高考数学总知识点归纳总结大全

合集下载

高考数学知识点总结(全而精-一轮复习必备)

高考数学知识点总结(全而精-一轮复习必备)

高中数学第一章-集合考试内容:集合、子集、补集、交集、并集.逻辑联结词.四种命题.充分条件和必要条件.考试要求: (1)理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合.(2)理解逻辑联结词“或”、“且”、“非”的含义理解四种命题及其相互关系;掌握充分条件、必要条件及充要条件的意义.§01. 集合与简易逻辑 知识要点一、知识结构:本章知识主要分为集合、简单不等式的解法(集合化简)、简易逻辑三部分:二、知识回顾:(一)集合1.基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用.2.集合的表示法:列举法、描述法、图形表示法.集合元素的特征:确定性、互异性、无序性. 集合的性质:①任何一个集合是它本身的子集,记为;②空集是任何集合的子集,记为;③空集是任何非空集合的真子集;如果,同时,那么A = B.如果.[注]:①Z = {整数}(√) Z ={全体整数} (×)②已知集合S 中A 的补集是一个有限集,则集合A 也是有限集.(×)(例:S=N ; A=,则C s A= {0})A A ⊆A ⊆φB A ⊆A B ⊆C A C B B A ⊆⊆⊆,那么,+N③空集的补集是全集.④若集合A=集合B,则C B A=,C A B =C S(C A B)=D(注:C A B =).3. ①{(x,y)|xy =0,x∈R,y∈R}坐标轴上的点集.②{(x,y)|xy<0,x∈R,y∈R二、四象限的点集.③{(x,y)|xy>0,x∈R,y∈R} 一、三象限的点集.[注]:①对方程组解的集合应是点集.例:解的集合{(2,1)}.②点集与数集的交集是. (例:A ={(x,y)| y =x+1} B={y|y =x2+1} 则A∩B =)4. ①n个元素的子集有2n个. ②n个元素的真子集有2n-1个. ③n个元素的非空真子集有2n-2个.5. ⑴①一个命题的否命题为真,它的逆命题一定为真. 否命题逆命题.②一个命题为真,则它的逆否命题一定为真. 原命题逆否命题.例:①若应是真命题.,则a+b = 5,成立,所以此命题为真.②.1或y = 2.,故是的既不是充分,又不是必要条件.⑵小范围推出大范围;大范围推不出小范围.3.例:若.4.集合运算:交、并、补.5.主要性质和运算律(1)包含关系:(2)等价关系:(3)集合的运算律:交换律:结合律:分配律:.∅∅∅}⎩⎨⎧=-=+1323yxyxφ∅⇔⇔325≠≠≠+baba或,则且1≠x3≠y1≠∴yx且3≠+yx21≠≠yx且255xxx或,⇒{|,}{|}{,}A B x x A x BA B x x A x BA x U x A⇔∈∈⇔∈∈⇔∈∉U交:且并:或补:且C,,,,,;,;,.UA A A A U A UA B B C A C A B A A B B A B A A B B⊆Φ⊆⊆⊆⊆⊆⇒⊆⊆⊆⊇⊇CUA B A B A A B B A B U⊆⇔=⇔=⇔=C.;ABBAABBA==)()();()(CBACBACBACBA==)()()();()()(CABACBACABACBA==0-1律:等幂律:求补律:A∩C U A=φA∪C U A=U C U U=φ C Uφ=U反演律:C U(A∩B)= (C U A)∪(C U B) C U(A∪B)= (C U A)∩(C U B)6.有限集的元素个数定义:有限集A的元素的个数叫做集合A的基数,记为card( A)规定 card(φ) =0.基本公式:(3) card( U A)= card(U)- card(A)(二)含绝对值不等式、一元二次不等式的解法及延伸1.整式不等式的解法根轴法(零点分段法)①将不等式化为a0(x-x1)(x-x2)…(x-x m)>0(<0)形式,并将各因式x的系数化“+”;(为了统一方便)②求根,并在数轴上表示出来;③由右上方穿线,经过数轴上表示各根的点(为什么?);④若不等式(x的系数化“+”后)是“>0”,则找“线”在x轴上方的区间;若不等式是“<0”,则找“线”在x轴下方的区间.(自右向左正负相间)则不等式的解可以根据各区间的符号确定.特例①一元一次不等式ax>b解的讨论;②一元二次不等式ax2+box>0(a>0)解的讨论.>∆0=∆0<∆二次函数cbxaxy++=2(0>a)的图象,,,A A A U A A U A UΦ=ΦΦ===.,AAAAAA==(1)()()()()(2)()()()()()()()()card A B card A card B card A Bcard A B C card A card B card Ccard A B card B C card C Acard A B C=+-=++---+x)0)((002211><>++++--aaxaxaxa nnnn原命题若p 则q否命题若┐p 则┐q 逆命题若q 则p 逆否命题若┐q 则┐p 互为逆否互逆否互为逆否互互逆否互一元二次方程()的根002>=++a c bx ax 有两相异实根)(,2121x x x x <有两相等实根ab x x 221-== 无实根的解集)0(02>>++a c bx ax {}21x x x x x ><或⎭⎬⎫⎩⎨⎧-≠a b x x 2R 的解集)0(02><++a c bx ax {}21x x x x << ∅∅2.分式不等式的解法(1)标准化:移项通分化为>0(或<0); ≥0(或≤0)的形式,(2)转化为整式不等式(组)3.含绝对值不等式的解法(1)公式法:,与型的不等式的解法.(2)定义法:用“零点分区间法”分类讨论.(3)几何法:根据绝对值的几何意义用数形结合思想方法解题.4.一元二次方程根的分布一元二次方程ax 2+bx+c=0(a≠0)(1)根的“零分布”:根据判别式和韦达定理分析列式解之.(2)根的“非零分布”:作二次函数图象,用数形结合思想分析列式解之.(三)简易逻辑1、命题的定义:可以判断真假的语句叫做命题。

