九年级数学:圆中考演练

合集下载

九年级数学上册(中考题型专练)(人教版)圆的基本概念和性质(四大类型)(原卷版)

九年级数学上册(中考题型专练)(人教版)圆的基本概念和性质(四大类型)(原卷版)

九年级数学上册(中考题型专练)(人教版)圆的基本概念和性质(四大类型)(原卷版)【题型1 圆的有关概念及性质】【题型2 确定圆的条件】【题型3 圆中角度计算】【题型4 圆中线段长度的计算】【题型1 圆的有关概念】1.(藤县期末)已知⊙O中最长的弦为10,则⊙O的半径是()A.10B.20C.5D.152.(遵化市期末)车轮滚动一周,求所行的路程,就是求车轮的()A.直径B.周长C.面积D.半径3.(华阴市期末)有一个圆的半径为5,则该圆的弦长不可能是()A.1B.4C.10D.114.(攸县期末)下列说法:(1)长度相等的弧是等弧,(2)相等的圆心角所对的弧相等,(3)劣弧一定比优弧短,(4)直径是圆中最长的弦.其中正确的有()A.1个B.2个C.3个D.4个5.(长沙县校级期中)如图,已知A,B,C,D四点都在⊙O上,则⊙O中的弦的条数为()A.2B.3C.4D.56.(越城区期中)如图中的数轴可以度量的直径,则圆形图片的直径是()A.5﹣1B.5﹣(﹣1)C.﹣5﹣1D.﹣5﹣(﹣1)7.(宜州区期末)下列4个说法中:①直径是弦;②弦是直径;③任何一条直径所在的直线都是圆的对称轴;④弧是半圆;正确的有()A.1个B.2个C.3个D.4个8.(河东区校级月考)下列说法正确的有()①圆中的线段是弦;②直径是圆中最长的弦;③经过圆心的线段是直径;④半径相等的两个圆是等圆;⑤长度相等的两条弧是等弧;⑥弧是半圆,半圆是弧.A.2个B.3个C.4个D.5个9.(2022秋•江阴市校级月考)下列说法错误的是()A.直径是圆中最长的弦B.半径相等的两个半圆是等弧C.面积相等的两个圆是等圆D.半圆是圆中最长的弧10.(莱阳市期末)东汉初年,我国的《周髀算经》里就有“径一周三”的古率,提出了圆的直径与周长之间存在一定的比例关系.将图中的半圆弧形铁丝()向右水平拉直(保持M端不动),根据该古率,与拉直后铁丝N端的位置最接近的是()A.点A B.点B C.点C D.点D11.(2022秋•天山区校级期中)下列说法中,不正确的是()A.直径是最长的弦B.同圆中,所有的半径都相等C.圆既是轴对称图形又是中心对称图形D.长度相等的弧是等弧12.(2022秋•巴东县期中)如图,图中的弦共有()A.1条B.2条C.3条D.4条13.(2022秋•和平区校级期中)自行车车轮要做成圆形,实际上是根据圆的以下哪个特征()A.圆是轴对称图形B.圆是中心对称图形C.圆上各点到圆心的距离相等D.直径是圆中最长的弦14.(2022春•单县期末)下列说法,其中正确的有()①过圆心的线段是直径②圆上的一条弧和经过这条弧的端点的两条半径组成的图形叫做扇形③大于半圆的弧叫做劣弧④圆心相同,半径不等的圆叫做同心圆A.1个B.2个C.3个D.4个15.(2022秋•吴江区校级月考)圆有()条对称轴.A.0B.1C.2D.无数16.(2022春•永州期中)某公园计划砌一个形状如图(1)所示的喷水池,后来有人建议改为图(2)的形状,且外圆的直径不变,喷水池边沿的宽度、高度不变,你认为砌喷水池的边沿()A.图(1)需要的材料多B.图(2)需要的材料多C.图(1)、图(2)需要的材料一样多D.无法确定17.(潍坊一模)如图,AB是⊙O的直径,D、C在⊙O上,AD∥OC,∠DAB=60°,连接AC,则∠DAC等于()A.15°B.30°C.45°D.60°【题型2 确定圆的条件】18.(阜宁县校级月考)已知AB=7cm,则过点A,B,且半径为3cm的圆有()A.0个B.1个C.2个D.无数个【题型3 点与圆的位置关系】19.(2023春•沭阳县月考)已知⊙O的半径为4cm.若点P到圆心O的距离为3cm,则点P()A.在⊙O内B.在⊙O上C.在⊙O外D.无法确定20.(2022秋•余姚市期末)已知圆的半径为5cm,同一平面内一点到圆心的距离是6cm,则这点在()A.圆外B.圆上C.圆内D.不能确定21.(2022秋•通榆县期中)如图,在⊙O中,点A在圆内,点B在圆上,点C 在圆外,若OA=3,OC=5,则OB的长度可能为(写出一个即可).【题型4 圆中角度计算】22.(2020秋•金牛区期末)如图,在⊙O中,AB是直径,AC是弦,连接OC,若∠ACO=25°,则∠BOC的度数是()A.40°B.50°C.55°D.60°23.(2022秋•仓山区校级月考)如图所示,MN为⊙O的弦,∠N=50°,则∠MON的度数为()A.40°B.50°C.80°D.100°24.(2022秋•丰县月考)如图,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB,∠AOC=84°,则∠E等于()A.42°B.28°C.21°D.20°25.(2022秋•玄武区月考)如图:AB为⊙O的直径,CD是⊙O的弦,AB、CD的延长线交于E点,已知AB=2DE,∠E=16°,则∠AOC的大小是°.26.如图,在⊙O中,半径OA⊥OB,∠B=28°,求∠BOC的度数.【题型5 圆中线段长度的计算】27.(2022秋•通榆县期中)如图,点B,E在半圆O上,四边形OABC,四边形ODEF均为矩形.若AB=3,BC=4,则DF的长为.28.(2022秋•灌云县月考)如图,圆O的周长为4π,B是弦CD上任意一点(与C,D不重合),过B作OC的平行线交OD于点E,则EO+EB=.(用数字表示)29.(2022秋•邗江区期中)如图,半圆O的直径AB=8,半径OC⊥AB,D为弧AC上一点,DE⊥OC,DF⊥OA,垂足分别为E、F,求EF的长.。

九年级数学上册第24章圆中考演练课件新版新人教版

九年级数学上册第24章圆中考演练课件新版新人教版

本章中考演练
(2)过点 O 作 OH⊥AF,垂足为 H,则∠ODE=∠DEH=∠OHE=90°, ∴四边形 ODEH 为矩形,∴OD=EH,OH=DE. 设 AH=x,∵DE+EA=8,OD=10, ∴EA=10-x,OH=DE=8-(10-x)=x-2.
在 Rt△AOH 中,由勾股定理知 AH2+OH2=OA2,
本章中考演练
10.2016·吉林 如图 24-Y-9,四边形 ABCD 内接于⊙O,∠DAB =130°,连接 OC,P 是半径 OC 上任意一点,连接 DP,BP,则∠BPD
答案不唯一,在50°~100°之间(包括50°和100°)任选一个
的度数可能为_度__数_即__可__,_如__6_0_°_______________________________.(写 出一个即可)
∠BAD=60°.故选 C.
本章中考演练
3.2016·南京 已知正六边形的边长为 2,则它的内切圆的半径
为( B )
A.1
B. 3
C.2
D.2 3
【解析】如图,由正六边形的性质知,△AOB 为等边三角形,
所以 OA=OB=AB=2,AC=1,由勾股定理,得内切圆半径 OC= 3.
本章中考演练
4.2016·长春 如图 24-Y-3,PA,PB 是⊙O 的切线,切点分别
角为 120°的扇形,若圆锥的底面圆半径是 5,则圆锥的母线 l=
__3___5___.
图 24-Y-10
本章中考演练
【解析】圆锥的侧面展开图是扇形,且扇形的弧长等于圆锥底面圆的周长,
扇形的半径等于圆锥的母线,即1201π80×l=2π× 5,解得 l=3 5.
本章中考演练
12.2016·连云港 如图 24-Y-11,⊙P 的半径为 5,A,B 是 圆上任意两点,且 AB=6,以 AB 为边作正方形 ABCD(点 D,P 在直线 AB 两侧).若 AB 边绕点 P 旋转一周,则 CD 边扫过的面积为___9_π____.

