一元二次方程根的判别式与韦达定理
一元二次方程根的判别式及韦达定理常见题型及注意事项-精选.

一元二次方程根的判别式及韦达定理常见题型及注意事项一、一元二次方程跟的判别式的常见题型 题型1:不解方程,判断一元二次方程根的情况.6232)3(;0123)2(;0345)1(222x x x x x x =+=++=--题型2:证明一元二次方程根的情况求证:无论k 取何实数,关于x 的一元二次方程:2(1)40x k x k -++-=总有两个不等实根。
题型3:已知一元二次方程根的情况..,求方程中未知系数的取值范围 1.( 2011·重庆)已知关于x 的一元二次方程......(a -1)x 2-2x +1=0有两个不相等的......实数根,则a 的取值范围是( )A.a <2 B,a >2 C.a <2且a ≠1 D.a <-2· 变式1:(2010·安徽芜湖)关于x 的方程..(a -5)x 2-4x -1=0有实数根....,则a 满足() A .a ≥1 B .a >1且a ≠5 C .a ≥1且a ≠5 D .a ≠5注意:要特别注意二次项系数是否为0,即原方程是否“一定为一元二次方程”。
变式2:(2010 ·成都)若关于x 的一元二次方程2420x x k ++=有两个实数根,求k 的取值范围及k 的非负整数....值.变式3:已知关于x 的一元二次方程(12)10k x k x --=有两个实数根,求k 的取值范围二、一元二次方程根与系数的关系------韦达定理的常见题型 题型1:已知一元二次方程的一根,求另一根及未知系数k 的值 已知23-是方程210x kx ++=的一根,则方程的另一根是 ,k = 。
题型2:求与一元二次方程根有关的代数式的值; 1. 已知12,x x 是方程22430xx --=的两根,计算: (1)2212x x +; ⑵ 1211x x +;⑶212()x x -变式:已知,a b是方程2201230x x -+=的两实根,求22(20103)(20103)a a b b -+-+的值题型3:已知一元二次方程两根的关系.....,求方程中未知系数的取值 1. 关于x 的一元二次方程22(21)10xk x k +-+-=的两个实根的平方和等于9,求k 的值变式1: (2011·荆州)关于x 的方程0)1(2)13(2=+++-a x a ax有两个不相等的实根1x 、2x ,且有a x x x x -=+-12211,则a 的值是( )A .1B .-1C .1或-1D . 2注意:要特别注意应用韦达定理的前提条件是原方程有实根,即原方程:△≥0。
第二章 一元二次方程专题复习2-根的判别式与韦达定理(含答案)

专题复习二 根的判别式与韦达定理重点提示: (1)根的判别式ac b 42-主要应用于判断方程根的情况.利用判别式判断方程根的情况时要注意方程是不是一元二次方程,如果方程的类型不确定还要进行分类讨论.(2)韦达定理主要反映一元二次方程根与系数的关系,利用韦达定理的前提条件是方程有解,即042≥-ac b .【夯实基础巩固】1. 已知x 1,x 2是方程x 2+2x ﹣5=0的两根,则的值为( B )A .﹣B .C .D .﹣2.已知x 2+px +q =0的两根是3,﹣4,则代数式x 2+px +q 分解因式的结果是( C )A . (x +3)(x +4)B . (x ﹣3)(x ﹣4)C . (x ﹣3)(x +4)D . (x +3)(x ﹣4)3.关于x 的方程x 2﹣2mx ﹣m ﹣1=0的根的情况是( A )A . 有两个不相等的实数根B . 有两个相等的实数根C . 有两个实数根D . 没有实数根4.关于x 的方程x 2﹣(m ﹣1)x +m ﹣2=0的两根互为倒数,则m 的值是( C )A . 1B . 2C . 3D . 45.关于x 的方程x 2﹣(m ﹣3)x +m 2=0有两个不相等的实数根,则m 的最大整数值是( B )A . 2B . 1C . 0D . ﹣16.已知关于x 的一元二次方程x 2+kx +1=0有两个相等的实数根,则k = ±2 .7.已知x 1,x 2是方程的两根,则的值为 3 .8.已知a ,b 是一元二次方程x 2﹣2x ﹣1=0的两个实数根,则代数式(a ﹣b )(a +b ﹣2)+ab 的值等于 ﹣1 .9.已知关于x 的方程x 2+2mx +m 2﹣1=0.(1)不解方程,判别方程根的情况.(2)若方程有一个根为3,求m 的值.(1)∵∆=(2m )2﹣4×1×(m 2﹣1)=4>0,∴方程x 2+2mx +m 2﹣1=0有两个不相等的实数根.(2)∵x2+2mx+m2﹣1=0有一个根是3,∴32+2m×3+m2﹣1=0,解得m=﹣4或m=﹣2.10.已知关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根.(1)求实数m的最大整数值.(2)在(1)的条件下,方程的实数根是x1,x2,求代数式x12+x22﹣x1x2的值.(1)∵x2﹣2x+m=0有两个不相等的实数根,∴ =8﹣4m>0,解得m<2,∴m的最大整数值为1.(2)∵m=1,∴此一元二次方程为x2﹣2x+1=0.∴x1+x2=2,x1x2=1.