高考数学知识点总结及公式

高考数学知识点总结及公式

高考数学知识点总结及公式高考数学必考知识点第一部分集合(1)含n个元素的集合的子集数为2^n,真子集数为2^n—1;非空真子集的数为2^n—2;(2)注意:讨论的时候不要遗忘了的情况。

第二部分函数与导数1、映射:注意①第一个集合中的元素必须有象;②一对一,或多对一。

2、函数值域的求法:①分析法;②配方法;③判别式法;④利用函数单调性;⑤换元法;⑥利用均值不等式;⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);⑧利用函数有界性;⑨导数法3、复合函数的有关问题(1)复合函数定义域求法:①若f(x)的定义域为〔a,b〕,则复合函数f[g(x)]的定义域由不等式a≤g(x)≤b 解出。

②若f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域。

(2)复合函数单调性的判定:①首先将原函数分解为基本函数:内函数与外函数;②分别研究内、外函数在各自定义域内的单调性;③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。

注意:外函数的定义域是内函数的值域。

4、分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。

5、函数的奇偶性(1)函数的定义域关于原点对称是函数具有奇偶性的必要条件;(2)是奇函数;(3)是偶函数;(4)奇函数在原点有定义,则;(5)在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性;(6)若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性;三角函数。

注意归一公式、诱导公式的正确性。

数列题。

1、证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;2、最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。

利用上假设后,如何把当前的`式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。

江苏高考数学必考知识点归纳总结

江苏高考数学必考知识点归纳总结

江苏高考数学必考知识点归纳总结高考数学是每位江苏高中生的必考科目,也是高考成绩中不可忽视的部分。

在备考过程中,掌握数学的基础知识和必考点是至关重要的。

本文将对江苏高考数学的必考知识点进行归纳总结,帮助同学们更好地备考。

一、函数与方程1. 一次函数:- 斜率的概念和计算方法- 函数图像和性质- 方程的解及其应用2. 二次函数:- 根与系数的关系- 函数图像和性质- 求解一元二次方程- 利用二次函数解决实际问题3. 幂函数、指数函数与对数函数:- 幂函数、指数函数的定义和性质- 对数函数的定义和性质- 对数与指数的互化- 应用于实际问题的解决二、图形的性质与计算1. 平面几何:- 直线与角的性质- 三角形的分类和性质- 圆的性质与计算- 二次曲线的图像和性质2. 空间几何:- 空间图形的投影与旋转- 空间几何体的表面积和体积计算三、概率与统计1. 概率:- 随机事件的概念和性质- 概率计算的基本方法- 条件概率和独立事件- 事件的组合与排列2. 统计与误差处理:- 数据的收集、整理和分析- 统计图表的制作和解读- 误差的概念和处理方法四、数列与数学归纳法1. 等差数列:- 数列的概念和性质- 等差数列的通项公式和求和公式 - 等差数列在实际问题中的应用2. 等比数列:- 等比数列的概念和性质- 等比数列的通项公式和求和公式 - 等比数列在实际问题中的应用3. 数学归纳法:- 数学归纳法的基本思想和步骤- 使用数学归纳法证明等式和不等式五、导数与微分1. 函数的导数与导数的应用:- 导数的定义和性质- 导数与函数的图像、极值、单调性的关系- 导数在实际问题中的应用2. 函数的微分:- 微分的概念和计算- 微分近似与误差估计六、立体几何与解析几何1. 解析几何:- 坐标系和坐标变换- 直线和曲线的方程- 几何问题的解析几何方法2. 立体几何:- 空间点、直线和平面的关系- 空间几何体的相交和投影- 空间解析几何问题的解决以上是江苏高考数学的必考知识点的归纳总结,希望能够对同学们在备考过程中提供一定的帮助。

