一元二次方程判别式及韦达定理
第二章 一元二次方程专题复习2-根的判别式与韦达定理(含答案)

专题复习二 根的判别式与韦达定理重点提示: (1)根的判别式ac b 42-主要应用于判断方程根的情况.利用判别式判断方程根的情况时要注意方程是不是一元二次方程,如果方程的类型不确定还要进行分类讨论.(2)韦达定理主要反映一元二次方程根与系数的关系,利用韦达定理的前提条件是方程有解,即042≥-ac b .【夯实基础巩固】1. 已知x 1,x 2是方程x 2+2x ﹣5=0的两根,则的值为( B )A .﹣B .C .D .﹣2.已知x 2+px +q =0的两根是3,﹣4,则代数式x 2+px +q 分解因式的结果是( C )A . (x +3)(x +4)B . (x ﹣3)(x ﹣4)C . (x ﹣3)(x +4)D . (x +3)(x ﹣4)3.关于x 的方程x 2﹣2mx ﹣m ﹣1=0的根的情况是( A )A . 有两个不相等的实数根B . 有两个相等的实数根C . 有两个实数根D . 没有实数根4.关于x 的方程x 2﹣(m ﹣1)x +m ﹣2=0的两根互为倒数,则m 的值是( C )A . 1B . 2C . 3D . 45.关于x 的方程x 2﹣(m ﹣3)x +m 2=0有两个不相等的实数根,则m 的最大整数值是( B )A . 2B . 1C . 0D . ﹣16.已知关于x 的一元二次方程x 2+kx +1=0有两个相等的实数根,则k = ±2 .7.已知x 1,x 2是方程的两根,则的值为 3 .8.已知a ,b 是一元二次方程x 2﹣2x ﹣1=0的两个实数根,则代数式(a ﹣b )(a +b ﹣2)+ab 的值等于 ﹣1 .9.已知关于x 的方程x 2+2mx +m 2﹣1=0.(1)不解方程,判别方程根的情况.(2)若方程有一个根为3,求m 的值.(1)∵∆=(2m )2﹣4×1×(m 2﹣1)=4>0,∴方程x 2+2mx +m 2﹣1=0有两个不相等的实数根.(2)∵x2+2mx+m2﹣1=0有一个根是3,∴32+2m×3+m2﹣1=0,解得m=﹣4或m=﹣2.10.已知关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根.(1)求实数m的最大整数值.(2)在(1)的条件下,方程的实数根是x1,x2,求代数式x12+x22﹣x1x2的值.(1)∵x2﹣2x+m=0有两个不相等的实数根,∴ =8﹣4m>0,解得m<2,∴m的最大整数值为1.(2)∵m=1,∴此一元二次方程为x2﹣2x+1=0.∴x1+x2=2,x1x2=1.∴x12+x22﹣x1x2=(x1+x2)2﹣3x1x2=8﹣3=5.【能力提升培优】11.若a,b,c为三角形三边,则关于x的一元二次方程x2+(a﹣b)x+c2=0的根的情况是(C)A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.无法确定12.已知一元二次方程ax2+bx+c=0(a≠0),给出下列命题:①若a+b+c=0,则b2﹣4ac≥0;②若方程ax2+bx+c=0两根为﹣1和2,则2a+c=0;③若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等的实根.其中真命题有(C)A.1个B.2个C.3个D.0个13.设x1,x2是关于x的方程x2+px+q=0的两根,x1+1,x2+1是关于x的方程x2+qx+p=0的两根,则p,q的值分别为(A)A.﹣1,﹣3 B.1,3 C.1,﹣3 D.﹣1,3【解析】∵x1,x2是x2+px+q=0的两根,x1+1,x2+1是x2+qx+p=0的两根,∴x1+x2=-p,x1x2=q,x1+1+x2+1= x1+x2+2=-q,(x1+1)(x2+1)= x1x2+(x1+x2)+1=p.∴-p+2=-q,q-p+1=p.∴p=-1,q=-3.14.若一元二次方程x2﹣(a+2)x+2a=0的两个实数根分别是3,b,则a+b=5.15.