边形AEDF是菱形【答案】D【解析】解:若AD⊥BC,则四边形AEDF是平行四边形,不一定是矩形;选项A错误;若AD垂直平分BC,则四边形AEDF是菱形,不一定是矩形;选项B错误;若BD=CD,则四边形AEDF是平行四边形,不一定是菱形;选项C错误;若AD平分∠BAC,则四边形AEDF是菱形;正确;故选:D.由矩形的判定和菱形的判定即可得出结论.本题考查了矩形的判定、菱形的判定;熟记菱形和矩形的判定方法是解决问题的关键.3.如图,在▱ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定▱ABCD是菱形的只有()A. AC⊥BDB. AB=BCC. AC=BDD. ∠1=∠2【答案】C【解析】解:A.正确.对角线垂直的平行四边形的菱形.B.正确.邻边相等的平行四边形是菱形.C.错误.对角线相等的平行四边形是矩形,不一定是菱形.D.正确.可以证明平行四边形ABCD的邻边相等,即可判定是菱形.故选:C.根据平行四边形的性质.菱形的判定方法即可一一判断.本题考查平行四边形的性质、菱形的判定等知识,解题的关键是熟练掌握菱形的判定方法.4.下列判断错误的是()A. 两组对边分别相等的四边形是平行四边形B. 四个内角都相等的四边形是矩形C. 四条边都相等的四边形是菱形D. 两条对角线垂直且平分的四边形是正方形【答案】D【解析】解:A、两组对边分别相等的四边形是平行四边形,正确,故本选项错误;B、四个内角都相等的四边形是矩形,正确,故本选项错误;C、四条边都相等的四边形是菱形,正确,故本选项错误;D、两条对角线垂直且平分的四边形是正方形,错误,应该是菱形,故本选项正确.故选:D.根据平行四边形的判定、矩形的判定,菱形的判定以及正方形的判定对各选项分析判断即可得解.本题考查了正方形的判定,平行四边形、矩形和菱形的判定,熟练掌握各四边形的判定方法是解题的关键.5.下列说法正确的是()A. 对角线互相垂直的四边形是菱形B. 矩形的对角线互相垂直C. 一组对边平行的四边形是平行四边形D. 四边相等的四边形是菱形【答案】D【解析】解:A、对角线互相垂直且平分的四边形是菱形;故本选项错误;B、矩形的对角线相等,菱形的对角线互相垂直;故本选项错误;C、两组对边分别平行的四边形是平行四边形;故本选项错误;D、四边相等的四边形是菱形;故本选项正确.故选:D.直接利用菱形的判定定理、矩形的性质与平行四边形的判定定理求解即可求得答案.此题考查了矩形的性质、菱形的判定以及平行四边形的判定.注意掌握各特殊平行四边形对角线的性质是解此题的关键.6.如图,任意四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA上的点,对于四边形EFGH的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是A. 当E,F,G,H是各边中点,且AC=BD时,四边形EFGH为菱形B. 当E,F,G,H是各边中点,且AC⊥BD时,四边形EFGH为矩形C. 当E,F,G,H不是各边中点时,四边形EFGH可以为平行四边形D. 当E,F,G,H不是各边中点时,四边形EFGH不可能为菱形【答案】D【解析】解:A.当E,F,G,H是四边形ABCD各边中点,且AC=BD时,存在EF=FG=GH=HE,故四边形EFGH为菱形,故A正确;B.当E,F,G,H是四边形ABCD各边中点,且AC⊥BD时,存在∠EFG=∠FGH=∠GHE=90°,故四边形EFGH为矩形,故B正确;C.如图所示,若EF∥HG,EF=HG,则四边形EFGH为平行四边形,此时E,F,G,H不是四边形ABCD各边中点,故C正确;D.如图所示,若EF=FG=GH=HE,则四边形EFGH为菱形,此时E,F,G,H不是四边形ABCD各边中点,故D错误;故选:D.连接四边形各边中点所得的四边形必为平行四边形,根据中点四边形的性质进行判断即可.本题主要考查了中点四边形的运用,解题时注意:中点四边形的形状与原四边形的对角线有关.7.下列命题中,真命题是( )A. 对角线相等的四边形是矩形B. 对角线互相垂直的四边形是菱形C. 对角线互相平分的四边形是平行四边形D. 对角线互相垂直平分的四边形是正方形【答案】C【解析】【分析】本题综合考查了正方形、矩形、菱形及平行四边形的判定.解答此题时,必须理清矩形、正方形、菱形与平行四边形间的关系.A、根据矩形的定义作出判断;B、根据菱形的性质作出判断;C、根据平行四边形的判定定理作出判断;D、根据正方形的判定定理作出判断.【解答】解:A、两条对角线相等且相互平分的四边形为矩形,故本选项错误;B、对角线互相垂直的平行四边形是菱形,故本选项错误;C、对角线互相平分的四边形是平行四边形,故本选项正确;D、对角线互相垂直平分且相等的四边形是正方形,故本选项错误,故选:C.8.如图,在四边形ABCD中,对角线AC,BD相交于点O,AO=CO,BO=DO.添加下列条件,不能判定四边形ABCD是菱形的是()A. AB=ADB. AC=BDC. AC⊥BDD. ∠ABO=∠CBO 【答案】B【解析】解:∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,当AB=AD或AC⊥BD时,均可判定四边形ABCD是菱形;当∠ABO=∠CBO时,由AD∥BC知∠CBO=∠ADO,∴∠ABO=∠ADO,∴AB=AD,∴四边形ABCD是菱形;当AC=BD时,可判定四边形ABCD是矩形;故选:B.根据菱形的定义及其判定、矩形的判定对各选项逐一判断即可得.本题主要考查菱形的判定,解题的关键是掌握菱形的定义和各判定及矩形的判定.9.下列命题中正确的是()A. 对角线相等的四边形是菱形B. 对角线互相垂直的四边形是菱形C. 对角线相等的平行四边形是菱形D. 对角线互相垂直的平行四边形是菱形【答案】D【解析】解:对角线互相垂直平分的四边形是菱形;对角线互相垂直的平行四边形是菱形;故选:D.根据菱形对角线互相垂直平分的判定方法进行解答.此题主要考查的是菱形的判定方法:对角线互相垂直的平行四边形是菱形;对角线互相垂直平分的四边形是菱形.10.如图,在▱ABCD中,对角线AC与BD交于点O,若增加一个条件,使▱ABCD成为菱形,下列给出的条件不正确的是()A. AB=ADB. AC⊥BDC. AC=BDD. ∠BAC=∠DAC 【答案】C【解析】解:A、根据菱形的定义可得,当AB=AD时▱ABCD是菱形;B、根据对角线互相垂直的平行四边形是菱形即可判断,▱ABCD是菱形;C、对角线相等的平行四边形是矩形,不一定是菱形,命题错误;D、∠BAC=∠DAC时,∵▱ABCD中,AD∥BC,∴∠ACB=∠DAC,∴∠BAC=∠ACB,∴AB=BC,∴▱ABCD是菱形.∴∠BAC=∠DAC.故命题正确.故选:C.根据菱形的定义和判定定理即可作出判断.本题考查了菱形的判定定理,正确记忆定义和判定定理是关键.11.如图,等边△ABC沿射线BC向右平移到△DCE的位置,连接AD、BD,则下列结论:①AD=BC;②BD、AC互相平分;③四边形ACED是菱形.其中正确的个数是()A. 0B. 1C. 2D. 3【答案】D【解析】解:△ABC、△DCE是等边三角形,∴∠ACB=∠DCE=60°,AC=CD,∴∠ACD=180°-∠ACB-∠DCE=60°,∴△ACD是等边三角形,∴AD=AC=BC,故①正确;由①可得AD=BC,∵AB=CD,∴四边形ABCD是平行四边形,∴BD、AC互相平分,故②正确;由①可得AD=AC=CE=DE,故四边形ACED是菱形,即③正确.综上可得①②③正确,共3个.故选:D.先求出∠ACD=60°,继而可判断△ACD是等边三角形,从而可判断①是正确的;根据①的结论,可判断四边形ABCD是平行四边形,从而可判断②是正确的;根据①的结论,可判断④正确.本题考查了平移的性质、等边三角形的性质、平行四边形的判定与性质及菱形的判定,解答本题的关键是先判断出△ACD是等边三角形,难度一般.12.如图,在▱ABCD中,AM,CN分别是∠BAD和∠BCD的平分线,添加一个条件,仍无法判断四边形AMCN为菱形的是()A. AM=ANB. MN⊥ACC. MN是∠AMC的平分线D. ∠BAD=120°【答案】D【解析】解:如图,∵四边形ABCD是平行四边形,∴∠B=∠D,∠DAB=∠DCB,AB=CD,AD=BC,∵AM,CN分别是∠BAD和∠BCD的平分线,∴∠DCN=∠DCB,∠BAM=∠BAD,∴∠BAM=∠DCN,在△ABM和△CDN中,∴△ABM≌△CDN(ASA),∴AM=CN,BM=DN,∵AD=BC,∴AN=CM,∴四边形AMCN是平行四边形,A、∵四边形AMCN是平行四边形,AM=AN,∴平行四边形AMCN是菱形,故本选项错误;B、∵MN⊥AC,四边形AMCN是平行四边形,∴平行四边形AMCN是菱形,故本选项错误;C、∵四边形AMCN是平行四边形,∴AN∥BC,∴∠MNA=∠CMN,∵MN是∠AMC的平分线,∴∠NMA=∠NMC,∴∠MNA=∠MAC,∴∠MAC=∠NMA,∴AM=AN,∵四边形AMCN是平行四边形,∴四边形AMCN是菱形,故本选项错误;D、根据∠BAD=120°和平行四边形AMCN不能推出四边形是菱形,故本选项正确;故选:D.