∴x12+x22﹣x1x2=(x1+x2)2﹣3x1x2=8﹣3=5.【能力提升培优】11.若a,b,c为三角形三边,则关于x的一元二次方程x2+(a﹣b)x+c2=0的根的情况是(C)A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.无法确定12.已知一元二次方程ax2+bx+c=0(a≠0),给出下列命题:①若a+b+c=0,则b2﹣4ac≥0;②若方程ax2+bx+c=0两根为﹣1和2,则2a+c=0;③若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等的实根.其中真命题有(C)A.1个B.2个C.3个D.0个13.设x1,x2是关于x的方程x2+px+q=0的两根,x1+1,x2+1是关于x的方程x2+qx+p=0的两根,则p,q的值分别为(A)A.﹣1,﹣3 B.1,3 C.1,﹣3 D.﹣1,3【解析】∵x1,x2是x2+px+q=0的两根,x1+1,x2+1是x2+qx+p=0的两根,∴x1+x2=-p,x1x2=q,x1+1+x2+1= x1+x2+2=-q,(x1+1)(x2+1)= x1x2+(x1+x2)+1=p.∴-p+2=-q,q-p+1=p.∴p=-1,q=-3.14.若一元二次方程x2﹣(a+2)x+2a=0的两个实数根分别是3,b,则a+b=5.15.已知m,n是方程x2﹣2x﹣1=0的两根,且(7m2﹣14m+a)(3n2﹣6n﹣7)=8,则a的值等于﹣9.16.已知关于x的方程x2﹣(a+b)x+ab﹣1=0,x1,x2是此方程的两个实数根,现给出三个结论:①x1≠x2;②x1x2<ab;③.则正确结论的序号是①②.17.关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不等实根x1,x2.(1)求实数k的取值范围.(2)若方程两实根x1,x2满足|x1|+|x2|=x1x2,求k的值.(1)∵原方程有两个不相等的实数根,∴∆=(2k+1)2﹣4(k2+1)=4k2+4k+1﹣4k2﹣4=4k﹣3>0,解得k>.(2)∵k>,∴x1+x2=﹣(2k+1)<0.又∵x1x2=k2+1>0,∴x1<0,x2<0.∴|x1|+|x2|=﹣x1﹣x2=﹣(x1+x2)=2k+1.∵|x1|+|x2|=x1x2,∴2k+1=k2+1.∴k1=0,k2=2.又∵k>,∴k=2.18.设m是不小于﹣1的实数,关于x的方程x2+2(m﹣2)x+m2﹣3m+3=0有两个不相等的实数根x1,x2.(1)若+=1,求的值.(2)求+﹣m2的最大值.∵方程有两个不相等的实数根,∴∆= 4(m﹣2)2﹣4(m2﹣3m+3)=﹣4m+4>0,解得m<1.∴﹣1≤m<1.(1)∵x1+x2=﹣2(m﹣2),x1x2=m2﹣3m+3,∴+===1,解得m1=,m2=(不合题意,舍去).∴=﹣2.(2)+﹣m2=﹣m2=﹣2(m﹣1)﹣m2=﹣(m+1)2+3.当m=﹣1时,最大值为3.【中考实战演练】19.【烟台】等腰三角形边长分别为a,b,2,且a,b是关于x的一元二次方程x2﹣6x+n﹣1=0的两根,则n的值为(B)A.9B.10 C.9或10 D.8或10【解析】∵a,b,2是等腰三角形的三边长,∴a=2,b<4或a<4,b=2或a=b>1. ∵a,b是x2-6x+n-1=0的两根,∴a+b=6.∴a=b=3.∴ab=n-1=9.∴n=10.20.已知m,n是关于x的一元二次方程x2﹣2ax+a2+a﹣2=0的两实根,那么m+n的最大值是4.【开放应用探究】21.若x1,x2是关于x的方程x2+bx+c=0的两个实数根,且|x1|+|x2|=2|k|(k是整数),则称方程x2+bx+c=0为“偶系二次方程”.如方程x2﹣6x﹣27=0,x2﹣2x﹣8=0,x2+3x﹣=0,x2+6x ﹣27=0,x2+4x+4=0,都是“偶系二次方程”.(1)判断方程x2+x﹣12=0是否是“偶系二次方程”,并说明理由.(2)对于任意一个整数b,是否存在实数c,使得关于x的方程x2+bx+c=0是“偶系二次方程”?请说明理由.(1)不是.理由如下:解方程x2+x﹣12=0得x1=3,x2=﹣4.∴|x1|+|x2|=3+4=7=2×3.5.∵3.5不是整数,∴x2+x﹣12=0不是“偶系二次方程.(2)存在.理由如下:∵x2﹣6x﹣27=0和x2+6x﹣27=0是偶系二次方程,∴假设c=mb2+n.当b=﹣6,c=﹣27时,﹣27=36m+n.∵x2=0是偶系二次方程,∴n=0,m=﹣.∴c=﹣b2.∴可设c=﹣b2.对于任意一个整数b,c=﹣b2时, =b2﹣4c=4b2.∴x1=﹣b,x2=b.∴|x1|+|x2|=2|b|,∵b是整数,∴对于任何一个整数b,当c=﹣b2时,关于x的方程x2+bx+c=0是“偶系二次方程”.。
专题4:一元二次方程根的判别式与韦达定理

1、已知 x=1是关于x的一元二方程(1-k)x2 + k2 x -1 = 0
的一个根,求 k的值和另一个根。
类型2:利用根的判别式和根与系数的关
系求字母的值或取值范围。
2、关于x的一元二次方程 x2 பைடு நூலகம் 3x +m -1 = 0 的两个
实数根分别为 x1,x2 .
