一元二次方程根的判别式及韦达定理

合集下载

一元二次方程根的判别式、根与系数关系

一元二次方程根的判别式、根与系数关系
△>0方程有两个不相等的实数根. △=0方程有两个相等的实数根. △<0方程没有实数根. △≥0方程有两个实数根.
上述命题的逆命题也正确
例1:不解方程判断下列方程根的情况 ① x²-4x-1=0 ②x²+5=2x ③ x²-mx+m²+1=0
例2:k取何值时,方程4 x²-(k+2)x+(k-1)=0 ①有一个根是-1。 ②有两个相等的实根
解:∵方程x²+2ax+1=0有两个不相等的实根 ∴Δ 1=4a²-4>0 既a²>1 方程②中a>1 ∴ 2a²-1>1≠0 既方程②为一元二次方程 Δ 2=4a²-4(2a-1)2=-4(4a-1)(a-1) ∵a²>1 ∴a²-1>0 ∴(4a²-1)>0 2=-4(4a²-1)(a²-1)<0 ∴方程②无实根
一元二次方程的根与系数关系
一元二次方程的根与系数关系(或称韦达定理)是初中数学内容中一个很重要的 知识点,在中考中占有重要的地位,纵观近年全国各地的中考试题,这个知 识点的考查可以解决以下几个问题:
一元二次方程的根与系数的关系 如果一元二次方程ax 2+bx+c=0(a≠0)的两个实数根是x 1,x 2,那么
点评:本题的解题关键是把a、b看作一元二次方程x 2-3x+1=0的 两根,利用根与系数关系得a+b=3,ab=1,再通过运用整体代换 的思想代入运算,问题可求.利用根与系数的关系求与根有关的代数 式的值,
五、利用给出条件,确定一个一元二次方程中某个字母系数的值
例3 已知关于x的方程x 2+px+q=0的两实数根和的平方比两实数根之积 大7,而两实数根差的平方比两实数根之积的3倍小5,求p、q值.
(x 1-x 2) 2=3 x 1·x 2-5 ……③ ∵(x 1-x 2) 2=(x 1+x 2) 2-4 x 1·x 2

一元二次方程根的判别式及韦达定理常见题型及注意事项-精选.

一元二次方程根的判别式及韦达定理常见题型及注意事项-精选.

一元二次方程根的判别式及韦达定理常见题型及注意事项一、一元二次方程跟的判别式的常见题型 题型1:不解方程,判断一元二次方程根的情况.6232)3(;0123)2(;0345)1(222x x x x x x =+=++=--题型2:证明一元二次方程根的情况求证:无论k 取何实数,关于x 的一元二次方程:2(1)40x k x k -++-=总有两个不等实根。

题型3:已知一元二次方程根的情况..,求方程中未知系数的取值范围 1.( 2011·重庆)已知关于x 的一元二次方程......(a -1)x 2-2x +1=0有两个不相等的......实数根,则a 的取值范围是( )A.a <2 B,a >2 C.a <2且a ≠1 D.a <-2· 变式1:(2010·安徽芜湖)关于x 的方程..(a -5)x 2-4x -1=0有实数根....,则a 满足() A .a ≥1 B .a >1且a ≠5 C .a ≥1且a ≠5 D .a ≠5注意:要特别注意二次项系数是否为0,即原方程是否“一定为一元二次方程”。

变式2:(2010 ·成都)若关于x 的一元二次方程2420x x k ++=有两个实数根,求k 的取值范围及k 的非负整数....值.变式3:已知关于x 的一元二次方程(12)10k x k x --=有两个实数根,求k 的取值范围二、一元二次方程根与系数的关系------韦达定理的常见题型 题型1:已知一元二次方程的一根,求另一根及未知系数k 的值 已知23-是方程210x kx ++=的一根,则方程的另一根是 ,k = 。

题型2:求与一元二次方程根有关的代数式的值; 1. 已知12,x x 是方程22430xx --=的两根,计算: (1)2212x x +; ⑵ 1211x x +;⑶212()x x -变式:已知,a b是方程2201230x x -+=的两实根,求22(20103)(20103)a a b b -+-+的值题型3:已知一元二次方程两根的关系.....,求方程中未知系数的取值 1. 关于x 的一元二次方程22(21)10xk x k +-+-=的两个实根的平方和等于9,求k 的值变式1: (2011·荆州)关于x 的方程0)1(2)13(2=+++-a x a ax有两个不相等的实根1x 、2x ,且有a x x x x -=+-12211,则a 的值是( )A .1B .-1C .1或-1D . 2注意:要特别注意应用韦达定理的前提条件是原方程有实根,即原方程:△≥0。

第三讲 一元二次方程根的判别式与韦达定理(精讲)(解析版)

第三讲   一元二次方程根的判别式与韦达定理(精讲)(解析版)