根据平行四边形性质推出∠B=∠D,∠DAB=∠DCB,AB=CD,AD=BC,求出∠BAM=∠DCN,证△ABM≌△CDN,推出AM=CN,BE=DN,求出AN=CM,得出四边形AMCN是平行四边形,再根据菱形的判定判断即可.本题考查了平行四边形的性质和判定、菱形的判定、全等三角形的性质和判定、平行线的性质等知识点;证明三角形全等是解决问题的关键.13.如图,要判定▱ABCD是菱形,需要添加的条件是()A. AB=ACB. BC=BDC. AC=BDD. AB=BC【答案】D【解析】【分析】本题考查菱形的判定,平行四边形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.根据菱形的判定方法即可解决问题.【解答】解:根据邻边相等的平行四边形是菱形,可知选项D正确,故选:D.14.如图,点E、F、G、H分别是四边形ABCD边AB、BC、CD、DA的中点.则下列说法.其中正确的个数是( )①若AC=BD,则四边形EFGH为矩形;②若AC⊥BD,则四边形EFGH为菱形;③若四边形EFGH是平行四边形,则AC与BD互相平分;④若四边形EFGH是正方形,则AC与BD互相垂直且相等.A. 1B. 2C. 3D. 4【答案】A【解析】【分析】本题考查中点四边形、平行四边形、矩形、菱形的判定等知识,解题的关键是记住一般四边形的中点四边形是平行四边形,当对角线BD=AC时,中点四边形是菱形,当对角线AC⊥BD时,中点四边形是矩形,当对角线AC=BD,且AC⊥BD时,中点四边形是正方形.因为一般四边形的中点四边形是平行四边形,当对角线BD=AC时,中点四边形是菱形,当对角线AC⊥BD时,中点四边形是矩形,当对角线AC=BD,且AC⊥BD时,中点四边形是正方形,【解答】解:因为一般四边形的中点四边形是平行四边形,当对角线BD=AC时,中点四边形是菱形,当对角线AC⊥BD时,中点四边形是矩形,当对角线AC=BD,且AC⊥BD时,中点四边形是正方形,故④选项正确.故选A.15.已知四边形ABCD是等对角线四边形,图①中四边形EFGH的四个顶点分别是四边形ABCD四条边的中点,图②中四边形KLMN满足KL//MN//AC,ML//NK//BD,则()①②A. 四边形EFGH、KLMN都是等对角线四边形B. 四边形EFGH、KLMN都不是等对角线四边形C. 四边形EFGH是等对角线四边形,四边形KLMN不是等对角线四边形D. 四边形EFGH不是等对角线四边形,四边形KLMN是等对角线四边形【答案】B【解析】【分析】本题主要考查了平行四边形的性质与判定,菱形的性质与判定以及新定义问题等知识,熟练掌握这些知识是解决本题的关键.【解答】解:∵四边形ABCD是等对角线四边形,∴AC=BD,∵题图①中四边形EFGH的四个顶点分别是是四边形ABCD四条边的中点,∴EH//BD,EH=BD,GF//BD,GF=BD,HG//AC,HG=AC,EF//AC,EF=AC,∴四边形EFGH是平行四边形,∵AC=BD,∴EH=HG,∴EFGH是菱形,∴四边形EFGH不是等对角线四边形.∵题图②中四边形KLMN满足KL//MN//AC,ML//NK//BD,∴四边形ACLK、四边形KBDN、四边形KLMN是平行四边形,∴AC=KL,KN=BD,∵AC=BD,∴KL=KN,∴KLMN是菱形,∴四边形KLMN不是等对角线四边形.故选B.16.如图,四边形ABCD中,AB∥CD.则下列说法中,不正确的是( )A. 当AB=CD,AO=DO时,四边形ABCD为矩形B. 当AB=AD,AO=CO时,四边形ABCD为菱形C. 当AD∥BC,AC=BD时,四边形ABCD为正方形D. 当AB=CD时,四边形ABCD为平行四边形【答案】C【解析】【分析】本题考查了矩形,菱形,正方形和平行四边形的判定,注意:对角线垂直且相等的平行四边形是正方形,对角线相等的平行四边形是矩形,对角线互相垂直的平行四边形是菱形,有一个角是直角的平行四边形是矩形,有一组邻边相等的平行四边形是菱形.根据对角线相等的平行四边形是矩形,对角线互相垂直的平行四边形是菱形,有一个角是直角的平行四边形是矩形,有一组邻边相等的平行四边形是菱形判断即可.【解答】A.∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形,又∵AO=DO,∴AC=BD,∴四边形ABCD为矩形,故A正确;B.∵AB∥CD,∴∠BAO=∠DCO,又∵AO=CO,∠AOB=∠COD,∴△AOB≌△COD,∴AB=CD,∴四边形ABCD是平行四边形,∵AB=AD,∴四边形ABCD为菱形,故B正确;C.∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,又∵AC=BD,∴四边形ABCD为矩形,故C错误;D.∵AB∥CD,AB=CD,∴四边形ABCD为平行四边形,故D正确.故选C.17.若顺次连接四边形各边中点所构成的四边形是菱形,则原四边形一定是()A. 矩形B. 菱形C. 平行四边形D. 对角线相等的四边形【答案】D【解析】【分析】此题考查了菱形的性质与三角形中位线的性质.此题难度适中,注意掌握数形结合思想的应用.首先根据题意画出图形,由四边形EFGH是菱形,点E,F,G,H分别是边AD,AB,BC,CD的中点,利用三角形中位线的性质与菱形的性质,即可判定原四边形一定是对角线相等的四边形.【解答】解:如图,根据题意得:四边形EFGH是菱形,点E,F,G,H分别是边AD,AB,BC,CD的中点,∴EF=FG=GH=EH,BD=2EF,AC=2FG,∴BD=AC.∴原四边形一定是对角线相等的四边形.故选D.18.若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是()A. 矩形B. 等腰梯形C. 对角线相等的四边形D. 对角线互相垂直的四边形【答案】C【解析】解:如图,根据题意得:四边形EFGH是菱形,点E,F,G,H分别是边AD,AB,BC,CD的中点,∴EF=FG=GH=EH,BD=2EF,AC=2FG,∴BD=AC.∴原四边形一定是对角线相等的四边形.故选:C.首先根据题意画出图形,由四边形EFGH是菱形,点E,F,G,H分别是边AD,AB,BC,CD的中点,利用三角形中位线的性质与菱形的性质,即可判定原四边形一定是对角线相等的四边形.此题考查了菱形的性质与三角形中位线的性质.此题难度适中,注意掌握数形结合思想的应用.19.顺次连接矩形四边中点所形成的四边形是()A. 矩形B. 菱形C. 正方形D. 梯形【答案】B【解析】解:连接AC、BD,在△ABD中,∵AH=HD,AE=EB,∴EH=BD,同理FG=BD,HG=AC,EF=AC,又∵在矩形ABCD中,AC=BD,∴EH=HG=GF=FE,∴四边形EFGH为菱形.故选:B.因为题中给出的条件是中点,所以可利用三角形中位线性质,以及矩形对角线相等去证明四条边都相等,从而说明是一个菱形.本题考查了菱形的判定,菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:①定义,②四边相等,③对角线互相垂直平分.20.如图,在矩形ABCD中,E,F分别是AD,BC的中点,连接AF,BE,CE,DF分别交于点M,N,四边形EMFN是( )A. 正方形B. 菱形C. 矩形D. 无法确定【答案】B【解析】【分析】本题考查了矩形的性质和判定,菱形的判定,平行四边形的性质和判定的应用,能综合运用性质进行推理是解此题的关键,题目比较好,综合性比较强.求出四边形ABFE为平行四边形,四边形BFDE为平行四边形,根据平行四边形的性质得出BE∥FD,即ME∥FN,同理可证EN∥MF,得出四边形EMFN为平行四边形,求出ME=MF,根据菱形的判定得出即可.【解答】解:∵四边形ABCD为矩形,∴AD∥BC,AD=BC,又∵E,F分别为AD,BC中点,∴AE∥BF,AE=BF,ED∥CF,DE=CF,∴四边形ABFE为平行四边形,四边形BFDE为平行四边形,∴BE∥FD,即ME∥FN,同理可证EN∥MF,∴四边形EMFN为平行四边形,∵四边形ABFE为平行四边形,∠ABC为直角,∴ABFE为矩形,∴AF,BE互相平分于M点,∴ME=MF,∴四边形EMFN为菱形.故选B.21.对角线互相平分且相等的四边形是()A. 平行四边形B. 矩形C. 菱形D. 正方形【答案】B【解析】解:对角线互相平分且相等的四边形是矩形.