(1)求 m 的取值范围。(首先考虑V= b2 4ac 0 )
(2)若 2( x1+x2 ) + x1﹒x2 +10 = 0 ,求 m 的值。
3、 x1,x2是关于x的一元二次方程, x2 - 2(m+1)x + m2+ 5 = 0 的两个实数根. 若(x1 -1)(x2 -1) = 28 , 求 m 的值。
韦达定理:根与系数的关系
在求根公式 x b b2 4ac 中, 2a
当 V= b2 4ac 0 时,方程总有两个实数根,
x1 b
b2 4ac 2a
; x2 b+
b2 4ac 2a
则
x1+ x2 =
b a
c , x1. x2 = a
类型一:利用根与系数的关系求字母的值
专题四:
根的判别式与韦达定理
根的判别式: b2 4ac
在求根公式 x b b2 4ac 中,“b2 4ac”称 2a
为根的判别式,用“V”表示,记作:V= b2 4ac (1)V= b2 4ac 0 时,方程有两个不相等的实数根; (2)V= b2 4ac = 0 时,方程有两个相等的实数根; (3)V= b2 4ac 0 时,方程没有实数根;
一元二次方程根的判别式和韦达定理

一元二次方程根的判别式与韦达定理1、已知方程2260x kx ++=的一个根是12x =,则方程的另一个根2x = ,k =2、已知关于x 的方程22(21)10k x k x +-+=有两个不相等的实数根12,x x ,求实数k 的取值范围.3、求作一个一元二次方程,使它的两个根是方程22310x x --=的各个根的2倍.4、若关于x 的方程222(1)30x m m --+-=的两实数根为12,x x ,且21212()()120x x x x +-+-=,求实数m 的值.5、已知方程222(215)0y m m y m +--+=的两个根互为相反数,求实数m 的值.6、若方程210x x --=的两个根为12,x x ,求12x x -的值.7、已知关于x 的一元二次方程25(5)0x kx k -+-=是两个根12,x x 异号,且满足 1227,x x +=求实数k 的值.8、已知关于x的方程20x k +=有着两个不等的实数根,求实数k 的取值范围.9、已知关于x 的方程()22()0a c x bx a c --+-=,这里,,a b c 是ABC ∆的三边长.请判断方程的根的情况.10、关于x 的方程2(2)20x k x k +-+-=的两实数根为12,x x ,是否存在常数k 使 122132x x x x +=成立?若存在,求实数k 的值;若不存在,请说明理由.13、已知实数,a b 满足22310,310,a a b b -+=-+=则b a a b+的值为 .16、关于x 的一元二次方程2240x x m ++=.(1)已知1x =是方程的一个根,求方程的另一个根;(2)若12,x x 是方程的两个不同的实数根,且满足222212121220x x x x x x ++-=,求m 的值.19、讨论关于x 的方程2(2)(21)20m x m x m -+-+-=的根的情况.。
根的判别式韦达定理

一元二次方程根的判别式和韦达定理知识点1.根的判别式21.4022.02043.,22ac b b ac b x x a a ⎧⎪≠-∆⎪⎪∆>⎧⎪⎪⎪∆=⎨⎨⎪⎪∆<⎩⎪⎪-±--±∆⎪==⎪⎩22概念:对于一个一元二次方程ax +bx+c=0(a 0)来说,b 称为根的判别式,记为。
时,方程有个不相等的根根的判别式意义:时,方程有个相等的根时,方程没有实数根公式法:解为即为补充:0≥∆时,方程有2个解,但不知道两个解是否相等。
例题讲解例1.当m 取什么值时,关于x 的方程0)22()12(222=++++m x m x 。
(1)有两个相等实根;(2)有两个不相等的实根; (3)没有实根。
例2.当m 为什么值时,关于x 的方程01)1(2)4(22=+++-x m x m 有实根。
小结:对于求一元二次方程中字母的取值或取值范围问题,一定要考虑全面。
特别注意“0≠a ”!例3.已知关于x 的方程01)12(22=+-+x k x k 有两个不相等的实数根1x 、2x ,问是否存在实数k ,使方程的两实数根互为相反数?如果存在,求出k 的值;如果不存在,请说明理由。
小结:这一类的题要注意3个方面:0≠a ,∆与0的关系,另外1x 和2x 间的数量关系课堂练习1、下列方程①012=+x ;②02=+x x ;③012=-+x x ;④02=-x x 中,无实根的方程是 。
2、已知关于x 的方程022=+-mx x 有两个相等的实数根,那么m 的值是 。
3、下列方程中,无实数根的是( )A 、011=-+-x xB 、 762=+y yC 、021=++xD 、0232=+-x x4、若关于x 的一元二次方程01)12()2(22=+++-x m x m 有两个不相等的实根,则m 的取值范围是( ) A 、43<m B 、m ≤43 C 、43>m 且m ≠2 D 、m ≥43且m ≠25、在方程02=++c bx ax (a ≠0)中,若a 与c 异号,则方程( )A 、有两个不等实根B 、有两个相等实根C 、没有实根D 、无法确定 6、关于x 的一元二次方程x 2+kx -1=0的根的情况是 ( )A 、有两个不相等的同号实数根B 、有两个不相等的异号实数C 、有两个相等的实数根D 、没有实数根7、 m 取何值时,方程()0112)2(22=++--x m x m (1)有两个不相等的实数根 (2)有两个相等的实数根;(3)没有实数根8、试证:关于x 的方程1)2(2-=+-x m mx 必有实根。
一元二次方程根的判别式与韦达定理

于是,上述方程两个根的和、积与系数的关系分别有如下关系:
x1+x2=-p,x1x2=q
例1
(1)已知关于x的一元二次方程x2Байду номын сангаас2x+m=0有解,求m的范围.