已知m,n是方程x2﹣2x﹣1=0的两根,且(7m2﹣14m+a)(3n2﹣6n﹣7)=8,则a的值等于﹣9.16.已知关于x的方程x2﹣(a+b)x+ab﹣1=0,x1,x2是此方程的两个实数根,现给出三个结论:①x1≠x2;②x1x2<ab;③.则正确结论的序号是①②.17.关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不等实根x1,x2.(1)求实数k的取值范围.(2)若方程两实根x1,x2满足|x1|+|x2|=x1x2,求k的值.(1)∵原方程有两个不相等的实数根,∴∆=(2k+1)2﹣4(k2+1)=4k2+4k+1﹣4k2﹣4=4k﹣3>0,解得k>.(2)∵k>,∴x1+x2=﹣(2k+1)<0.又∵x1x2=k2+1>0,∴x1<0,x2<0.∴|x1|+|x2|=﹣x1﹣x2=﹣(x1+x2)=2k+1.∵|x1|+|x2|=x1x2,∴2k+1=k2+1.∴k1=0,k2=2.又∵k>,∴k=2.18.设m是不小于﹣1的实数,关于x的方程x2+2(m﹣2)x+m2﹣3m+3=0有两个不相等的实数根x1,x2.(1)若+=1,求的值.(2)求+﹣m2的最大值.∵方程有两个不相等的实数根,∴∆= 4(m﹣2)2﹣4(m2﹣3m+3)=﹣4m+4>0,解得m<1.∴﹣1≤m<1.(1)∵x1+x2=﹣2(m﹣2),x1x2=m2﹣3m+3,∴+===1,解得m1=,m2=(不合题意,舍去).∴=﹣2.(2)+﹣m2=﹣m2=﹣2(m﹣1)﹣m2=﹣(m+1)2+3.当m=﹣1时,最大值为3.【中考实战演练】19.【烟台】等腰三角形边长分别为a,b,2,且a,b是关于x的一元二次方程x2﹣6x+n﹣1=0的两根,则n的值为(B)A.9B.10 C.9或10 D.8或10【解析】∵a,b,2是等腰三角形的三边长,∴a=2,b<4或a<4,b=2或a=b>1. ∵a,b是x2-6x+n-1=0的两根,∴a+b=6.∴a=b=3.∴ab=n-1=9.∴n=10.20.已知m,n是关于x的一元二次方程x2﹣2ax+a2+a﹣2=0的两实根,那么m+n的最大值是4.【开放应用探究】21.若x1,x2是关于x的方程x2+bx+c=0的两个实数根,且|x1|+|x2|=2|k|(k是整数),则称方程x2+bx+c=0为“偶系二次方程”.如方程x2﹣6x﹣27=0,x2﹣2x﹣8=0,x2+3x﹣=0,x2+6x ﹣27=0,x2+4x+4=0,都是“偶系二次方程”.(1)判断方程x2+x﹣12=0是否是“偶系二次方程”,并说明理由.(2)对于任意一个整数b,是否存在实数c,使得关于x的方程x2+bx+c=0是“偶系二次方程”?请说明理由.(1)不是.理由如下:解方程x2+x﹣12=0得x1=3,x2=﹣4.∴|x1|+|x2|=3+4=7=2×3.5.∵3.5不是整数,∴x2+x﹣12=0不是“偶系二次方程.(2)存在.理由如下:∵x2﹣6x﹣27=0和x2+6x﹣27=0是偶系二次方程,∴假设c=mb2+n.当b=﹣6,c=﹣27时,﹣27=36m+n.∵x2=0是偶系二次方程,∴n=0,m=﹣.∴c=﹣b2.∴可设c=﹣b2.对于任意一个整数b,c=﹣b2时, =b2﹣4c=4b2.∴x1=﹣b,x2=b.∴|x1|+|x2|=2|b|,∵b是整数,∴对于任何一个整数b,当c=﹣b2时,关于x的方程x2+bx+c=0是“偶系二次方程”.。
一元二次方程的解法及韦达定理

一元二次方程的解法及韦达定理一元二次方程的解法及韦达定理编号:撰写人:审核:一、一元二次方程的解法:例题1:用配方法、因式分解、公式法解方程:x2-5x+6=0【一元二次方程的解法总结】1、直接法:对于形如—x2=a的方程,我们可以用直接法。
方程的解为x=推论:对于形如(x+a)2=b的方程也是用直接开方的方法。
注意点:①二次项的系数为1,且a≥0②如果a为根式,注意化简。
例1:解方程:5x2=1例2:解方程:x2=4例3:解方程:4x 2+12x+9=122、配方法:对于形如:ax 2+bx+c=0(其中a ≠0)的方程,我们可以采用配方法的方法来解。