故选:B.根据对角线相等的平行四边形是矩形,以及平行四边形的判定:对角线互相平分的四边形是平行四边形,即可得出结论.此题主要考查矩形的判定:对角线相等的平行四边形是矩形.以及平行四边形的判定:对角线互相平分的四边形是平行四边形,较为简单.22.下列说法正确的是()A. 对角线相等的平行四边形是菱形B. 有一组邻边相等的平行四边形是菱形C. 对角线相互垂直的四边形是菱形D. 有一个角是直角的平行四边形是菱形【答案】B【解析】解:A、对角线相等的平行四边形是矩形,故A选项错误;B、有一组邻边相等的平行四边形是菱形,故B选项正确;C、对角线相互垂直的平行四边形是菱形,故C选项错误;D、有一个角是直角的平行四边形是矩形,故D选项错误,故选:B.利用菱形的判定定理对各个选项逐一判断后即可确定正确的选项.本题考查了菱形的判定,牢记菱形的判定定理是解答本题的关键,难度不大.23.已知下列命题:①对角线互相平分的四边形是平行四边形;②等腰梯形的对角线相等;③对角线互相垂直的四边形是菱形;④内错角相等.其中假命题有()A. 1个B. 2个C. 3个D. 4个【答案】B【解析】解:①对角线互相平分的四边形是平行四边形,故①是真命题.②等腰梯形的对角线相等.故②是真命题.③对角线互相垂直平分的四边形是菱形.故③是假命题.④两直线平行,内错角相等.故④是假命题.故选B.命题是判断事情的语句,若是判断的事情是正确的就是真命题,如果是错误的就是假命题,平行四边形的对角线互相平分,等腰梯形的对角线相等,对角线互相垂直的不一定是菱形,两直线平行,内错角才相等.本题考查真假命题的概念,以及平行四边形的判定.菱形的判定,等腰梯形的判定定理,以及内错角等知识点.24.下列说法:①四边相等的四边形一定是菱形②顺次连接矩形各边中点形成的四边形一定是正方形③对角线相等的四边形一定是矩形④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分.其中正确的有()个.A. 4B. 3C. 2D. 1【答案】C【解析】解:∵四边相等的四边形一定是菱形,∴①正确;∵顺次连接矩形各边中点形成的四边形一定是菱形,∴②错误;∵对角线相等的平行四边形才是矩形,∴③错误;∵经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分,∴④正确;其中正确的有2个.故选:C.根据三角形的中位线性质、平行四边形的性质、矩形的判定、菱形的判定、正方形的判定逐个判断即可.本题考查了三角形的中位线性质、平行四边形的性质、矩形的判定、菱形的判定、正方形的判定等知识点,能熟记定理的内容是解此题的关键.25.如图,△ABC中,DE∥BC,EF∥AB,要判定四边形DBFE是菱形,还需要添加的条件是()A. AB=ACB. AD=BDC. BE⊥ACD. BE平分∠ABC 【答案】D【解析】【分析】当BE平分∠ABC时,四边形DBFE是菱形,可知先证明四边形BDEF是平行四边形,再证明BD=DE即可解决问题.本题考查菱形的判定、平行四边形的判定和性质、角平分线的定义、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.【解答】解:当BE平分∠ABC时,四边形DBFE是菱形,理由:∵DE∥BC,∴∠DEB=∠EBC,∵∠EBC=∠EBD,∴∠EBD=∠DEB,∴BD=DE,∵DE∥BC,EF∥AB,∴四边形DBFE是平行四边形,∵BD=DE,∴四边形DBFE是菱形.其余选项均无法判断四边形DBFE是菱形,故选:D.26.如图,在△ABC中,点E,D,F分别在边AB、BC、CA上,且DE∥CA,DF∥BA.下列四个判断中,不正确的是()A. 四边形AEDF是平行四边形B. 如果∠BAC=90°,那么四边形AEDF是矩形C. 如果AD平分∠BAC,那么四边形AEDF是菱形D. 如果AD⊥BC且AB=AC,那么四边形AEDF是正方形【答案】D【解析】【分析】本题考查了平行四边形的判定定理,矩形的判定定理,菱形的判定定理,和正方形的判定定理等知识点.两组对边分别平行的四边形是平行四边形,有一个角是90°的平行四边形是矩形,有一组邻边相等的平行四边形是菱形,四个角都是直角,且四个边都相等的是正方形.【解答】解:A、因为DE∥CA,DF∥BA所以四边形AEDF是平行四边形.故A选项正确.B、∠BAC=90°,四边形AEDF是平行四边形,所以四边形AEDF是矩形.故B选项正确.C、因为AD平分∠BAC,所以AE=DE,又因为四边形AEDF是平行四边形,所以是菱形.故C选项正确.D、如果AD⊥BC且AB=BC不能判定四边形AEDF是正方形,故D选项错误.故选:D.27.下列说法正确的是()A. 对角线相等且互相垂直的四边形是菱形B. 对角线互相垂直平分的四边形是正方形C. 对角线互相垂直的四边形是平行四边形D. 对角线相等且互相平分的四边形是矩形【答案】D【解析】解:对角线相等且互相垂直的四边形不一定是平行四边形,更不一定是菱形,故A不正确;对角线互相垂直平分的四边形为菱形,但不一定是正方形,故B不正确;对角线互相垂直的四边形,其对角线不一定会平分,故不一定是平行四边形,故C不正确;对角线互相平分说明四边形为平行四边形,又对角线相等,可知其为矩形,故D正确;故选:D.分别根据菱形、正方形、平行四边形和矩形的判定逐项判断即可.本题主要考查平行四边形及特殊平行四边形的判定,掌握平行四边形及特殊平行四边形的对角线所满足的条件是解题的关键.28.如图,在▱ABCD中,对角线,O为AC的中点,经过点O的直线交AD于E,交BC于F,连结AF、CE,现在添加一个适当的条件,使四边形AFCE是菱形,下列条件:;;平分;为AD中点。

06菱形-【人教版期末真题精选】天津市2022-2023八年级数学下学期期末复习专练

06菱形-【人教版期末真题精选】天津市2022-2023八年级数学下学期期末复习专练一、单选题1.(2022春·天津滨海新·八年级统考期末)在菱形ABCD 中,对角线AC ,BD 相交于点O ,5AB =,6AC =,过点D 作AC 的平行线交BC 的延长线于点E ,则BDE △的面积为( )A .24B .18C .12D .102.(2022春·天津津南·八年级统考期末)四边形ABCD 是菱形,对角线AC ,BD 相交于点O ,且AB =17,AO =8,则菱形的面积为( )A .48B .96C .120D .2403.(2022春·天津南开·八年级统考期末)如图,在菱形ABCD 中,12AC =,16BD =,则菱形AB 边上的高CE 的长是( )A .2.4B .4.8C .10D .9.64.(2022春·天津东丽·八年级统考期末)如图,菱形ABCD 中,150D ︒∠=,则1∠=( )A .30︒B .25︒C .20︒D .15︒5.(2022春·天津滨海新·八年级统考期末)小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB =BC ,②∠ABC =90°,③AC =BD ,④AC ⊥BD 中选两个作为补充条件,使▱ABCD 为正方形(如图),现有下列四种选法,你认为其中错误的是( )A.①②B.②③C.①③D.②④6.(2022春·天津·八年级校联考期末)如图,菱形ABCD的对角线AC、BD的长分别为6和8,则这个菱形的周长是( )A.20B.24C.40D.48二、填空题7.(2022春·天津北辰·八年级统考期末)如图,四边形OABC是菱形,AC=6,OB=8,则顶点C的坐标是_____.8.(2022春·天津津南·八年级统考期末)在如图所示的6×4网格中,每个小正方形的边长均为1,点A、B均落在格点上.(1)AB的长等于___________;(2)请在如图所示的网格中,用无刻度的直尺,画出一个以AB为边的菱形ABCD,并简要说明画图的方法(不要求证明)_____________________.9.(2022春·天津河北·八年级统考期末)菱形两条对角线长为8cm和6cm,则菱形面积为_______cm2.三、解答题10.(2022春·天津西青·八年级统考期末)如图,菱形ABCD 的对角线AC ,BD 相交于点O ,E 是AD 的中点,点F ,G 在CD 上,EF CD ⊥,OG EF ∥.(1)求证:四边形OEFG 是矩形;(2)若10AD =,3EF =,求OE 和CG 的长.11.(2022春·天津河西·八年级统考期末)如图,菱形ABCD 的边长为2,120BCD ∠=︒,对角线AC ,BD 相交于点O ,又有E ,F 分别为AB ,AD 的中点,连接EF .(1)求对角线AC 的长;(2)求EF 的长.12.(2022春·天津南开·八年级统考期末)如图,点O 是菱形ABCD 对角线的交点,,CE BD EB AC P P ,连接OE .