2024高考数学大纲——知识点总结

2024高考数学大纲——知识点总结

2024高考数学大纲——知识点总结2024年高考数学考试的大纲主要分为数与式、函数、几何与变换、统计与概率四个部分。

下面将对每个部分的知识点进行总结,以方便复习。

一、数与式1.实数实数的概念、实数的四则运算、有理数与无理数的关系、开方运算2.立方根立方根的概念、立方根的计算、立方根的性质3.代数式与多项式代数式的概念、等价代数式的判定、多项式的概念、多项式的加减乘除、单项式与多项式的乘法、多项式的因式分解、特殊的多项式4.分式分式的概念、分式的四则运算、分式的化简、分式方程二、函数1.一次函数一次函数的概念、一次函数的图像、一次函数的性质、一次函数的应用2.二次函数二次函数的概念、二次函数的图像、二次函数的性质、二次函数的应用、二次函数的最值3.绝对值函数绝对值函数的概念、绝对值函数的图像、绝对值函数的性质、绝对值函数的应用4.反比例函数反比例函数的概念、反比例函数的图像、反比例函数的性质、反比例函数的应用5.复合函数复合函数的概念、复合函数的性质、复合函数的应用三、几何与变换1.空间坐标系空间直角坐标系、点的坐标、点到平面的距离、点到直线的距离2.向量向量的概念、向量的线性运算、向量的模、向量的夹角、向量的共线与垂直、向量的投影、向量的应用3.三角函数弧度与角度的关系、三角函数的概念、三角函数的性质、三角函数的图像、三角函数的应用4.几何相似相似三角形的判定、相似三角形的性质、相似三角形的应用、相似三角形的面积比5.平面向量与平面几何平面向量的几何意义、平面向量的坐标表示、平面向量的线性运算、向量共线的判定、平行四边形的面积、三角形的面积、平面图形的位置关系四、统计与概率1.统计图与统计量频数分布表与频率分布表、频率直方图、频率多边形、统计图的应用、统计量的计算与性质2.概率的概念随机事件与样本空间、事件的概率、几何概型与排列、分子概型与组合、概率的加法定理、概率的乘法定理、条件概率、独立事件、概率的应用以上是2024年高考数学大纲的知识点总结。