2023年初高中衔接素养提升专题讲义第三讲 一元二次方程根的判别式与韦达定理(精讲)(解析版)【知识点透析】1、一元二次根的判别式一元二次方程20 (0)ax bx c a ++=≠,用配方法将其变形为:2224()24b b ac x a a -+=,把24b ac -叫做一元二次方程20 (0)ax bx c a ++=≠的根的判别式,表示为:24b ac∆=-(1) 当Δ=240b ac ->时,方程有两个不相等的实数根:x =(2) 当Δ=240b ac -=时,因此,方程有两个相等的实数根:1,22b x a=-(3) 当Δ=240b ac -<时,因此,方程没有实数根.【知识点精讲】【例1】已知关于x 的一元二次方程2320x x k -+=,根据下列条件,分别求出k 的范围:(1) 方程有两个不相等的实数根;(2) 方程有两个相等的实数根(3)方程有实数根;(4) 方程无实数根.【解析】:2(2)43412k k ∆=--⨯⨯=-(1) 141203k k ->⇒<;(2) 141203k k -=⇒=;(3) 141203k k -≥⇒≥;(4) 141203k k -<⇒<.【变式1】((2022秋·重庆开州·八年级统考期中)使得关于x 的不等式组6x ―a ≥―10―1+12x <―18x +32有且只有4个整数解,且关于x 的一元二次方程(a ―5)x 2+4x +1=0有实数根的所有整数a 的值之和为( )A .35B .30C .26D .21【答案】B【分析】先求出不等式组的解集,根据有且只有4个整数解可确定a 的取值范围,再通过根的判别式确定a 的取值范围,最后结合两个取值范围找出满足条件的整数相加即可.【详解】解:整理不等式组得:6x ―a ≥―10①―8+4x <―x +12②由①得:x ≥a ―106,由②得:x<4∵不等式组有且只有4个整数解,∴不等式组的4个整数解是:3,2,1,0,∴―1<a―106≤0,解得:4<a≤10,∵(a―5)x2+4x+1=0有实数根,∴Δ=b2―4ac=16―4×(a―5)×1=36―4a≥0,解得:a≤9,∵方程(a―5)x2+4x+1=0是一元二次方程,∴a≠5∴4<a≤9,且a≠5,满足条件的整数有:6、7、8、9;∴6+7+8+9=30,故选:B.【变式2】.已知关于x的一元二次方程:x2﹣(2k+1)x+4(k―12)=0.(1)求证:这个方程总有两个实数根;(2)若等腰△ABC的一边长a=4b、c恰好是这个方程的两个实数根,求△ABC 的周长.【解答】(1)证明:Δ=(2k+1)2﹣4×1×4(k―12)=4k2﹣12k+9=(2k﹣3)2,∵无论k取什么实数值,(2k﹣3)2≥0,∴△≥0,∴无论k取什么实数值,方程总有实数根;(2)解:∵x=2k+1±(2k―3)2,∴x1=2k﹣1,x2=2,∵b,c恰好是这个方程的两个实数根,设b=2k﹣1,c=2,当a 、b 为腰,则a =b =4,即2k ﹣1=4,解得k =52,此时三角形的周长=4+4+2=10;当b 、c 为腰时,b =c =2,此时b +c =a ,故此种情况不存在.综上所述,△ABC 的周长为10.【例2】已知实数x 、y 满足22210x y xy x y +-+-+=,试求x 、y 的值.【解析】:可以把所给方程看作为关于x 的方程,整理得:22(2)10x y x y y --+-+=由于x 是实数,所以上述方程有实数根,因此:222[(2)]4(1)300y y y y y ∆=----+=-≥⇒=,代入原方程得:22101x x x ++=⇒=-.综上知:1,0x y =-=【变式1】(2022秋·湖北武汉·八年级武汉市第一初级中学校考期末)已知a ,b ,c 满足a 2+6b =7,b 2―2c =―1,c 2―2a =―17,则a ―b +c 的值为( )A .―1B .5C .6D .―7【答案】B【分析】首先把a 2+6b =7,b 2―2c =―1,c 2―2a =―17,两边相加整理成a 2+6b +b 2―2c +c 2―2a +11=0,分解因式,利用非负数的性质得出a 、b 、c 的数值,代入求得答案即可.【详解】解:∵a 2+6b =7,b 2―2c =―1,c 2―2a =―17,∴a 2+6b +b 2―2c +c 2―2a =―,∴a 2+6b +b 2―2c +c 2―2a +11=0∴(a ―1)2+(b +3)2+(c ―1)2=0,∴a =1,b =―3,c =1,∴a ―b +c =1+3+1=5.故选:B .【变式2】((2022秋·江苏扬州·八年级统考期中)新定义,若关于x 的一元二次方程:m (x ―a )2+b =0与n (x ―a )2+b =0,称为“同类方程”.如2(x ―1)2+3=0与6(x ―1)2+3=0是“同类方程”.现有关于x 的一元二次方程:2(x ―1)2+1=0与(a +6)x 2―(b +8)x +6=0是“同类方程”.那么代数式ax 2+bx +2022能取的最大值是_________.【答案】2023【分析】根据“同类方程”的定义,可得出a ,b 的值,从而解得代数式的最大值.【详解】∵2(x ―1)2+1=0与(a +6)x 2―(b +8)x +6=0是“同类方程”,∴(a +6)x 2―(b +8)x +6=(a +6)(x ―1)2+1,∴(a +6)x 2―(b +8)x +6=(a +6)x 2―2(a +6)x +a +7,∴b +8=2(a +6)6=a +7 ,解得:a =―1b =2,∴a x 2+bx +2022=―x 2+2x +2022=―(x ―1)2+2023∴当x =1时,a x 2+bx +2022取得最大值为2023.故答案为:2023.2、一元二次方程的根与系数的关系一元二次方程20 (0)ax bx c a ++=≠的两个根为:x x ==所以:12b x x a+==-,12244ac c x x a a⋅====韦达定理:如果一元二次方程20 (0)ax bx c a ++=≠的两个根为12,x x ,那么:1212,b c x x x x a a+=-=【知识点精讲】【例3】若12,x x 是方程2220070x x +-=的两个根,试求下列各式的值:(1) 2212x x +;(2) 1211x x +;(3) 12(5)(5)x x --;(4) 12||x x -.【解析】:由题意,根据根与系数的关系得:12122,2007x x x x +=-=-(1) 2222121212()2(2)2(2007)4018x x x x x x +=+-=---=(2) 121212112220072007x x x x x x +-+===-(3) 121212(5)(5)5()2520075(2)251972x x x x x x --=-++=---+=-(4) 12||x x -====常见的一些变形结论:利用根与系数的关系求值,要熟练掌握以下等式变形:222121212()2x x x x x x +=+-,12121211x x x x x x ++=,22121212()()4x x x x x x -=+-,12||x x -=2212121212()x x x x x x x x +=+,33312121212()3()x x x x x x x x +=+-+等等.