(1)求证:OE CB =;(2)如果24DB =,13AD =,求四边形OBEC 的周长.13.(2022春·天津·八年级校联考期末)如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,点M 为AD 的中点,过点M 作MN BD ∥交CD 延长线于点N .(1)求证:四边形MNDO是平行四边形;(2)当AB,BD满足条件,四边形是矩形.参考答案:∵四边形ABCD是菱形,【点睛】本题考查了菱形的性质、勾股定理、坐标与图形,熟练掌握菱形的性质是解题关键.8.10取格点C,D【分析】(1)利用勾股定理计算即可;(2)根据菱形的判定作出图形即可.【详解】解:(1)22AB=+31【点睛】本题考查作图一复杂作图,勾股定理,菱形的判定等知识,解题的关键是正确地作出图形.9.24【分析】根据菱形的面积等于两对角线乘积的一半求其面积即可.【详解】解:菱形面积是6×8÷2=24cm 2;故答案为24.【点睛】本题考查的是菱形的面积的计算,掌握“菱形的面积等于两条对角线乘积的一半”是解本题的关键.10.(1)证明见详解(2)5OE =,1CG =【分析】(1)根据菱形的性质可得点O 是AC 的中点,再利用中位线性质可得//OE GF ,进而可证四边形OEFG 是平行四边形,进而可求证结论.(2)根据菱形的性质及直角三角形斜边上的中线的性质即可求解OE 和DE ,进而可得GF ,在利用勾股定理即可求得DF ,进而可求解.(1)证明:∵四边形ABCD 是菱形,∴点O 是AC 的中点,又∵E 是AD 的中点,∴OE 是△ACD 的中位线,∴//OE GF ,又∵OG EF ∥,∴四边形OEFG 是平行四边形,又∵EF CD ⊥,∴∠EFG =90°,∴四边形OEFG 是矩形.(2)∵四边形ABCD 是菱形,∴∠AOD =90°,AD =CD =10,又∵点E 是AD 的中点,。

人教版八年级下册数学课时练《18.2.2 菱形》试卷含答案

人教版数学八年级下册《18.2.2 菱形》单元测试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,在菱形ABCD 中,,AE AF 分别垂直平分,BC CD ,垂足分别为,E F ,则EAF ∠的度数是( )A .90°B .60°C .45°D .30°2.菱形ABCD 中,60BAD ∠=︒,对角线AC = )A .2B .4C .D .3.如图,在ABCD 中,8AC =,6BD =,5AD =,则ABCD 的面积为( )A .6B .12C .24D .484.如图,已知四边形ABCD 的四边都相等,等边△AEF 的顶点E 、F 分别在BC 、CD 上,且AE=AB ,则△C=( )A .100°B .105°C .110°D .120°5.如图,四边形ABCD 的对角线互相平分,要使它变为菱形,需要添加的条件是( )A .AB =CD B .AD =BC C .AC =BD D .AB =BC6.如图,将一个长为10 cm ,宽为8 cm 的矩形纸片对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开,得到的菱形的面积为( )A .10 cm 2B .20 cm 2C .40 cm 2D .80 cm 2二、填空题 7.△ABC 中,延长BA 至D 使得AB =AD ,延长CA 至E 使得AC =AE ,当△ABC 满足条件________时,四边形BCDE 是菱形.8.已知菱形的两条对角线长为6和8,菱形的周长是_______,面积是________.9.如图,矩形ABCD 的对角线,AC BD 相交于O ,△AOB =120°,//,//CE BD DE AC ,若4=AD 则四边形CODE 的周长为______________.10.如图,四边形ABCD 的对角线AC 、BD 相交于点O ,且OA=OC ,OB=OD .请你添加一个适当的条件:______________,使四边形ABCD 成为菱形.11.如图,菱形ABCD 中,E 、F 分别在BC CD 、边上,AB AE =,且AEF 是等边三角形,则C ∠=_______.12.已知菱形的周长为40,两个相邻角度数之比为1△2,则较长对角线的长为______.三、解答题⊥于点O,交AD于点E,交BC于点F,连接AF,CE.请13.如图,在ABCD中,AC为对角线,EF AC你探究当点O满足什么条件时,四边形AFCE是菱形,并说明理由.14.如图,在菱形ABCD中,△ABC=120°,对角线AC,BD相交于点O,AE平分△CAD,分别交OD,CD于F,E两点,求△AFO的度数.15.如图,四边形ABCD是边长为13cm的菱形,其中对角线BD长10cm.求:(1)对角线AC的长度;(2)菱形ABCD的面积.16.如图,ABCD中,对角线AC BD⊥于H,12、交于O,AH BC∠=∠.(1)求证:ABCD是菱形:(2)若4AC AH==,求菱形ABCD的面积.17.如图,AE△BF,AC平分△BAE,且交BF于点C,BD平分△ABF,且交AE于点D,AC与BD相交于点O,连接CD(1)求△AOD的度数;(2)求证:四边形ABCD是菱形.18.如图,四边形ABCD是菱形,对角线AC和BD相交于点O,AC=8cm,BD=6cm,DH△AB于H.(1)求菱形ABCD的面积;(2)求DH的长.参考答案1.B 2.B 3.C 4.A 5.D 6.A7.△BAC =90°8.20 249.1610.AB=AD.11.100︒12.13.解:当点O 是AC 的中点时,四边形AFCE 是菱形.理由如下:△四边形ABCD 是平行四边形,△//AD BC ,△AEO CFO ∠=∠,EAO FCO ∠=∠.△O 是AC 的中点,△AO CO =,△AOE COF ∆∆≌,△OE OF =,△四边形AFCE 是平行四边形,又△EF AC ⊥,△平行四边形AFCE 是菱形.14.【解析】△在菱形ABCD 中,△ABC=120°,△△BAD=60°,△对角线AC 、BD 交于点O ,△△BAC=△CAD=30°,△DOA=90°△AE 平分△CAD ,△△OAF=15°,△△AFO 的度数为:90°-15°=75°.15.解:(1)△四边形ABCD 是菱形,AC 与BD 相交于点E ,△90AED ∠=︒(菱形的对角线互相垂直),11105(cm)22DE BD ==⨯=(菱形的对角线互相平分).△12(cm)AE ==.△221224(cm)AC AE ==⨯=(菱形的对角线互相平分);(2)ABD BDC ABCD S SS =+菱形 1122BD AE BD CE =⋅+⋅ 1()2BD AE CE =⋅+ 12BD AC =⋅ 110242=⨯⨯ 2120(cm )=.16.【解析】(1)证明:AH BC ⊥,∴90AHC ∠=︒,190ACH ∠+∠=︒,12∠=∠,∴290ACH ∠+∠=︒,∴在BOC ∆中,180(2)BOC ACH ∠=︒-∠+∠=1809090︒-︒=︒,BO OC ∴⊥,即ABCD 的对角线BD AC ⊥,∴ABCD 是菱形;(2)在Rt AHC ∆中,2HC , ABCD 是菱形,∴AB BC =,设==AB BC x ,则2BH x =-,在Rt ABH ∆中,由勾股定理得:222AH BH AB +=中,即2224(2)x x +-=,解得5x =,=5420ABCD S BC AH ∴⋅=⨯=菱形.17.【解析】(1)△AC 、BD 分别是△BAD 、△ABC 的平分线,△△DAC=△BAC ,△ABD=△DBC ,△AE△BF ,△△DAB+△CBA=180°,△△BAC+△ABD=12(△DAB+△ABC )=12×180°=90°,△△AOD=90°;(2)证明:△AE△BF ,△△ADB=△DBC ,△DAC=△BCA ,△AC 、BD 分别是△BAD 、△ABC的平分线,△△DAC=△BAC ,△ABD=△DBC ,△△BAC=△ACB ,△ABD=△ADB ,△AB=BC ,AB=AD△AD=BC ,△AD△BC ,△四边形ABCD 是平行四边形,△AD=AB ,△四边形ABCD 是菱形. 18.【解析】(1)△四边形ABCD 是菱形,AC=8cm ,BD=6cm ,△S 菱形ABCD =12AC•BD=12×6×8=24cm 2, (2)△四边形ABCD 是菱形,△AC△BD ,OA=OC=12AC=4cm ,OB=OD=3cm ,△在直角三角形AOB 中,5cm , △DH=ABCD S AB=4.8cm .。

2022年华东师大版八年级数学下册第十九章矩形、菱形与正方形定向测试试题(含答案及详细解析)