(2)己知关于x的一元二次方程x2- x-m=0有两个不相等实数根,求m的取值范围.
(3)求证:关于x的一元二次方程ax2-(3a+l)x+2(a+l)=0(a≠0)总有实数根
(4)已知关于x的方程ax2-(3a+l)x+2(a+l)=0有两个不相等的实数根,求a的取值范围
(2)己知:a、b、c分别是△ABC的三边长,
求证:关于x的方程b2x2+(b2+c2一a2)x+c2=0没有实数根.
练习
己知△ABC三边a,b,c,关于x的方程(a+c)x2+2bx-a+c=0,x2+2ax+b2=0均有两个相等的实数根,试判断△ABC的形状.
模块二一元二次方程根与系数关系
知识导航:
练习
(1)方程x2—2x-1=0的两个实数根分别为x1、x2,(x1-l)(x2-1)=______________
cz,设x1、x2是方程2x2—6x+l=o的两个实数根,则(x1- )(x2- )的值为__________
【总结】
1、用韦达定理,常见的恒等变形有:
+ = ,x12+x22=(x1+x2)2-2x1x2,(x1-x2)2=(x1+x2)2-4x1x2
(2)一元二次方程x2—4x-c=0的一个根是3,则另一个根是____,c=___________
第三讲一元二次方程根的判别式 韦达定理

一、一元二次方程根的判别式的定义运用配方法解一元二次方程过程中得到2224()24b b ac x aa-+=,显然只有当240b ac -≥时,才能直接开平方得:2b x a+=也就是说,一元二次方程20(0)ax bx c a ++=≠只有当系数a 、b 、c 满足条件240b ac ∆=-≥时才有实数根.这里24b ac -叫做一元二次方程根的判别式.二、判别式与根的关系在实数范围内,一元二次方程20(0)ax bx c a ++=≠的根由其系数a 、b 、c 确定,它的根的情况(是否有实数根)由24b ac ∆=-确定.设一元二次方程为20(0)ax bx c a ++=≠,其根的判别式为:24b ac ∆=-则①0∆>⇔方程20(0)axbx c a ++=≠有两个不相等的实数根1,22x a=.②0∆=⇔方程20(0)ax bx c a ++=≠有两个相等的实数根122b x x a==-.③0∆<⇔方程20(0)ax bx c a ++=≠没有实数根.三、一元二次方程的根的判别式的应用一元二次方程的根的判别式在以下方面有着广泛的应用: ⑴运用判别式,判定方程实数根的个数;⑵利用判别式建立等式、不等式,求方程中参数值或取值范围; ⑶通过判别式,证明与方程相关的代数问题;(4)借助判别式,运用一元二次方程必定有解的代数模型,解几何存在性问题,最值问题.一、一元二次方程实数根个数的判定【例1】 不解方程,判别一元二次方程2261x x -=的根的情况是( )A .有两个不相等的实数根B .没有实数根C .有两个相等的实数根D .无法确定知识点睛例题精讲一元二次方程根的判别式【例2】 已知a ,b ,c 为正数,若二次方程20ax bx c ++=有两个实数根,那么方程22220a x b x c ++=的根的情况是( )A .有两个不相等的正实数根B .有两个异号的实数根C .有两个不相等的负实数根D .不一定有实数根【例3】 若方程2(2)2(1)0m x m x m +-++=只有一个实数根,那么方程2(1)220m x m x m +-+-=( ).A .没有实数根B .有2个不同的实数根C .有2个相等的实数根D .实数根的个数不能确定【例4】 已知:方程()22250m x m x m -+++=没有实数根,且5m ≠,求证:()()25220m x m x m --++=有两个实数根.【例5】 对任意实数m ,求证:关于x 的方程222(1)240m x mx m +-++=无实数根.二、一元二次方程中字母参数的确定【例6】 k 的何值时?关于x 的一元二次方程2450x x k -+-=:⑴有两个不相等的实数根;⑵有两个相等的实数根;⑶没有实数根.【例7】 m 为给定的有理数,k 为何值时,方程()22413240x m x m m k +-+-+=的根为有理数?【例8】已知方程22(21)10+++=有实数根,求m的范围.m x m x【例9】关于x的方程()2--+=有实数根,则整数a的最大值是.a x x6860【例10】关于x的一元二次方程2k x---=有两个不相等的实数根,(12)10求k的取值范围.、【例11】已知关于x的方程22x m x m++++=有两个不相等的实数根,化简:2(1)50m-|1|【例12】已知关于x的方程22(21)10+-+=有两个不相等的实数根12k x k x,.x x⑴求k的取值范围;⑵是否存在实数k,使方程的两实数根互为相反数?如果存在,求出k的值;如果不存在,请说明理由.三、一元二次方程与三角形三边关系的综合【例13】三角形两边的长是3和4,第三边的长是方程212350-+=的根,则该x x三角形的周长为.【例14】 方程29180x x -+=的两个根是等腰三角形的底和腰,则这个三角形的周长为 .【例15】 已知a ,3是直角三角形的两边,第三边的长满足方程29200x x -+=,则a 的值为.这样的直角三角形有 个.【例16】 已知关于方程21(21)4()02x k x k -++-=⑴求证:无论k 取何值,这个方程总有实数根;⑵若等腰A B C ∆的一边长为4,另两边长b 、c 恰好是这个方程的两个实数根,求这个三角形的周长.【例17】 已知关于x 的方程2(2)20x k x k -++=⑴求证:无论k 取任何实数值,方程总有实数根;⑵若等腰三角形ABC 的一边长1a =,另两边长b ,c 恰好是这个方程的两个根,求A B C ∆的周长.根与系数关系式习题精选1、设21,x x 是一元二次方程01522=+-x x 的两个根,利用根与系数的关系,求下列各式的值:(1))3)(3(21--x x ;(2)2221)1()1(+++x x(3)112112+++x x x x(4)||21x x -5))31)(31(1221x x x x ++2、已知1x ,2x 是关于x 的方程012)2(222=-++-m x m x 的两个实根,且满足02221=-x x ,求m的值;3、已知方程0122=++mx x 的两实根是21x x 和,方程02=+-n mx x 的两实根是71+x 和72+x ,求m 和n 的值。