九年级数学上册 圆专题训练——2024年中考真题汇编含解析

九年级数学上册  圆专题训练——2024年中考真题汇编含解析

九年级数学上册圆专题训练——2024年中考真题汇编一、单选题1.(2024·广东广州·中考真题)如图,圆锥的侧面展开图是一个圆心角为72︒的扇形,若扇形的半径l 是5,则该圆锥的体积是()A .π8B .π8C .D 2.(2024·黑龙江牡丹江·中考真题)如图,四边形ABCD 是O 的内接四边形,AB 是O 的直径,若20BEC ∠=︒,则ADC ∠的度数为()A .100︒B .110︒C .120︒D .130︒3.(2024·内蒙古包头·中考真题)如图,在扇形AOB 中,80AOB ∠=︒,半径3OA =,C 是 AB 上一点,连接OC ,D 是OC 上一点,且OD DC =,连接BD .若BD OC ⊥,则 AC 的长为()A .π6B .π3C .π2D .π4.(2024·四川广元·中考真题)如图,已知四边形ABCD 是O 的内接四边形,E 为AD 延长线上一点,128AOC ∠=︒,则CDE ∠等于()A .64︒B .60︒C .54︒D .52︒5.(2024·内蒙古赤峰·中考真题)如图,AD 是O 的直径,AB 是O 的弦,半径OC AB ⊥,连接CD ,交OB 于点E ,42BOC ∠=︒,则OED ∠的度数是()A .61︒B .63︒C .65︒D .67︒6.(2024·吉林·中考真题)如图,四边形ABCD 内接于O ,过点B 作BE AD ∥,交CD 于点E .若50BEC ∠=︒,则ABC ∠的度数是()A .50︒B .100︒C .130︒D .150︒7.(2024·河北·中考真题)扇文化是中华优秀传统文化的组成部分,在我国有着深厚的底蕴.如图,某折扇张开的角度为120︒时,扇面面积为S 、该折扇张开的角度为n ︒时,扇面面积为n S ,若n m S S =,则m 与n 关系的图象大致是()A .B .B .C .D .8.(2024·重庆·中考真题)如图,在矩形ABCD 中,分别以点A 和C 为圆心,AD 长为半径画弧,两弧有且仅有一个公共点.若4=AD ,则图中阴影部分的面积为()A .328π-B .4π-C .324π-D .8π-9.(2024·甘肃临夏·中考真题)如图,AB 是O 的直径,35E ∠=︒,则BOD ∠=()A .80︒B .100︒C .120︒D .110︒10.(2024·四川泸州·中考真题)如图,EA ,ED 是O 的切线,切点为A ,D ,点B ,C 在O 上,若236BAE BCD ∠+∠=︒,则E ∠=()A .56︒B .60︒C .68︒D .70︒11.(2024·四川宜宾·中考真题)如图,AB 是O 的直径,若60CDB ∠=︒,则ABC ∠的度数等于()A .30︒B .45︒C .60︒D .90︒12.(2024·云南·中考真题)某校九年级学生参加社会实践,学习编织圆锥型工艺品.若这种圆锥的母线长为40厘米,底面圆的半径为30厘米,则该圆锥的侧面积为()A .700π平方厘米B .900π平方厘米C .1200π平方厘米D .1600π平方厘米13.(2024·湖南·中考真题)如图,AB ,AC 为O 的两条弦,连接OB ,OC ,若45A ∠=︒,则BOC ∠的度数为()A .60︒B .75︒C .90︒D .135︒14.(2024·贵州·中考真题)如图,在扇形纸扇中,若150AOB ∠=︒,24OA =,则 AB 的长为()A .30πB .25πC .20πD .10π15.(2024·福建·中考真题)如图,已知点,A B 在O 上,72AOB ∠=︒,直线MN 与O 相切,切点为C ,且C 为 AB 的中点,则ACM ∠等于()A .18︒B .30︒C .36︒D .72︒16.(2024·湖北·中考真题)AB 为半圆O 的直径,点C 为半圆上一点,且50CAB ∠=︒.①以点B 为圆心,适当长为半径作弧,交,AB BC 于,D E ;②分别以DE 为圆心,大于12DE 为半径作弧,两弧交于点P ;③作射线BP ,则ABP ∠=()A .40︒B .25︒C .20︒D .15︒17.(2024·江苏苏州·中考真题)如图,矩形ABCD 中,AB =,1BC =,动点E ,F 分别从点A ,C 同时出发,以每秒1个单位长度的速度沿AB ,CD 向终点B ,D 运动,过点E ,F 作直线l ,过点A 作直线l 的垂线,垂足为G ,则AG 的最大值为()AB C .2D .118.(2024·安徽·中考真题)若扇形AOB 的半径为6,120AOB ∠=︒,则 AB 的长为()A .2πB .3πC .4πD .6π19.(2024·江苏连云港·中考真题)如图,将一根木棒的一端固定在O 点,另一端绑一重物.将此重物拉到A 点后放开,让此重物由A 点摆动到B 点.则此重物移动路径的形状为()A .倾斜直线B .抛物线C .圆弧D .水平直线20.(2024·甘肃·中考真题)如图,点A ,B ,C 在O 上,AC OB ⊥,垂足为D ,若35A ∠=︒,则C ∠的度数是()A .20︒B .25︒C .30︒D .35︒21.(2024·四川凉山·中考真题)数学活动课上,同学们要测一个如图所示的残缺圆形工件的半径,小明的解决方案是:在工件圆弧上任取两点,A B ,连接AB ,作AB 的垂直平分线CD 交AB 于点D ,交 AB 于点C ,测出40cm 10cm AB CD ==,,则圆形工件的半径为()A .50cmB .35cmC .25cmD .20cm22.(2024·云南·中考真题)如图,CD 是O 的直径,点A 、B 在O 上.若 AC BC=,36AOC ∠= ,则D ∠=()A .9B .18C .36oD .4523.(2024·四川广安·中考真题)如图,在等腰三角形ABC 中,10AB AC ==,70C ∠=︒,以AB 为直径作半圆,与AC ,BC 分别相交于点D ,E ,则 DE 的长度为()A .π9B .5π9C .10π9D .25π924.(2024·四川遂宁·中考真题)工人师傅在检查排污管道时发现淤泥堆积.如图所示,排污管道的横截面是直径为2米的圆,为预估淤泥量,测得淤泥横截面(图中阴影部分)宽AB 为1米,请计算出淤泥横截面的面积()A .13π64B .13π62C .2π33D .11π64-25.(2024·重庆·中考真题)如图,AB 是O 的弦,OC AB ⊥交O 于点C ,点D 是O 上一点,连接BD ,CD .若28D ∠=︒,则OAB ∠的度数为()A .28︒B .34︒C .56︒D .62︒二、填空题26.(2024·内蒙古呼伦贝尔·中考真题)为了促进城乡协调发展,实现共同富裕,某乡镇计划修建公路.如图、 AB 与 CD是公路弯道的外、内边线,它们有共同的圆心O ,所对的圆心角都是72︒,点A ,C ,O 在同一条直线上,公路弯道外侧边线比内侧边线多36米,则公路宽AC 的长是米.(π取3.14,计算结果精确到0.1)27.(2024·吉林长春·中考真题)一块含30︒角的直角三角板ABC 按如图所示的方式摆放,边AB 与直线l 重合,12cm AB =.现将该三角板绕点B 顺时针旋转,使点C 的对应点C '落在直线l 上,则点A 经过的路径长至少为cm .(结果保留π)28.(2024·天津·中考真题)如图,在每个小正方形的边长为1的网格中,点A ,F ,G 均在格点上.(1)线段AG 的长为;(2)点E 在水平网格线上,过点A ,E ,F 作圆,经过圆与水平网格线的交点作切线,分别与AE ,AF 的延长线相交于点B ,C ,ABC 中,点M 在边BC 上,点N 在边AB 上,点P 在边AC 上.请用无刻度...的直尺,在如图所示的网格中,画出点M ,N ,P ,使MNP △的周长最短,并简要说明点M ,N ,P 的位置是如何找到的(不要求证明).29.(2024·黑龙江牡丹江·中考真题)如图,在O 中,直径AB CD ⊥于点E ,6,1CD BE ==,则弦AC 的长为.30.(2024·吉林·中考真题)某新建学校因场地限制,要合理规划体育场地,小明绘制的铅球场地设计图如图所示,该场地由O 和扇形OBC 组成,,OB OC 分别与O 交于点A ,D .1m OA =,10m OB =,40AOD ∠=︒,则阴影部分的面积为2m (结果保留π).31.(2024·内蒙古包头·中考真题)如图,四边形ABCD 是O 的内接四边形,点O 在四边形ABCD 内部,过点C 作O 的切线交AB 的延长线于点P ,连接,OA OB .若140AOB ∠=︒,35BCP ∠=︒,则ADC ∠的度数为.32.(2024·黑龙江大兴安岭地·中考真题)如图,ABC 内接于O ,AD 是直径,若25B ∠=︒,则CAD ∠︒.33.(2024·黑龙江绥化·中考真题)用一个圆心角为126︒,半径为10cm 的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为cm .三、解答题34.(2024·青海·中考真题)如图,直线AB 经过点C ,且OA OB =,CA CB =.(1)求证:直线AB 是O 的切线;(2)若圆的半径为4,30B ∠=︒,求阴影部分的面积.35.(2024·江西·中考真题)如图,AB 是半圆O 的直径,点D 是弦AC 延长线上一点,连接BD BC ,,60D ABC ∠=∠=︒.(1)求证:BD 是半圆O 的切线;(2)当3BC =时,求 AC 的长.36.(2024·安徽·中考真题)如图,O 是ABC 的外接圆,D 是直径AB 上一点,ACD ∠的平分线交AB 于点E ,交O 于另一点F ,FA FE =.(1)求证:CD AB ⊥;(2)设FM AB ⊥,垂足为M ,若1OM OE ==,求AC 的长.37.(2024·甘肃临夏·中考真题)根据背景素材,探索解决问题.平面直角坐标系中画一个边长为2的正六边形ABCDEF背景素材六等分圆原理,也称为圆周六等分问题,是一个古老而经典的几何问题,旨在解决如何使用直尺和圆规将一个圆分成六等份的问题.这个问题由欧几里得在其名著《几何原本》中详细阐述.已知条件点C 与坐标原点O 重合,点D 在x 轴的正半轴上且坐标为()2,0操作步骤①分别以点C ,D 为圆心,CD 长为半径作弧,两弧交于点P ;②以点P 为圆心,PC 长为半径作圆;③以CD 的长为半径,在P 上顺次截取 DE EF FA AB ===;④顺次连接DE ,EF ,FA ,AB ,BC ,得到正六边形ABCDEF .问题解决任务一根据以上信息,请你用不带刻度的直尺和圆规,在图中完成这道作图题(保留作图痕迹,不写作法)任务二将正六边形ABCDEF 绕点D 顺时针旋转60︒,直接写出此时点E 所在位置的坐标:______.38.(2024·甘肃临夏·中考真题)如图,直线l 与O 相切于点D ,AB 为O 的直径,过点A 作AE l ⊥于点E ,延长AB 交直线l 于点C .(1)求证:AD 平分CAE ∠;(2)如果1BC =,3DC =,求O 的半径.39.(2024·黑龙江大兴安岭地·中考真题)如图,在正方形网格中,每个小正方形的边长都是1个单位长度,在平面直角坐标系中,ABC 的三个顶点坐标分别为()1,1A -,()2,3B -,()5,2C -.(1)画出ABC 关于y 轴对称的111A B C △,并写出点1B 的坐标;(2)画出ABC 绕点A 逆时针旋转90︒后得到的22AB C ,并写出点2B 的坐标;(3)在(2)的条件下,求点B 旋转到点2B 的过程中所经过的路径长(结果保留π)40.(2024·广东深圳·中考真题)如图,在ABD △中,AB BD =,O 为ABD △的外接圆,BE 为O 的切线,AC 为O 的直径,连接DC 并延长交BE 于点E .(1)求证:DE BE ⊥;(2)若AB =5BE =,求O 的半径.41.(2024·吉林·中考真题)图①、图②均是44⨯的正方形网格,每个小正方形的顶点称为格点.点A ,B ,C ,D ,E ,O 均在格点上.图①中已画出四边形ABCD ,图②中已画出以OE 为半径的O ,只用无刻度的直尺,在给定的网格中按要求画图.(1)在图①中,面出四边形ABCD 的一条对称轴.(2)在图②中,画出经过点E 的O 的切线.42.(2024·广东·中考真题)如图,在ABC 中,90C ∠=︒.(1)实践与操作:用尺规作图法作A ∠的平分线AD 交BC 于点D ;(保留作图痕迹,不要求写作法)(2)应用与证明:在(1)的条件下,以点D 为圆心,DC 长为半径作D .求证:AB 与D 相切.43.(2024·广东·中考真题)综合与实践【主题】滤纸与漏斗【素材】如图1所示:①一张直径为10cm 的圆形滤纸;②一只漏斗口直径与母线均为7cm 的圆锥形过滤漏斗.【实践操作】步骤1:取一张滤纸;步骤2:按如图2所示步骤折叠好滤纸;步骤3:将其中一层撑开,围成圆锥形;步骤4:将围成圆锥形的滤纸放入如图1所示漏斗中.【实践探索】(1)滤纸是否能紧贴此漏斗内壁(忽略漏斗管口处)?用你所学的数学知识说明.(2)当滤纸紧贴漏斗内壁时,求滤纸围成圆锥形的体积.(结果保留π)参考答案:1.D【分析】本题考查了弧长公式,圆锥的体积公式,勾股定理,理解圆锥的底面周长与侧面展开图扇形的弧长相等是解题关键,设圆锥的半径为r ,则圆锥的底面周长为2r π,根据弧长公式得出侧面展开图的弧长,进而得出1r =,再利用勾股定理,求出圆锥的高,再代入体积公式求解即可.【详解】解:设圆锥的半径为r ,则圆锥的底面周长为2r π,圆锥的侧面展开图是一个圆心角为72︒的扇形,且扇形的半径l 是5,∴ ∴r ∴∴∴2∠∵AB 是O 的直径,∴90ACB ∠=︒,∵20BEC ∠=︒,∴20CAB BEC ∠=∠=︒∴9070ABC BAC ∠=︒-∠=︒∵四边形ABCD 是O 的内接四边形,∴180110ADC ABC ∠=︒-∠=︒,故选:B3.B【分析】本题考查了弧长公式,等边三角形的判定与性质,线段垂直平分线的性质;连接BC ,根据OD DC =,BD OC ⊥,易证OBC △是等腰三角形,再根据OB OC =,推出OBC △是等边三角形,得到60BOC ∠=︒,即可求出20AOC ∠=︒,再根据弧长公式计算即可.