八年级数学下册第十九章矩形、菱形与正方形定向测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知菱形两条对角线的长分别为8和10,则这个菱形的面积是()A.20 B.40 C.60 D.802、如图,在矩形ABCD中,AB=6cm,对角线AC=10cm,动点P从点A出发,以2cm/s的速度沿折线AB﹣BC向终点C运动.设点P的运动时间为t s,△APC的面积为S cm2,则下列图象能大致反映S与t 之间函数关系的是()A .B .C .D .3、若菱形的两条对角线长分别为10和24,则菱形的面积为( )A .13B .26C .120D .2404、如图,矩形OABC 的边OA 长为2,边AB 长为1,OA 在数轴上,以原点O 为圆心,对角线OB 的长为半径画弧,交正半轴于一点,则这个点表示的实数是( )A .2.5B .CD 5、在ABCD 中,AC 与BD 相交于点O ,要使四边形ABCD 是菱形,还需添加一个条件,这个条件可以是( )A .AO =COB .AO =BOC .AO ⊥BOD .AB ⊥BC6、如图,长方形OABC 中,点A 在y 轴上,点C 在x 轴上.4OA BC ==,8AB OC ==.点D 在边AB 上,点E 在边OC 上,将长方形沿直线DE 折叠,使点B 与点O 重合.则点D 的坐标为( )A .()4,4B .()5,4C .()3,4D .()6,47、矩形ABCD 的对角线交于点O ,∠AOD =120°,AO =3,则BC 的长度是( )A .3B .C .D .68、陈师傅应客户要求加工4个长为4cm 、宽为3cm 的矩形零件.在交付客户之前,陈师傅需要对4个零件进行检测.根据零件的检测结果,下图中有可能不合格的零件是( )A .B .C .D .9、下列命题正确的是( )A .若a b =,则33a b =B .四条边相等的四边形是正四边形C .有一组邻边相等的平行四边形是矩形D .如果2a ab =,则a b =10、如图,已知在正方形ABCD 中,10AB BC CD AD ====厘米,90A B C D ∠=∠=∠=∠=︒,点E 在边AB 上,且4AE =厘米,如果点P 在线段BC 上以2厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CD 上以a 厘米/秒的速度由C 点向D 点运动,设运动时间为t 秒.若存在a 与t 的值,使BPE 与CQP 全等时,则t 的值为( )A .2B .2或1.5C .2.5D .2.5或2第Ⅱ卷(非选择题 70分)二、填空题(10小题,每小题4分,共计40分)1、如图,在矩形ABCD 中,5AB =,4BC =,将矩形ABCD 翻折,使得点B 落在CD 边上的点E 处,折痕AF 交BC 于点F ,则FC =______2、菱形ABCD 的周长为AC 和BD 相交于点O ,AO :BO =1:2,则菱形ABCD 的面积为________.3、如图,在平面直角坐标系xOy 中,菱形ABCD 的顶点D 在x 轴上,边BC 在y 轴上,若点A 的坐标为(12,13),则点C 的坐标是___.4、在平面直角坐标系中,直线l :1y x =-与x 轴交于点1A ,如图所示依次作正方形111A B C O 、正方形2221A B C C 、…、正方形n 1n n n A B C C -,使得点1A 、2A 、3A 、…在直线1上,点1C 、2C 、3C 、…在y 轴正半轴上,则点n B 的坐标是________.5、已知矩形一条对角线长8cm ,两条对角线的一个交角是60°,则矩形较短的边长为 _____cm .6、判断:(1)菱形的对角线互相垂直且相等( )(2)菱形的对角线把菱形分成四个全等的直角三角形( )7、如图,a //b //c ,直线a 与直线b c 与直线b 之间的距离为ABC 的三个顶点分别在直线a 、直线b 、直线c 上,则等边三角形的边长是______.8、如图,E 是正方形ABCD 的对角线BD 上一点,连接CE ,过点E 作EF AD ⊥,垂足为点F .若3AF =,5EC =,则正方形ABCD 的面积为______.9、一个长方形的周长是22cm ,若这个长方形的长减少2cm ,宽增加3cm ,就可以成为一个正方形,则长方形的长是______cm .10、如图,在矩形ABCD 中,5AB =,3BC =.将矩形ABCD 绕点B 按顺时针方向旋转得到矩形HBEF ,点H 落在矩形ABCD 的边CD 上,则CH 的长是 __.三、解答题(5小题,每小题6分,共计30分)1、已知,将水平向右平移AD 的长度得到其中点C 与点D 对应,点B 与点A 对应,点F 与点E 对应),过点E 作BD 的垂线,垂足为M ,连接AM .(1)根据题意补全图形,并证明MB ME =;(2)①用等式表示线段AM 与CF 的数量关系,并证明;②用等式表示线段AM ,BM ,DM 之间的数量关系(直接写出即可)2、如图,一次函数1y x b =+与反比例函数2k y x=交于点()1,A a ,()4,1D --,与y 轴,x 轴分别交于点B ,C . (1)求反比例函数的表达式;(2)作AE y ⊥轴于点E ,连接DE ,求ADE 的面积;(3)根据图象请直接写出当12y y >时,x 的取值范围.3、如图,ABC 和DBC △中,90ACB DBC ∠=∠=︒,E 是BC 的中点,且ED AB ⊥于点F ,且AB DE =,CD 交AB 于点M .(1)求证:2BD EC =;(2)求ACM △与BCM 的面积之比.4、问题解决:如图1,在矩形ABCD 中,点E ,F 分别在AB ,BC 边上,DE =AF ,DE ⊥AF 于点G .(1)求证:四边形ABCD 是正方形;(2)延长CB到点H,使得BH=AE,判断△AHF的形状,并说明理由.类比迁移:如图2,在菱形ABCD中,点E,F分别在AB,BC边上,DE与AF相交于点G,DE=AF,△AED=60°,AE=7,BF=2,则DE=________.(只在图2中作辅助线,并简要说明其作法,直接写出DE的长度5、下面是小东设计的“利用直角三角形和它的斜边中点作矩形”的尺规作图过程.已知:如图,在Rt△ABC中,∠ABC=90°,O为AC的中点.求作:四边形ABCD,使得四边形ABCD是矩形.作法:①作射线BO,以点O为圆心,OB长为半径画弧,交射线BO于点D;②连接AD,CD.四边形ABCD是所求作的矩形.根据小东设计的尺规作图过程,(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明.证明:∵点O为AC的中点,∴AO=CO.又∵BO=,∴四边形ABCD是平行四边形()(填推理的依据).∵∠ABC=90°,∴□ABCD是矩形()(填推理的依据).-参考答案-一、单选题1、B【解析】【分析】根据菱形的面积公式求解即可.【详解】 解:这个菱形的面积=12×10×8=40.故选:B .【点睛】本题考查了菱形的面积问题,掌握菱形的面积公式是解题的关键.2、C【解析】【分析】先求解8,BC = 再分别求解“当03t ≤≤时,点P 在AB 上,当37t <≤时,点P 在BC 上”时的函数解析式,再根据函数解析式判断函数图象即可.【详解】 解: 矩形ABCD 中,AB =6cm ,对角线AC =10cm , 228,BC AC AB 当03t ≤≤时,点P 在AB 上,2,AP t 11=288,22S AP BC t t当37t <≤时,点P 在BC 上,682142,CP t t 11=6142426,22S CP AB t t所以能大致反映S 与t 之间函数关系的是C.故选:C【点睛】本题考查的是动点问题的函数图象,一次函数的图象,矩形的性质,明确“当03t ≤≤时,点P 在AB 上,当37t <≤时,点P 在BC 上”是列函数关系式的关键,也是判断图象的关键.3、C【解析】 【分析】根据菱形的面积公式即可得到结论.【详解】解:菱形的两条对角线长分别为10和24,∴菱形的面积为110241202⨯⨯=, 故选:C .【点睛】本题考查了菱形的性质,解题的关键是熟练掌握菱形的面积公式.4、D【解析】【分析】利用矩形的性质,求证明90OAB ∠=︒,进而在Rt AOB ∆中利用勾股定理求出OB 的长度,弧长就是OB 的长度,利用数轴上的点表示,求出弧与数轴交点表示的实数即可.解:四边形OABC 是矩形,∴90OAB ∠=︒,在Rt AOB ∆中,由勾股定理可知:222OB OA AB =+,OB ∴==∴故选:D .【点睛】本题主要是考查了矩形的性质、勾股定理解三角形以及数轴上的点的表示,熟练利用矩形性质,得到直角三角形,然后通过勾股定理求边长,是解决该类问题的关键.5、C【解析】【分析】根据菱形的判定分析即可;【详解】∵四边形ABCD 时平行四边形,AO ⊥BO ,∴ABCD 是菱形;故选C .