苏科版九年级上册数学第1章一元二次方程第3讲根的判别式与韦达定理(含答案)

中考要求知识点基本要求略高要求较高要求一元二次方程了解一元二次方程的概念,会将一元二次方程化为一般形式,并指出各项系数;了解一元二次方程的根的意义能由一元二次方程的概念确定二次项系数中所含字母的取值范围;会由方程的根求方程中待定系数的值一元二次方程的解法理解配方法,会用直接开平方法、配方法、公式法、因式分解法解简单的数字系数的一元二次方程,理解各种解法的依据能选择恰当的方法解一元二次方程;会用方程的根的判别式判别方程根的情况能利用根的判别式说明含有字母系数的一元二次方程根的情况及由方程根的情况确定方程中待定系数的取值范围;会用配方法对代数式做简单的变形;会应用一元二次方程解决简单的实际问题例题精讲板块一根的判别式☞定义:运用配方法解一元二次方程过程中得到2224(24b b acx a a -+=,显然只有当240b ac -≥时,才能直接开平方得:22424b b acx a a -+=也就是说,一元二次方程20(0)ax bx c a ++=≠只有当系数a 、b 、c 满足条件240b ac ∆=-≥时才有实数根.这里24b ac -叫做一元二次方程根的判别式.☞判别式与根的关系在实数范围内,一元二次方程20(0)ax bx c a ++=≠的根由其系数a 、b 、c 确定,它的根的情况(是否有实数根)由24b ac ∆=-确定.设一元二次方程为20(0)ax bx c a ++=≠,其根的判别式为:24b ac ∆=-则①0∆>⇔方程20(0)ax bx c a ++=≠有两个不相等的实数根21,242b b acx a-±-=.根的判别式与韦达定理②0∆=⇔方程20(0)ax bx c a ++=≠有两个相等的实数根122b x x a==-.③0∆<⇔方程20(0)ax bx c a ++=≠没有实数根.☞根的判别式的应用:☞⑴运用判别式,判定方程实数根的个数;【例1】不解方程,判断下列方程的根的情况:⑴22340x x +-=;⑵20ax bx +=(0a ≠)【解析】略【答案】⑴22340x x +-=∵2342(4)410∆=-⨯⨯-=>∴方程有两个不相等的实数根.⑵∵0a ≠∴方程是一元二次方程,此方程是缺少常数项的不完全的一元二次方程,将常数项视为零∵22()40b a b ∆=--⋅⋅=∵无论b 取任何数,2b 均为非负数∴0∆≥,故方程有两个实数根【巩固】不解方程,判别一元二次方程2261x x -=的根的情况是()A .有两个不相等的实数根B .没有实数根C .有两个相等的实数根D .无法确定【解析】由方程可得3680∆=+>,所以方程有两个不相等的实数根.【答案】A【巩固】不解方程判定下列方程根的情况:⑴22340x x +-=;⑵232x +=21x +=;⑷22(21)220m x mx +-+=;⑸2210x ax a ++-=220+=;⑺4(1)30x x +-=;⑻2(1)(2)x x m --=【解析】略【答案】⑴两个不等的实数根;⑵两个相等的实数根;⑶无实数根;⑷无实数根;⑸两个不等的实数根;⑹无实数根;⑺两个不相等的实数根;⑻两个不相等的实数根【例2】已知a ,b ,c 是不全为0的3个实数,那么关于x 的一元二次方程2222()()0x a b c x a b c ++++++=的根的情况().A .有2个负根B .有2个正根C .有2个异号的实根D .无实根【解析】方程2222()()0x a b c x a b c ++++++=的判别式为:2222()4()a b c a b c ∆=++-++222333222a b c ab bc ca=---+++222222222(2)(2)(2)a ab b b bc c c bc a a b c =-+-+-+-+-+----222222[()()()]a b b c c a a b c =--+-+-+++∵a ,b ,c 不全为0,∴0∆<.∴原方程无实数根.故选D .【答案】D☞⑵利用判别式建立等式、不等式,求方程中参数值或取值范围;【例3】m 取什么值时,关于x 的方程222(3)6x mx +-=有两个相等的实数根【解析】略【答案】1m =±【巩固】如果关于x 的一元二次方程2690kx x -+=有两个不相等的实数根,那么k 的取值范围是()A .1k <B .0k ≠C .10k k <≠且D .1k >【解析】由题可得36360k k ∆=->⎧⎨≠⎩所以10k k <≠且【答案】C【巩固】方程2610kx x -+=有两个不相等的实数根,则k 的取值范围是【解析】注意二次项系数不为0【答案】9k <且0k ≠【巩固】若关于x 的二次方程2(1)220m x mx m -++-=有两个不相等的实数根,则m 的取值范围是【解析】注意二次项系数不为0【答案】23m >且1m ≠【巩固】若关于x 的一元二次方程2(1)210k x x ++-=有实数根,则k 的最小整数值为【解析】注意题目要求以及二次项系数不为0的条件【答案】2k =-【巩固】已知方程22(21)10m x m x +++=有实数根,求m 的范围.【解析】注意分两种情况讨论:若0m =,则原方程可化为101x x +=⇒=-满足题意;若0m ≠,则由题意可知221(21)404104m m m m ∆=+-≥⇒+≥⇒≥-.综上可知,14m ≥-【答案】14m ≥-【例4】关于x的一元二次方程2(12)10k x ---=有两个不相等的实数根,求k 的取值范围.