∴∴ ∴△∴ ∴ ∴4CDE ABC ∠=∠,即可得到答案.【详解】解:ABC ∠ 是圆周角,与圆心角AOC ∠对相同的弧,且128AOC ∠=︒,111286422ABC AOC ∴∠=∠=⨯︒=︒,又 四边形ABCD 是O 的内接四边形,180ABC ADC ∴∠+∠=︒,又180CDE ADC ∠+∠=︒ ,64CDE ABC ∴∠=∠=︒,故选:A .5.B【分析】本题考查了垂径定理,圆周角定理以及三角形的外角性质.先根据垂径定理,求得42AOC BOC ∠=∠=︒,利用圆周角定理求得1212D AOC ∠=∠=︒,再利用三角形的外角性质即可求解.∴∴∵∴∴6∴∴∴7【分析】本题考查正比例函数的应用,扇形的面积,设该扇面所在圆的半径为R ,根据扇形的面积公式表示出23R S π=,进一步得出2360120n S n n R S π==,再代入n m S S =即可得出结论.掌握扇形的面积公式是解题的关键.【详解】解:设该扇面所在圆的半径为R ,221203603R R S ππ==,∴23R S π=,∵该折扇张开的角度为n ︒时,扇面面积为n S ,∴223360360360120n R S R n n n nS S π=⨯⨯===π,∴1120120120n S m n S nS n S ====,∴m 是n 的正比例函数,∵0n ≥,8出在9270AOD E ∴∠=∠=︒,18070110BOD ︒∴∠=-︒=︒.故选:D .10.C【分析】本题考查了圆的内接四边形的性质,切线长定理,等腰三角形的性质等知识点,正确作辅助线是解题关键.根据圆的内接四边形的性质得180BAD BCD ∠+∠=︒,由236BAE BCD ∠+∠=︒得56EAD ∠=︒,由切线长定理得EA ED =,即可求得结果.【详解】解:如图,连接AD ,∵四边形ABCD 是O 的内接四边形,∴180BAD BCD ∠+∠=︒,∵236BAE BCD ∠+∠=︒,∴()236180BAE BCD BAD BCD ∠+∠-∠+∠=︒-︒,即56BAE BAD ∠-∠=︒,∴56EAD ∠=︒,∵EA ,ED 是O 的切线,根据切线长定理得,∴EA ED =,∴56EAD EDA ∠=∠=︒,∴180180565668E EAD EDA ∠=︒-∠-∠=︒-︒-︒=︒.故选:C .11.A【分析】本题考查了直径所对的圆周角为直角,同弧或等弧所对的圆周角相等.根据直径所对的圆周角为直角得到90ACB ∠=︒,同弧或等弧所对的圆周角相等得到60CDB A ∠=∠=︒,进一步计算即可解答.【详解】解:AB 是O 的直径,90ACB ∴∠=︒,60CDB ∠=︒ ,60A CDB ∴∠=∠=︒,9030ABC A ∴∠=︒-∠=︒,故选:A .12.C【分析】本题考查了圆锥的侧面积,先求出圆锥底面圆的周长,再根据圆锥的侧面积计算公式计算即可求解,掌握圆锥侧面积计算公式是解题的关键.【详解】解:圆锥的底面圆周长为2π3060π⨯=厘米,∴圆锥的侧面积为160π401200π2⨯⨯=平方厘米,故选:C .13.C【分析】本题考查了圆周角定理,熟知在同圆或等圆中,一条弧所对的圆周角等于它所对的圆心角的∴ 14∴15∴∵∴1(18036)722OCA ∠=︒-︒=︒∵直线MN 与O 相切,∴90OCM ∠=︒,∴18ACM OCM OCA ∠=∠-∠=︒故选:A .16.C【分析】本题主要考查圆周角定理以及角平分线定义,根据直径所对的圆周角是直角可求出=40ABC ∠︒,根据作图可得1202ABP ABC ∠==︒,故可得答案【详解】解:∵AB 为半圆O 的直径,∴90ACB ∠=︒,∵50CAB ∠=︒,∴=40ABC ∠︒,∴17的∴∴∵AB CD ,EAO FCO ∴∠=∠,在AOE △与COF 中,AE CF EAO FCO OA OC =⎧⎪∠=∠⎨⎪=⎩(SAS)AOE COF ∴△≌△,AOE COF ∴∠=∠,E ∴,O ,F 共线,AG EF ⊥ ,H 是OB 中点,∴在Rt AGO △中,1122GH AO ==,G ∴的轨迹为以H 为圆心,12为半径即AO 为直径的圆弧.∴AG 的最大值为AO 的长,即1AG AO ==.181920∴∵∴∴9020C O ∠=︒-∠=︒.故选A .21.C【分析】本题考查垂径定理,勾股定理等知识.由垂径定理,可得出BD 的长;设圆心为O ,连接OB ,在Rt OBD △中,可用半径OB 表示出OD 的长,进而可根据勾股定理求出得出轮子的半径,即可得出轮子的直径长.【详解】解:∵CD 是线段AB 的垂直平分线,∴直线CD 经过圆心,设圆心为O ,连接OB .Rt OBD △中,120cm 2BD AB ==,(22∠∵∴∴23.C【分析】本题考查了求弧长.根据等腰三角形的性质和三角形的内角和定理求得A ∠的度数,证明OE AC ∥,再由OA OD =,再由等腰三角形的性质和平行线的性质求得DOE ∠的度数,利用弧长公式即可求解.【详解】解:连接OD ,OE ,∵AB AC =,∴70ABC C ∠=∠=︒,∵OE OB =,∴70OEB B ∠=∠=︒,∴70OEB C ∠=∠=︒∴OE AC ∥,在ABC 中,180A ABC C ∠+∠+∠=︒,∴180180707040A ABC C ∠=︒-∠-∠=︒-︒-︒=︒,又152OA OD AB ===,∵OE AC∴40A ADO DOE ∠=∠=︒=∠,∴ DE的长度为40π510π1809⨯=,故选:C .24.A 【分析】本题考查了垂径定理,勾股定理,等边三角形的判定和性质,求不规则图形的面积,过点O 作OD AB ⊥于D ,由垂径定理得11m 22AD BD AB ===,由勾股定理得3m 2OD =,又根据圆的直径为2米可得OA OB AB ==,得到AOB 为等边三角形,即得60AOB ∠=︒,再根据淤泥横截面的面积AOB AOB S S =- 扇形即可求解,掌握垂径定理及扇形面积计算公式是解题的关键.【详解】解:过点O 作OD AB ⊥于D ,则11m 22AD BD AB ===,90ADO ∠=︒,∵圆的直径为2米,∴1m OA OB ==,∴在Rt AOD 中,OD ===,∵OA OB AB ==,∴AOB 为等边三角形,∴60AOB ∠=︒,∴淤泥横截面的面积2260π1111πm 36026AOBAOB S S ⎛⨯=-=-⨯= 扇形,解得909028.73.14AC π=≈≈,故答案为:28.7.27.203π【分析】本题主要考查了旋转的性质、弧长公式等知识点,掌握弧长公式成为解题的关键.由旋转的性质可得60ABC A BC '∠=∠=︒,即120A BA '∠=︒,再根据点A 经过的路径长至少为以B 为圆心,以AB 为半径的圆弧的长即可解答.【详解】解:∵将该三角板绕点B 顺时针旋转,使点C 的对应点C '落在直线l 上,∴60ABC A BC '∠=∠=︒,即120A BA '∠=︒,∴点A 经过的路径长至少为12010201803ππ︒⋅⋅=︒.故答案为:203π.28.图见解析,说明见解析((、P 的(D ,29.【分析】本题考查了垂径定理和勾股定理等知识,熟练掌握垂径定理,由勾股定理得出方程是解题的关键.由垂径定理得132CE ED CD ===,设O 的半径为r ,则1OE OB EB r =-=-,在Rt OED 中,由勾股定理得出方程,求出=5r ,即可得出9AE =,在Rt AEC 中,由勾股定理即可求解.【详解】解:∵,6AB CD CD ⊥=,132CE ED CD ∴===,设O 的半径为r ,则1OE OB EB r =-=-,在Rt OED 中,由勾股定理得:222OE DE OD +=,即222(1)3r r -+=,解得:=5r ,5,4OA OE ∴==,9AE OA OE ∴=+=,在3031∠∵∴()180202OAB OBA AOB ∠=∠=︒-∠=︒,OCB OBC ∠=∠,∵CP 是切线,∴90OCP ∠=︒,即90OCB BCP ∠+∠=︒,∵35BCP ∠=︒,∴55OBC OCB ∠=∠=︒,∴75ABC ABO OBC ∠=∠+∠=︒,∵四边形ABCD 是O 的内接四边形,∴180105ADC ABC ∠=︒-∠=︒,故答案为:105︒.32.65【分析】本题考查了圆周角定理,直角三角形的两个锐角互余,连接CD ,根据直径所对的圆周角是直角得出=90ACD ∠︒,根据同弧所对的圆周角相等得出25D B ∠=∠=︒,进而根据直角三角形的两个∵∴∵∴∴3334.(1)详见解析(2) 83S π=阴影【分析】本题考查了切线的判定和性质、直角三角形的性质和勾股定理、扇形面积的计算等知识,解题的关键是掌握切线的判定与性质.(1)利用等腰三角形的性质证得OC AB ⊥,利用切线的判定定理即可得到答案;(2)在Rt OCB △中,利用直角三角形的性质和勾股定理求得8OB =,B C =OCB OCD S S S =- 阴影扇形,计算即可求解.【详解】(1)证明:连接OC ,∴(∵∴∴在∴∴∴S 35(2)2π【分析】本题考查了直径所对的圆周角为直角,等边三角形的判定和性质,弧长公式,熟知相关性质和计算公式是解题的关键.(1)根据直径所对的圆周角为直角结合已知条件,可得30CAB ∠=︒,即可得90ABD Ð=°,进而可证得结论;(2)连接OC ,证明OBC △为等边三角形,求得120AOC ∠=︒,利用弧长公式即可解答.【详解】(1)证明: AB 是半圆O 的直径,90ACB ∴∠=︒,60D ABC ∠=∠=︒ ,9030CAB ABC ∴∠=︒-∠=︒,18090ABD CAB D ∴∠=︒-∠-∠=︒,∴(∴ l ∴36(2)(∠(可得出MA ,AE 的值,进一步求出OA ,BE ,再利用勾股定理即可求出AC .【详解】(1)证明:∵FA FE =,∴FAE AEF ∠=∠,又FAE ∠与BCE ∠都是 BF所对的圆周角,∴FAE BCE ∠=∠,∵AEF CEB ∠=∠,∴CEB BCE ∠=∠,∵CE 平分ACD ∠,∴ACE DCE ∠=∠,∵AB 是直径,∴90ACB ∠=︒,∴90CEB DCE BCE ACE ACB ∠+∠=∠+∠=∠=︒,故即(∴又∴∴在∴即37,为(【详解】解:任务一:如图,正六边形ABCDEF 即为所作;任务二:如图,由旋转可知2DE OD '==,∴4OE DE OD '=+=',∴()4,0E '.故答案为:()4,0.38.(1)见解析(2)4【分析】(1)连接OD ,根据切线的性质可得出OD l ⊥,结合题意可证OD AE ∥,即得出DAE ADO ∠=∠,再根据等边对等角可得出DAO ADO ∠=∠,即得出DAO DAE ∠=∠,即AD 平分CAE ∠;(2)设O 的半径为r ,则1OC OB BC r =+=+,OD r =.再根据勾股定理可列出关于r 的等式,求解即可.【详解】(1)证明:如图,连接OD .∵直线l 与O 相切于点D ,∴OD l ⊥.∵AE l ⊥,∴OD AE ∥,∴DAE ADO ∠=∠.∵OA OD =,∴DAO ADO ∠=∠,∴DAO DAE ∠=∠,即AD 平分CAE ∠;(2)解:设O 的半径为r ,则1OC OB BC r =+=+,OD r =.在Rt OCD △中,222OD CD OC +=,∴()22231r r +=+,解得:4r =,∴O 的半径为4.【点睛】本题考查切线的性质,等腰三角形的性质,同圆半径相等,平行线的判定和性质,角平分线的判定,勾股定理等知识.连接常用的辅助线是解题关键.39.(1)作图见解析,()12,3B 作图见解析,()23,0B -5π2【分析】本题考查了利用旋转变换作图,轴对称和扇形面积公式等知识,熟练掌握网格结构准确找出对应点的位置是解题的关键.(1)根据题意画出即可;关于y 轴对称点的坐标横坐标互为相反数,纵坐标不变;(2)根据网格结构找出点B 、C 以点A 为旋转中心逆时针旋转90︒后的对应点,然后顺次连接即可;(3)先求出5AB =90︒,利用弧长公式即可求出.【详解】(1)解:如图,111A B C △为所求;点1B 的坐标为()2,3,(2)如图,22AB C 为所求;()23,0B -,(3)22125AB =+=,点B 旋转到点2B 的过程中所经过的路径长90551802ππ⨯=.40.(1)见解析(2)35【分析】本题考查切线的性质,圆周角定理,中垂线的判定和性质,矩形的判定和性质:(1)连接BO 并延长,交AD 于点H ,连接OD ,易证BO 垂直平分AD ,圆周角定理,切线的性质,推出四边形BHDE 为矩形,即可得证;(2)由(1)可知5DH BE ==,勾股定理求出BH 的长,设O 的半径为r ,在Rt AOH △中,利用勾股定理进行求解即可.【详解】(1)证明:连接BO 并延长,交AD 于点H ,连接OD ,∵AB BD =,OA OD =,∴BO 垂直平分AD ,∴BH AD ⊥,AH DH =,∵BE 为O 的切线,∴HB BE ⊥,∵AC 为O 的直径,∴90ADC ∠=︒,∴四边形BHDE 为矩形,∴DE BE ⊥;(2)由(1)知四边形BHDE 为矩形,BH AD ⊥,AH DH =,∴∴设在41(2)(((2)解:如图所示,取格点G H 、,作直线GH ,则直线GH 即为所求;易证明四边形OGTH 是正方形,点E 为正方形OGTH 的中心,则OE GH ⊥.42.(1)见解析(2)证明见解析【分析】本题考查了尺规作角平分线,角平分线的性质定理,切线的判定等知识.熟练上述知识是解题的关键.(1)利用尺规作角平分线的方法解答即可;(2)如图2,作DE AB ⊥于E ,由角平分线的性质定理可得DE DC =,由DE 是半径,DE AB ⊥,可证AB 与D 相切.【详解】(1)解:如图1,AD 即为所作;(2)证明:如图2,作DE AB ⊥于E ,∵AD 是CAD ∠的平分线,DC AC ⊥,DE AB ⊥,∴DE DC =,⊥,∵DE是半径,DE AB相切.∴AB与D43.(1)能,见解析(2)3cm24【分析】本题考查了圆锥,解题的关键是:(((∴。