韦达定理体现了整体思想.【例4】.已知关于x 的方程220x mx m -+=.(1)若2m =-,方程两根分别为1x ,2x ,求12x x -和3312x x +的值;(2)若方程有一正数,有一负数根,求实数m 的取值范围.【答案】.(14- (2)m <0【解析】(1)由22121212=()4x x x x x x -+-,33212121212()[()3]x x x x x x x x +=++-,借助韦达定理求解.(2)借助韦达定理表示方程有一正数,有一负数根的等价条件,进而求解.【详解】(1)当2m =-时,2222x x +-=即:210x x +-=1212140,1,1x x x x ∆=+>+=-=-因此:2212121212=()45x x x x x x x x -+-=∴-=3322212121212121212()[]()[()3]4x x x x x x x x x x x x x x +=++-=++-=-(2)220x mx m -+=212128,,22m m m m x x x x ∆=-+==21280002m m m m x x ⎧∆=->⎪∴<⎨=<⎪⎩【变式1】已知两不等实数a ,b 满足222a a =-,222b b =-,求22b a a b +的值.【解析】:b a ,是一元二次方程0222=-+x x 的不等实根则有2,2-=-=+ab b a原式=5)(]3))[(()())(()(22222233-=-++=+-+=+ab ab b a b a ab b ab a b a ab b a 【变式2】(2022秋·浙江杭州·八年级杭州外国语学校校考期末)设m 是不小于﹣1的实数,使得关于x 的方程x 2+2(m ﹣2)x +m 2﹣3m +3=0有两个实数根x 1,x 2.(1)若x 21+x 22=2,求m 的值;(2)令T =mx 11―x 1+mx 21―x 2,求T 的取值范围.【答案】(1)1 (2)0<T ≤4且T ≠2【分析】首先根据方程有两个实数根及m 是不小于-1的实数,确定m 的取值范围,根据根与系数的关系,用含m 的代数式表示出两根的和、两根的积.(1)变形x 12+x 22为(x 1+x 2)2-2x 1x 2,代入用含m 表示的两根的和、两根的积得方程,解方程根据m 的取值范围得到m 的值;(2)化简T ,用含m 的式子表示出T ,根据m 的取值范围,得到T 的取值范围.(1)∵关于x 的方程x 2+2(m -2)x +m 2-3m +3=0有两个实数根,∴Δ=4(m -2)2-4(m 2-3m +3)≥0,解得m ≤1,∵m 是不小于-1的实数,∴-1≤m ≤1,∵方程x 2+2(m -2)x +m 2-3m +3=0x 1,x 2,∴x 1+x 2=-2(m -2)=4-2m ,x 1•x 2=m 2-3m +3.∵x 12+x 22=2,∴(x 1+x 2)2-2x 1x 2=2,∴4(m -2)2-2(m 2-3m +3)=2,整理得m 2-5m +4=0,解得m 1=1,m 2=4(舍去),∴m 的值为1;(2)T =mx 11―x 1+mx 21―x 2,=mx 1(1―x 2)+mx 2(1―x 1)(1―x 1)(1―x 2)=m [(x 1+x 2)―2x 1x 2]1―(x 1+x 2)+x 1x 2=m (4―2m ―2m 2+6m ―6)1―4+2m +m 2―3m +3=―2m(m ―1)2m 2―m=―2m(m ―1)2m (m ―1)=2-2m .∵当x =1时,方程为1+2(m ﹣2)+m 2﹣3m +3=0,解得m =1或m =0.∴当m =1或m =0时,T 没有意义.∴―1≤m <1且m ≠0∴0<2-2m ≤4且T ≠2.即0<T ≤4且T ≠2.【变式3】.已知12x x ,是一元二次方程24410kx kx k -++=的两个实数根.(1)是否存在实数k ,使12123(2)(2)2x x x x --=-成立?若存在,求出k 的值,若不存在,请说明理由;(2)若k 是整数,求使12212x x x x +-的值为整数的所有k 的值.【答案】(1)不存在k ;理由见解析;(2)235k =---,,.【详解】(1)假设存在实数k ,使()()12123222x x x x --=-成立.∵一元二次方程24410kx kx k -++=的两个实数根∴()()24004441160k k k k k k ≠⎧⎪⇒<⎨∆=--⋅+=-≥⎪⎩,又1x ,2x 是一元二次方程24410kx kx k -++=的两个实数根∴1212114x x k x x k +=⎧⎪+⎨=⎪⎩∴()()()()222121212121212222529x x x x x x x x x x x x --=+-=+-939425k k k +=-=-⇒=,但0k < .∴不存在实数k ,使()()12123222x x x x --=-成立.(2)∵()22212121221121244224411x x x x x x k x x x x x x k k +++-=-=-=-=-++∴要使其值是整数,只需1k +能整除4,∴11k +=±,2±,4±,注意到0k <,要使12212x x x x +-的值为整数的实数k 的整数值为-2,-3,-5.所以k 的值为235k =---,,【变式4】(2022秋·四川凉山·八年级校考阶段练习)设一元二次方程x 2―2022x +1=0的两根分别为a ,b ,根据一元二次方程根与系数的关系可知:ab =1,记S 1=11+a +11+b ,S 2=11+a2+11+b2,S3=11+a3+11+b3,⋯,S100=11+a100+11+b100,那么S1+S2+S3+⋯+S100=______.【答案】100【分析】根据ab=1得到b=1a ,b2=1a2,b3=1a3,…b100=1a100,代入计算即可.【详解】∵一元二次方程x2―2022x+1=0的两根分别为a,b,∴ab=1,∴b=1a ,b2=1a2,b3=1a3,…b100=1a100,∴S1=11+a+11+1a=11+a+a1+a=1+a1+a=1,S2=11+a2+11+1a2=11+a2+a21+a2=1+a21+a2=1,S100=11+a100+11+1a100=11+a100+a1001+a100=1+a1001+a100=1,∴S1+S2+S3+⋯+S100=1+1+1+…+1100=100,故答案为:100.。