步骤:①把二次项的系数化为1.两边同时除以a ,可以得到:X 2+ b a x+ c a=0 ②配方:(x+ 2ba )2+c- 2()2b a =0③移项:(x+ 2ba )2=2()2b a -c ④用直接法求出方程的解。
X=-2b a注意点:解除方程的解后,要检查根号内是否要进一步化简。
例:解方程:x 2+x=13、公式法:对于形如:ax 2+bx+c=0(其中a ≠0)的方程,我们也可以采用公式法的方法来解。
根据配方法,我们可以得到方程的解为:X=-2b a进一步变形,就可以知道:形如:ax 2+bx+c=0(其中a ≠0)的方程的解为:x1x2注意点:①解除方程的解后,要检查根号内是否要进一步化简。
②解题步骤要规范。
例:解方程:x2+5x+2=0除了以上几种教材里的方法,一元二次方程还有其他的解法。
4、换元法对于一个方程,如果在结构上有某种特殊的相似性,可以考虑用换元法;或者,当这个题目有比较复杂的根式,换元法也是可以考虑的解法。
例1:解方程:(x2+5x+2)2+(x2+5x+2)-2=0例2:=15、有理化方法:对于一个方程,如果含有两个根式,并且这两个根式内的整式的和或者差是特定的数值,那就可以考虑用有理化的方法。
例:=46、主元法:对于一个方程,如果有两个未知数,那么,我们可以确定其中的一个为“主元“,将另一个未知数设定为常数,用公式法可以解出结果。
第三讲 一元二次方程根的判别式与韦达定理(精讲)(解析版)

2023年初高中衔接素养提升专题讲义第三讲 一元二次方程根的判别式与韦达定理(精讲)(解析版)【知识点透析】1、一元二次根的判别式一元二次方程20 (0)ax bx c a ++=≠,用配方法将其变形为:2224()24b b ac x a a -+=,把24b ac -叫做一元二次方程20 (0)ax bx c a ++=≠的根的判别式,表示为:24b ac∆=-(1) 当Δ=240b ac ->时,方程有两个不相等的实数根:x =(2) 当Δ=240b ac -=时,因此,方程有两个相等的实数根:1,22b x a=-(3) 当Δ=240b ac -<时,因此,方程没有实数根.【知识点精讲】【例1】已知关于x 的一元二次方程2320x x k -+=,根据下列条件,分别求出k 的范围:(1) 方程有两个不相等的实数根;(2) 方程有两个相等的实数根(3)方程有实数根;(4) 方程无实数根.【解析】:2(2)43412k k ∆=--⨯⨯=-(1) 141203k k ->⇒<;(2) 141203k k -=⇒=;(3) 141203k k -≥⇒≥;(4) 141203k k -<⇒<.【变式1】((2022秋·重庆开州·八年级统考期中)使得关于x 的不等式组6x ―a ≥―10―1+12x <―18x +32有且只有4个整数解,且关于x 的一元二次方程(a ―5)x 2+4x +1=0有实数根的所有整数a 的值之和为( )A .35B .30C .26D .21【答案】B【分析】先求出不等式组的解集,根据有且只有4个整数解可确定a 的取值范围,再通过根的判别式确定a 的取值范围,最后结合两个取值范围找出满足条件的整数相加即可.【详解】解:整理不等式组得:6x ―a ≥―10①―8+4x <―x +12②由①得:x ≥a ―106,由②得:x<4∵不等式组有且只有4个整数解,∴不等式组的4个整数解是:3,2,1,0,∴―1<a―106≤0,解得:4<a≤10,∵(a―5)x2+4x+1=0有实数根,∴Δ=b2―4ac=16―4×(a―5)×1=36―4a≥0,解得:a≤9,∵方程(a―5)x2+4x+1=0是一元二次方程,∴a≠5∴4<a≤9,且a≠5,满足条件的整数有:6、7、8、9;∴6+7+8+9=30,故选:B.【变式2】.已知关于x的一元二次方程:x2﹣(2k+1)x+4(k―12)=0.(1)求证:这个方程总有两个实数根;(2)若等腰△ABC的一边长a=4b、c恰好是这个方程的两个实数根,求△ABC 的周长.