2023年九年级中考数学高频考点专题训练 圆的综合题(含解析)

2023年九年级中考数学高频考点专题训练 圆的综合题(含解析)

2023年中考数学高频考点专题训练--圆的综合题1.已知:△ABC内接于△O,直径AM平分△BAC.(1)如图1,求证AB=AC;(2)如图2,弦FG分别交AB、AC于点D、E,AE=BD,当△ADE+△DEC=90°时,连接CD,直径AM分别交DE、CD、BC于N、H、R,若CD△AB,求证:△NDC=△ACB;(3)在(2)的条件下,若DE长为√2,求△ACH的面积.2.在平面直角坐标系xOy中,对于点P,Q和图形G,给出如下定义:若图形G上存在一点C,使△PQC=90°,则称点Q为点P关于图形G的一个“直角联络点”,称Rt△PCQ为其对应的“联络三角形”.如图为点P关于图形G的一个“直角联络点”及其对应的“联络三角形”的示例.(1)已知点A(4,0),B(4,4)①在点Q1(2,2),Q2(4,﹣1)中,点O关于点A的“直角联络点”是;②点E的坐标为(2,m),若点E是点O关于线段AB的“直角联络点”,直接写出m的取值范围;(2)△T的圆心为(t,0),半径为√10,直线y=﹣x+2与x,y轴分别交于H,K两点,若在△T上存在一点P,使得点P关于△T的一个“直角联络点”在线段HK 上,且其对应的“联络三角形”是底边长为2的等腰三角形,直接写出t的取值范围.3.对于平面直角坐标系xOy中的点P和△C,给出如下定义:若△C上存在一个点M,使得PM = MC,则称点P为△C的“等径点”.已知点D (12,13),E(0,2√3),F (−2,0).(1)当△O的半径为1时,①在点D,E,F中,△O的“等径点”是;②作直线EF,若直线EF上的点T(m,n)是△O的“等径点”,求m的取值范围.(2)过点E作EG△EF交x轴于点G,若△EFG上的所有点都是某个圆的“等径点”,求这个圆的半径r的取值范围.4.问题背景:如图①,在四边形ADBC中,△ACB=△ADB=90°,AD=BD,探究线段AC,BC,CD之间的数量关系.小吴同学探究此问题的思路是:将△BCD绕点D,逆时针旋转90°到△AED处,点B,C分别落在点A,E处(如图②),易证点C,A,E在同一条直线上,并且△CDE 是等腰直角三角形,所以CE= √2CD,从而得出结论:AC+BC= √2CD.简单应用:(1)在图①中,若AC= √2,BC=2 √2,则CD=.(2)如图③,AB是△O的直径,点C、D在△上,AD̂= BD̂,若AB=13,BC=12,求CD的长.拓展规律:(3)如图④,△ACB=△ADB=90°,AD=BD,若AC=m,BC=n(m<n),求CD 的长(用含m,n的代数式表示)(4)如图⑤,△ACB=90°,AC=BC,点P为AB的中点,若点E满足AE= 1 3AC,CE=CA,点Q为AE的中点,则线段PQ与AC的数量关系是.5.如图,等边三角形ABC中,AB= 2√3,AH△BC于点H,过点B作BD△AB交线段AH的延长线于点D,连结CD. 点E为线段AD上一点(不与点A,D重合),过点E作EF△AB交BC于点F,以EF为直径作△O. 设AE的长为x.(1)求线段CD的长度.(2)当点E在线段AH上时,用含x的代数式表示EF的长度.(3)当△O与四边形ABDC的一边所在直线相切时,求所有满足条件的x的值. 6.如图1,⊙O是ΔABC的外接圆,AB是直径,D是⊙O外一点且满足∠DCA=∠B,连接AD.(1)求证:CD是⊙O的切线;(2)若AD⊥CD,AB=8,AD=6,求AC的长;(3)如图2,当∠DAB=45°时,AD与⊙O交于E点,试写出AC、EC、BC 之间的数量关系并证明.7.问题探究(1)如图1,在△ABC中,BC=8,D为BC上一点,AD=6,则△ABC面积的最大值是。

广东省2024年九年级中考数学一轮复习:圆 模拟练习(含解析)

广东省2024年九年级中考数学一轮复习:圆 模拟练习(含解析)

2024年广东省九年级数学一轮复习:圆模拟练习一、单选题1.(2023·广东广州·中考真题)如图,的内切圆与,,分别相切于点D,E,F,若的半径为r,,则的值和的大小分别为()A.2r,B.0,C.2r,D.0,2.(2023·广东·中考真题)如图,是的直径,,则()A.B.C.D.3.(2023·广东清远·二模)如图,在边长为4正方形中,点E在以B为圆心的弧上,射线交于F,连接,若,则( ).A.2B.C.D.4.(2023·广东河·一模)如图,为⊙O的直径,是⊙O的弦,点是上的一点,且.若,,则的长为( )A.B.C.D.5.(2023·广东湛江·一模)如图,、是的直径,弦,弧为,则的度数为()A.B.C.D.6.(2023·广东佛山·一模)如图,点A、B、C在上,,则()A.18°B.36°C.72°D.144°7.(2023·广东深圳·模拟预测)下列说法中正确的一项是()A.经过三点有且只有一个圆B.在圆中,长度相等的弦所对的圆心角相等C.有一组对边平行,一组对角相等的四边形是平行四边形D.有两条边相等的直角三角形全等8.(2023·广东清远·模拟预测)如图,是半的直径,点在半上,.是上的一个动点,连接,过点作于,连接.在点移动的过程中,的最小值为()A.B.C.D.29.(2023·广东云浮·一模)如图,切于C,点D从C出发,以每秒的速度沿方向运动,运动1秒时,运动2秒时长是( )A.B.C.D.10.(2023·广东深圳·二模)如图,在中,,,,D是上一动点,于E,交于点F,则的最大值是()A.B.C.D.11.(2023·广东阳江·二模)如果一个正多边形的中心角是,那么这个正多边形的边数是()A.4B.6C.8D.1012.(2023·广东广州·二模)如图,正六边形内接于,点是上的一点,则的度数为()A.B.C.D.13.(2023·广东深圳·模拟预测)如图,在中,,以点B为圆心,长为半径画弧,交边于点D,则的长为( )A.B.C.D.14.(2023·广东珠海·一模)如图,切于两点,若,的半径为,则阴影部分的面积为()A.B.C.D.二、填空题15.(2023·广东深圳·中考真题)如图,在中,为直径,C为圆上一点,的角平分线与交于点D,若,则°.16.(2023·广东东莞·一模)如图,四边形为的内接四边形,,则的度数为.17.(2023·广东广州·一模)如图,是的弦,交于点P,过点B的直线交的延长线于点C,若,,,则的长为.18.(2023·广东梅州·一模)如图,是上的三个点,,则度数是.19.(2023·广东东莞·一模)如图,在平面直角坐标系中,已知,以点C为圆心的圆与y轴相切,点A、B在x轴上,且.点P为上的动点,,则长度的最小值为.20.(2023·广东广州·一模)如图,在中,为直径,点M为延长线上的一点,与相切于点C,圆周上有另一点D与点C分居直径两侧,且使得,连接.现有下列结论:①与相切;②四边形是菱形;③;④.其中正确的结论是(填序号).21.(2023·广东揭阳·一模)一个正多边形的中心角为36°,则这个正多边形的内角和为度.22.(2023·广东东莞·三模)如图,和是两个完全重合的直角三角板,,斜边长为三角板绕直角顶点顺时针旋转,当点落在边上时,则点所转过的路径长为.23.(2023·广东潮州·一模)如图,正方形的边长为2,分别以为圆心,以正方形的边长为半径的圆相交于点,那么图中阴影部分的面积为.三、解答题24.(2023·广东广州·中考真题)如图,在平面直角坐标系v中,点,,所在圆的圆心为O.将向右平移5个单位,得到(点A平移后的对应点为C).(1)点D的坐标是___________,所在圆的圆心坐标是___________;(2)在图中画出,并连接,;(3)求由,,,首尾依次相接所围成的封闭图形的周长.(结果保留)25.(2023·广东·中考真题)综合探究如图1,在矩形中,对角线相交于点,点关于的对称点为,连接交于点,连接.(1)求证:;(2)以点为圆心,为半径作圆.①如图2,与相切,求证:;②如图3,与相切,,求的面积.26.(2023·广东东莞·一模)如图,在中,,延长到点D,以为直径作,交的延长线于点E,延长到点F,使.(1)求证:是的切线;(2)若的半径为5,,,求的长.27.(2023·广东汕头·一模)如图,内接于.是直径,过点作直线,且是的切线.(1)求证:.(2)设是弧的中点,连接交于点,过点作于点,交于点.①求证:.②若,,试求的长.28.(2023·广东肇庆·二模)如图,在中,,平分交于点,为上一点,经过点,的分别交,于点,连接交于点.(1)求证:是的切线;(2)若,半径为4,在圆O上取点P,使,求点P到直线的距离.29.(2023·广东茂名·一模)张师傅要将一张残缺的圆形轮片恢复原貌(如图),已知轮片的一条弦的垂直平分线交弧于点,交弦于点,测得,.(1)请你帮张师傅找出此残片所在圆的圆心(尺规作图,不写作法,保留作图痕迹);(2)求(1)中所作圆的半径.30.(2023·广东河·三模)【发现问题】爱好数学的小明在做作业时碰到这样的一道题目:如图,点为坐标原点,的半径为,点.动点在上,连接,作等边(,,为顺时针顺序),求的最大值;【解决问题】小明经过多次的尝试与探索,终于得到解题思路:在图中,连接,以为边在的左侧作等边,连接.()请你找出图中与相等的线段,并说明理由;()线段的最大值为.【灵活运用】()如图,在平面直角坐标系中,点的坐标为,点的坐标为,点为线段外一动点,且,,,求线段长的最大值及此时点的坐标.【迁移拓展】()如图③,,点是以为直径的半圆上不同于的一个动点,以为边作等边,请直接写出的最值.参考答案:1.D【分析】如图,连接.利用切线长定理,圆周角定理,切线的性质解决问题即可.【详解】解:如图,连接.∵的内切圆与,,分别相切于点D,E,F,∴,∴,,∴,∴.故选:D.【点睛】本题考查三角形的内切圆与内心,圆周角定理,切线的性质等知识,解题的关键是掌握切线的性质,属于中考常考题型.2.B【分析】根据圆周角定理可进行求解.【详解】解:∵是的直径,∴,∵,∴,∵,∴;故选B.【点睛】本题主要考查圆周角的相关性质,熟练掌握直径所对圆周角为直角是解题的关键.3.B【分析】如图,连接,过点B作于点H,根据圆的性质和等腰三角形的性质可定,再结合正方形的性质可得;再证可得,即;然后再根据勾股定理列方程即可解答.【详解】解:如图,连接,过点B作于点H,∵点E在以B为圆心的弧上,∴,∵,∴,∵四边形是正方形,∴,∴,∵,∴,∴,∴,在中,,∴,∴或(舍去).故选:B.【点睛】本题主要考查了圆的基本性质、全等三角形的判定与性质、等腰三角形的性质、勾股定理等知识点,灵活运用相关知识成为解答本题的关键.4.B【分析】连接,交于,根据垂径定理推论,再由垂径定理,再由勾股定理计算,的长,从而求得的长,此题考查了圆周角定理,垂径定理和勾股定理的性质,正确作出辅助线是解题的关键.【详解】解:连接,交于,∵,∴点是的中点,∴,,∴,∵,∴,∴,∴,∵为的直径,∴,∴,故选:.5.C【分析】连接,利用等边对等角,弦,圆心角,弧的关系,平行线的性质计算即可.【详解】连接,解:∵弧为,∴,∵,∴,∵,∴,故选:C.【点睛】本题考查了等边对等角,弦,圆心角,弧的关系,平行线的性质,熟练掌握平行线的性质,圆的性质是解题的关键.6.C【分析】本题考查圆周角定理,根据对边对等角,三角形的内角和定理,求出的度数,根据同弧所对的圆周角等于圆心角的一半,即可得出结果.【详解】解:∵点A、B、C在上,∴,∴,∴,∴;故选C.7.C【分析】根据确定圆的条件对A进行判断;根据弦与圆心角关系对B进行判断;根据平行四边形的判定方法对C进行判断;根据全等三角形的判定对D进行判断.【详解】解:A、经过不在同一直线上的三点有且只有一个圆,故此选项错误;B、在同圆或等圆中,长度相等的弦所对的圆心角相等,故此选项错误;C、有一组对边平行,一组对角相等的四边形是平行四边形,故此选项正确;D、有两条边相等的直角三角形不一定全等,故此选项错误.故选:C.【点睛】此题主要考查了确定圆的条件、弦与圆心角的关系、平行四边形的判定及全等三角形的判定方法等知识,正确有关图形的判定与性质是解题关键.8.D【分析】以为直径画圆,圆心为,连接、,在点移动的过程中,点在以为直径的圆上运动,当、、共线时,的值最小,最小值为,利用勾股定理求出即可解决问题.【详解】解:如图,以为直径画圆,圆心为,连接、,,∵,∴,∴在点移动的过程中,点在以为直径的圆上运动,∵是直径,∴,在中,∵,∴,在中,,∵,∴当、、共线时,的值最小,最小值为,故选:D.【点睛】本题主要考查了勾股定理、点与圆的位置关系等知识,解题的关键是确定点的运动轨迹是在以为直径的圆上运动,属于中考填空题中的压轴题.9.C【分析】本题考查切线的性质、勾股定理,掌握切线性质是关键.先证得,再利用勾股定理求解即可.【详解】解:∵切于C,∴,∵点D从C出发,以每秒的速度沿方向运动,∴运动1秒时,又∵运动1秒时,∴在中,由勾股定理得:,∵运动2秒时长为,∴此时.故选:C.10.B【分析】取的中点O,连接,,延长交于T.证明,推出点E在以O为圆心,为半径的圆上运动,推出当与相切时,的值最大,根据切线的性质、平行线的性质及含30度角的直角三角形的性质即可得出答案.【详解】解:如图,取的中点O,连接,,延长交于T.∵,,,∴,∴,,∵,∴,∴E在上,∵,∴,∴点E在以O为圆心,为半径的圆上运动,∵,∴当与相切时,的值最大,∵直线,直线都是的切线,∴,∴,∵,,∴,∵,,∴,∴,∵,,∴,∵,∴,∴,∴,∴,∴的最大值为.故选:B.【点睛】本题考查直角三角形角的性质、直线与圆的位置关系、线段的垂直平分线的性质等知识,解题的关键是发现点E在以O为圆心,为半径的圆上运动,并推出与相切时,的值最大.11.C【分析】根据正多边形的边数周角中心角,计算即可得解.【详解】解:这个多边形的边数是,故选:C.【点睛】本题考查的是正多边形的中心角的有关计算;熟记正多边形的中心角与边数的关系是解题的关键.12.B【分析】利用圆内接正多边形中心角及同弧所多对的圆周角是圆心角一半定理即可.【详解】如图,连接,,∵六边形是圆内接正六边形,∴,∴,故选:.【点睛】本题考查圆内接正多边形和圆周角定理,解此题的关键是熟练掌握圆内接正多边形中心角计算和圆周角定理角度计算.13.B【分析】根据直角三角形的性质得到,根据已知条件得到是等边三角形,由等边三角形的性质即可得到结论.【详解】解:连接,,,,,,以点为圆心,长为半径画弧,交边于点,是等边三角形,,,故选:B.【点睛】本题考查了含角的直角三角形的性质,等边三角形的判定和性质及弧长公式,熟练掌握直角三角形的性质是解题的关键.14.B【分析】如图所示,连接,可证,,,根据含角的直角三角形的性质可计算出的值,由此可算出四边形的面积,再根据四边形的性质,算出的角度,可算出扇形的面积,由此即可求解.【详解】解:如图所示,连接,∵切于,,∴,,∴是的角平分线,则,∵,是公共边,∴,∴,在中,,∴,∴,∴,在四边形中,,∴,∴,∴,故选:.【点睛】本题主要考查扇形,不规则图像面积的计算方法,掌握圆的基础知识,扇形的面积计算方法,不规则图形面积的计算方法是解题的关键.15.35【分析】由题意易得,,则有,然后问题可求解.【详解】解:∵是的直径,∴,∵,,∴,∴,∵平分,∴;故答案为35.【点睛】本题主要考查圆周角的性质,熟练掌握直径所对圆周角为直角是解题的关键.16./70度【分析】本题考查圆内接四边形的性质,掌握圆内接四边形对角互补是解题关键.直接利用圆内接四边形对角互补与邻补角的性质推导可得出答案.【详解】解:∵四边形为的内接四边形,,即,,故答案为:.17.4【分析】由垂直定义得,根据等腰三角形的性质由得,根据对顶角相等得,所以,而,所以,设,则,在中,根据勾股定理得到,然后解方程即可.【详解】解:连接,如图所示:∵,∴,∴,∵,∴,而,∴,∵,∴,∴,∴为直角三角形,设,则,在中,,,∵,∴,解得:,即的长为4.故答案为:4.【点睛】本题考查了圆的基本知识,等腰三角形的性质以及勾股定理,垂线定义理解,正确应用勾股定理求出的长是解题关键.18.【分析】由圆周角定理即可得到答案.【详解】解:,,故答案为:.【点睛】本题主要考查了圆周角定理,熟练掌握圆周角定理:同弧所对的圆周角等于圆心角的一半,是解题的关键.19.4【分析】本题考查了切线的性质,坐标和图形的性质,圆周角定理,找到的最小值是解题的关键.连接,交上一点P,以O为圆心,以为半径作,交x轴于A、B,此时的长度最小,根据勾股定理和题意求得,则的最小长度为4.【详解】解:连接,交⊙C上一点P,以O为圆心,以为半径作,交x轴于A、B,此时的长度最小,∵,∴,∵以点C为圆心的圆与y轴相切.∴的半径为3,∴,∴,∵是直径,∴,∴长度的最小值为4,故答案为:4.20.①②③④【分析】本题考查了全等三角形的判定及性质、切线的判定及性质、菱形的判定及性质、含角的直角三角形的特征,利用得,可得,再根据切线的判定及性质可判断①,利用三角形的判定及性质得,再根据菱形的判定即可判断②,利用含角的直角三角形的特征可判断③,利用菱形的性质可判断④,熟练掌握相关的判定及性质是解题的关键.【详解】解:连接,,,,,,,与相切于点C,,,是的直径,与相切;故①正确;,,,,,,,∴四边形是菱形,故②正确;,,,,,,,,故③正确;∵四边形是菱形,,,故④正确;故答案为:①②③④.21.1440【分析】依据正多边形的中心角和为求得边数,再依据多边形内角和公式代入求解即可.【详解】解:因为正多边形的中心角为36°,且中心角和为,所以这个多边形边数:,则这个多边形的内角和为:.故答案为:.【点睛】本题考查了正多边形内角和公式、中心角性质,通过中心角求得边数是解题的关键.22.【分析】本题主要考查了旋转的性质,求弧长,等边三角形的性质与判定,含30度角的直角三角形的性质,根据三角形内角和和含度的直角三角形三边的关系得到,,再根据旋转的性质得,于是可判断为等边三角形,所以,然后根据弧长公式计算弧的长度即可.【详解】解:,,,,,三角板绕直角顶点顺时针旋转,点落在边上,∴,∴为等边三角形,∴弧的长度,即点所转过的路径长.故答案为:.23.【分析】本题考查了等边三角形的判定与性质、扇形面积、弓形面积的计算,连接,过点作,易得为等边三角形,从而利用割补法求得阴影部分的面积即可,准确识图,添加适当的辅助线构造规则图形是解此题的关键.【详解】解:如图,连接,过点作,由题意可得,为等边三角形,,,,,,∴弓形的面积为,∴空白部分的面积为,∴阴影部分的面积为,故答案为:.24.(1),(2)见解析(3)【分析】(1)根据平移的性质,即可解答;(2)以点为圆心,2为半径画弧,即可得出;(3)根据弧长公式求出,根据平移的性质得出,根据勾股定理求出,最后相加即可.【详解】(1)解:∵,所在圆的圆心为,∴,所在圆的圆心坐标是,故答案为:,;(2)解:如图所示:即为所求;(3)解:连接,∵,,∴的半径为2,∴,∵将向右平移5个单位,得到,∴,∴,∴由,,,首尾依次相接所围成的封闭图形的周长.【点睛】本题主要考查了平移的性质,求弧长,勾股定理,解题的关键是掌握平移前后对应点连线相等,弧长公式,以及勾股定理的内容.25.(1)见解析(2)①见解析;②【分析】(1)由点关于的对称点为可知点E是的中点,,从而得到是的中位线,继而得到,从而证明;(2)①过点O作于点F,延长交于点G,先证明得到,由与相切,得到,继而得到,从而证明是的角平分线,即,,求得,利用直角三角形两锐角互余得到,从而得到,即,最后利用含度角的直角三角形的性质得出;②先证明四边形是正方形,得到,再利用是的中位线得到,从而得到,,再利用平行线的性质得到,从而证明是等腰直角三角形,,设,求得,在中,即,解得,从而得到的面积为.【详解】(1)∵点关于的对称点为,∴点E是的中点,,又∵四边形是矩形,∴O是的中点,∴是的中位线,∴∴,∴(2)①过点O作于点F,延长交于点G,则,∵四边形是矩形,∴,,∴,.∵,,,∴,∴.∵与相切,为半径,,∴,∴又∵即,,∴是的角平分线,即,设,则,又∵∴∴又∵,即是直角三角形,∴,即解得:,∴,即,在中,,,∴,∴;②过点O作于点H,∵与相切,∴,∵∴四边形是矩形,又∵,∴四边形是正方形,∴,又∵是的中位线,∴∴∴又∵,∴又∵,∴又∵,∴是等腰直角三角形,,设,则∴在中,,即∴∴的面积为:【点睛】本题考查矩形的性质,圆的切线的性质,含度角的直角三角形的性质,等腰直角三角形的性质与判定,中位线的性质定理,角平分线的判定定理等知识,掌握相关知识并正确作出辅助线是解题的关键.26.(1)见详解(2)【分析】(1)连接,根据,,可得,,再根据,,可得,即有半径,问题得证;(2)连接,过O点作于点,利用垂径定理可得,,即,再证明,即有,设,即,在和中,有,,即,解方程即可求解.【详解】(1)证明:连接,如图,∵,,∴,,∵,∴,∵,,,∴,∴半径,∴是的切线;(2)解:连接,过O点作于点,如图,∵,,,的半径为5,∴,,即:,∵,,,∴,∴,设,即,∵,,∴在中,有;在中,有∴,解得:,∴.【点睛】本题考查了切线的判定与性质,等边对等角,全等三角形的判定与性质以及勾股定理等知识,掌握切线的判定与性质是解答本题的关键.27.(1)见解析(2)①见解析;②1【分析】(1)由直径所对的圆周角等于得出,由切线的性质定理得出,即可得出结论;(2)①由等弧所对的圆周角相等得出,由直角所对的圆周角为90°得出,由垂直的定义得出,等量代换得出,即可得出结论;②连接、,作,交的延长线于点,由角平分线的性质得出,由全等三角形的判定得出和,得出,,代入计算即可求出的值.【详解】(1)证明:是直径,,;是的切线;∴,,∴;(2)解:①是弧的中点,,是直径,,∵,,,,.②连接、,作,交的延长线于点.,,,,在与中,,,,是弧的中点,,在与中,,..,即,.【点睛】本题考查了圆周角定理,切线的性质,全等三角形的性质和判定,角平分线的性质,熟练掌握各性质定理是解答此题的关键.28.(1)见解析(2)或【分析】(1)连接,可得,从而可证,即可求证;(2)①过点作交的延长线于点,并连接、,,过作交于,可求,从而可求,,进而可求,即可求解;②连接,,,过点作交于点,连接,同理可求,,可证,可得与重合,可求,即可求解.【详解】(1)解:如图,连接,,,是的平分线,,,,,点在上,是的切线;(2)解:①如图,过点作交的延长线于点,并连接、,,过作交于,,,,,,是的平分线,,,,,,,在中,,,,在中,,,,,,,点到直线的距离是;②如图,连接,,,过点作交于点,连接,同理可求,,,,,与重合,,在中,,,,,,点到直线的距离是;综上所述:或.【点睛】本题考查了切线的判定,勾股定理,等腰三角形的性质,直角三角形的特征,根据题意作出辅助线,掌握相关的性质是解题的关键.29.(1)见解析(2)【分析】(1)由垂径定理知,垂直于弦的直径是弦的中垂线,故作,的中垂线交于点,则点是弧所在圆的圆心;(2)在中,由勾股定理得出方程,解方程可求得半径的长.【详解】(1)解:作弦的垂直平分线与弦的垂直平分线交于点,以为圆心长为半径作圆就是此残片所在的圆,如图1所示.(2)连接,如图2所示:设,∵,,∴,则根据勾股定理列方程:,解得:.答:圆的半径为.【点睛】本题考查了作图,垂径定理,中垂线的性质,勾股定理;熟练掌握垂径定理,由勾股定理得出方程是解决问题(2)的关键.30.()结论:,理由见解析;();(),;()的最大值为,的最小值为.【分析】()结论:.只要证明即可;()利用三角形的三边关系即可解决问题;()连接,将绕着点顺时针旋转得到,连接,得到是等腰直角三角形,根据全等三角形的性质得到,,根据当在线段的延长线时,线段取得最大值,即可得到最大值为;过作轴于,根据等腰直角三角形的性质,即可得到结论;()如图中,以为边作等边三角形,由,推出,推出欲求的最大值,只要求出的最大值即可,由定值,,推出点在以为直径的上运动,由图象可知,当点在上方,时,的值最大.【详解】解:()如图中,结论:,理由:∵、都是等边三角形,∴,,,∴,∴,∴;()在中,,∴当共线,∴的最大值为,∴的最大值为.故答案为:;()如图,连接,∵将绕着点顺时针旋转得到,连接,则是等腰直角三角形,∴,,∵的坐标为,点的坐标为,∴,,∴,∴线段长的最大值线段长的最大值,∴当在线段的延长线时,线段取得最大值(如图中),最大值,∵,∴最大值为;如图,过作轴于,∵是等腰直角三角形,∴,∴,∴;()如图中,以为边作等边三角形,∵,∴,∵,,∴,∴,∴欲求的最大值,只要求出的最大值即可,∵定值,,∴点在以为直径的半圆上运动,由图象可知,当点在上方,时,的值最大,最大值,∴AC的最大值为;当点在线段的右侧时,以为边作等边,∵,∴,且,,∴,∴,∴欲求的最小值,只要求出的最小值即可,∵定值,,∴点在以为直径的上运动,由图象可知,当点在的上方,时,的值最小,的最小值,∴的最小值为;综上所述,的最大值为,AC的最小值为.【点睛】本题考查了圆的有关知识、等边三角形的性质、等腰直角三角形的性质、全等三角形的判定和性质,正确的作出辅助线构造全等三角形是解题的关键.。