根的判别式韦达定理

根的判别式韦达定理

一元二次方程根的判别式和韦达定理知识点1.根的判别式21.4022.02043.,22ac b b ac b x x a a ⎧⎪≠-∆⎪⎪∆>⎧⎪⎪⎪∆=⎨⎨⎪⎪∆<⎩⎪⎪-±--±∆⎪==⎪⎩22概念:对于一个一元二次方程ax +bx+c=0(a 0)来说,b 称为根的判别式,记为。

时,方程有个不相等的根根的判别式意义:时,方程有个相等的根时,方程没有实数根公式法:解为即为补充:0≥∆时,方程有2个解,但不知道两个解是否相等。

例题讲解例1.当m 取什么值时,关于x 的方程0)22()12(222=++++m x m x 。

(1)有两个相等实根;(2)有两个不相等的实根; (3)没有实根。

例2.当m 为什么值时,关于x 的方程01)1(2)4(22=+++-x m x m 有实根。

小结:对于求一元二次方程中字母的取值或取值范围问题,一定要考虑全面。

特别注意“0≠a ”!例3.已知关于x 的方程01)12(22=+-+x k x k 有两个不相等的实数根1x 、2x ,问是否存在实数k ,使方程的两实数根互为相反数?如果存在,求出k 的值;如果不存在,请说明理由。

小结:这一类的题要注意3个方面:0≠a ,∆与0的关系,另外1x 和2x 间的数量关系课堂练习1、下列方程①012=+x ;②02=+x x ;③012=-+x x ;④02=-x x 中,无实根的方程是 。

2、已知关于x 的方程022=+-mx x 有两个相等的实数根,那么m 的值是 。

3、下列方程中,无实数根的是( )A 、011=-+-x xB 、 762=+y yC 、021=++xD 、0232=+-x x4、若关于x 的一元二次方程01)12()2(22=+++-x m x m 有两个不相等的实根,则m 的取值范围是( ) A 、43<m B 、m ≤43 C 、43>m 且m ≠2 D 、m ≥43且m ≠25、在方程02=++c bx ax (a ≠0)中,若a 与c 异号,则方程( )A 、有两个不等实根B 、有两个相等实根C 、没有实根D 、无法确定 6、关于x 的一元二次方程x 2+kx -1=0的根的情况是 ( )A 、有两个不相等的同号实数根B 、有两个不相等的异号实数C 、有两个相等的实数根D 、没有实数根7、 m 取何值时,方程()0112)2(22=++--x m x m (1)有两个不相等的实数根 (2)有两个相等的实数根;(3)没有实数根8、试证:关于x 的方程1)2(2-=+-x m mx 必有实根。