高考必背最完整的高中数学知识点

高考必背最完整的高中数学知识点

高考必背最完整的高中数学知识点一、代数1. 一次函数的性质:直线的斜率、截距和方程形式。

2. 二次函数的性质:顶点坐标、对称轴、开口方向和方程形式。

3. 幂函数与指数函数的性质。

4. 对数函数的性质:底数为正数时的定义、性质与常见公式。

5. 三角函数的基本概念:正弦函数、余弦函数和正切函数的周期、定义域、值域和图像。

6. 数列的概念及常见数列的通项公式和求和公式。

二、几何1. 平面几何基本概念:点、直线、平行和垂直关系。

2. 三角形的性质:角的度量、三角形类型和重要定理(如余弦定理和正弦定理)。

3. 圆的性质:圆周角、弧长和面积公式。

4. 球和立体几何的基本概念:体积、表面积和投影等。

三、概率与统计1. 概率的基本概念:事件、样本空间、概率以及概率的性质与计算。

2. 随机变量的概念及其分布函数和密度函数。

3. 统计的基本概念:总体、样本、参数和统计量。

4. 样本调查与统计分析的方法和步骤。

四、解析几何1. 向量的基本概念:向量的表示、向量的运算、向量的模和方向角。

2. 平面的方程:一般式、点法式、两点式和法向量式等。

3. 空间几何基本概念:点、直线、平面的关系与位置。

4. 空间直角坐标系:空间直角坐标系的建立与距离公式。

五、数学思维1. 基本解题方法和思维:分类讨论、递推法、数学归纳法等。

2. 数学证明的基本方法:直接证明、间接证明、反证法等。

3. 数学建模的基本流程和方法。

4. 数学问题的模型转化与解决策略。

以上是高考必背的最完整的高中数学知识点。

希望同学们在备考过程中认真复这些知识,做好各种题型的练,提高自己的数学水平,取得好成绩!加油!。

75个高中数学高考知识点总结

75个高中数学高考知识点总结

75个高中数学高考知识点总结高中数学高考知识点总结(共75个)1.数集与函数:数集的性质,集合的表示方法,集合的运算,函数的定义及性质,一元二次函数的图像与性质,复合函数的概念与性质等。