2023年内蒙古九年级数学中考模拟题分项选编:圆(含解析)

2023年内蒙古九年级数学中考模拟题分项选编:圆(含解析)

2023年内蒙古九年级数学中考模拟题分项选编:圆一、单选题1.(2023·内蒙古包头·统考二模)如图,将四个边长为1的小正方形拼成一个大正方形,A,B,C,D,O 在小正方形的顶点上,的半径为1,E是劣弧的中点,则的度数为()A.B.C.D.2.(2023·内蒙古通辽·统考一模)如图,点A,B,C,D在上,四边形是平行四边形,则的度数是( )A.B.C.D.3.(2023·内蒙古呼伦贝尔·统考一模)如图所示,小区内有个圆形花坛,点在弦上,,,,则这个花坛的半径为()A.10B.20C.30D.404.(2023·内蒙古包头·二模)如图,直径为的经过点和点,点是轴右侧优弧上一点,,则点的坐标为().A.B.C.D.5.(2023·内蒙古包头·模拟预测)如图,四边形内接于,,A为中点,,则等于()A.B.C.D.6.(2023·内蒙古包头·模拟预测)如图,四边形是的内接四边形,若,则的度数是()A.B.C.D.7.(2023·内蒙古包头·二模)如图,AB是⊙O的直径,C、D是⊙O上的两点,若∠CAB=65°,则∠ADC 的度数为( )A.25°B.35°C.45°D.65°8.(2023·内蒙古呼伦贝尔·统考二模)下列命题中真命题的个数是( )①在函数y=中,当时,;②三角形的内心到三边的距离相等;③顺次连接菱形各边中点得到的四边形是矩形;④平分弦的直径垂直于弦;⑤对于任意实数m,关于x的方程有两个不相等的实数根.A.4B.3C.2D.19.(2023·内蒙古呼伦贝尔·统考二模)如图,等边三角形的边长为,的半径为,为边上一动点,过点作的切线,切点为,则的最小值为()A.B.C.D.10.(2023·内蒙古通辽·统考一模)下列命题中真命题的个数是( )①在同一平面内,过一点有且只有一条直线与已知直线平行;②过一点有且只有一条直线与已知直线垂直③顺次连接菱形各边中点所得到的四边形是矩形;④平分弦的直径垂直于弦;⑤三角形的内心到三角形三边的距离相等;A.4B.3C.2D.111.(2023·内蒙古呼和浩特·模拟预测)下列命题中是假命题的是()A.三角形的中位线平行于三角形的第三边,并且等于第三边的一半B.如果两个角互为邻补角,那么这两个角一定相等C.从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角D.直角三角形斜边上的中线等于斜边的一半12.(2023·内蒙古包头·模拟预测)把边长为2+的正方形沿过中心的一条直线折叠,两旁重叠部分恰为正八边形的一半,则这个正八边形的边EF的长为( )A.1B.2C.D.213.(2023·内蒙古赤峰·统考三模)已知扇形的圆心角为,弧长为,则扇形的面积是()A.B.C.D.14.(2023·内蒙古呼伦贝尔·统考二模)如图1,点是半圆上一个动点,点从点开始向终点运动的整个过程中,的弧长与时间(秒)的函数关系如图2所示,则点运动至秒时,的度数为()A.B.C.D.15.(2023·内蒙古呼伦贝尔·统考二模)如图,在菱形纸片中,,,分别剪出扇形和,恰好能作为一个圆锥的侧面和底面.若点在上,则的最大值是()A.B.C.D.16.(2023·内蒙古通辽·统考一模)如图,从一个边长是10的正五边形纸片上剪出一个扇形(阴影部分),将剪下来的扇形围成一个圆锥,这个圆锥的底面半径为()A.1B.3C.D.217.(2023·内蒙古包头·模拟预测)把量角器和含角的三角板按如图方式摆放:零刻度线与长直角边重合,移动量角器使外圆弧与斜边相切时,发现中心恰好在刻度处,短直角边过量角器外沿刻度处(即,).则阴影部分的面积为( )A.B.C.D.18.(2023·内蒙古包头·统考一模)如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,将绕点A逆时针旋转30°后得到Rt△ADE,点B经过的路径为弧BD,则图中阴影部分的面积是()A.B.C.-D.19.(2023·内蒙古赤峰·统考二模)如图,一段公路的转弯处是一段圆弧,则的展直长度为( )A.3πB.6πC.9πD.12π二、填空题20.(2023·内蒙古呼伦贝尔·统考二模)如图,已知AB是的直径,弦,垂足为E,且,则直径AB的长为_______.21.(2023·内蒙古呼和浩特·统考一模)如图是一个隧道的横截面,它的形状是以点为圆心的圆的一部分.如果是中弦的中点,经过圆心交于点,并且,.则的半径为_____________.22.(2023·内蒙古包头·二模)如图,内接于,,是的中点,且,分别是边上的高,则的大小___________度.23.(2023·内蒙古包头·模拟预测)定义:有一个圆分别和一个三角形的三条边各有两个交点,截得的三条弦相等,我们把这个圆叫作“等弦圆”,现在有一个斜边长为2的等腰直角三角形,当等弦圆最大时,这个圆的半径为_____.24.(2023·内蒙古呼和浩特·模拟预测)已知点P(,)和直线,求点P到直线的距离d可用公式计算.根据以上材料解决下面问题:如图,⊙C的圆心C的坐标为(1,1),半径为1,直线AB的表达式为,P是直线AB上的动点,Q是⊙C上的动点,则PQ的最小值是_________.25.(2023·内蒙古赤峰·统考三模)如图,一个半径为的转动轮转动角时,传送带上的物体平移的距离是_________(结果用含π的式子表示)26.(2023·内蒙古呼伦贝尔·统考二模)如图,圆锥的母线,侧面展开图是半圆,则圆锥体的高______.27.(2023·内蒙古包头·统考二模)如图,在中,,以点为圆心,的长为半径的圆交边于点,连接.若,则由劣弧和所围成的扇形的面积为_____.28.(2023·内蒙古呼伦贝尔·统考一模)已知圆锥的底面半径为,母线长为,则圆锥的侧面积为______29.(2023·内蒙古呼伦贝尔·统考三模)如图,一块含角的直角三角板ABC,,将其绕点顺时针旋转得到,当B,A,在一条直线上时,顶点所走的路径长为________.30.(2023·内蒙古包头·一模)如图,是半圆的直径,,是半圆弧的三等分点,于点,连接,若,则图中阴影部分的面积为______ .31.(2023·内蒙古包头·模拟预测)如图,在和中,,,,将绕点旋转,连接,若点为中点,绕点旋转,则点的运动轨迹的长为______.32.(2023·内蒙古呼和浩特·模拟预测)如图,矩形中,,.以为圆心,的长为半径作弧交边于点,则阴影部分的面积是__.33.(2023·内蒙古呼和浩特·模拟预测)如图,矩形中,,,是中点,以点为圆心,为半径作弧交于点,以点为圆心,为半径作弧交于点,则图中阴影部分面积的差为______.34.(2023·内蒙古包头·模拟预测)若一个圆锥体的底面积是其表面积的,则其侧面展开图圆心角的度数为______________.35.(2023·内蒙古呼伦贝尔·统考二模)已知圆锥的底面圆半径为4,侧面展开图扇形的圆心角为120°,则它的侧面展开图面积为_____________.36.(2023·内蒙古鄂尔多斯·三模)如图,分别以正五边形的顶点A,D为圆心,以长为半径画,.若,则阴影部分图形的周长为____(结果保留π).三、解答题37.(2023·内蒙古呼伦贝尔·统考三模)如图,以线段为直径作,交射线于点,平分交于点,过点作直线于点,交的延长线于点.连接并延长交于点.(1)求证:直线是的切线;(2)求证:;(3)若,,求的长.38.(2023·内蒙古赤峰·统考二模)如图,以四边形ABCD的对角线BD为直径作圆,圆心为O,过点A作的延长线于点E,已知DA平分.(1)求证:是的切线;(2)若,,求的半径和AD的长.参考答案:1.C【分析】根据圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半求解.【详解】解:如图,连接,∵E是劣弧的中点,,∴,∴,∴.故选:C.【点睛】本题考查了圆周角定理,正方形的性质和圆心角、弧、弦的关系,熟练掌握圆周角定理,正方形的性质和圆心角、弧、弦的关系是关键.2.C【分析】据圆周角定理得到,根据平行四边形的性质,得到,根据圆内接四边形的性质,得到,得到答案.【详解】解:四边形是平行四边形,,四边形是圆内接四边形,,,,,,故选:C.【点睛】本题考查的是圆周角定理的应用,掌握圆周角定理、圆内接四边形的性质和平行四边形的性质是解题的关键.3.B【分析】根据垂径定理求得,再求得,在和中,利用勾股定理进行计算即可求解.【详解】解:如图,连接,过点作于,,过圆心,是弦,∴,∴,在中,,在中,,故选:B.【点睛】本题考查垂径定理、勾股定理,掌握垂径定理、勾股定理是正确解答的前提.4.A【分析】首先设与轴的另一个交点为点,连接.根据的圆周角所对的弦是直径,即可得是的直径.由在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得的度数,进而由含角的直角三角形的性质求得的长,即得出点C坐标.【详解】解:设与轴的另一个交点为点,连接,如图,,是的直径,即.∵,∴,,点的坐标为:.故选A.【点睛】此题考查圆周角定理的推论,含角的直角三角形的性质.此题难度适中,注意掌握辅助线的作法是解此题的关键.5.B【分析】根据,A为中点求出,再根据圆内接四边形的性质得到,即可求出答案.【详解】解:∵A为中点,∴,∴,∵,∴,∵四边形内接于,∴,∴,∴,故选B.【点睛】此题考查圆周角定理,解决本题的关键是掌握在同圆中等弧所对的圆周角相等、相等的弦所对的圆周角相等,圆内接四边形的性质:对角互补.6.B【分析】先根据圆周角定理求得的度数,然后根据圆内接四边形的性质求出的度数即可.【详解】解:∵,∴,∵四边形是的内接四边形,∴,故选:B.【点睛】此题考查的是圆内接四边形的性质及圆周角定理,比较简单,牢记有关定理是解答本题的关键.7.A【分析】首先利用直径所对的圆周角是直角确定∠ACB=90°,然后根据∠CAB=65°求得∠ABC的度数,利用同弧所对的圆周角相等确定答案即可.【详解】解:∵AB是直径,∴∠ACB=90°,∵∠CAB=65°,∴∠ABC=90°-∠CAB=25°,∴∠ADC=∠ABC=25°,故选:A.【点睛】本题考查了圆周角定理的知识,解题的关键是了解直径所对的圆周角为直角,难度不大.8.C【分析】根据反比例函数图象的性质即可判断①;根据角平分线的性质即可判断②;根据矩形的判定即可判断③;根据垂径定理即可判定④;根据一元二次方程根的判别式即可判断⑤.【详解】解:①∵y=,∴反比例函数图象经过二、四象限,在每个象限内,y随x增大而增大,∴当时,不一定有,故①是假命题;②三角形内心是三角形角平分线的交点,则三角形的内心到三边的距离相等,故②是真命题;③顺次连接菱形各边中点得到的四边形是矩形,故③是真命题;④平分弦(直径除外)的直径垂直于弦,故④是假命题;⑤∵,∴方程有两个实数根,故⑤假命题,故选C.【点睛】本题主要考查了判定命题真假,熟知反比例函数图象的性质,角平分线的性质,矩形的判定,垂径定理,一元二次方程根的判别式是解题的关键.9.D【分析】连接,根据切线的性质得到,勾股定理求得,即当最小时,有最小值,当时,最小,求出即得的最小值.【详解】解:连接,∵是的切线,∴,∵,∴,即当最小时,有最小值,∵等边三角形的边长为,为边上一动点,∴当时,最小,此时,∴,即的最小值为3,故选:D.【点睛】此题考查了切线的性质,勾股定理,等边三角形的性质,熟练掌握切线的性质定理及勾股定理是解题的关键.10.C【分析】根据平行公理,垂直的性质,中位线的性质,菱形的性质与矩形的判定定理,垂径定理,三角形内心的定义,逐项分析判断即可求解.【详解】解:①在同一平面内,过直线外一点有且只有一条直线与已知直线平行,故①错误;②同一平面内,过一点有且只有一条直线与已知直线垂直,故②错误;③顺次连接菱形各边中点所得到的四边形是矩形,故③正确,符合题意;④平分弦(不是直径)的直径垂直于弦,故④不正确;⑤三角形的内心到三角形三边的距离相等,故⑤正确;故选:C.【点睛】本题考查了平行公理,垂直的性质,中位线的性质,菱形的性质与矩形的判定定理,垂径定理,三角形内心的定义,熟练掌握性质定理是解题的关键.11.B【分析】利用三角形的中位线定理、邻补角性质、切线长定理以及直角三角形斜边上的中线的性质分别判断后即可确定正确的选项.【详解】解:A. 三角形的中位线平行于三角形的第三边,并且等于第三边的一半,是真命题,故此选项不符合题意;B. 如果两个角互为邻补角,那么这两个角不一定相等,故此选项是假命题,符合题意;C. 从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角,是真命题,故此选项不符合题意;D. 直角三角形斜边上的中线等于斜边的一半,是真命题,故此选项不符合题意;故选:B【点睛】考查了命题与定理的知识,解题的关键是了解三角形的中位线定理、邻补角性质、切线长定理以及直角三角形斜边上的中线的性质.12.C【分析】重叠部分为正八边形的一半,则△CGF、△B'EF是全等的等腰直角三角形,设CG=x,则GF= x,B'F=x,从而BC=x+x+x=2+,即可解决问题.【详解】解:如图,∵重叠部分为正八边形的一半,∴GF=EF=PE=HP,∠GFE=∠FEP=∠HPE=135°,∴∠GFC=∠B'FE=∠DEP=∠A'PH=45°,∴△CGF、△B'EF是全等的等腰直角三角形,设CG=x,则GF=x,B'F=x,∴BG=B'G=x+x,∴BC=x+x+x=2+,∴x=1,∴GF=,故选:C.【点睛】本题主要考查了正方形的性质,正八边形的性质,等腰直角三角形的判定与性质、折叠性质等知识,用参数x表示出BC的长是解题的关键.13.A【分析】根据弧长求得半径,然后由扇形的圆心角和半径长,直接根据扇形的面积公式求解.【详解】解:∵扇形的圆心角为,弧长为,∴,∴,∴扇形的面积是,故选:A.【点睛】本题考查了弧长公式与扇形面积公式,熟练掌握弧长公式与扇形面积公式是解题的关键.14.C【分析】根据图像可知半圆的周长为进而得到半圆的半径为,再根据题意得到弧长与时间(秒)的函数关系式及弧长公式即可解答.【详解】解:设半圆的半径为,,根据图像可知半圆的周长为,∴,∴,设弧长与时间(秒)的函数关系式:,∵图像经过,∴,∴弧长与时间(秒)的函数关系式为,∴当秒时,,∴根据弧长公式可知:,∴,故选.【点睛】本题考查了一次函数与几何图形关系,弧长公式,一次函数图像与性质,掌握一次函数与几何图形关系是解题的关键.15.B【分析】根据已知条件求得的半径为,进而求得,当与相切时,取得最大值,根据含度角的直角三角形的性质求得,即可求解.【详解】解:∵,,∴的长为,∴的半径为,连接,则是等边三角形,,∴当与相切时,取得最大值,设与相切于点,则∵在菱形纸片中,,∴,∴∴的最大值是,故选:B.【点睛】本题考查了菱形的性质,圆锥侧面积公式,切线的性质,勾股定理,综合运用以上知识是解题的关键.16.B【分析】先求出正五边形的内角的度数,根据扇形的弧长等于圆锥的底面周长,可求出底面半径.【详解】解:五边形是正五边形,,则弧的长为,即圆锥底面周长为,设圆锥底面半径为r,则,∴,圆锥底面半径为,故选:B.【点睛】本题考查正多边形与圆,扇形弧长及圆锥底面半径,掌握扇形弧长、圆周长的计算方法是正确解决问题的关键.17.C【分析】先求出∠COF,进而求出OE=OF=4cm,再求出OB,进而求出BE,最后用三角形的面积减去扇形的面积,即可求出答案.【详解】在中,,∴,,,连接,则,∵外圆弧与斜边相切,∴∠BEO=90°,在中,,,,根据勾股定理得,,,故选:C.【点睛】此题主要考查了切线的性质,含30°角的直角三角形的性质,三角形的面积公式和扇形的面积公式,求出圆的半径是解本题的关键.18.A【分析】先根据勾股定理得到AB=,再根据扇形的面积公式计算出S扇形ABD,由旋转的性质得到Rt△ADE≌Rt△ACB,于是S阴影部分=S△ADE+S扇形ABD-S△ABC=S扇形ABD.【详解】∵∠ACB=90°,AC=BC=1,∴AB=,∴S扇形ABD=,又∵Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,∴Rt△ADE≌Rt△ACB,∴S阴影部分=S△ADE+S扇形ABD−S△ABC=S扇形ABD=,故选A.【点睛】本题考查扇形面积计算,熟记扇形面积公式,采用作差法计算面积是解题的关键.19.B【详解】分析:直接利用弧长公式计算得出答案.详解:的展直长度为:=6π(m).故选B.点睛:此题主要考查了弧长计算,正确掌握弧长公式是解题关键.20.【分析】连接,根据圆周角定理得到的度数,根据垂径定理得到的长度,即可求出半径的长度.【详解】解:连接,如图所示:∵AB是的直径,弦,,∴,,∴,∵,∴,∴,∴,在中,根据勾股定理可得,∴,∴,故填:.【点睛】本题考查了垂径定理、圆周角定理、勾股定理等知识点,解题的关键是掌握垂径定理和圆周角定理.21./【分析】连接,利用垂径定理求解再令的半径为,利用勾股定理建立方程求解半径即可得到答案【详解】解:连接.∵是弦的中点,且经过圆心,∴,且.在中,令的半径为,∵,∴,解得:,故答案为:.【点睛】本题考查的是垂径定理的应用,勾股定理的应用,掌握利用垂径定理构建直角三角形是解题的关键22.【分析】连接,根据垂径定理求出,再根据角的性质计算出,根据计算出,从而能够求出,最后根据⊥,求出的大小.【详解】解:连接,∵,是的中点,∴∵∴∴∵∴故答案为:.【点睛】本题考查圆的垂径定理,圆周角和圆心角关系,三角形内角和定理,掌握以上知识是解题的关键.23./【分析】如图,当等弦圆O最大时,则经过等腰直角三角形的直角顶点C,连接CO交AB于F,连接OE,DK,再证明经过圆心,,分别求解AC,BC,CF,设的半径为再分别表示再利用勾股定理求解半径r即可.【详解】解:如图,当等弦圆O最大时,则经过等腰直角三角形的直角顶点C,连接CO交AB于F,连接OE,DK,过圆心O,,设的半径为∴整理得:解得:不符合题意,舍去,∴当等弦圆最大时,这个圆的半径为故答案为:【点睛】本题考查的是等腰直角三角形的性质,直角三角形斜边上的中线的性质,弦,弧,圆心角之间的关系,圆周角定理的应用,勾股定理的应用,一元二次方程的解法,掌握以上知识是解本题的关键.24.【分析】连接,先根据点与圆的位置关系可得当点为与的交点时,取得最小值,再根据垂线段最短可知,当时,取得最小值,然后利用点到直线的距离公式可得的长,由此即可得.【详解】解:的半径为1,,如图,连接,则当点为与的交点时,取得最小值,最小值为,由垂线段最短可知,当时,取得最小值,直线的表达式为,的坐标为,的最小值为,则的最小值为,故答案为:.【点睛】本题考查了点与圆的位置关系、垂线段最短等知识点,正确找出取得最小值时,点的位置是解题关键.25.【分析】先求出圆的半径,再根据弧长公式求出答案即可.【详解】解:∵半径为,∴转动轮转过角时传送带上的物体平移的距离是,故答案为:.【点睛】本题考查了生活中的平移现象和弧长的计算,能熟记圆心角为,半径为的弧的长度是解此题的关键.26.【分析】由题意可知,侧面展开图的弧长等于圆锥底面圆的周长,且侧面展开图的圆周角为,进而求出的长,再利用勾股定理即可求出的长.【详解】解:由题意可知,侧面展开图的弧长等于圆锥底面圆的周长,且侧面展开图的圆周角为,,,,由勾股定理得:,故答案为:.【点睛】本题考查了弧长公式,圆的周长公式,勾股定理,理解题意,得出侧面展开图的弧长等于圆锥底面圆的周长是解题关键.27.【分析】求得的度数,按照扇形面积公式,即可解答.【详解】解:,,,,,扇形的面积为,故答案为:.【点睛】本题考查了等腰三角形等边对等角,扇形面积公式,求出是解题的关键.28.【分析】圆锥的侧面积(底面半径,母线长),把相应数值代入即可求解.【详解】解:∵圆锥的底面半径为,母线长为,∴圆锥的侧面积,故答案为:.【点睛】本题考查圆锥侧面积的求法,掌握相应公式是解题的关键.29.【分析】得出点C经过的路径是圆心角,半径为的弧,代入弧长公式计算即可.【详解】:在中,∵,∴,∵绕点C顺时针方向旋转到的位置,∴,∴点C经过的路径是圆心角,半径为的弧,∴顶点所走的路径长为,故答案为:.【点睛】本题主要考查了含30°角的直角三角形的性质,旋转的性质,弧长公式等知识,确定点B的运动路径是解题的关键.30.【分析】过点作,连接,,,分别求出扇形和三角形的面积,即可求出阴影部分的面积.【详解】过点D作,连接,,,∵,∴,∵是半圆的直径,,是半圆弧的三等分点,∴,∴,∴,∵,,∴,∵是半圆的直径,,是半圆弧的三等分点,∴,∴,∵,,∴,∴,∴图中阴影部分的面积为:.故答案为:.【点睛】本题考查不规则图形的面积,解题的关键是作出辅助线,将不规则图形的面积转化为规则图形的面积.31.【分析】取的中点O,连接,得是的中位线,则,可知点的运动轨迹为以点O为圆心,长为半径的半圆,由此可解.【详解】解:如图,取的中点O,连接,点为中点,是的中位线,,绕点旋转,点的运动轨迹为以点O为圆心,长为半径的半圆,点的运动轨迹的长度为.故答案为:.【点睛】本题考查旋转的性质,三角形中位线定理,点的运动轨迹,弧长公式等,解题的关键是构造中位线,得出点的运动轨迹.32.【分析】根据题意可得,则可以求出,可以判断出,进一步求解,代入弧长计算公式可得出阴影面积.【详解】解:如图,连接,在中,,,,,,,故答案为:.【点睛】此题考查扇形的面积,解答本题的关键是求出的度数,要求我们熟练掌握扇形面积公式及解直角三角形的知识.33.【分析】根据图形可以求得的长,然后根据图形即可求得的值.【详解】解:在矩形中,,是中点,,,.故答案为:【点睛】本题考查了扇形面积的计算、矩形的性质,解本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.34.120°/120度【分析】根据圆锥的底面积是其表面积的,则得到圆锥底面半径和母线长的关系,根据圆锥侧面展开图的弧长=底面周长即可求得圆锥侧面展开图的圆心角度数.【详解】解:设底面圆的半径为,侧面展开扇形的半径为R,扇形的圆心角为n°.由题意得,,∵个圆锥体的底面积是其表面积的,∴,.由得,故.由得:,解得.故答案为:120°.【点睛】此题通过圆锥的底面和侧面,结合有关圆、扇形的一些计算公式,重点考查空间想象能力、综合应用能力.熟记圆的面积和周长公式、扇形的面积和两个弧长公式并灵活应用是解答本题的关键.35.48π【分析】首先根据底面圆的半径求得扇形的弧长,然后根据弧长公式求得扇形的半径,然后利用公式求得面积即可.【详解】解:∵底面圆的半径为4,∴底面周长为8π,∴侧面展开扇形的弧长为8π,设扇形的半径为r,∵圆锥的侧面展开图的圆心角是120°,∴=8π,解得:r=12,∴侧面积为π×4×12=48π,故答案为:48π.【点睛】考查了圆锥的计算,解题的关键是了解圆锥的侧面展开扇形的弧长等于底面圆的周长,难度不大.36.【分析】由正五边形外接圆的性质,则,由弧长公式计算出弧长,进而求出阴影部分周长.【详解】解:∵五边形为正五边形,,∴,,∴∴,故荅案为:.【点睛】本题考查了正多边形、弧长公式;根据正五边形的每个内角的度数利用弧长公式求出和的长度是解题关键.37.(1)见解析(2)见解析(3)【分析】(1)连接OD,由∠ODA=∠OAD=∠DAC证明OD AC,得∠ODF=∠AED=90°,即可证明直线DE 是⊙O的切线;(2)由线段AB是⊙O的直径证明∠ADB=90°,再根据等角的余角相等证明∠M=∠ABM,则AB=AM;(3)由∠AEF=90°,∠F=30°证明∠BAM=60°,则△ABM是等边三角形,所以∠M=60°,则∠EDM=30°,所以BD=MD=2ME=2,再证明∠BDF=∠F,得BF=BD=2.【详解】(1)证明:连接OD,则OD=OA,∴∠ODA=∠OAD,∵AD平分∠CAB,∴∠OAD=∠DAC,∴∠ODA=∠DAC,∴OD AC,∵DE⊥AC,∴∠ODF=∠AED=90°,∵OD是⊙O的半径,且DE⊥OD,∴直线DE是⊙O的切线.(2)证明:线段是的直径,,∴∠ADM=180°-∠ADB=,∴∠M+∠DAM=,∠ABM+∠DAB=,∵∠DAM=∠DAB,∴∠M=∠ABM,∴AB=AM.(3)解:∵∠AEF=90°,∠F=30°,∴∠BAM=60°,∴△ABM是等边三角形,∴∠M=60°,∵∠DEM=90°,ME=1,∴∠EDM=30°,∴MD=2ME=2,∴BD=MD=2,∵∠BDF=∠EDM=30°,∴∠BDF=∠F,∴BF=BD=2.【点睛】此题重点考查切线的判定、直径所对的圆周角是直角、等角的余角相等、等腰三角形的判定与性质、等边三角形的判定与性质、平行线的判定与性质、直角三角形中30°角所对的直角边等于斜边的一半等知识,正确地作出所需要的辅助线是解题的关键.38.(1)见解析(2)5,【分析】(1)连接OA,根据已知条件证明即可解决问题;(2)取CD中点F,连接OF,根据垂径定理可得,所以四边形AEFO是矩形,利用勾股定理即可求出结果.【详解】(1)证明:如下图,连接OA,∵,∴.∵DA平分,∴.又∵,。