一元二次方程根的判别式及韦达定理常见题型及注意事项

一元二次方程根的判别式及韦达定理常见题型及注意事项

一元二次方程根的判别式及韦达定理常见题型及注意事项一、一元二次方程跟的判别式的常见题型 题型1:不解方程,判断一元二次方程根的情况.6232)3(;0123)2(;0345)1(222x x x x x x =+=++=--题型2:证明一元二次方程根的情况求证:无论k 取何实数,关于x 的一元二次方程:2(1)40x k x k -++-=总有两个不等实根。

题型3:已知一元二次方程根的情况..,求方程中未知系数的取值范围 1.( 2011·重庆)已知关于x 的一元二次方程......(a -1)x 2-2x +1=0有两个不相等的......实数根,则a 的取值范围是( )<2 B,a >2 <2且a ≠1 <-2·变式1:(2010·安徽芜湖)关于x 的方程..(a -5)x 2-4x -1=0有实数根....,则a 满足() A .a ≥1 B .a >1且a ≠5 C .a ≥1且a ≠5 D .a ≠5变式2:(2010 ·成都)若关于x 的一元二次方程2420x x k ++=有两个实数根,求k 的取值范围及k 的非负整数....值.变式3:已知关于x 的一元二次方程(12)10k x --=有两个实数根,求k 的取值范围二、一元二次方程根与系数的关系------韦达定理的常见题型 题型1:已知一元二次方程的一根,求另一根及未知系数k 的值已知2-是方程210x kx ++=的一根,则方程的另一根是 ,k = 。

题型2:求与一元二次方程根有关的代数式的值;1. 已知12,x x 是方程22430x x --=的两根,计算: (1)2212x x +; ⑵1211x x +;⑶212()x x -变式:已知,a b 是方程2201230x x -+=的两实根,求22(20103)(20103)a a b b -+-+的值题型3:已知一元二次方程两根的关系.....,求方程中未知系数的取值 1. 关于x 的一元二次方程22(21)10x k x k +-+-=的两个实根的平方和等于9,求k 的值变式1: (2011·荆州)关于x 的方程0)1(2)13(2=+++-a x a ax 有两个不相等的实根1x 、2x ,且有a x x x x -=+-12211,则a 的值是( )A .1B .-1C .1或-1D . 2变式2:(2010·中山)已知一元二次方程022=+-m x x .(1)若方程有两个实数根,求m 的范围;(2)若方程的两个实数根为1x ,2x ,且1x +32x =3,求m 的值。

一元二次方程根的判别式与韦达定理

一元二次方程根的判别式与韦达定理
由因式分解法可知,方程(x-x1)(x-x2)=0(x1,x2为已知数)的两根为x1和x2,将方程化为x2+px+q=0的形式,即x2一(x1+x2)x+x1x2=0,则二次项系数为1,一次项系数为p=-(x1+x2),q=x1x2.
于是,上述方程两个根的和、积与系数的关系分别有如下关系:
x1+x2=-p,x1x2=q
例1
(1)已知关于x的一元二次方程x2Байду номын сангаас2x+m=0有解,求m的范围.
(2)己知关于x的一元二次方程x2- x-m=0有两个不相等实数根,求m的取值范围.
(3)求证:关于x的一元二次方程ax2-(3a+l)x+2(a+l)=0(a≠0)总有实数根
(4)已知关于x的方程ax2-(3a+l)x+2(a+l)=0有两个不相等的实数根,求a的取值范围
(2)己知:a、b、c分别是△ABC的三边长,
求证:关于x的方程b2x2+(b2+c2一a2)x+c2=0没有实数根.
练习
己知△ABC三边a,b,c,关于x的方程(a+c)x2+2bx-a+c=0,x2+2ax+b2=0均有两个相等的实数根,试判断△ABC的形状.
模块二一元二次方程根与系数关系
知识导航:
练习
(1)方程x2—2x-1=0的两个实数根分别为x1、x2,(x1-l)(x2-1)=______________
cz,设x1、x2是方程2x2—6x+l=o的两个实数根,则(x1- )(x2- )的值为__________
【总结】
1、用韦达定理,常见的恒等变形有:
+ = ,x12+x22=(x1+x2)2-2x1x2,(x1-x2)2=(x1+x2)2-4x1x2
(2)一元二次方程x2—4x-c=0的一个根是3,则另一个根是____,c=___________