2.数论与代数:整数与有理数的运算性质,整式的运算性质,整式的因式分解与化简,多项式函数的概念与性质,复数的概念与运算性质等。

4.空间几何与立体几何:空间直线及其方程,空间平面及其方程,空间曲线及其方程,球面的定义与性质,空间几何体的表面积与体积等。

5.三角函数与三角恒等式:二次角与辅助角的概念,三角函数的定义及性质,三角函数的图像与变换,三角函数的基本恒等式等。

6.三角函数的应用:三角函数在坐标系中的应用,三角函数在三角恒等式中的应用,三角函数在物理问题中的应用等。

7.数列与数列的极限:数列的概念及性质,数列的极限及其性质,数列极限的运算法则,常用数列的极限等。

8.函数的极限与连续:函数的极限的定义及性质,函数的极限的运算法则,函数的连续性及其性质,连续函数的运算与初等函数的连续性等。

9.导数与导数应用:导数的定义及性质,函数的导数与函数的图像,导数的四则运算法则,函数的单调性与极值点等。

10.积分与定积分:定积分的概念及性质,定积分的计算方法,不定积分的概念与性质,不定积分的计算方法等。

11.微分方程:微分方程的基本概念与解法,可分离变量的微分方程,一阶线性微分方程,二阶齐次线性微分方程等。

12.概率与统计:随机事件与概率,随机变量及其分布,频率与概率的估计,统计图表的绘制与分析等。

13.线性规划:线性规划问题的建模,线性规划的基本概念与性质,线性规划的图形解法与解的存在性等。

14.解析几何:平面解析几何的基本概念与性质,平面曲线的方程与性质,空间解析几何的基本概念与性质等。

15.逻辑与集合论:命题与命题的连接词,逻辑等价命题,简单命题与复合命题,命题的充分必要条件与等价条件等。

以上是高中数学高考的主要知识点总结,包含了数学的基本概念、性质和应用。

高考数学必考知识点归纳

高考数学必考知识点归纳

高考数学必考知识点归纳一、集合与函数1.集合o表示法:列举法、描述法、图示法(韦恩图)。

o运算:交集、并集、补集(相对于全集)。

2.函数o概念:输入与输出之间的对应关系。

o表示法:解析法、列表法、图像法。

o单调性:增函数、减函数。

o奇偶性:奇函数、偶函数、非奇非偶函数。

二、数列1.定义与表示o数列的定义:按一定顺序排列的一列数。

o表示法:通项公式、递推公式。

2.等差数列o定义、通项公式、前n项和公式。

o性质:中项性质、等差中项。

3.等比数列o定义、通项公式、前n项和公式(注意公比不为1的情况)。

o性质:中项性质、等比中项。

4.数列求和o倒序相加法、错位相减法、分组求和法、裂项相消法等。

5.数列的极限o数列极限的概念、性质及简单计算。

三、三角函数1.基本概念o角度与弧度制、三角函数定义(正弦、余弦、正切)。

2.诱导公式o角度加减变换公式。

3.同角关系式o基本恒等式、平方关系、商数关系。

4.性质o周期性、奇偶性、单调性、有界性。

5.图像与性质o各三角函数图像特征、相位变换、振幅变换。

6.三角恒等变换o和差化积、积化和差、倍角公式、半角公式。

7.解三角形o正弦定理、余弦定理、面积公式、海伦公式。

四、向量1.基本概念o向量的模、方向、坐标表示。

2.运算o加法、减法、数乘、数量积(点积)、向量积(叉积)。

o模长与夹角的关系、平行与垂直的条件。

五、解析几何1.直线o方程:点斜式、斜截式、两点式、截距式、一般式。

o斜率:定义、公式、倾斜角。

o位置关系:平行、垂直的条件。

2.圆o方程:标准方程、一般方程。

o性质:圆心、半径、切线、弦的性质(如相交弦定理)。

3.圆锥曲线o椭圆、双曲线、抛物线的定义、标准方程、性质。

六、立体几何1.空间位置关系o直线与平面、平面与平面的平行、垂直关系。

2.几何体o柱体、锥体、球体等的结构特征及表面积、体积公式。

3.三视图o正视图、侧视图、俯视图及其绘制方法。

七、不等式1.性质o基本性质、传递性、可加性、可乘性(正数时)。

高考总复习高中数学知识点完美总结PDF直接打印版

高考总复习高中数学知识点完美总结PDF直接打印版

充要
充分条件 p q , p 是 q 的充分条件 若命题 p 对应集合 A ,命题 q 对应集合 必要条件 p q , q 是 p 的必要条件 B ,则 p q 等价于 A B ,p q 等
辑 用
条件
充要条件 p q , p, q 互为充要条件 价于 A B 。

或命题 p q , p, q 有一为真即为真, p, q 均为假时才为假。 类比集合的并

概念 能够判断真假的语句。

原命题:若 p ,则 q
原命题与逆命题,否命题与逆否命题互

命题
四种 逆命题:若 q ,则 p
逆;原命题与否命题、逆命题与逆否命
逻 辑常
命题 否命题:若 p ,则 q
题互否;原命题与逆否命题、否命题与
逆否命题:若 q ,则 p
逆命题互为逆否。互为逆否的命题等价。
用用 语逻
(6) a b 0,n N*,n 1 a n b n;n a n b
a b 1 1 的充要条件是 ab
ab 0 。

次 不
解一元二次不等式实际上就是求出对应的一元二次方程的实数根(如果有实数根),再结合对应的函
等 数的图象确定其大于零或者小于零的区间,在含有字母参数的不等式中还要根据参数的Байду номын сангаас同取值确
式 定方程根的大小以及函数图象的开口方向,从而确定不等式的解集.

本 ab a b

2
等 ( a 0, b 0 )

a b 2 ab ( a, b 0 );
ab ( a b )2 ( a, b R ); 2
2ab ≤ ab
ab ≤ a b ≤ 2
a 2 b 2 ( a, b 0 );
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学总知识点归纳总结大全高考数学作为一门重要的学科,对于每一位参加高考的学生来说,都至关重要。

为了更好地帮助大家复习备考,经过精心整理和总结,本文将为大家呈现高考数学的总知识点归纳总结大全。

一、代数与函数
1. 关系与函数
关系的概念;函数的概念;平面直角坐标系;函数的图像与特征;函数的表示方式;函数的运算与初等函数。

2. 直线与方程
直线的基本性质;直线方程的研究。

3. 一次函数与二次函数
一次函数的性质与图像;一次函数方程的研究;二次函数的性质与图像;二次函数方程的研究。

4. 不等式与不等式组
不等式的解集;不等式的性质;不等式组的解集;不等式组的性质。

二、几何与立体几何
1. 直线与圆
直线与圆的基本性质;角与弧的关系;切线与切点。

2. 三角形与四边形
三角形的性质与判定;相似三角形的性质与判定;直角三角形的性质与判定;特殊三角形的性质;四边形的性质与判定。

3. 平移、旋转、对称
平移的性质;旋转的性质;对称的性质。

4. 空间几何与立体几何
空间几何的基本概念;平行与垂直关系;立体几何的基本概念与性质;棱柱、棱锥、圆柱、圆锥、球的性质与计算。

三、概率与统计
1. 随机事件与概率
随机事件的基本概念;概率的基本概念;概率的计算方法。

2. 统计与抽样调查
统计的基本概念;频数、频率与统计图表;抽样调查的基本概念。

四、应用题与解题方法
1. 应用题与解答方法
应用题的分类与解题方法。

2. 数学建模与解题思路
数学建模的基本概念与步骤;解题思路与方法。

以上便是高考数学的总知识点归纳总结大全。

希望同学们通过学习和掌握这些知识点,能够在高考中取得优异的成绩。

祝愿大家都能顺利通过高考,实现自己的梦想!。

相关文档
最新文档