【点睛】本题主要考查了菱形的判定,准确分析判断是解题的关键.6、C【解析】设AD=x,在Rt△OAD中,据勾股定理列方程求出x,即可求出点D的坐标.【详解】解:设AD=x,由折叠的性质可知,OD=BD=8-x,在Rt△OAD中,∵OA2+AD2=OD2,∴42+x2=(8-x)2,∴x=3,3,4,∴D()故选C.【点睛】本题考查了矩形的性质,勾股定理,以及折叠的性质,熟练掌握勾股定理是解答本题的关键.直角三角形两条直角边的平方和等于斜边的平方.7、C【解析】【分析】画出图形,由条件可求得△AOB为等边三角形,则可求得AC的长,在Rt△ABC中,由勾股定理可求得BC的长.【详解】解:如下图所示:∵四边形ABCD是矩形,∴∠ABC=90°,OA=12AC,OB=12BD,AC=BD,∴OA=OB,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴OA=AB=2,∴AC=2OA=4,∴BC2=AC2-AB2=36-9=27,∴BC=故选:D.【点睛】本题考查了矩形的性质、等边三角形的判定与性质以及勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.8、C【解析】【分析】根据矩形的判定定理判断即可.【详解】∵A满足的条件是有一个角是直角的平行四边形是矩形,∴A合格,不符合题意;∵B满足的条件是三个角是直角的四边形是矩形,∴B 合格,不符合题意;∵C 满足的条件是有一个角是直角的四边形,∴无法判定,C 不合格,符合题意;∵D 满足的条件是有一个角是直角的平行四边形是矩形,∴D 合格,不符合题意;故选C .【点睛】本题考查了矩形的判定定理,正确理解题意,熟练掌握矩形的判定定理是解题的关键.9、A【解析】【分析】利用等式的性质以及矩形、正方形、菱形的判定方法分别判断后即可确定正确的选项.【详解】解:A 、若a b =,则33a b =,故此命题正确;B 、四条边相等的四边形是菱形,故原命题不正确;C 、有一组邻边相等的平行四边形是菱形,故原命题不正确;D 、如果2a ab =,a ≠0时,则a b =,若0a =时,此命题不正确,故选:A .【点睛】本题考查了命题与定理以及等式的性质等知识,解题的关键是了解矩形及菱形的判定方法.10、D【解析】根据题意分两种情况讨论若△BPE≌△CQP,则BP=CQ,BE=CP;若△BPE≌△CPQ,则BP=CP=5厘米,BE=CQ=6厘米进行求解即可.【详解】解:当2a=,即点Q的运动速度与点P的运动速度都是2厘米/秒,若△BPE≌△CQP,则BP=CQ,BE=CP,∵AB=BC=10厘米,AE=4厘米,∴BE=CP=6厘米,∴BP=10-6=4厘米,∴运动时间t=4÷2=2(秒);当2a≠,即点Q的运动速度与点P的运动速度不相等,∴BP≠CQ,∵∠B=∠C=90°,∴要使△BPE与△OQP全等,只要BP=PC=5厘米,CQ=BE=6厘米,即可.∴点P,Q运动的时间t=252 2.5BP÷=÷=(秒).综上t的值为2.5或2.故选:D.【点睛】本题主要考查正方形的性质以及全等三角形的判定,解决问题的关键是掌握正方形的四条边都相等,四个角都是直角;两边及其夹角分别对应相等的两个三角形全等.同时要注意分类思想的运用.二、填空题1、3 2【解析】在Rt△ADE中,AD2+DE2=AE2,可得DE=3,CE=CD-DE=2,设FC=x,则EF=BC-FC=4-x,在Rt△ECF中,EF2=EC2+FC2,可得(4-x)2=22+x2,解方程即可.【详解】解∵△ABF≌△AEF,∴AE=AB=5,在矩形ABCD中,AD=BC=4,在Rt△ADE中,AD2+DE2=AE2,∴DE=3,CE=CD-DE=2,设FC=x,则EF=BC-FC=4-x,在Rt△ECF中,EF2=EC2+FC2,即(4-x)2=22+x2,8x=12,x=32,∴FC=32.故此答案为32.【点睛】本题考查翻折变换、矩形的性质、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题.2、4【分析】根据菱形的性质求得边长,根据AO :BO =1:2,求得对角线的长,进而根据菱形的面积等于对角线乘积的一半即可求解.【详解】解:如图四边形ABCD 是菱形AB AD DC CB ∴===,11,22AO AC BO BD ==菱形ABCD 的周长为AB ∴ AO :BO =1:2,AB ∴1,2AO BO ∴==2,4AC BD ==1124422ABCD S AC BD ∴=⋅=⨯⨯=菱形 故答案为:4本题考查了菱形的性质,勾股定理,掌握菱形的面积等于对角线乘积的一半是解题的关键.3、(0,-5)【解析】【分析】在Rt △ODC 中,利用勾股定理求出OC 即可解决问题.【详解】解:∵A (12,13),∴OD =12,AD =13,∵四边形ABCD 是菱形,∴CD =AD =13,在Rt △ODC 中,5==OC ,∴C (0,-5).故答案为:(0,-5)【点睛】本题考查菱形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题.4、()12,21n n --【解析】【分析】根据一次函数图象上点的坐标特征结合正方形的性质可得出点A 1、B 1的坐标,同理可得出A 2、A 3、A 4、A 5、…及B 2、B 3、B 4、B 5、…的坐标,根据点的坐标的变化可找出变化规律“Bn (2n -1,2n -1)(n 为正整数)”,依此规律即可得出结论.解:当y =0时,有x -1=0,解得:x =1,∴点A 1的坐标为(1,0).∵四边形A 1B 1C 1O 为正方形,∴点B 1的坐标为(1,1).同理,可得出:A 2(2,1),A 3(4,3),A 4(8,7),A 5(16,15),…,∴B 2(2,3),B 3(4,7),B 4(8,15),B 5(16,31),…,∴Bn (2n -1,2n -1)(n 为正整数),故答案为:()12,21n n --【点睛】本题考查了一次函数图象上点的坐标特征、正方形的性质以及规律型:点的坐标,根据点的坐标的变化找出变化规律“Bn (2n -1,2n -1)(n 为正整数)”是解题的关键.5、4【解析】【分析】如下图所示:∠AOD =∠BOC =60°,即:∠COD =120°>∠AOD =60°,AD 是该矩形较短的一边,根据矩形的性质:矩形的对角线相等且互相平分,所以有OA =OD =OC =OB =12×8=4cm ,又因为∠AOD =∠BOC =60°,所以AD =OA =0D =4cm .【详解】解:如图所示:矩形ABCD,对角线AC=BD=8cm,∠AOD=∠BOC=60°∵四边形ABCD是矩形×8=4cm,∴OA=OD=OC=OB=12又∵∠AOD=∠BOC=60°∴OA=OD=AD=4cm∵∠COD=120°>∠AOD=60°∴AD<DC所以,该矩形较短的一边长为4cm.故答案为4.【点睛】本题主要考查矩形的性质:矩形的对角线相等且互相平分,且矩形对角线相交所的角中“大角对大边,小角对小边”.6、× √【解析】【分析】根据菱形的性质,即可求解.【详解】解:(1)菱形的对角线互相垂直且平分;(2)菱形的对角线把菱形分成四个全等的直角三角形.故答案为:(1)×;(2)√【点睛】本题主要考查了菱形的性质,熟练掌握菱形的对角线互相垂直且平分是解题的关键.7、【解析】【分析】如图所示,过点A作AD⊥直线c于D,过点B作EF⊥直线b分别交直线a、c于F、E,先证明四边形ADEF是矩形,得到AF=DE,AD=EF,再由直线a与直线b c与直线b之间的距==+=AB=AC=BC=x,由勾股定理BF=BE=AD EF BF BE得:AF=,EC=CD=AF EC CD=+,即可得到=【详解】解:如图所示,过点A作AD⊥直线c于D,过点B作EF⊥直线b分别交直线a、c于F、E,∵a∥b∥c,∴AD⊥直线a,EF⊥直线a,EF⊥直线c,∴四边形ADEF是矩形,∴AF=DE,AD=EF,∵直线a与直线b c与直线b之间的距离为∴BF=BE=∴AD EF BF BE==+=∵△ABC是等边三角形,∴可设AB =AC =BC =x ,由勾股定理得:AF =EC =,CD =又∵AF EC CD =+,∴22231227x x x -=-+-+∴236x -=∴()()422272129641227x x x x -+=--∴()4242721296439324x x x x -+=-+,∴424272129641561296x x x x -+=-+,∴423840x x -=,解得x =,∴△ABC 的边长为故答案为:【点睛】本题主要考查了等边三角形的性质,矩形的性质与判定,勾股定理,平行线的间距,解题的关键在于熟练掌握相关知识.8、49【解析】【分析】延长FE 交AB 于点M ,则EM BC ⊥,3AF BM ==,由正方形的性质得45CDB ∠=︒,推出BME 是等腰直角三角形,得出3EM BM ==,由勾股定理求出CM ,故得出BC ,由正方形的面积公式即可得出答案.