第三讲一元二次方程根的判别式 韦达定理

第三讲一元二次方程根的判别式 韦达定理

一、一元二次方程根的判别式的定义运用配方法解一元二次方程过程中得到2224()24b b ac x aa-+=,显然只有当240b ac -≥时,才能直接开平方得:2b x a+=也就是说,一元二次方程20(0)ax bx c a ++=≠只有当系数a 、b 、c 满足条件240b ac ∆=-≥时才有实数根.这里24b ac -叫做一元二次方程根的判别式.二、判别式与根的关系在实数范围内,一元二次方程20(0)ax bx c a ++=≠的根由其系数a 、b 、c 确定,它的根的情况(是否有实数根)由24b ac ∆=-确定.设一元二次方程为20(0)ax bx c a ++=≠,其根的判别式为:24b ac ∆=-则①0∆>⇔方程20(0)axbx c a ++=≠有两个不相等的实数根1,22x a=.②0∆=⇔方程20(0)ax bx c a ++=≠有两个相等的实数根122b x x a==-.③0∆<⇔方程20(0)ax bx c a ++=≠没有实数根.三、一元二次方程的根的判别式的应用一元二次方程的根的判别式在以下方面有着广泛的应用: ⑴运用判别式,判定方程实数根的个数;⑵利用判别式建立等式、不等式,求方程中参数值或取值范围; ⑶通过判别式,证明与方程相关的代数问题;(4)借助判别式,运用一元二次方程必定有解的代数模型,解几何存在性问题,最值问题.一、一元二次方程实数根个数的判定【例1】 不解方程,判别一元二次方程2261x x -=的根的情况是( )A .有两个不相等的实数根B .没有实数根C .有两个相等的实数根D .无法确定知识点睛例题精讲一元二次方程根的判别式【例2】 已知a ,b ,c 为正数,若二次方程20ax bx c ++=有两个实数根,那么方程22220a x b x c ++=的根的情况是( )A .有两个不相等的正实数根B .有两个异号的实数根C .有两个不相等的负实数根D .不一定有实数根【例3】 若方程2(2)2(1)0m x m x m +-++=只有一个实数根,那么方程2(1)220m x m x m +-+-=( ).A .没有实数根B .有2个不同的实数根C .有2个相等的实数根D .实数根的个数不能确定【例4】 已知:方程()22250m x m x m -+++=没有实数根,且5m ≠,求证:()()25220m x m x m --++=有两个实数根.【例5】 对任意实数m ,求证:关于x 的方程222(1)240m x mx m +-++=无实数根.二、一元二次方程中字母参数的确定【例6】 k 的何值时?关于x 的一元二次方程2450x x k -+-=:⑴有两个不相等的实数根;⑵有两个相等的实数根;⑶没有实数根.【例7】 m 为给定的有理数,k 为何值时,方程()22413240x m x m m k +-+-+=的根为有理数?【例8】已知方程22(21)10+++=有实数根,求m的范围.m x m x【例9】关于x的方程()2--+=有实数根,则整数a的最大值是.a x x6860【例10】关于x的一元二次方程2k x---=有两个不相等的实数根,(12)10求k的取值范围.、【例11】已知关于x的方程22x m x m++++=有两个不相等的实数根,化简:2(1)50m-|1|【例12】已知关于x的方程22(21)10+-+=有两个不相等的实数根12k x k x,.x x⑴求k的取值范围;⑵是否存在实数k,使方程的两实数根互为相反数?如果存在,求出k的值;如果不存在,请说明理由.三、一元二次方程与三角形三边关系的综合【例13】三角形两边的长是3和4,第三边的长是方程212350-+=的根,则该x x三角形的周长为.【例14】 方程29180x x -+=的两个根是等腰三角形的底和腰,则这个三角形的周长为 .【例15】 已知a ,3是直角三角形的两边,第三边的长满足方程29200x x -+=,则a 的值为.这样的直角三角形有 个.【例16】 已知关于方程21(21)4()02x k x k -++-=⑴求证:无论k 取何值,这个方程总有实数根;⑵若等腰A B C ∆的一边长为4,另两边长b 、c 恰好是这个方程的两个实数根,求这个三角形的周长.【例17】 已知关于x 的方程2(2)20x k x k -++=⑴求证:无论k 取任何实数值,方程总有实数根;⑵若等腰三角形ABC 的一边长1a =,另两边长b ,c 恰好是这个方程的两个根,求A B C ∆的周长.根与系数关系式习题精选1、设21,x x 是一元二次方程01522=+-x x 的两个根,利用根与系数的关系,求下列各式的值:(1))3)(3(21--x x ;(2)2221)1()1(+++x x(3)112112+++x x x x(4)||21x x -5))31)(31(1221x x x x ++2、已知1x ,2x 是关于x 的方程012)2(222=-++-m x m x 的两个实根,且满足02221=-x x ,求m的值;3、已知方程0122=++mx x 的两实根是21x x 和,方程02=+-n mx x 的两实根是71+x 和72+x ,求m 和n 的值。