【解析】由题意,得4(1)4(12)010120k k k k ++->⎧⎪+≥⎨⎪-≠⎩解得12k -≤<且12k ≠【答案】12k -≤<且12k ≠【巩固】关于x的方程210x ++=有两个不相等的实数根,则k 的取值范围为________.【解析】2400k ⎧∆=->⎪⎨>⎪⎩,解得1k >【答案】1k >【巩固】已知关于x 的方程222(1)50x m x m ++++=有两个不相等的实数根,化简:|1|m -【解析】∵0>△,∴2m >∴|1||1||2|23m m m m --+-=-【答案】23m -【巩固】已知关于x 的一元二次方程20x m -=有两个不相等的实数根,求m 的取值范围.【解析】由题意可知,原方程的判别式21(41303m m m ∆=+=+>⇒>-.又101m m -≥⇒≤,故113m -<≤.【答案】113m -<≤【巩固】k 为何值时,方程2(1)(23)(3)0k x k x k --+++=有实数根.【解析】需要分两种情况来讨论:⑴当10k -=时,原方程是一元一次方程,有一个实数根45x =;⑵当10k -≠时,方程是一元二次方程,故0∆≥,解得214k ≥-且1k ≠,所以当214k ≥-且1k ≠时方程有两个实数根.综上所述,当214k ≥-时,方程有实数根.【答案】214k ≥-【例5】关于x 的方程()26860a x x --+=有实数根,则整数a 的最大值是.【解析】由一元二次方程根的情况可知240b ac -≥,即()()284660a --⨯⨯-≥,解得263a ≤,故max 8a =.【答案】8【巩固】若方程222(1)450x a x a a ++++-=有实数根,求:正整数a .【解析】0∆≥,即()()22414450a a a +-+-≥,解不等式得3a ≤,即123a =,,.【答案】1,2,3【例6】已知关于x 的方程()()2212102x a b x b b -+--+=有两个相等的实数根,且a 、b 为实数,则32a b +=________.【解析】∵()()2212102x a b x b b -+--+=有两个相等的实数根.∴0∆=,即()()222210a b b b ++-+=∴()()22210a b b ++-=,∴0a b +=,10b -=∴1b =,1a =-,因此321a b +=-.【答案】1-【巩固】当a b 、为何值时,方程()2222134420x a x a ab b ++++++=有实根?【解析】要使关于x 的一元二次方程()2222134420x a x a ab b ++++++=有实根,则必有0∆≥,即()()22241434420a a ab b +-+++≥,得()()22210a b a ++-≤.又因为()()22210a b a ++-≥,所以()()22210a b a ++-=,得1a =,12b =-.【答案】1a =,12b =-【例7】已知a ,b ,c 为正数,若二次方程20ax bx c ++=有两个实数根,那么方程22220a x b x c ++=的根的情况是()A .有两个不相等的正实数根B .有两个异号的实数根C .有两个不相等的负实数根D .不一定有实数根【解析】22220a x b x c ++=的422224(2)(2)b a c b ac b ac ∆=-=+-,∵二次方程20ax bx c ++=有两个实数根,∴240b ac ->,∴220b ac ->,∴422224(2)(2)0b ac b ac b ac ∆=-=+->∴方程有两个不相等的实数根,而两根之和为负,两根之积为正.故有两个负根.故选C .【答案】C【巩固】若方程2(2)2(1)0m x m x m +-++=只有一个实数根,那么方程2(1)220m x mx m +-+-=().A .没有实数根B .有2个不同的实数根C .有2个相等的实数根D .实数根的个数不能确定【解析】∵方程2(2)2(1)0m x m x m +-++=只有一个实数根,∴20m +=,得2m =-.∴方程2(1)220m x mx m +-+-=,即为方程2440x x -+-=,∴244(1)(4)0∆=-⨯-⨯-=.∴方程2(1)220m x mx m +-+-=有2个相等的实数根.故选C .特别注意方程2(2)2(1)0m x m x m +-++=只有一个实数根.若20m +≠,则方程要么有2个根(相等或不相等),要么没有实数根.条件指明,该方程只有1个实数根,所以20m +=,且10m +≠.【答案】C☞⑶通过判别式,证明与方程相关的代数问题;【例8】对任意实数m ,求证:关于x 的方程222(1)240m x mx m +-++=无实数根.【解析】略【答案】∵210m +≠,故方程为一元二次方程.()()()2222422414442016m m m m m m ∆=--++=---()424241616444m m m m =---=-++()222m =-+∵220m +≠,∴0∆<,故方程无实根.【巩固】求证:关于x 的一元二次方程2(2)10x m x m -+++=有两个实数根.【解析】略【答案】∵2(2)10x m x m -+++=是关于x 的一元二次方程∴[]22(2)4(1)m m m ∆=-+-+=∵20m ≥∴原方程有两个实数根.【巩固】已知实数a 、b 、c 、r 、p 满足2pr >,20pc b ra -+=,求证:一元二次方程220ax bx c ++=必有实根.【解析】略【答案】2(2)4b ac ∆=-,因2b pc ra =+,则222()4()()2(2)pc m ac pc ra ac pr ∆=+-=++-.又2pr >,所以当0ac ≥时,0∆≥;当0ac <时,40ac ->,2()40pc ra ac ∆=+->.因此,一元二次方程220ax bx c ++=必有实根.【巩固】证明:无论实数m 、n 取何值时,方程2()0mx m n x n +++=都有实数根【解析】注意分类讨论.