2023年中考九年级数学高频考点提升练习--圆的综合题(含答案)

2023年中考九年级数学高频考点提升练习--圆的综合题1.如图,在⊙ O中,弦AC,BD相交于点M,且∠OAC=∠OBD.(1)求证:AC=BD;(2)若OA=4,∠OAC=30°,当AC⊥BD时,求:①图中阴影部分面积.②弧CD的长.2.已知⊙O中,弦AB=AC,⊙BAC=120°(1)如图①,若AB=3,求⊙O的半径.(2)如图②,点P是⊙BAC所对弧上一动点,连接PB、PA、PC,试请判断PA、PB、PC之间的数量关系并说明理由.3.如图(1),已知矩形ABCD中,AB=6cm,BC=2√3cm,点E为对角线AC 上的动点.连接BE,过E作EB的垂线交CD于点F.(1)探索BE与EF的数量关系,并说明理由.(2)如图(2),过F作AC垂线交AC于点G,交EB于点H,连接CH.若点E从A出发沿AC方向以2√3cm/s的速度向终点C运动,设E的运动时间为ts.①是否存在t,使得H与B重合?若存在,求出t的值;若不存在,说明理由;②t为何值时,△CFH是等腰三角形;③当CG=GH时,求△CGH的面积.4.如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E.(1)求证:CD是⊙O的切线;(2)求证:⊙C=2⊙DBE.(3)若EA=AO=2,求图中阴影部分的面积.(结果保留π)5.定义:三角形一边上的点将该边分为两条线段,且这两条线段的积等于这个点到该边所对顶点连线的平方,则称这个点为三角形该边的“好点”.如图1,⊙ABC中,点D 是BC边上一点,连结AD,若AD2=BD⋅CD,则称点D是⊙ABC中BC边上的“好点”.(1)如图2,⊙ABC的顶点是4×3网格图的格点,请仅用直尺画出AB边上的一个“好点”.(2)⊙ABC中,BC=9,tanB=43,tanC=23,点D是BC边上的“好点”,求线段BD的长.(3)如图3,⊙ABC是⊙O的内接三角形,OH⊙AB于点H,连结CH并延长交⊙O于点D.①求证:点H是⊙BCD中CD边上的“好点”.②若⊙O的半径为9,⊙ABD=90°,OH=6,请直接写出CHDH的值.6.如图,⊙O为等边⊙ABC的外接圆,半径为2,点D在劣弧上运动(不与点A,B 重合),连接DA,DB,DC.(1)求证:DC是⊙ADB的平分线;(2)设四边形ADBC的面积为S,线段DC的长为x,试用含x的代数式表示S;(3)若点M,N分别在线段CA,CB上运动(不含端点),经过探究发现,点D 运动到每一个确定的位置,⊙DMN的周长有最小值t,随着点D的运动,t的值会发生变化,求所有t值中的最大值.7.在⊙ABC中,D,E分别是⊙ABC两边的中点,如果弧DE(可以是劣弧、优弧或半圆)上的所有点都在⊙ABC的内部或边上,则称弧DE为⊙ABC的中内弧.例如,图1中弧DE是⊙ABC其中的某一条中内弧.(1)如图2,在边长为4 √3的等边⊙ABC中,D,E分别是AB,AC的中点.画出⊙ABC的最长的中内弧DE,并直接写出此时弧DE的长;(2)在平面直角坐标系中,已知点A(2 √3,6),B(0,0),C(t,0),在⊙ABC中,D,E分别是AB,AC的中点.①若t=2 √3,求⊙ABC的中内弧DE所在圆的圆心P的纵坐标的取值范围;②请写出一个t的值,使得⊙ABC的中内弧DE所在圆的圆心P的纵坐标可以取全体实数值.8.如图,⊙O是⊙ABC的外接圆,AC是直径,过点O作OD⊙AB于点D,延长DO 交⊙O于点P,过点P作PE⊙AC于点E,作射线DE交BC的延长线于F点,连接PF.(1)若⊙POC=60°,AC=12,求劣弧PC的长;(结果保留π)(2)求证:OD=OE;(3)求证:PF是⊙O的切线.9.如图,点A和动点P在直线l上,点P关于点A的对称点为Q,以AQ为边作Rt△ABQ,使∠BAQ=90°,AQ:AB=3:4,作△ABQ的外接圆O.点C在点P右侧,PC=4,过点C作直线m⊥l,过点O作OD⊥m于点D,交AB右侧的圆弧于点E.在射线CD上取点F,使DF=32CD,以DE,DF为邻边作矩形DEGF.设AQ=3x.(1)用关于x的代数式表示BQ=,DF=.(2)当点P在点A右侧时,若矩形DEGF的面积等于90,求AP的长.(3)当点P在点A右侧时,作直线BG交⊙O于点N,若BN的弦心距为1,求AP的长.10.如图,⊙ABC中,⊙ACB=90°,D是边AB上一点,且⊙A=2⊙DCB.E是BC边上的一点,以EC为直径的⊙O经过点D.(1)求证:AB是⊙O的切线;(2)若CD的弦心距为1,BE=EO,求BD的长.11.已知:A、B两点在直线l的同一侧,线段AO,BM均是直线l的垂线段,且BM 在AO的右边,AO=2BM,将BM沿直线l向右平移,在平移过程中,始终保持⊙ABP=90°不变,BP边与直线l相交于点P.(1)当P与O重合时(如图2所示),设点C是AO的中点,连接BC.求证:四边形OCBM是正方形;(2)请利用如图1所示的情形,求证:ABPB=OMBM;(3)若AO=2 √6,且当MO=2PO时,请直接写出AB和PB的长.12.(问题情境)如图①,小区A、B位于一条笔直的道路l的同侧,为了方便A,B两个小区居民投放垃圾,现在l上建一个垃圾分类站C,使得C与A,B的距离之比为2:1.(1)(初步研究)在线段AB上作出点C,使CACB=2.如图,做法如下:第一步:过点A作射线AM,以A为圆心,任意长为半径画弧,交AM于点P1;以P1为圆心,AP1长为半径画弧,交AM于点P2;以P2为圆心,AP1长为半径画弧,交AM于点P3.第二步:连接BP3,作∠AP2C=∠AP3B,交AB于点C.则点C即为所求.请证明所作的点C满足CACB=2.(2)(深入思考)如图,点C在线段AB上,点D在直线AB外,且DADB=CACB=2.求证:DC是∠ADB的平分线.(3)(问题解决)如图,已知点A,B和直线l,点C在线段AB上,且CACB=2.用直尺和圆规完成下列作图.(保留作图痕迹,不写作法)(⊙)在直线AB上作出点E(异于点C),使EAEB=2;(⊙)在直线l上作出点F,使FAFB=2.13.在矩形ABCD中,BC=2AB,点E是对角线AC上任意一点,过点E作AD的垂线分别交AD,BC于点F,G,作FH平行AC交CD于点H.(1)证明:EF=CH.(2)连结GH交AC于点K,若AE:CK=3,求AE:EK的值.(3)作⊙FGH的外接圆⊙O,且AB=1.①若⊙O与矩形的边相切时,求CH的长.②作点E关于GH的对称点E',当E'落在⊙O上时,直接写出⊙FGH的面积。

中考专题数学 与圆有关的位置关系 演练方阵教师版

演练方阵圆的有关性质点与圆的位置关系类型一:根据半径与点到圆心的距离判断点与圆的位置关系☞考点说明:圆的位置关系就是比较点到圆心的距离与半径的大小,设点与圆心的距离为d ,圆的半径为r ,则点在圆外d r ⇔>;点在圆上d r ⇔=;点在圆内d r ⇔<.【易】1.若⊙O 的半径为4cm ,点A 到圆心O 的距离为5cm ,那么点A 与⊙O 的位置关系是( )A.点A 在圆内B.点A 在圆上C.点A 在圆外D.不能确定【答案】C【解析】要确定点与圆的位置关系,主要确定点到圆心的距离与半径的大小关系,设点到圆心的距离d ,则d >r 时,点在圆外;当d =r 时,点在圆上;当d <r 时,点在圆内.∵点A 到圆心O 的距离为5cm ,大于⊙O 的半径4cm ,∴点A 在⊙O 外.故选C .【易】2.⊙O 的半径是6cm ,点A 到圆心O 的距离是3.6cm ,则点A 与圆的位置关系是( )A.点在圆上B.点在圆内C.点在圆外D.不能确定【答案】B【解析】解:∵圆的半径是6cm ,点A 到圆心的距离是3.6cm ,小于圆的半径,∴点A 在圆内.故选B .【易】3.已知⊙A 的直径为16cm ,点B 到A 的距离为8cm ,则点B 和⊙A 的位置关系是( )A.点B 在⊙A 内B.点B 在⊙A 上C.点B 在⊙A 外D.无法确定【答案】B【解析】解:因为⊙A 半径为8cm ,AB =8cm 所以AB=r ,∴点B 在⊙A 上,故选B【中】4.在Rt △ABC 中,∠C=90°,AC=6cm ,BC=8cm ,则它的外心与顶点C 的距离为( ) A .5cm B .6cm C .7cm D .8cm【答案】A【解析】解:∵∠C=90°,AC=6cm ,BC=8cm ,∴AB=22=10cm ,∵Rt △ABC 的外心为斜边AB 的中点,∴Rt △ABC 的外接圆半径为5cm ,∴它的外心与顶点C 的距离为5cm .故选A .【中】5.在Rt △ABC 中,∠C=90°,AC=2,BC=4,如果以点A 为圆心,AC 为半径作⊙A ,那么斜边中点D 与⊙A 的位置关系是( )A .点D 在⊙A 外B .点D 在⊙A 上C .点D 在⊙A 内 D .无法确定【答案】A【解析】解:根据勾股定理求得斜边AB==2,则AD=,∵>2, ∴点在圆外.故选A .【中】6.已知圆的半径等于5cm ,根据下列点P 到圆心的距离:(1)4cm ;(2)5cm ;(3)6cm ,判定点P 与圆的位置关系,并说明理由.【答案】解:(1)当d=4 cm 时,∵d <r ,∴点P 在圆内;(2)当d=5 cm 时,∵d=r ,∴点P 在圆上;(3)当d=6 cm 时,∵d >r ,∴点P 在圆外.【中】7.在Rt △ABC 中,∠C=90°,BC=3m ,AC=4m ,以B 为圆心,以BC 为半径作⊙B ,D 、E 是AB 、AC 中点,A 、C 、D 、E 分别与⊙O 有怎样的位置关系?(画出图形,写过程)【答案】解:∵BC=3=R ,∴点C 在⊙B 上,∵AB=5>3,∴点A 在⊙B 外,∵D 为BA 中点,∴,∴点D 在⊙B 内, ∵E 为AC 中点,∴, 连结BE ,∴BE===>3m ,∴E 在⊙B 外.类型二:根据点和圆的位置关系求半径的取值或点到圆心的距离☞考点说明:已知点与圆的位置关系可求半径或点到圆心的取值范围:点在圆外d r ⇔>;点在圆上d r ⇔=;点在圆内d r ⇔<.【易】1.点在圆内,即这个点到圆心的距离( )半径.A.>B.<C.=D.不小于【答案】B【解析】根据点与圆的位置关系,选B【易】2.点A在以O为圆心,3cm为半径的⊙O内,则点A到圆心O的距离d的范围是.【解答】0≤d<3cm【解析】解:∵点A在以O为圆心,3cm为半径的⊙O内,∴点A到圆心O的距离d的范围是:0≤d<3cm.故答案为:0≤d<3cm.【中】3.一点和⊙O上的最近点距离为4cm,最远距离为9cm,则这个圆的半径是.【答案】6.5cm或2.5cm【解析】解:点P应分为位于圆的内部与外部两种情况讨论:①当点P在圆内时,最近点的距离为4cm,最远点的距离为9cm,则直径是4+9=13cm,因而半径是6.5cm;②当点P在圆外时,最近点的距离为4cm,最远点的距离为9cm,则直径是9﹣4=5cm,因而半径是2.5cm.故答案为6.5cm或2.5cm.直线与圆的位置关系类型一:根据圆心到直线的距离判定直线与圆的位置关系☞考点说明:根据圆O的半径和圆心O到直线L的距离的大小关系可判断直线与圆的位置关系,d<r时直线与圆相交;d=r时直线与圆相切;d>r时直线与圆相离.【易】1.已知⊙O的半径为5,圆心O到直线l的距离为3,则反映直线l与⊙O的位置关系的图形是()A.B.C.D.【答案】B【解析】解:∵⊙O的半径为5,圆心O到直线l的距离为3,∵5>3,即:d<r,∴直线L与⊙O的位置关系是相交.故选B.【易】2.已知⊙O的半径为10cm,如果一条直线和圆心O的距离为10cm,那么这条直线和这个圆的位置关系为()A.相离B.相切C.相交D.相交或相离【答案】B【解析】解:根据圆心到直线的距离10等于圆的半径10,则直线和圆相切.故选B.【易】4.圆O与直线L在同一平面上.若圆O半径为3公分,且其圆心到直线L的距离为2公分,则圆O和直线L的位置关系为()A.不相交B.相交于一点C.相交于两点D.无法判别【答案】C【解析】解:∵圆心到直线的距离是2小于圆的半径3,∴直线和圆相交,∴直线和圆有2个公共点.故选C.【易】5.已知⊙O的半径r,圆心O到直线l的距离为d,当d=r时,直线l与⊙O的位置关系是()A.相交B.相切C.相离D.以上都不对【答案】B【解析】解:根据直线和圆的位置关系与数量之间的联系:当d=r时,则直线和圆相切.故选B.【易】6.已知⊙O的直径为12,圆心O到直线l的距离为12,则直线l与⊙O的位置关系是.【答案】相离【解析】解:∵⊙O的直径为12,∴r=6,∵d=12,∴d>r∴直线l与⊙O的位置关系是相离.类型二:根据直线与圆的位置关系求半径或圆心到直线的距离☞考点说明:根据直线与圆的位置关系可判断圆O的半径和圆心O到直线L的距离的大小关系,直线与圆相交时,d<r;直线与圆相切时d=r;直线与圆相离时d>r.【易】1.如图,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(-3,0),将⊙P沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为()A.1B.1或5C.3D.5【答案】B【解析】当⊙P位于y轴的左侧且与y轴相切时,平移的距离为1;当⊙P位于y轴的右侧且与y轴相切时,平移的距离为5.答案选B.【中】2.已知:⊙O的半径为2cm,圆心到直线l的距离为1cm,将直线l沿垂直于l的方向平移,使l与⊙O相切,则平移的距离是()A.1cm B.2cm C.3cm D.1cm或3cm【答案】 D【解析】解:如图,当l经过点B时,OB=1cm,则AB=1cm;当l移动到l″时,则BC=3cm;故选D.【中】3.⊙O的半径为R,点O到直线l的距离为d,R,d是方程2x-4x+m=0的两根,当直线l与⊙O相切时,m的值为.【答案】 4【解析】∵d、R是方程x2-4x+m=0的两个根,且直线L与⊙O相切,∴d=R,∴方程有两个相等的实根,∴△=16-4m=0,解得,m=4,故答案为:4.【中】4.在△ABC中,∠C=90°,AC=6,BC=8,以C 为圆心r为半径画⊙C,使⊙C与线段AB有且只有两个公共点,则r的取值范围是.【答案】245<r≤6【解析】解:如图,∵BC>AC,∴以C为圆心,r为半径所作的圆与斜边AB只有一个公共点.根据勾股定理求得AB=10.圆与AB相切时,即r=CD=6×8÷5=245;∵⊙C与线段AB有且只有两个公共点,∴245<r≤6.切线的判定与性质类型一:根据切线的性质及圆周角定理求角的度数☞考点说明:根据切线的性质连接圆心与切点垂直与切线,结合互余角的性质和圆周角定理可求角的度数.【中】1.如图,若以平行四边形一边AB为直径的圆恰好与对边CD相切于点D,则∠C=________度.【答案】45【解析】解:连接OD.∵ CD是⊙O切线,∴ OD⊥CD,∵四边形ABCD是平行四边形,∴ AB∥CD,∴ AB⊥OD,∴∠AOD=90°,∵ OA=OD,∴∠A=∠ADO=45°,∴∠C=∠A=45°.故答案为:45.【中】2.如图,AB是⊙O的直径,直线PA与⊙O相切于点A,PO交⊙O于点C,连接BC.若∠P=40°,则∠ABC的度数为()A.20°B.25°C.40°D.50°【答案】B【解析】解:如图,∵ AB是⊙O的直径,直线PA与⊙O相切于点A,∴∠PAO=90°.又∵∠P=40°,∴∠POA=50°,∴∠ABC=1∠POA=25°.故答案为:B.2【中】3.如图,圆O是Rt△ABC的外接圆,∠ACB=90°,∠A=25°,过点C作圆O的切线,交AB的延长线于点D,则∠D的度数是()A.25°B.40°C.50°D.65°【答案】B【解析】解:连结OC,∵⊙O是Rt△ABC的外接圆,∠ACB=90°,∴AB是直径,∵∠A=25°,∴∠BOC=2∠A=50°,∵CD是⊙O的切线,∴OC⊥CD,∴∠D=90°-∠BOC=40°.故选B.【中】4.如图,AB、AC是⊙O的两条弦,∠BAC=25°,过点C的切线与OB的延长线交于点D,则∠D的度数为()A.25°B.30°C.35°D.40°【答案】D【解析】解:连接OC,∵CD是⊙O的切线,点C是切点,∴∠OCD=90°.∵∠BAC=25°,∴∠COD=50°,∴∠D=180°﹣90°﹣50°=40°.故选:D.【中】5.如图,AB是⊙O的直径,点C在AB的延长线上,CD切⊙O于点D,连接AD.若∠A=25°,则∠C=度.【答案】40【解析】解:连接OD,∵CD与圆O相切,∴OD⊥DC,∵OA=OD,∴∠A=∠ODA=25°,∵∠COD为△AOD的外角,∴∠COD=50°,∴∠C=90°﹣50°=40°.故答案为:40【中】6.如图,⊙O内切于△ABC,切点分别为D,E,F.已知∠B=50°,∠C=60°,连结DE,DF,那么∠EDF=________.【答案】55°【解析】解:连接OE,OF,因为∠B=50°,∠C=60°,∠A=70°,又因为⊙O内切于△ABC,切点分别为D,E,F,所以∠EOF=110°,∠EDF=55°. 故答案为:55°【中】7.如图,⊙O是Rt△ABC的外接圆,∠ACB=90°,∠A=25°,过点C作⊙O的切线,交AB的延长线于点D,则∠D的度数是( )A.25°B.40°C.50°D.65°【答案】B【解析】解:连接OC,∠A=25°,∠ABC=∠OCB=65°,因为C为⊙O的切线,∠BCD=90°-65°=25°,∠D=65°-25°=40°.故答案为:B 类型二:根据切线的性质求线段的长☞考点说明:利用切线的性质解题关键是要明确:①圆的切线垂直于经过切点的半径.②经过圆心且垂直于切线的直线必经过切点.③经过切点且垂直于切线的直线必经过圆心.结合勾股定理或相似三角形等知识可求线段的长.【中】1.如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O相切于E,F,G三点,过点D作⊙O的切线BC于点M,切点为N,则DM的长为()A.133B.92C.43√13D.2√5【答案】A【解析】解:连接OE,OF,ON,OG,在矩形ABCD中,∵∠A=∠B=90°,CD=AB=4,∵AD,AB,BC分别与⊙O相切于E,F,G三点,∴∠AEO=∠AFO=∠OFB=∠BGO=90°,∴四边形AFOE,FBGO是正方形,∴AF=BF=AE=BG=2,∴DE=3,∵DM是⊙O的切线,∴DN=DE=3,MN=MG,∴CM=5﹣2﹣MN=3﹣MN ,在R t △DMC 中,DM 2=CD 2+CM 2,∴(3+NM )2=(3﹣NM )2+42,∴NM=43,∴DM=3+43=133,故选A .【中】2.如图,已知△ABC ,AB=BC ,以AB 为直径的圆交AC 于点D ,过点D 的⊙O 的切线交BC 于点E .若CD=5,CE=4,则⊙O 的半径是( )A .3B .4C . 256D .258 【答案】D【解析】解:如图1,连接OD 、BD ,∵AB 是⊙O 的直径,∴∠ADB=90°,∴BD ⊥AC ,又∵AB=BC ,∴AD=CD ,又∵AO=OB ,∴OD 是△ABC 的中位线,∴OD ∥BC ,∵DE 是⊙O 的切线,∴DE ⊥OD ,∴DE ⊥BC ,∵CD=5,CE=4,∴DE=22,∵S △BCD =BD•CD÷2=BC•DE÷2,∴5BD=3BC ,∴ BD=35BC ,∵BD 2+CD 2=BC 2,∴(35BC )2+52=BC 2,解得BC=254,∵AB=BC ,∴AB=254,∴⊙O 的半径是254÷2=258;故选:D .【中】3.如图,已知AB是⊙O的直径,点C在⊙O上,过点C的切线与AB的延长线交于点P,连接AC,若∠A=30°,PC=3,则BP的长为.【答案】【解析】解:∵OA=OC,∠A=30°,∴∠OCA=∠A=30°,∴∠COB=∠A+∠ACO=60°,∵PC是⊙O切线,∴∠PCO=90°,∠P=30°,∵PC=3,∴OC=PC•tan30°=,PO=2OC=2,∴PB=PO﹣OB=,故答案为.【中】4.如图,AB为⊙O的直径,直线l与⊙O相切于点C,AD⊥l,垂足为D,AD交⊙O 于点E,连接OC、BE.若AE=6,OA=5,则线段DC的长为.【答案】4【解析】解:设OC交BE于F,∵AB为⊙O的直径,∴∠AEB=90°,∵AD⊥l,∴BE∥CD,∵CD为切线,∴OC⊥CD,∴OC⊥BE,∴四边形CDEF为矩形,∴CD=EF,在Rt△ABE中,BE===8,∵OF⊥BE,∴BF=EF=4,∴CD=4.故答案为4.【中】5.如图,⊙O的切线PC交直径AB的延长线于点P,C为切点,若∠P=30°,⊙O的半径为1,则PB的长为.【答案】1.【解析】解:如图,连结OC.∵PC为⊙O的切线,∴∠PCO=90°,在Rt△OCP中,∵OC=1,∠P=30°,∴OP=2OC=2,∴PB=OP-OB=2-1=1类型三:切线判定与性质的综合应用☞考点说明:切线的判定与性质的综合应用在圆的考查中是重点也是难点,题目以综合题的形式出现,切线的判定通常有两种常见的题型:A.过半径,证垂直;B.作垂直,证半径.性质的应用主要是结合圆周角定理、勾股定理、相似三角形、三角函数、全等三角形等知识找出线段或角之间的等量关系,构造方程来解决的.【中】1.如图,AB为⊙O的直径,PD切⊙O于点C,与BA的延长线交于点D,DE⊥PO 交PO延长线于点E,连接PB,∠EDB=∠EPB.(1)求证:PB是⊙O的切线.(2)若PB=3,DB=4,求DE的长.【答案】(1)证明:∵∠EDB=∠EPB,∠DOE=∠POB,∴∠E=∠PBO=90゜,∴ PB是⊙O的切线.(2)∵ PB=3,DB=4,∴ PD=5.设⊙O的半径的半径是r,连接OC.∵ PD切⊙O于点C,∴ OC⊥PD.∴CD2+OC2=OD2,∴22+r2=(4-r)2.∴ r=3.2可求出.PO=32√,易证△DEP∽△OBP.∴DEOB=DPOP,解得 .DE=√5.【中】2.如图,O是∠MAN的边AN上一点,以OA为半径作⊙O,交∠MAN的平分线于点D,DE⊥AM于E.(1)求证:DE是⊙O的切线;(2)连接OE,若∠EDA=30o,AE=1,求OE的长.【答案】(1)证明:连接OD.∵ AD平分∠MAN,∴∠EAD=∠OAD.∵ OA=OD,∴∠ODA=∠OAD.∴∠EAD=∠ODA.∵ DE⊥AM于E,∴∠AED=90°.∴∠EAD+∠EDA=90°,∴∠ODA+∠EDA=90°.∴ OD⊥ED.∴ DE是⊙O的切线.(2)解:∵∠EDA=30°,∴∠ODA=60°.∵ OA=OD,∴△ADO为等边三角形.在Rt△AED中,AE=1,可得AD=2,ED=√2.∴ OD=AD=2.在Rt△ODE中,由勾股定理可得OE=√.【中】3.如图,已知⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC的延长线于点E. (1)求证:DE是⊙O的切线. (2)求DE的长.【答案】证明:(1)连接OD,∵ AD平分∠BAC,∴∠DAE=∠DAB,∵OA=OD,∴∠ODA=∠DAO,∴∠ODA=∠DAE,∴OD∥AE,∵DE⊥AC,∴OD⊥DE,∴DE是⊙O切线.(2)过点O作OF⊥AC于点F,∴AF=CF=3,∴OF=√AO2−AF2=√52−32=4.∵∠OFE=∠DEF=∠ODE=90°,∴四边形OFED是矩形,∴DE=OF=4.【中】4.如图,AB是⊙O直径,D为⊙O上一点,AT平分∠BAD交⊙O于点T,过T作AD的垂线交AD的延长线于点C.(1)求证:CT为⊙O的切线;(2)若⊙O半径为2,CT=3,求AD的长.【答案】(1)证明:连接OT,∵OA=OT,∴∠OAT=∠OTA,又∵AT平分∠BAD,∴∠DAT=∠OAT,∴∠DAT=∠OTA,∴OT∥AC,又∵CT⊥AC,∴CT⊥OT,∴CT为⊙O的切线;(2)解:过O作OE⊥AD于E,则E为AD中点,又∵CT⊥AC,∴OE∥CT,∴四边形OTCE为矩形,∵CT=√3,∴OE=√3,又∵OA=2,∴在Rt△OAE中,AE==√22−(√2=1,∴AD=2AE=2.【解析】(1)连接OT,根据角平分线的性质,以及直角三角形的两个锐角互余,证得CT⊥OT,CT为⊙O的切线;(2)证明四边形OTCE为矩形,求得OE的长,在直角△OAE中,利用勾股定理即可求解.【中】5.如图,△ABC内接于⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC 交AC于点E,交PC于点F,连接AF.(1)判断AF与⊙O的位置关系并说明理由;(2)若⊙O的半径为4,AF=3,求AC的长.【答案】解:(1)AF为圆O的切线,理由为:连接OC,∵PC为圆O切线,∴CP⊥OC,∴∠OCP=90°,∵OF∥BC,∴∠AOF=∠B,∠COF=∠OCB,∵OC=OB,∴∠OCB=∠B,∴∠AOF=∠COF,。