一元二次方程根的判别式及韦达定理常见题型

一元二次方程根的判别式及韦达定理常见题型

一元二次方程根的判别式及韦达定理常见题型一、一元二次方程跟的判别式的常见题型题型1:不解方程,判断一元二次方程根的情况.6232)3(;0123)2(;0345)1(222x x x x x x =+=++=--题型2:证明一元二次方程根的情况求证:无论k 取何实数,关于x 的一元二次方程:2(1)40x k x k -++-=总有两个不等实根。

题型3:已知一元二次方程根的情况..,求方程中未知系数的取值范围 1.已知关于x 的一元二次方程......(a -1)x 2-2x +1=0有两个不相等的......实数根,则a 的取值范围是( )A.a <2 B,a >2 C.a <2且a ≠1 D.a <-2· 变式1:关于x 的方程..(a -5)x 2-4x -1=0有实数根....,则a 满足() A .a ≥1 B .a >1且a ≠5 C .a ≥1且a ≠5 D .a ≠5变式2:若关于的一元二次方程有两个实数根,求的取值范围及的非负整数....值.x 2420x x k ++=k k变式3:已知关于x的一元二次方程(12)10k x --=有两个实数根,求的取值范围二、一元二次方程根与系数的关系------韦达定理的常见题型题型1:已知一元二次方程的一根,求另一根及未知系数k 的值已知2是方程210x kx ++=的一根,则方程的另一根是 ,k = 。

题型2:求与一元二次方程根有关的代数式的值;1. 已知12,x x 是方程22430x x --=的两根,计算: (1)2212x x +; ⑵ 1211x x +;⑶212()x x -变式:已知,a b 是方程2201230x x -+=的两实根,求22(20103)(20103)a a b b -+-+的值题型3:已知一元二次方程两根的关系.....,求方程中未知系数的取值 1. 关于的一元二次方程22(21)10x k x k +-+-=的两个实根的平方和等于9,求k 的值k x变式1: 关于的方程有两个不相等的实根、,且有,则的值是( )A .1B .-1C .1或-1D . 2变式2:已知一元二次方程.(1)若方程有两个实数根,求m 的范围;(2)若方程的两个实数根为,,且+3=3,求m 的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第14讲 一元二次方程根的判别式及韦达定理
◎前景回顾
上节课我们一起学习了哪些知识点呢?同学们还记得吗? (一元二次方程的定义、四种解法、整体代入)
1、代数式222
1
x x x ---的值为0,则x 的值为________.
2、已知(x+y )(x+y+2)-8=0,则x+y 的值为________
3、若关于x 的一元二次方程(m-1)x 2+x+m 2
+2m-3=0有一根为0,则m 的值是_____.
4、已知x 2+y 2+z 2
-2x+4y-6z+14=0,则x+y+z 的值是_________________
5、如果2x 2+1与4x 2
-2x-5互为相反数,则x 的值为________.
6、已知三角形两边长分别为2和9,第三边的长为二次方程x 2
-14x+48=0的一根, 则这个三角形的周长为___________
7、已知关于x 的方程:(m-2)m
-m 2x
+(m-1)x+6=0是一元二次方程,试求m 的值.
8、关于x 的方程0b m x a 2
=++)(的解是x 1=-2,x 2=1(a 、m 、b 均为常数,a ≠0),则方程0b 2m x a 2
=+++)(的解是_____________ 9、解方程
(1)(1-x )2+2x (x-1)=0. (2)x 2
-4x+1=0
(3)x 2-6x+5=0 (4)x 2
-2(x+4)=0
◎例题导航
知识点1 根的判别式
例1.方程x 2
+2x-1+m=0有两个相等实数根,则m=____.
例2.当k <1时,方程2(k+1)x 2
+4kx+2k-1=0有____实数根.
例3.若关于x 的一元二次方程mx 2
+3x-4=0有实数根,则m 的值为____.
例4.若m 是非负整数且一元二次方程(1-m 2)x 2
+2(1-m )x-1=0有两个实数根,则m 的值为____.
例5.若关于x 的二次方程kx 2+1=x-x 2
有实数根,则k 的取值范围是____.
举一反三
1、若一元二次方程(1-3k )x 2
+4x-2=0有实数根,则k 的取值范围是____.
2、方程4mx 2
-mx +1=0有两个相等的实数根,则 m 为____.
3、若关于x 的二次方程kx 2+1=x-x
2
有实数根,则k 的取值范围是____.
5.一元二次方程(m-1)x 2
+2mx +m +3=0有两个不相等的实数根,求m 的最大整数值
知识点2 根与系数的关系
例1、不解方程说出下列方程的两根和与两根差:
(1)01032
=--x x (2)01532
=++x x (3)0223422
=--x x
例2、设21,x x 是一元二次方程01522
=+-x x 的两个根,利用根与系数的关系,求下列各式的值:
(1)x 1+x 2 (2)x 12
+x 2
2
(3)
211
x 1x + (4)2
112x x x x +
(5)|x -x |21 (6))1(1x 21++x )( (7)(2
221x x -)
例3、已知关于x 的方程02)15(2
2
=-++-k x k x ,是否存在负数k ,使方程的两个实数根的倒数和等于4?若存在,求出满足条件的k 的值;若不存在,说明理由。