【答案】⑴若0m =,则方程为nx n =-,当0n ≠时,有实数根1x =-;当0n =时,方程的根为任意实数⑵当0m ≠时,原方程为一元二次方程22()4()0m n mn m n ∆=+-=-≥∴方程必有实数根综合⑴⑵可知,原结论成立【巩固】已知:方程()22250mx m x m -+++=没有实数根,且5m ≠,求证:()()25220m x m x m --++=有两个实数根.【解析】略【答案】当0m =时,()22250mx m x m -+++=可化为450x -+=,此时方程有根,故0m ≠故214(2)4(5)0404m m m m m ∆=+-+<⇒-<⇒>.方程()()25220(5)m x m x m m --++=≠的判别式为:224(2)4(5)4(94)0m m m m ∆=+--=+>故方程()()25220(5)m x m x m m --++=≠有两个实数根.板块二韦达定理☞如果20(0)ax bx c a ++=≠的两根是1x ,2x ,则12b x x a +=-,12c x x a=.(隐含的条件:0∆≥)特别地,当一元二次方程的二次项系数为1时,设1x ,2x 是方程20x px q ++=的两个根,则12x x p +=-,12x x q ⋅=.☞利用韦达定理求代数式的值【例9】不解方程224)0x x +-,求两根之和与两根之积【解析】韦达定理成立的前提条件是0∆≥【答案】令此方程的两个实数根为1x 、2x由韦达定理得124422x x --+=-=,122x x ⋅=-=【巩固】设方程24730x x --=的两个根为1x 、2x ,不解方程求下列各式的值⑴12(3)(3)x x --;⑵211211x xx x +++;⑶12x x -【解析】不解方程,即利用韦达定理将12x x +、12x x 的整体构造出来【答案】由韦达定理得1274x x +=,1234x x ⋅=-⑴12121237(3)(3)3()939344x x x x x x --=-++=--⨯+=;⑵221221112121212121212(1)(1)()2()10111(1)(1)132x x x x x x x x x x x x x x x x x x x x ++++-+++===+++++++⑶2221212127397()()4()4()4416x x x x x x -=+-=-⨯-=,∴12x x -=【巩固】已知方程22430x x +-=的两个根为1x 、2x ⑴12x x +=;⑵12_______x x ⋅=;⑶1211_______x x +=;⑷2212_______x x +=【解析】略【答案】⑴2-;⑵32-;⑶43;⑷7【巩固】已知α、β是方程2520x x ++=+的值.【解析】注意α,β均为负数,很多学生求出的结果均为负值【答案】由韦达定理可得,5αβ+=-,2αβ=∴22222()2522a a ββαβαβαβαβαβ++++=++===+=☞利用韦达定理求参数的值【例10】若3-、2是方程20x px q -+=的两个根,则________p q +=【解析】略【答案】7-【巩固】若方程210x px ++=的一个根为1-,则它的另一根等于,p 等于【解析】部分学生喜欢将1x =-代入原方程,求p 的数值,然后再求方程另外一个根,此方法较慢。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程根的判别式和韦达定理
知识点一、一元二次方程根的判别式
一元二次方程)0(02
≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02
≠=++a c bx ax 的根的判别式,通常用“∆”来表示,即ac b 42-=∆.
(1)当△>0⇔一元二次方程有2
个不相等的实数根;1x =
2x =
(2)当△=0⇔一元二次方程有2个相等的实数根;122b x x a
==-
(3)当△<0⇔一元二次方程没有实数根.
例1:下列一元二次方程没有实数根的是( )
A .x 2+2x +1=0
B .x 2+x +2=0
C .x 2﹣1=0
D .x 2﹣2x ﹣1=0
【变式一】不解方程,判断一元二次方程2210x ax a -++=的根的情况是( ).
A .没有实数根
B .只有一个实数根
C .有两个相等的实数根
D .有两个不相等的实数根
例2.关于x 的一元二次方程(k ﹣1)x 2﹣2x +1=0有两个不相等的实数根,则实数k 的取值范围是 .
【变式一】关于x 的方程()22210m x x ++-=有两个不等的实根,则m 的取值范围是
知识点二、韦达定理
1.如果一元二次方程2
0(0)ax bx c a ++=≠的两根为12x x 、,那么有:1212b x x a c x x a ⎧
+=-⎪⎪⎨⎪=⎪⎩
.
例3:已知α,β是一元二次方程220x x +-=的两个实数根,则α+β-αβ的值是( )
A .3
B .1
C .-1
D .-3
知识点&例题
【变式一】已知一元二次方程22210x x +-=的两个根为1x ,2x ,且1x <2x ,下列结论正确的是( )
A .1x + 2x =1
B .1x •2x =-1
C .|1x |<|2x |
D .21112
x x +=
【变式二】已知1x ,2x 是关于x 的方程230x bx +-=的两根,且满足121235x x x x +-=,那么b 的值为( )
A .4
B .-4
C .3
D .-3
2、利用根与系数的关系求值,要熟练掌握以下等式变形
①()2
221212122x x x x x x +=+-;
例4:设1x 、2x 是一元二次方程22410x x --=的两实数根,则的2212x x +值是( )
A .2
B .4
C .5
D .6
【变式一】设1x ,2x 是一元二次方程x 2﹣2x ﹣3=0的两根,则2212x x + = .