【解答】(1)证明:Δ=(2k+1)2﹣4×1×4(k―12)=4k2﹣12k+9=(2k﹣3)2,∵无论k取什么实数值,(2k﹣3)2≥0,∴△≥0,∴无论k取什么实数值,方程总有实数根;(2)解:∵x=2k+1±(2k―3)2,∴x1=2k﹣1,x2=2,∵b,c恰好是这个方程的两个实数根,设b=2k﹣1,c=2,当a 、b 为腰,则a =b =4,即2k ﹣1=4,解得k =52,此时三角形的周长=4+4+2=10;当b 、c 为腰时,b =c =2,此时b +c =a ,故此种情况不存在.综上所述,△ABC 的周长为10.【例2】已知实数x 、y 满足22210x y xy x y +-+-+=,试求x 、y 的值.【解析】:可以把所给方程看作为关于x 的方程,整理得:22(2)10x y x y y --+-+=由于x 是实数,所以上述方程有实数根,因此:222[(2)]4(1)300y y y y y ∆=----+=-≥⇒=,代入原方程得:22101x x x ++=⇒=-.综上知:1,0x y =-=【变式1】(2022秋·湖北武汉·八年级武汉市第一初级中学校考期末)已知a ,b ,c 满足a 2+6b =7,b 2―2c =―1,c 2―2a =―17,则a ―b +c 的值为( )A .―1B .5C .6D .―7【答案】B【分析】首先把a 2+6b =7,b 2―2c =―1,c 2―2a =―17,两边相加整理成a 2+6b +b 2―2c +c 2―2a +11=0,分解因式,利用非负数的性质得出a 、b 、c 的数值,代入求得答案即可.【详解】解:∵a 2+6b =7,b 2―2c =―1,c 2―2a =―17,∴a 2+6b +b 2―2c +c 2―2a =―,∴a 2+6b +b 2―2c +c 2―2a +11=0∴(a ―1)2+(b +3)2+(c ―1)2=0,∴a =1,b =―3,c =1,∴a ―b +c =1+3+1=5.故选:B .【变式2】((2022秋·江苏扬州·八年级统考期中)新定义,若关于x 的一元二次方程:m (x ―a )2+b =0与n (x ―a )2+b =0,称为“同类方程”.如2(x ―1)2+3=0与6(x ―1)2+3=0是“同类方程”.现有关于x 的一元二次方程:2(x ―1)2+1=0与(a +6)x 2―(b +8)x +6=0是“同类方程”.那么代数式ax 2+bx +2022能取的最大值是_________.【答案】2023【分析】根据“同类方程”的定义,可得出a ,b 的值,从而解得代数式的最大值.【详解】∵2(x ―1)2+1=0与(a +6)x 2―(b +8)x +6=0是“同类方程”,∴(a +6)x 2―(b +8)x +6=(a +6)(x ―1)2+1,∴(a +6)x 2―(b +8)x +6=(a +6)x 2―2(a +6)x +a +7,∴b +8=2(a +6)6=a +7 ,解得:a =―1b =2,∴a x 2+bx +2022=―x 2+2x +2022=―(x ―1)2+2023∴当x =1时,a x 2+bx +2022取得最大值为2023.故答案为:2023.2、一元二次方程的根与系数的关系一元二次方程20 (0)ax bx c a ++=≠的两个根为:x x ==所以:12b x x a+==-,12244ac c x x a a⋅====韦达定理:如果一元二次方程20 (0)ax bx c a ++=≠的两个根为12,x x ,那么:1212,b c x x x x a a+=-=【知识点精讲】【例3】若12,x x 是方程2220070x x +-=的两个根,试求下列各式的值:(1) 2212x x +;(2) 1211x x +;(3) 12(5)(5)x x --;(4) 12||x x -.