2023年春九年级数学中考高分复习圆综合压轴解答题专题训练原卷版

2023年春九年级数学中考高分复习圆综合压轴解答题专题训练原卷版1.如图,⊙O为正△ABC的外接圆.(1)尺规作图:作∠ABC的角平分线⊙O于点D.(2)过点D作⊙O的切线DE,交AB的延长线于点M.①求证:AC∥DE.②连接OM,若AM=2,求⊙O的半径.2.如图,△ABC内接于⊙O,AB是⊙O的直径,CD平分∠ACB交⊙O于点D,交AB于点F,弦AE⊥CD于点H,连接CE、OH.(1)延长AB到圆外一点P,连接PC,若PC2=PB•P A,求证:PC是⊙O的切线;(2)求证:CF•AE=AC•BC;(3)若=,⊙O的半径是,求tan∠AEC和OH的长.3.已知四边形ABCD内接于⊙O,AB=AD.(1)如图1,求证:点A到∠C两边的距离相等;(2)如图2,已知BD与AC相交于点E,BD为⊙O的直径.①求证:tan∠CAD=;②若∠CBD=30°,AD=,求AE的长.4.如图,在▱ABCD中,AB=5,AD=3,∠ADB=90°,P为线段BD上一点,以PD为直径作圆分别交线段CD,AP于点E,F,延长AP交直线BC于点G,连接DF,EF,EP.(1)当∠DEF=45°时,求证:=.(2)当BG=2时,求tan∠FEP的值.(3)①当△DEF是以DE为腰的等腰三角形时,求DP的长.②记线段EF交BD于点Q,若=,则BG的长为.5.如图,△ABC内接于⊙O,∠CBG=∠A,CD为直径,OC与AB相交于点E,过点E作EF⊥BC,垂足为F,延长CD交GB的延长线于点P,连接BD.(1)求证:PG与⊙O相切:(2)若,求的值;(3)在(2)的条件下,若⊙O的半径为4,PD=OD,求EC的长.6.如图,在矩形ABCD中,AB=6,AD=8,点O在对角线BD上(不与点B、D重合),以O为圆心,以OB为半径作圆O交BD于点E.(1)sin∠ABD=;(2)若圆O经过点A,求圆O的面积;(3)若圆O与△ACD的边所在直线相切,求OB的长.7.如图1,AB为⊙O的直径,C为弧BE的中点,AD和过点C的直线相交于D,交⊙O于点E.连接OC,BE,相交于点F,DE=CF.(1)求证:CD是⊙O的切线;(2)连接AC,交BE于点P,若EP=2,CD=3,求直径AB的长;(3)猜想AE、AB和AD之间的数量关系,并证明.8.如图1,在⊙O中,点H是直径AB上的一点,过H点作弦CD⊥AB,点E 是的中点,过点E作BD的平行线交DC延长线于点F,连接BE,交CD 于点G.(1)求证:EF是⊙O的切线;(2)求证:BD+EF=DF;(3)如图2,连接DE,若=k,则当k为何值时,线段DE=EF?9.如图1,点C在以AB为直径的⊙O上,P是AB延长线上一点,∠PCB=∠P AC,过点C作CE⊥AB,垂足为D,交⊙O于点E.(1)求证:PC是⊙O的切线;(2)若点D是P A的中点,求∠P的度数;(3)如图2,过点B作BM∥PC交⊙O于点M,交CD于点N,连接AM.若tan∠P=,CN=5,求AM的长.10.如图,在矩形ABCD中,AB=6,BC=8,点A在直线l上,AD与直线l相交所成的锐角为60°,点P在直线上l,AP=8,过点作EF⊥l,垂足为点E,且与点P重合,EF=6,以EF为直径,在EF的左侧作半圆O,点M是半圆O上任意一点.(1)连接AM,求线段AM的最大值;(2)矩形ABCD保持不动,半圆O沿直线l向左平移,当点F落在边AD上时,求半圆O与矩形ABCD重合部分的面积S;(3)在平移过程中,当半圆O与矩形ABCD的边相切时,求平移的距离.(参考数据:tan75°≈2+,结果保留根号)11.如图,AB是⊙O的直径,C、D是⊙O上两点.AE与过点C的切线垂直,垂足为E,直线EC与直径AB的延长线相交于点P,弦CD交AB于点F,连接AC、AD、BC、BD.(1)若∠ABC=∠ABD=60°,判断△ACD的形状,并证明你的结论;(2)若CD平分∠ACB,求证:PC=PF;(3)在(2)的条件下,若AD=5,PF=5,求由线段PC、和线段BP所围成的图形(阴影部分)的面积.12.李老师在上课时的屏幕上有如下内容:如图,AB是⊙O的直径,点C为弧BD的中点,连结AC交BD于点E,CE =1,,老师要求同学们在矩形方框中添加一个条件和结论后,编制成一道完整的题目,并解答.(1)李老师在方框中添加的内容是“BE=3,求AB的长”,请你解答;(2)以下是小童和小诗的对话:小童:我加的内容是“BE=3,连结CD,求CD的长”.小诗:我加的内容是“sin∠CBE=,连结OC,求tan∠ABD的值”.请你帮小诗完成解答:(3)参考第(1)题中李老师添加的内容及第(2)题中的对话,写出你想添加的内容(可以添线添字母,但所添内容不能与(1)、(2)中的内容相同),编制成一道完整的题目,并解答.13.已知,如图1,在△ABC中,AB=AC,点D是BC边上动点,E是△ABD 外接圆⊙O上的点,且,连结DE,BE.(1)求证:CD=BE;(2)如图2,当AE∥BC时.①求证:AC是⊙O的切线;②若AC=15,BC=18,求⊙O的半径.14.如图,四边形ABCD内接于⊙O,对角线AC是⊙O的直径,BD平分∠ABC,BD交AC于点E,过点D作DF⊥DB,DF交BA延长线于点F.(1)求证:AF=BC;(2)如果AB=3AF,求的值;(3)过点F作FG∥BD交CA延长线于点G,求证:AG=CE.15.如图1,已知AB是⊙O的直径,CD为⊙O的弦,连接AD,BC,相交于点E,连接OE并双向延长,交CD于点F,交⊙O于点P,点Q.(1)如图2,当AB∥CD时,且OE=3,EF=2时,求⊙O的半径;(2)如图3,当AB与CD不平行(假设∠ABC<∠DAB),过点F作AB的平行线,交BC的延长线于点M,交AD于点N.①求证:△MCF∽△DNF;②若OE=4,EF=3,求⊙O的半径;(3)在(2)②的条件下,连接AC,BD.若∠DEB=45°,求四边形ACDB的面积.16.若四边形的一组对角α,β,满足∠α+∠β=180°,我们把这个四边形称为可衍生四边形,∠β为二倍角.(1)如图1,在四边形ABCD中,AD⊥CD,∠A=130°,当四边形ABCD 为可衍生四边形,且∠C为二倍角时,求∠B的度数;(2)如图2,四边形ABCD内接于⊙O,点E是圆上一点,连结并延长CE,AD交于点F,延长CD,BA交于点G,CD•DG=AD•DF,求证:四边形ABCF 是可衍生四边形;(3)如图3,在(2)的条件下,连结AE,EG,若CD是⊙O的直径,AF⊥EG,AG=5AB,求sin∠F AG的值.17.【问题提出】小明在学习了“圆心角”和“圆周角”的知识后,发现了顶点在圆内(顶点不在圆心)的角,命名为圆内角.比如图1中,∠APC、∠BPD 是圆内角,所对的弧分别是、,圆内角的大小与所对弧的度数之间有什么关系呢?【问题解决】小明想到了将∠APC转化为学过的两种角,即圆周角、圆心角.解:连接BC,OA,OC,OB,OD.如图2,在△PBC中,∠APC=∠PBC+∠PCB∵∠PBC=∠AOC,∠PCB=∠BOD∴∠APC=∠AOC+∠BOD=(∠AOC+∠BOD)即:∠APC的度数=(的度数+的度数)(1)如图1,在⊙O中,弦AB、CD相交于点P,若的度数是60°,的度数是80°,则∠APD的度数是.【问题探究】顶点在圆外且两边与圆相交的角,命名为圆外角,圆外角的大小呢?(2)如图3,点P是⊙O外一点,点A、点C在圆上,连接P A、PC,分别与⊙O相交于点B、点D,试探索∠APC的度数与、度数之间的关系,并说明理由.【解释应用】直接利用前面发现的结论,解决问题.(3)如图4,平面直角坐标系内,点A(﹣,1)在⊙O上,点B、点C 是线段OM上的两个动点,且AB=AC,延长AB、AC分别与⊙O相交于点D、E,延长DE交y轴于点F,试探究∠F的度数是否变化,如果不变,请求出它的度数.18.定义:过三角形的一个顶点作该三角形的高线和角平分线,这两条线段所夹的角称为该三角形的珍珠角.(1)如图1,∠DAE是△ABC的珍珠角,∠B=α,∠C=β,α>β,请用α和β表示∠DAE.(2)如图2,△ABC中,∠BAC>∠B>∠C,以AC为直径作⊙O交BC于点D,点F在上,AF交DC于点E,∠FDC=∠BAE.求证:∠DAE是△ABC的珍珠角.(3)在(2)的条件下,如图3,连接OD,交AE于点G,OG=AB.若GF=m,BD=n,求BC的长(用含m,n的式子表示).19.如图,在平面直角坐标系xOy中,A,B两点的坐标分别为(26,0),(0,26).以AB为直径作⊙P,点C在直径AB上,且AC=a,点Q为⊙P上一动点.(1)若a=6,如图1,①求点C的坐标.②若CQ∥y轴,求点Q的坐标.(2)若a=5,如图2,点D在弦OA上,△QCD是以CQ为斜边的等腰直角三角形,求点Q的坐标.20.问题提出:(1)如图①,正方形ABCD内有一以BC为直径的半圆O,请通过画图在半圆O上找一点E,使得E到AD的距离最小.问题探究:(2)如图②,在Rt△ABC中,∠ACB=90°,AC=BC=4,点E为AB边上一点,BE=3AE,且∠CEF=45°,求CF的长.问题解决:(3)如图③,十四届全运会场馆外有一不规则区域.其中,AD∥BC,弧CD 所对的圆心角为60°,AE是区域内一条笔直的小路,即AE⊥BC于点E.组委会计划将本区域设计成为一个休闲娱乐区,规划在AB边上确定一点M作为一个入口,在AE、弧CD上分别确定点N、P,将△PNE修建成花园.为保持美观且节约成本,要求∠EMN=90°,且△PNE面积最小.已知AB=130m,BE=50m,AD=CE=150m,求△PNE面积的最小值.。