【详解】如图,延长FE 交AB 于点M ,则EM BC ⊥,3AF BM ==,∵四边形ABCD 是正方形,∴45CDB ∠=︒,∴BME 是等腰直角三角形,∴3EM BM ==,在Rt EMC 中,4CM =,∴347BC BM CM =+=+=,∴22749ABCD S BC ===正方形.故答案为:49.【点睛】本题考查正方形的性质以及勾股定理,掌握正方形的性质是解题的关键.9、8【解析】【分析】设这个长方形的长为xcm ,则长方形的宽为()11x -cm ,由题意得长2-=宽+3.进而得到方程2113x x -=-+,解方程即可得到答案.【详解】解:设这个长方形的长为x cm ,由题意得:2113x x -=-+,216,x ∴=解得:8,x =答:这个长方形的长为8.cm故答案为:8【点睛】本题主要考查了一元一次方程的应用,关键是正确理解题意,抓住关键语句,表示出正方形的边长,进而利用正方形边长相等得到方程.10、4【解析】【分析】根据矩形的性质和旋转性质得出BH=AB=5,∠C=90°,再根据勾股定理求解即可.【详解】解:由题意知:5BH AB ==,∠C=90°,∴在Rt△BCH 中,BC =3,∴4CH ,故答案为:4.【点睛】本题考查矩形的性质、旋转性质、勾股定理,熟练掌握旋转性质和勾股定理是解答的关键.三、解答题1、 (1)见解析FC =,理由见解析 ②2222DM BM AM +=【解析】【分析】(1)如图所示,根据四边形ABCD 是正方形,BD 是对角线,得出45ABD ∠=︒,根据EM BD ⊥,可证BEM △是等腰直角三角形即可;(2)①先证AEM △≌FBM 得AM FM =,由AE BF =知EF BC AB ==,证MEF ≌MBC △得EMF BMC ∠=∠,FM MC =,由90FMC ∠=︒知FCM △是等腰直角三角形,从而得FC =;②连接DE ,证四边形CDEF 是平行四边形得DE CF =,由CF =,MF AM =知DE =,结合BM EM =,90DME ∠=︒得222DM EM DE +=,从而得出答案.(1)如图所示,∵DC =AB =AD =BC ,∴四边形ABCD 为菱形,∵∠DAE =90°∴四边形ABCD 为正方形,BD 是正方形ABCD 对角线,45ABD ∴∠=︒,EM BD ,∴∠EMB =90°,∠MEB =180°-∠EMB -∠ABD =180°-90°-45°=45°,∴∠MEB =∠MBE =45°,BEM ∴是等腰直角三角形,MB ME ∴=;(2)①如图所示,连接CM 、FM ,BEM 是等腰直角三角形,MB ME ∴=,45ABM BEM ∠=∠=︒,135AEM FBM ∴∠=∠=︒,又AE FB =,在△AEM 和△FBM 中,AE FB AEM FBM ME MB =⎧⎪∠=∠⎨⎪=⎩, AEM ∴△≌FBM SAS (), AM FM ∴=,AE BF =,EF BC AB ∴==,∵BD 为对角线,∴∠MBC =45°,∴∠MBC =∠MEF =45°,在△MEF 和△MBC 中,ME MB MEF MBC EF BC =⎧⎪∠=∠⎨⎪=⎩, MEF ∴≌MBC SAS (), EMF BMC ∴∠=∠,FM MC =,AM CM FM ∴==,∴∠CMF =∠CMB -∠BMF =∠EMF -∠BMF =∠EMB =90°,∴△CMF 为等腰直角三角形,∴CF=;2222DM BM AM +=②,如图, AE BF =,AE BE BF BE EF ∴+=+=,又//DC AB 且DC AB =,DC EF ∴=,//DC EF ,∴四边形CDEF 是平行四边形,DE CF ∴=, 2CF =,MF AM =,DE ∴,又BM EM =,90DME ∠=︒,222DM EM DE ∴+=,则2222DM BM AM +=.【点睛】本题是四边形的综合问题,解题的关键是掌握正方形的性质、全等三角形与等腰直角三角形及平行四边形的判定与性质、勾股定理等知识点.2、(1)4y x=;(2)52;(3)-40x <<或1x > 【解析】【分析】(1)利用待定系数法求分别列函数解析式,将点D 坐标代入计算即可;(2)根据反比例函数解析式求A 点的坐标,然后证明四边形EONM 为矩形,用三角形面积公式即可;(3)利用一次函数图像位于反比例函数图像上方的位置,得出在交点D 的右侧,y 轴的左侧和交点A 的右侧满足条件即可.【详解】(1)∵点()4,1D --在反比例函数k y x=的图象上, ∴()414k =-⨯-=, ∴反比例函数的表达式为4y x=; (2)∵点()1,A a 在在反比例函数4y x =的图象上, ∴4a =,∴点A 的坐标为(1,4),∵AE y ⊥轴,∴1,4AE OE ==,作DM AE ⊥交AE 的延长线于点M ,交x 轴于点N .∴∠NME =90°,∵AE ⊥y 轴,∴∠MEO =90°,∵∠EON =90°∴∠NME =∠MEO =∠EON =90°,∴四边形EONM 为矩形,则4,1MN OE ND ===,∴5MD =,∴Δ11515222ADE S AE DM =⨯⨯=⨯⨯=;(3)当12y y >时,一次函数13y x =+的图像位于反比例函数24y x=的图像上方, ∵两函数图像的交点为()1,4A ,()4,1D -,在交点D 的右侧,y 轴的左侧和交点A 的右侧满足条件,∴-40x <<或1x >.【点睛】 本题考查待定系数法求分别列函数解析式,一次函数解析式,用求三角形面积,矩形判定与性质,图像法求不等式解集,掌握待定系数法求分别列函数解析式方法,一次函数解析式,,数形结合思想利用图像法求不等式解集是解题关键.3、 (1)见解析 (2)12【解析】【分析】(1)易证DEB A ∠=∠,即可证明ACB EBD ∆≅∆,得出BC BD =,根据点E 是BC 的中点即可解题;(2)过点M 作,BC AC 的垂线,交于点,P Q ,证四边形PMQC 为矩形,再证得四边形PMQC 为正方形,得出MP MQ =,根据ACM BCM S AC S BC=. (1) 解:证明:90DEB ABC ∠+∠=︒,90A ABC ∠+∠=︒,DEB A ∴∠=∠,在ACB ∆和EBD ∆中,ACB DBE A DEB AB DE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ACB EBD ∴∆≅∆,()AAS ;BC BD ∴=,点E 是BC 的中点,2EC BC ∴=,2BD EC ∴=;(2)解:过点M 作,BC AC 的垂线,交于点,P Q ,//,//,90MP QC MQ PC MPC ∴∠=︒,∴四边形PMQC 为矩形,,90BC BD DBC =∠=︒,BCD ∴△为等腰直角三角形,45MCP ∴∠=︒,CPM ∴为等腰直角三角形,CP MP ∴=,∴四边形PMQC 为正方形,MP MQ ∴=, 11,22ACM BCM SAC MQ S BC MQ =⋅=⋅, ACMBCM S AC S BC ∴=, 12AC BC =, 12ACMBCMSS ∴=. 【点睛】本题考查了全等三角形的判定,等腰直角三角形,正方形的判定及性质,解题的关键是掌握全等三角形的判定及性质,同时利用等量代换的思想进行求解.4、(1)见解析;(2)△AHF 是等腰三角形,理由见解析;类比迁移:9【解析】【分析】(1)根据矩形的性质得∠DAB =∠B =90°,由等角的余角相等可得∠ADE =∠BAF ,利用AAS 可得△ADE ≌△BAF (AAS ),由全等三角形的性质得AD =AB ,即可得四边形ABCD 是正方形;(2)利用AAS 可得△ADE ≌△BAF (AAS ),由全等三角形的性质得AE =BF ,由已知BH =AE 可得BH =BF ,根据线段垂直平分线的性质可得即可得AH =AF ,△AHF 是等腰三角形;类比迁移:延长CB 到点H ,使BH =AE =6,连接AH ,利用SAS 可得△DAE ≌△ABH (SAS ),由全等三角形的性质得AH=DE,∠AHB=∠DEA=60°,由已知DE=AF可得AH=AF,可得△AHF是等边三角形,则AH=HF=HB+BF=AE+BF=6+2=8,等量代换可得DE=AH=8.【详解】解:(1)证明:∵四边形ABCD是矩形,∴∠DAB=∠B=90°,∵DE⊥AF,∴∠DAB=∠AGD=90°,∴∠BAF+∠DAF=90°,∠ADE+∠DAF=90°,∴∠ADE=∠BAF,∵DE=AF,∴△ADE≌△BAF(AAS),∴AD=AB,∵四边形ABCD是矩形,∴四边形ABCD是正方形;:(2)①∵四边形ABCD是正方形,∴AD∥BC,AB=AD,∴∠ABH=∠BAD,∵BH=AE,∴△DAE≌△ABH(SAS),∴AH=DE,∵DE=AF,∴AH=AF,∴△AHF是等腰三角形.