【解析】:由题意,根据根与系数的关系得:12122,2007x x x x +=-=-(1) 2222121212()2(2)2(2007)4018x x x x x x +=+-=---=(2) 121212112220072007x x x x x x +-+===-(3) 121212(5)(5)5()2520075(2)251972x x x x x x --=-++=---+=-(4) 12||x x -====常见的一些变形结论:利用根与系数的关系求值,要熟练掌握以下等式变形:222121212()2x x x x x x +=+-,12121211x x x x x x ++=,22121212()()4x x x x x x -=+-,12||x x -=2212121212()x x x x x x x x +=+,33312121212()3()x x x x x x x x +=+-+等等.韦达定理体现了整体思想.【例4】.已知关于x 的方程220x mx m -+=.(1)若2m =-,方程两根分别为1x ,2x ,求12x x -和3312x x +的值;(2)若方程有一正数,有一负数根,求实数m 的取值范围.【答案】.(14- (2)m <0【解析】(1)由22121212=()4x x x x x x -+-,33212121212()[()3]x x x x x x x x +=++-,借助韦达定理求解.(2)借助韦达定理表示方程有一正数,有一负数根的等价条件,进而求解.【详解】(1)当2m =-时,2222x x +-=即:210x x +-=1212140,1,1x x x x ∆=+>+=-=-因此:2212121212=()45x x x x x x x x -+-=∴-=3322212121212121212()[]()[()3]4x x x x x x x x x x x x x x +=++-=++-=-(2)220x mx m -+=212128,,22m m m m x x x x ∆=-+==21280002m m m m x x ⎧∆=->⎪∴<⎨=<⎪⎩【变式1】已知两不等实数a ,b 满足222a a =-,222b b =-,求22b a a b +的值.【解析】:b a ,是一元二次方程0222=-+x x 的不等实根则有2,2-=-=+ab b a原式=5)(]3))[(()())(()(22222233-=-++=+-+=+ab ab b a b a ab b ab a b a ab b a 【变式2】(2022秋·浙江杭州·八年级杭州外国语学校校考期末)设m 是不小于﹣1的实数,使得关于x 的方程x 2+2(m ﹣2)x +m 2﹣3m +3=0有两个实数根x 1,x 2.(1)若x 21+x 22=2,求m 的值;(2)令T =mx 11―x 1+mx 21―x 2,求T 的取值范围.【答案】(1)1 (2)0<T ≤4且T ≠2【分析】首先根据方程有两个实数根及m 是不小于-1的实数,确定m 的取值范围,根据根与系数的关系,用含m 的代数式表示出两根的和、两根的积.(1)变形x 12+x 22为(x 1+x 2)2-2x 1x 2,代入用含m 表示的两根的和、两根的积得方程,解方程根据m 的取值范围得到m 的值;(2)化简T ,用含m 的式子表示出T ,根据m 的取值范围,得到T 的取值范围.(1)∵关于x 的方程x 2+2(m -2)x +m 2-3m +3=0有两个实数根,∴Δ=4(m -2)2-4(m 2-3m +3)≥0,解得m ≤1,∵m 是不小于-1的实数,∴-1≤m ≤1,∵方程x 2+2(m -2)x +m 2-3m +3=0x 1,x 2,∴x 1+x 2=-2(m -2)=4-2m ,x 1•x 2=m 2-3m +3.∵x 12+x 22=2,∴(x 1+x 2)2-2x 1x 2=2,∴4(m -2)2-2(m 2-3m +3)=2,整理得m 2-5m +4=0,解得m 1=1,m 2=4(舍去),∴m 的值为1;(2)T =mx 11―x 1+mx 21―x 2,=mx 1(1―x 2)+mx 2(1―x 1)(1―x 1)(1―x 2)=m [(x 1+x 2)―2x 1x 2]1―(x 1+x 2)+x 1x 2=m (4―2m ―2m 2+6m ―6)1―4+2m +m 2―3m +3=―2m(m ―1)2m 2―m=―2m(m ―1)2m (m ―1)=2-2m .