精品 九年级数学 中考专题 圆专题练习

圆专题练习一一、选择题:点P到⊙O的最近点的距离为4cm,最远点的距离为9cm,则⊙O的半径是()A.2.5cm或6.5cmB.2.5cmC.6.5cmD.13cm或5cm2.如图,在⊙O中,弦AD=弦DC,则图中相等的圆周角的对数是()A.5对B.6对C.7对D.8对3.下列说法正确的是()A.顶点在圆上的角是圆周角B.两边都和圆相交的角是圆周角C.圆心角是圆周角的2倍D.圆周角度数等于它所对圆心角度数的一半4.下列说法错误的是()A.等弧所对圆周角相等B.同弧所对圆周角相等C.同圆中,相等的圆周角所对弧也相等D.同圆中,等弦所对的圆周角相等5.有4个命题,①直径相等的两个圆是等圆;②长度相等的两条弧是等弧;③圆中最长的弦是通过圆心的弦;④一条弦把圆分为两条弧,这两条弧不可能是等弧。

其中真命题是( )A.①③B.①③④C.①④D.①6.弓形弦长24,弓形高为8,则弓形所在圆的直径是()A.10B.26C.13D.55的弦,则此弦所对的圆周角为()7.在半径为5的圆内有长为3A.60°B.60°或120°C.120°D.30°或150°8.如图所示,正方形ABCD内接于⊙O中,P是弧AD上任意一点,则∠ABP+∠DCP等于()A.90°B.45 °C.60°D.30°9.如图,EF是⊙O直径,OE=5cm,弦AB=8cm,EF两点到MN的距离之和等于( )A.12cm B.6cm C.8cm D.3cm10.如图,⊙O的直径CD=10,AB是⊙O的弦,AB⊥CD于M,且DM∶MC=4∶1,则AB的长是()A 2B 8C 16D 9111.点P为⊙O内一点,且OP=4,若⊙O的半径为6,则过点P的弦长不可能为()A 302 B 12 C 8 D 10.512.如图,△ABC 内接于⊙O ,若∠OA B=28°,则∠C 的大小是( )A.62°B.56°C.28°D.32°13.如图,⊙O 过点B,C 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学:圆中考演练一、选择题1.·广州如图27-Y-1,AB是⊙O的弦,OC⊥AB,交⊙O于点C,连结OA,OB,BC,若∠ABC =20°,则∠AOB的度数是( )图27-Y-1A.40° B.50° C.70° D.80°2.·淄博如图27-Y-2,⊙O的直径AB=6,若∠BAC=50°,则劣弧AC的长为( )图27-Y-2A.2π B.8π3C.3π4D.4π33.·天水如图27-Y-3所示,点A,B,C在⊙O上.若∠BAC=45°,OB=2,则图中阴影部分的面积为( )图27-Y-3A.π-4 B.23π-1 C.π-2 D.23π-24.·遂宁已知圆锥的母线长为6,将其侧面沿着一条母线展开后所得扇形的圆心角为120°,则扇形的面积是( )A.4π B.8π C.12π D.16π5.·重庆B卷如图27-Y-4,△ABC中,∠A=30°,点O是边AB上一点,以点O为圆心,以OB 长为半径作圆,⊙O 恰好与AC 相切于点D ,连结BD .若BD 平分∠ABC ,AD =2 3,则线段CD 的长是( )图27-Y -4A .2 B. 3 C.32 D.3236.·遵义如图27-Y -5,四边形ABCD 中,AD ∥BC ,∠ABC =90°,AB =5,BC =10,连结AC ,BD ,以BD 为直径的圆交AC 于点E ,若DE =3,则AD 的长为( )图27-Y -5A .5B .4C .3 5D .2 57.·武汉如图27-Y -6,在⊙O 中,点C 在优弧AMB ︵上,将BC ︵沿BC 折叠后刚好经过AB 的中点D .若⊙O 的半径为5,AB =4,则BC 的长是( )图27-Y -6A .2 3B .3 2 C.532 D.6528.·无锡如图27-Y -7,矩形ABCD 中,G 是BC 的中点,过A ,D ,G 三点的⊙O 与边AB ,CD 分别交于点E ,F .给出下列说法:(1)AC 与BD 的交点是⊙O 的圆心;(2)AF 与DE 的交点是⊙O 的圆心;(3)BC 与⊙O 相切.其中正确说法的个数是( )图27-Y -7A .0B .1C .2D .3 二、填空题9.·无锡如图27-Y -8,点A ,B ,C 都在⊙O 上,OC ⊥OB ,点A 在劣弧BC ︵上,且OA =AB ,则∠ABC =________.图27-Y -810.·重庆B 卷如图27-Y -9,在边长为4的正方形ABCD 中,以B 为圆心,以AB 为半径画弧,交对角线BD 于点E ,则图中阴影部分的面积是________(结果保留π).图27-Y -911.·临沂如图27-Y -10,在△ABC 中,∠A =60°,BC =5 cm.能够将△ABC 完全覆盖的最小圆形片的直径是________cm.图27-Y -1012.·宜宾刘徽是中国古代卓越的数学家之一,他在《九章算术》中提出了“割圆术”,即用内接或外切正多边形逐步逼近圆来近似计算圆的面积,设⊙O 的半径为1,若用⊙O 的外切正六边形的面积来近似估计⊙O 的面积S ,则S =________.(结果保留根号)13.·绍兴如图27-Y -11,公园内有一个半径为20米的圆形草坪,A ,B 是圆上的点,O 为圆心,∠AOB =120°,从A 到B 只有路AB ︵,一部分市民为走“捷径”,踩坏了花草,走出了一条小路AB .通过计算可知,这些市民其实仅仅少走了________步(假设1步为0.5米,结果保留整数).(参考数据:3≈1.732,π取3.142)图27-Y -1114.·安徽如图27-Y -12,菱形ABOC 的边AB ,AC 分别与⊙O 相切于点D ,E ,若D 是AB 的中点,则∠DOE =________°.图27-Y-12三、解答题15.·黄冈如图27-Y -13,AD 是⊙O 的直径,AB 为⊙O 的弦,OP ⊥AD ,OP 与AB 的延长线交于点P ,过点B 的切线交OP 于点C . (1)求证:∠CBP =∠ADB ;(2)若OA =2,AB =1,求线段BP 的长.图27-Y -1316.·达州已知:如图27-Y -14,以等边三角形ABC 的边BC 为直径作⊙O ,分别交AB ,AC 于点D ,E ,过点D 作DF ⊥AC 于点F . (1)求证:DF 是⊙O 的切线;(2)若等边三角形ABC 的边长为8,求由DE ︵,DF ,EF 围成的阴影部分的面积.图27-Y-1417.·河南如图27-Y-15,AB是⊙O的直径,DO⊥AB于点O,连结DA交⊙O于点C,过点C 作⊙O的切线交DO于点E,连结BC交DO于点F.(1)求证:CE=EF.(2)连结AF并延长,交⊙O于点G,连结EG.填空:①当∠D的度数为________时,四边形ECFG为菱形;②当∠D的度数为________时,四边形ECOG为正方形.图27-Y-15教师详解详析1.[解析] D ∠AOC =2∠ABC =2×20°=40°.因为OC ⊥AB ,所以AC ︵=BC ︵,从而有∠AOB =2∠AOC =2×40°=80°.故答案为D.2.[解析] D 连结OC ,如图.∵∠BAC =50°,∴∠C =∠BAC =50°,∴∠AOC =80°,∴lAC ︵=80×3×π180=4π3,故选D.3.[解析] C ∵∠BAC =45°,∴∠BOC =90°.则S 扇形BOC =90×π×22360=π,S Rt △BOC =12BO ·CO=12×2×2=2.则阴影部分的面积为S 扇形BOC -S Rt △BOC =π-2. 4.[解析] C 根据题意可得扇形的面积为120360×π×62=12π,故选C. 5.[解析] B 如图,连结OD ,则由⊙O 与AC 相切于点D ,得OD ⊥A C.∵在Rt △AOD 中,∠A =30°,AD =23,tan A =OD AD, ∴OD =AD ·tan A =23×tan30°=23×33=2, ∴AO =2OD =4,AB =OA +OB =6. ∵∠AOD =90°-∠A =60°, ∴∠ABD =12∠AOD =30°.∵BD 平分∠ABC ,∴∠ABC =2∠ABD =60°, ∴∠C =90°=∠ADO , ∴OD ∥BC , ∴AD DC =AO OB ,即23DC =42,∴DC = 3. 6.[解析] D 如图,连结BE .因为AD ∥BC ,所以∠DAE =∠ACB .又因为∠DAE =∠DBE ,所以∠DBE =∠ACB .因为BD 是直径,所以∠BED =90°,∠DAB =90°.因为AD ∥BC ,所以∠ABC =180°-∠DAB =90°,所以∠BED =∠ABC ,所以△BED ∽△CBA ,所以DE AB =EBBC,可得EB =6.Rt △BED 中,由勾股定理可得BD =3 5.在Rt △ADB 中,由勾股定理可得AD =25,故选D.7.[解析] B 如图,连结AC ,OC ,OA ,DC ,OD ,过点C 作CE ⊥AB 于点E ,过点O 作OF ⊥CE 于点F .设H 为BC ︵上一点.∵BC ︵沿BC 折叠,∴∠CDB =∠H .∵∠H +∠A =180°,∠CDA +∠CDB =180°,∴∠A =∠CDA ,∴CA =CD .∵CE ⊥AD ,∴AE =ED =1.∵OA =5,AD =2,∴OD =1.∵OD ⊥AB ,易得四边形OFED 为矩形,∴OF =1.又∵OC =5,∴CF =2,∴CE =3.在Rt △CEB 中易得BC =3 2.8.[解析] C ∵矩形ABCD 中,∠A =∠D =90°,∴AF 与DE 都是⊙O 的直径,AC 与BD 不是⊙O 的直径,∴AF 与DE 的交点是⊙O 的圆心,AC 与BD 的交点不是⊙O 的圆心,∴(1)错误,(2)正确.连结AF ,OG ,则O 为AF 的中点.∵G 是BC 的中点.∴OG 是梯形FABC 的中位线,∴OG ∥AB .∵AB ⊥BC ,∴OG ⊥BC ,∴BC 与⊙O 相切,∴(3)正确.综上所述,正确结论有两个. 9.[答案] 15°[解析] ∵OC⊥OB,OB=OC,∴∠CBO=45°.∵OB=OA=AB,∴△AOB为等边三角形,∠ABO=60°,∴∠ABC=∠ABO-∠CBO=60°-45°=15°.10.[答案] 8-2π[解析] ∵正方形ABCD的边长为4,∴∠BAD=90°,∠ABD=45°,AB=AD=4,∴S阴影=S Rt△ABD-S扇形BAE=12×4×4-45π·42360=8-2π.11.[答案] 103 3[解析] 能够将△ABC完全覆盖的最小圆形片是如图所示的△ABC外接圆⊙O,连结OB,OC,则∠BOC=2∠BAC=120°,过点O作OD⊥BC于点D,∴∠BOD=12∠BOC=60°.由垂径定理得BD=12BC=52cm,∴OB=BDsin 60°=5232=533(cm),∴能够将△ABC完全覆盖的最小圆形片的直径是1033cm.12.[答案] 2 3[解析] 依照题意画出图形,如图所示.∵六边形ABCDEF为正六边形,∴△ABO为等边三角形.∵⊙O的半径为1,∴OM=1,∴BM=AM=33,∴AB=233,∴S=6S△ABO=6×12×233×1=2 3.故答案为2 3.13.[答案] 15[解析] 过点O 作OC ⊥AB 于点C ,如图,则AC =BC . ∵OA =OB ,∴∠A =∠B =12(180°-∠AOB )=12(180°-120°)=30°.在Rt △AOC 中,OC =12OA =10,AC =3OC =103,∴AB =2AC =203≈69(步). 而AB ︵的长=120·π·20180≈84(步),AB ︵的长比AB 的长多15步. 即这些市民其实仅仅少走了15步. 故答案为15.14.[答案] 60[解析] 连结OA ,如图.∵四边形ABOC 是菱形,∴AB =BO . ∵AB 与⊙O 相切于点D ,∴OD ⊥AB . 又∵D 是AB 的中点, ∴OA =OB ,∴△AOB 是等边三角形,∠AOB =60°,∴∠AOD =12∠AOB =30°.同理∠AOE =30°,∴∠DOE =∠AOD +∠AOE =60°. 故答案为60.15.[解析] (1)连结OB ,则OB ⊥BC .因为AD 是直径,所以∠ABD =90°,易知∠OAB =∠OBA =∠DBC .因为OB =OD ,所以∠ADB =∠OBD .因为∠CBP ,∠OBD 都与∠DBC 互余,所以∠CBP =∠ADB ;(2)易得△ABD ∽△AOP ,则AB AO =ADAP,由AB ,AO 的长度可求出BP 的长度.解:(1)证明:连结OB ,则OB ⊥BC ,∠OBC =90°,所以∠OBD +∠DBC =90°.因为AD 是⊙O 的直径,所以∠ABD =90°,所以∠DBP =90°,即∠DBC +∠CBP =90°,所以∠OBD =∠CBP . 因为OB =OD ,所以∠OBD =∠ADB , 所以∠CBP =∠ADB .(2)在△ABD 和△AOP 中,∠DAB =∠PAO ,∠POA =∠DBA =90°,故△ABD ∽△AOP ,则AB AO =AD AP.因为AB =1,AO =2,AD =2AO =4,所以AP =8,所以BP =7.16.[解析] (1)先根据等腰三角形的三线合一性质证D 是AB 的中点,然后根据三角形中位线定理得OD ∥AC ,又因为DF ⊥AC ,所以OD ⊥DF ,所以DF 是⊙O 的切线; (2)根据阴影部分的面积=△DEF 的面积-DE ︵所对应的弓形面积列式计算可得. 解:(1)证明:如图,连结OD ,CD .∵BC 是直径,∴∠BDC =90°,∴CD ⊥AB . ∵△ABC 为等边三角形,∴D 是AB 的中点. ∵O 是BC 的中点, ∴OD ∥AC .∵DF ⊥AC ,∴OD ⊥DF , ∴DF 是⊙O 的切线. (2)连结OE ,DE .∵D 是AB 的中点,E 是AC 的中点,∴DE 是△ABC 的中位线,易知△ADE 是等边三角形. ∵等边三角形ABC 的边长为8, ∴等边三角形ADE 的边长为4. ∵DF ⊥AC ,∴EF =2,DF =23,∴△DEF 的面积=12EF ·DF =12×2×23=23,∴△ADE 的面积=△ODE 的面积=4 3. 扇形ODE 的面积=60·π·42360=8π3,∴阴影部分的面积=S △DEF +S △ODE -S 扇形ODE =23+43-8π3=63-8π3. 17.解:(1)证明:连结OC ,如图.∵CE为切线,∴OC⊥CE,∴∠OCE=90°,即∠1+∠4=90°.∵DO⊥AB,∴∠3+∠B=90°.而∠2=∠3,∴∠2+∠B=90°.∵OB=OC,∴∠4=∠B,∴∠1=∠2,∴CE=EF.(2)①当∠D=30°时,∠DAO=60°,而AB为直径,∴∠ACB=90°,∴∠B=30°,∴∠3=∠2=60°,而CE=EF,∴△CEF为等边三角形,∴CE=CF=EF.同理可得∠GFE=60°.利用对称性得FG=FC,∴FG=EF,∴△FEG为等边三角形,∴EG=FG,∴CF=FG=GE=CE,∴四边形ECFG为菱形.故答案为30°.②当∠D=22.5°时,∠DAO=67.5°,而OA=OC,∴∠OCA=∠OAC=67.5°,∴∠AOC=180°-67.5°-67.5°=45°.∵∠AOD=90°,∴∠COE=45°,利用对称得∠EOG=45°,∴∠COG=90°,易得△OEC≌△OEG,∴∠OGE=∠OCE=90°,∴四边形ECOG为矩形,又∵OC=OG,∴矩形ECOG为正方形.故答案为22.5°.。

相关文档
最新文档