②延长CB到点H,使得BH=AE,∵四边形ABCD是菱形,∴AD∥BC,AB=AD,∴∠ABH=∠BAD,∵BH=AE,∴△DAE≌△ABH(SAS),∴AH=DE,∠AHB=∠DEA=60°,∵DE=AF,∴AH=AF,∴△AHF是等边三角形,∴AH=HF=HB+BF=AE+BF=7+2=9,∴DE=AH=9【点睛】本题考查了矩形的性质,正方形的判定和性质,全等三角形的判定和性质,等腰三角形的判定和性质,等边三角形判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.5、 (1)补全图形见解析(2)OD,对角线互相平分的四边形是平行四边形,有一个角是直角的平行四边形是矩形.【解析】【分析】(1)根据题意画图即可;(2)根据对角线互相平分的四边形是平行四边形,得到四边形ABCD是矩形,再结合一个角是直角,即可得证.(1)解:如图,四边形ABCD即为所求.(2)证明:∵点O为AC的中点,∴AO=CO.又∵BO=OD,∴四边形ABCD是平行四边形(对角线互相平分的四边形是平行四边形),∵∠ABC=90°,∴▱ABCD是矩形(有一个角是直角的平行四边形是矩形).故答案为:OD,对角线互相平分的四边形是平行四边形,有一个角是直角的平行四边形是矩形.【点睛】本题考查矩形的判定、平行四边形的判定,对角线互相平分的四边形是平行四边形;有一个角是直角的平行四边形是矩形.。

浙教版八年级数学初二下册:菱形同步练习、含答案

菱形班级:________ 姓名:________一、选择题1.下列命题中,真命题是( )A .对角线互相垂直且相等的四边形是菱形B .对角线互相垂直的平行四边形是菱形C .对角线互相平分且相等的四边形是菱形D .对角线相等的四边形是菱形2.菱形的周长为12cm ,相邻两角之比为5:1,那么菱形对边间的距离是( ) A .6cm B .1.5cm C .3cm D .0.75cm3.在菱形ABCD 中,AE ⊥BC 于点E ,AF ⊥CD 于点F ,且E 、F 分别为BC 、CD 的中点,(如图1)则∠EAF 等于( )A .75°B .60°C .45°D .30°图1 图24.已知菱形ABCD 中,AE ⊥BC 于E ,若S 菱形ABCD =24,且AE =6,则菱形的边长为( ) A .12 B .8 C .4 D .2 5.菱形的边长是2 cm ,一条对角线的长是23 cm ,则另一条对角线的长是( ) A .4cmB .3cmC .2cmD .23cm二、判断正误:(对的打“√”错的打“×”) 1.两组邻边分别相等的四边形是菱形.…………………………………………………( ) 2.一角为60°的平行四边形是菱形.…………………………………………………( ) 3.对角线互相垂直的四边形是菱形.……………………………………………………( ) 4.菱形的对角线互相垂直平分.…………………………………………………………( )三、填空题1.如图3,菱形ABCD 中,AC 、BD 相交于O ,若OD =21AD ,则四个内角为________.图3 图42.若一条对角线平分平行四边形的一组对角,且一边长为a 时,如图4,其他三边长为________;周长为________.3.菱形ABCD 中,AC 、BD 相交于O 点,若∠OBC =21∠BAC ,则菱形的四个内角的度数为____________.4.若菱形的两条对角线的比为3:4,且周长为20cm ,则它的一组对边的距离等于__________cm ,它的面积等于________cm 2.5.菱形ABCD 中,如图5,∠BAD =120°,AB =10cm ,则AC =________cm ,BD =________ cm .图5 图6四、已知:△ABC 中,CD 平分∠ACB 交AB 于D ,DE ∥AC 交BC 于E ,DF ∥BC 交AC 于F .求证:四边形DECF 是菱形.五、已知ABCD 中,如图7,BE 平分∠ABC 交AD 于E ,若CE 平分∠DCB ,且AB =2,求:ABCD 的其余边长.图7参考答案一、1.B 2.B 3.B 4.C 5.C 二、1.× 2.× 3.× 4.√三、1.60°,120°,60°,120° 2.分别为a 4a 3.60°,120°,60°,120° 4.52424 5.10 103 四、证明:∵DE ∥AC ,DF ∥BC∴四边形DECF 为平行四边形 ∠2=∠3 又∵∠1=∠2 ∴∠1=∠3 ∴DE =EC∴DECF 为菱形(有一组邻边相等的平行四边形是菱形) 五、解:过E 作EF ∥AB 交BC 于F∵ABCD ,∴AD ∥BC ∴ABFE 是平行四边形 ∴EF =AB ,∠1=∠3又∵∠2=∠1,∴∠2=∠3 ∴BF =FE ,同理:EF =FC ∴F 为BC 的中点.又BE 、CE 为∠ABC 、∠DCF 的平分线 AB ∥CD ,∴∠EBC +∠ECB =90°∴∠BEC =90°,∴EF =21BC =AB ∴AB =CD =2,AD =BC =2AB =4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

漫无目的的生活就像出海航行而没有指南针。

初二数学试卷菱形
快速反应
1. ______________的平行四边形叫做菱形
2. 如图
在菱形ABCD中
对角线AC、BD相交于点O

⑴ AB=AD=_______=_______
即菱形的_______________相等
⑵图中的等腰三角形有__________________
直角三角形有_________________
△AOD≌____________≌____________≌_____________
由此可以得出菱形的对角线__________________
每一条对角线________________.
3. 菱形是轴对称图形
它的对称轴是_____________
4. 按图示的虚线折纸
然后连接ABCD可得菱形
由此可以得到_____________的四边形是菱形
5. 木工做菱形窗棂时总要保持四条边框一样长
道理是_____________
6. 如图
平行四边形ABCD的两条对角线AC、 BD相交于点O
AB=
AO=1
OB=2
则AC、BD的位置关系是________________
四边形ABCD是菱形的道理是________
自主学习
1.菱形的周长为20 cm
两邻角的比为1:2
则较短对角线的长是_____________;一组对边的距离是____________. 2.已知菱形的对角线长分别为12m和16m
求菱形的高
3.如图
两条等宽的长纸条倾斜地重叠着
试证重叠部分ABCD为菱形
4.如图
△ABC中
AB=AC
AD是角平分线
E为AD延长线上一点
CF//BE交AD于F
连接BF、CE
求证:四边形BECF是菱形
5.如图
△ABC中
∠C=90°
AD平分∠BAC
ED⊥BC
DF//AB
求证:AD与EF互相垂直平分
6.作菱形ABCD
使AC=5cm
∠BAD=60°.
7.四边形ABCD中
AB=BC=CD=DA
∠BAD=120°
M为BC上的点
若△AMN有一角等于60°
求证:△AMN为等边三角形
8.如图
菱形ABCD的对角线AC与BD相交于O
∠ABC≠90°
则图中的全等三角形共有()
A.42对
B.6对
C.8对
D.12对
小结:菱形是特殊的平行四边形
它有什么性质?
边:对边平行;邻边相等;四条边都相等.角:对角相等、邻角互外.
对角线:对角线互相平分
互相垂直
每条对角线平分一组对角
菱形常用的判定方法:
1.一组邻边相等的平行四边形.
2.四条边相等的四边形.
3.对角线互相垂直的平行四边形.
课后作业:《畅游数学》第四章第3节
四、作业
1.已知菱形的两条对角线长分别是6cm和8cm.求菱形的周长和面积.2.已知菱形的周长为20cm
两个相邻的角的度数的比为1∶2
求较长的对角线长.
3.求证:菱形对角线交点到各边距离相等.
4.求证:有一条对角线平分一个内角的平行四边形是菱形.
5.在ABCD中
∠A的平分线与BC边相交于点E
∠B的平分线与AD边相交于点F.求证:四边形ABEF是菱形.6.作菱形ABCD
使AC=5cm
∠BAD=60°.
9.如图
DE是□ABCD中∠ADC的平分线
EF//AD交DC于F.
(1) 求证:四边形AEFD是菱形
(2) 如果∠A=60°
AD=5
求菱形AEFD的面积
如图
△ABC中
∠A=90°
∠B的平分线交AC于D
AH、DF都垂直于BC
H、F为垂足
求证:四边形AEFD为菱形。

相关文档
最新文档