【变式二】若α、β是一元二次方程x 2+2x ﹣6=0的两根,则α2+β2= . ②()()2
21212124x x =x x x x -+-;
例5:设1x 、2x 是一元二次方程x 2﹣5x ﹣1=0的两实数根,则()2
12x x -的值为 . 【变式一】设1x ,2x 是一元二次方程x 2﹣5x ﹣6=0的两根,则()212x x - = . 【变式二】若α、β是一元二次方程x 2+7x ﹣6=0的两根,则()2
α-β= .
③12x x =-±
例6:设1x 、2x 是一元二次方程23450x x -+=的两实数根,则12x x -的值为 . 【变式一】设1x ,2x 是一元二次方程21
5102
x x --=的两根,则12x x - = .
【变式二】若α、β是一元二次方程2250x x +-=的两根,则α-β= .
④
12x x -
例7:若12x x 、是方程2350x x +-=的两根,那么12x x -=
【变式一】已知12x x 、是关于x 的一元二次方程2-5+0x x a =的两个实数根,且125x x -=,则a =
【变式二】已知一元二次方程x 2﹣4x ﹣k=0的两根分别为m ,n ,且6m n -=,求k 的值. ⑤12
1212
11x x x x x x ++=
⋅;
例8. 已知12x x 、是方程2310x x --=的两根,则
12
11
x x += . 【变式一】已知一元二次方程2430x x --=的两根分别为m ,n ,则11
m n
+的值为 . 【变式二】若非零实数m ,n (m≠n )满足220160m m --=,220160n n --=,则11
m n
+= .
⑥()2
22121212222222
121212211
x x x x x x =x x x x x x +-++=⋅⋅;
例9:若12x x 、是方程2350x x +-=的两根,那么
22
1211
x x +
=_________. 【变式一】设12x x 、是一元二次方程2x 2﹣4x ﹣1=0的两实数根,则22
12
11
x x += . 【变式二】一元二次方程2230x x --=的解是12x x 、,那么2212
11
x x +=_________.
⑦()2
221212
2112121212
2x x x x x x x x x x x x x x +-++==⋅⋅;
例10:设x 1、x 2是方程x 2﹣2x ﹣1=0的两个实数根,则
21
12
x x x x +
的值是( ) A .﹣6 B .﹣5 C .﹣6 或﹣5 D .6或5
【变式一】若方程x 2﹣3x ﹣4=0的两根分别为x 1和x 2,则2112
x x
x x +的值是( )
A .174
B .34-
C .34
D .174
- 【变式二】若α,β是方程2220x x --=的两个实数根,则2112
x x
x x + = .
⑧
12x x +
例12:已知关于x 的方程()22+32+k 10x k x -+=的两个实数根分别是12x x 、,当127x x +=时,那么k 的值是 .
【变式一】关于x 的一元二次方程()222310x k x k --++=有两个不相等的实数根12x x 、.
(1)求k 的取值范围; (2)求证:10x <,20x <;
(3)若12126x x x x --=,求k 的值.
【变式二】已知关于x 的一元二次方程()222120x k x k ++++=有两个实数根12x x 、.
(1)求实数k 的取值范围;
(2)若12x x +=k 值.
例13:已知:关于x 的方程()241210x k x k +++-=
(1)求证:此方程一定有两个不相等的实数根;
(2)若1x ,2x 是方程的两实数根,且()()122223x x k --=-,求k 值
【变式一】已知k 为实数,关于x 的方程为()22210x k x k -++=.
(1)请判断x =﹣1是否可为此方程的根,说明理由.
(2)设方程的两实根为1x ,2x ,当1212221x x x x ++=时,试求k 的值.
1、关于x 的方程260x mx ++=的一个根为-2,则另一个根是( )
A .-3
B .-6
C .3
D .6
2、设α,β是方程2910x x ++=的两根,则()()222009120091ααββ++++的值是( )
A .0
B .1
C .2000
D .4000000 3、设方程有一个正根1x ,一个负根2x ,则以1x 、2x 为根的一元二次方程为( )
A .2320x x m ---=
B .2320x x m +--= C
.220x x -=
D .220x x += 4、若α,β是一元二次方程23290x x +-=的两根,则
βα
αβ
+的值是( ) A .
427 B .427- C .5827- D .5827
5、若1x ,2x 是方程22210x mx m m -+--=的两个根,且12121x x x x +=-,则m 的值为( )
A .-1或2
B .1或-2
C .-2
D .1 6、已知实数a 、b (a≠b )分别满足222a a +=,222b b +=.求
11
a b
+的值.
7、已知关于x 的一元二次方程()22230x m x m +-+=的两个不相等的实数根α、β满足
1
1
1α
β
+
=,求m 的值.
课后作业
8、已知关于x 的方程()222310x k x k --++=有两个不相等的实数1x 、2x .
(1)求k 的取值范围;
(2)若1x 、2x 满足121223x x x x +=-,求k 的值.
9、已知关于x 的一元二次方程()2210x m x m -++=.
(1)求证:方程有两个不相等的实数根;
(2)设方程的两根分别是1x ,2x ,且满足1212x x x x +=,求m 的值.
10、已知关于x 的一元二次方程()()222220x m x m m --+-=
(1)求证:方程有两个不相等的实数根.
(2)如果方程的两实数根为1x ,2x ,且221210x x +=,求m 的值。