例4、已知方程0252
=-+x x ,作一个新的一元二次方程,使它的根分别是已知方程各根的平方的倒数。

例5、已知1x ,2x 是关于x 的方程012)2(222=-++-m x m x 的两个实根,且满足
02
221=-x x ,求m 的值;
举一反三
1.若关于x 的一元二次方程x 2
-4x+k-3=0的两个实数根为x 1、x 2,且满足x 1=3x 2,试求出方程的两个实数根及k 的值.
2.已知关于x 的方程x 2
-(k+1)x+k+2=0的两个实数根分别为x 1和x 2,且x 12
+x 22
=6,求k 的值?
3.已知a 、b 为方程x 2-2x-1=0的两根,不解方程,求a 2+2b 2
-2a-4b+3的值.
4.关于x 的一元二次方程4x 2
+4(m-1)x+m 2
=0
(1)当m 在什么范围取值时,方程有两个实数根?
(2)设方程有两个实数根x 1,x 2,问m 为何值时,x 12+x 22
=17?
(3)若方程有两个实数根x 1,x 2,问x 1和x 2能否同号?若能同号,请求出相应m 的取值范围;若不能同号,请说明理由.
5.已知关于x 的方程x 2
+2mx+m+2=0.
(1)方程两根都是正数时,求m 的取值范围;
(2)方程一个根大于1,另一个根小于1,求m 的取值范围.
知识点3 配方法的应用
例1、已知m 2+2mn+2n 2-6n+9=0,求
2
n m
的值
例2、用配方法求x 2-6x+2的最小值.
例3、试说明代数式-4x 2+8x-5的值是正数还是负数,并求出该代数式的最大值或最小值
例4、试说明:不论x 、y 取何值,代数式x 2+y 2-4x+6y+15的值总是正数.并求出当x 、y 取何值时,这个代数式的值最小是多少?
例5、无论x 取任何实数,代数式
m x 6-x 2+都有意义,则
m 的取值范围为________。

举一反三 1、已知3x 1x =+
,求22x
1
x +的值。

2、已知x 为实数,设M=x 2+1,N=2x-3,则M 与N 的大小关系为M____N .
【课后练习】
1.已知方程x 2
+(2k+1)x+k 2
-2=0的两实根的平方和等于11,k 的取值是( )
A .-3或1
B .-3
C .1
D .3
2.若,αβ是方程2
220050x x +-=的两个实数根,则23ααβ++的值为( )
A .2005
B .2003
C .-2005
D .4010
3.若关于x 的一元二次方程2x 2
-2x +3m -1=0的两个实数根x 1,x 2,且x 1·x 2>x 1+x 2-4,则实数m 的取值范围是 ( )
A .m >53-
B . m ≤12
C .m <53-
D .53-<m ≤12
4. 若关于x 的一元二次方程22430x kx k ++-=的两个实数根分别是12,x x ,且满足1212x x x x +=.则k 的值为( )
A .-1或34
B .-1
C .3
4 D .不存在
5.关于x 的方程2
0x px q ++=的两根同为负数,则( )
A .0p >且q >0
B .0p >且q <0
C .0p <且q >0
D .0p <且q <0 6、下列方程中,无实数根的是( )
A 、011=-+-x x
B 、 762=+y
y C 、021=++x D 、0232=+-x x
7、若关于x 的一元二次方程01)12()2(22=+++-x m x m 有两个不相等的实根,则m 的取值范围是( ) A 、43<
m B 、m ≤43 C 、43>m 且m ≠2 D 、m ≥4
3
且m ≠2 8、在方程02
=++c bx ax (a ≠0)中,若a 与c 异号,则方程( )
A 、有两个不等实根
B 、有两个相等实根
C 、没有实根
D 、无法确定
9、下列方程①012=+x ;②02=+x x ;③012=-+x x ;④02
=-x x 中,无实根的方程
是 。

10、已知关于x 的方程022
=+-mx x 有两个相等的实数根,那么m 的值是 。

11.已知一元二次方程x 2
-2x -1=0的两个根是x 1,x 2,则x 1+x 2= ,x 1x 2= ,x 12
+x 2
2= ;
12.若是m ,n 方程x 2
+2002x -1=0的两个实数根,则m 2
n+mn 2
-mn 的值为 13.反比例函数x
k y =
的图象经过点P (a 、b ),其中a 、b 是一元二次方程042=++kx x 的两根,那么点P 的坐标是 。

14.已知1x 、2x 是方程0132
=+-x x 的两根,则1112422
1++x x 的值为 。

15、已知关于x 的方程022
=-+-n m mx x 的根的判别式为零,方程的一个根为1,求m 、n
的值。

16、已知关于x 的方程03)1(222=-++-m x m x (1)当m 取何值时,方程有两个不相等的实数根?
(2)设1x 、2x 是方程的两根,且012)()(212
21=-+-+x x x x ,求m 的值。

相关文档
最新文档