∵当x =1时,方程为1+2(m ﹣2)+m 2﹣3m +3=0,解得m =1或m =0.∴当m =1或m =0时,T 没有意义.∴―1≤m <1且m ≠0∴0<2-2m ≤4且T ≠2.即0<T ≤4且T ≠2.【变式3】.已知12x x ,是一元二次方程24410kx kx k -++=的两个实数根.(1)是否存在实数k ,使12123(2)(2)2x x x x --=-成立?若存在,求出k 的值,若不存在,请说明理由;(2)若k 是整数,求使12212x x x x +-的值为整数的所有k 的值.【答案】(1)不存在k ;理由见解析;(2)235k =---,,.【详解】(1)假设存在实数k ,使()()12123222x x x x --=-成立.∵一元二次方程24410kx kx k -++=的两个实数根∴()()24004441160k k k k k k ≠⎧⎪⇒<⎨∆=--⋅+=-≥⎪⎩,又1x ,2x 是一元二次方程24410kx kx k -++=的两个实数根∴1212114x x k x x k +=⎧⎪+⎨=⎪⎩∴()()()()222121212121212222529x x x x x x x x x x x x --=+-=+-939425k k k +=-=-⇒=,但0k < .∴不存在实数k ,使()()12123222x x x x --=-成立.(2)∵()22212121221121244224411x x x x x x k x x x x x x k k +++-=-=-=-=-++∴要使其值是整数,只需1k +能整除4,∴11k +=±,2±,4±,注意到0k <,要使12212x x x x +-的值为整数的实数k 的整数值为-2,-3,-5.所以k 的值为235k =---,,【变式4】(2022秋·四川凉山·八年级校考阶段练习)设一元二次方程x 2―2022x +1=0的两根分别为a ,b ,根据一元二次方程根与系数的关系可知:ab =1,记S 1=11+a +11+b ,S 2=11+a2+11+b2,S3=11+a3+11+b3,⋯,S100=11+a100+11+b100,那么S1+S2+S3+⋯+S100=______.【答案】100【分析】根据ab=1得到b=1a ,b2=1a2,b3=1a3,…b100=1a100,代入计算即可.【详解】∵一元二次方程x2―2022x+1=0的两根分别为a,b,∴ab=1,∴b=1a ,b2=1a2,b3=1a3,…b100=1a100,∴S1=11+a+11+1a=11+a+a1+a=1+a1+a=1,S2=11+a2+11+1a2=11+a2+a21+a2=1+a21+a2=1,S100=11+a100+11+1a100=11+a100+a1001+a100=1+a1001+a100=1,∴S1+S2+S3+⋯+S100=1+1+1+…+1100=100,故答案为:100.。
一元二次方程根的判别式与韦达定理

于是,上述方程两个根的和、积与系数的关系分别有如下关系:
x1+x2=-p,x1x2=q
例1
(1)已知关于x的一元二次方程x2Байду номын сангаас2x+m=0有解,求m的范围.
(2)己知关于x的一元二次方程x2- x-m=0有两个不相等实数根,求m的取值范围.
(3)求证:关于x的一元二次方程ax2-(3a+l)x+2(a+l)=0(a≠0)总有实数根
(4)已知关于x的方程ax2-(3a+l)x+2(a+l)=0有两个不相等的实数根,求a的取值范围
(2)己知:a、b、c分别是△ABC的三边长,
求证:关于x的方程b2x2+(b2+c2一a2)x+c2=0没有实数根.
练习
己知△ABC三边a,b,c,关于x的方程(a+c)x2+2bx-a+c=0,x2+2ax+b2=0均有两个相等的实数根,试判断△ABC的形状.
模块二一元二次方程根与系数关系
知识导航:
练习
(1)方程x2—2x-1=0的两个实数根分别为x1、x2,(x1-l)(x2-1)=______________
cz,设x1、x2是方程2x2—6x+l=o的两个实数根,则(x1- )(x2- )的值为__________
【总结】
1、用韦达定理,常见的恒等变形有:
+ = ,x12+x22=(x1+x2)2-2x1x2,(x1-x2)2=(x1+x2)2-4x1x2
(2)一元二次方程x2—4x-c=0的一个根是3,则另一个根是____,c=___________
一元二次方程的判别式、韦达定理应用举例

一元二次方程的判别式、韦达定理应用举例抛物线
1. 判别式:
判别式是用来判别一元二次方程的根(解)是实根、重根还是无解的
一个实用公式,它是欧拉定理的重要应用。
判别式的表达式为:D=b²-4ac。
其中a、b、c分别为一元二次方程中的系数:ax²+bx+c=0。
2. 韦达定理应用举例:
韦达定理是欧几里得几何中的重要定理,可以用来证明几何图形的线
段关系。
举例说明:
假设有ABC三角形,设三点的坐标分别为A(2,3),B(-1,-4),C(1,-1),根据韦达定理可得:
d(AB)² + d(BC)² =d(AC)²
即求出d(AB)² + d(BC)² 与d(AC)²的值,如果相等,证明该三角形
是等腰的。
3. 抛物线:
抛物线是第二次多项式函数的一类,表达式为:y=ax²+bx+c,其中a、b、c分别为常数,x为变量。
抛物线的性质:当a>0时,抛物线是一条开
口向上的“U”形线,当a<0时,抛物线是一条开口向下的“∩”形线。
一元二次方程根的判别式和根与系数的关系

中考专题复习〈〈一元二次方程根的判别式和根与系数的关系》1、根的判别式及应用(△ = b2 一4ac):(1)判定一元二次方程根的情况。
(2)确定字母的值或取值范围。
2、根与系数的关系(韦达定理)的应用:韦达定理:如果一元二次方程ax2+bx+c=0(a乒0)的两根为x i、X2,b c贝U X i+X2=—— , x i X2=—。
a a(1) 已知一根求另一根及未知系数;(2) 求与方程的根有关的代数式的值;(3) 已知两根求作方程;(4) 已知两数的和与积,求这两个数;(5)确定根的符号:(x1、x2是方程两根)。
3、应用韦达定理时,要确保一元二次方程有根,即一定要判断根的判别式是否非负;求作一元二次方程时,一般把求作方程的二次项系数设为1,即以x「乂2为根的一元二次方程为x2-(x〔+x2)x+x〔x2= 0 ;求字母系数的值时,需使二次项系数a乒0,同时满足^> 0;求代数式的值,常用整体思想,把所求代数式变形成为含有两根之和x1 +x2, ?两根之积x1x2的代数式的形式,整体代入。
1.一元二次方程根的判别式:关于x的一元二次方程a顶4bx+c=0a#0 )的根的判别式为.(1) b2 -4ac>0u 一元二次方程ax2+bx + c =0(a #0)有两个实数根.(2) 史—4ac=0U 一元二次方程有相等的实数根,即x1 = x2= ^(3) b2—4ac<0u 一元二次方程ax2+bx+c = 0(a #0 实数根.2.一元二次方程根与系数的关系若关于x的一元二次方程ax2 +bx + c =0(a , 0)有两根分别为x1, x2,那么x1 + x2=,2 2x1 x2 = ^变形:x1 +x2 =, x1 -x2 =。
至十兰=。
x1 %3.易错知识辨析:1) 在使用根的判别式解决问题时,如果二次项系数中含有字母,要加上二次项系数不为零这个限制条件.2) 应用一元二次方程根与系数的关系时,应注意:①根的判别式b2 -4ac芝0 ;②二次项系数a#0,即只有在一元二次方程有根的前提下,才能应用根与系数的关系^一、【典型示例】【例1】当k为何值时,方程x2-6x + k-1=0 , (1)两根相等;(2)有一根为0 ;(3)两根为倒数【例2】已知关于x的方程x2 +2(a—1)x+a2—7a—4=0,(1) 若方程有两个不相等的实数根,求a的取值范围;(2) 若方程的有两个实数根为x〔、x2 ,且x; +x;=32,求a的值。
一元二次方程根的判别式与韦达定理训练题

一元二次方程根的判别式与韦达定理训练题(总2页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2一元二次方程根的判别式·韦达定理训练题一1.已知方程24(2)10x k x k -++-=有两个相等的实数根,求k 的值,并求出这时方程的根.2.已知关于x 的一元二次方程:2(1)(21)0m x m x m +--+=有两个不相等的实数根,求m 的取值范围3.已知关于x的一元二次方程:2(12)10k x -+-=有两个不相等的实数根,求k 的取值范围4.关于x 的方程2(2)2(1)10m x m x m ---++=,在下列条件下, 分别求m 的非负整数值.(1)方程只有一个....实数根;(2)方程有两个相等....的实数根;(3)方程有两个不相等的实数根.5. 求证:关于x 的方程2(1)10x k x k +++-=有两个不相等的实数根。
6.已知12,x x 是一元二次方程:2510x x --=,求下列式子的值:①2212x x +;②12(2)(2)x x --;③2112x x x x +;④12x x -;⑤21258x x ++37. 已知两个不等实数,a b 满足:22310,310a a b b -+=-+=,求下列式子的值:①22a b +;②b aa b+;8.方程2(1)210x m x m -++-=求m 满足什么条件时,方程的两根互为相反数方程的两根互为倒数方程的一根为零9.已知关于x 的一元二次方程2(3)20x m x m --+-=两个实根的平方和等于1,求m 的值10.已知关于x 的一元二次方程()22210x m x m +-+=有两个实数根1x 和2x 。
(1)求实数m 的取值范围;(2)当22120x x -=时,求m 的值。
11.已知,,a b c 是△ABC 的三边,且关于x 的一元二次方程:2()20c a x bx c a --++=有两个相等的实数根,如果53a c =,求bc的值12.已知关于x 的方程..2(21)10kx k x k -++-=的根是整数,求整数k 的值。
根的判别式与韦达定理

一元二次方程根与系数的关系应用例析及训练对于一元二次方程)0(02≠=++a c bx ax ,当判别式042≥-=∆ac b 时,其求根公式为:aacb b x 24221-±-=、;当0≥∆时,设一元二次方程的两根为21x x 、,有:abx x -=+21,a c x x =⋅21;根与系数的这种关系又称为韦达定理;它的逆定理也是成立的,即当ab x x -=+21,ac x x =⋅21时,那么21x x 、则是方程)0(02≠=++a c bx ax 的两根。
一元二次方程的根与系数的关系,综合性强,应用极为广泛,在中学数学中占有极重要的地位,也是数学学习中的重点。
学习中,除了要求熟记一元二次方程)0(02≠=++a c bx ax 根的判别式ac b 42-=∆存在的三种情况外,还常常要求应用韦达定理解答一些变式题目,以及应用求根公式求出方程)0(02≠=++a c bx ax 的两个根21x x 、,进而分解因式,即))((212x x x x a c bx ax --=++。
下面就对韦达定理的应用可能出现的问题举例做些分析,希望能带来小小的帮助。
一、根据判别式,讨论一元二次方程的根。
例1:已知关于x 的方程(1)03)21(22=-+--a x a x 有两个不相等的实数根,且关于x 的方程(2)01222=-+-a x x 没有实数根,问a 取什么整数时,方程(1)有整数解?分析:在同时满足方程(1),(2)条件的a 的取值范围中筛选符合条件的a 的整数值。
解:说明:熟悉一元二次方程实数根存在条件是解答此题的基础,正确确定a 的取值范围,并依靠熟练的解不等式的基本技能和一定的逻辑推理,从而筛选出a ,这是解答本题的基本技巧。
二、判别一元二次方程两根的符号。
例2:不解方程,判别方程07322=-+x x 两根的符号。
判别根的符号,需要把“根的判别式”和“根与系数的关系”结合起来进行确定,倘若由题中021<⋅x x ,所以可判定方程的根为一正一负;倘若021>⋅x x ,仍需考虑21x x +的正负,倘若021>+x x ,则方程有两个正数根;倘若021<+x x ,则方程有两个负数根。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程判别式及韦达定理
一、选择题
1.(2013湖北黄冈)已知一元二次方程x 2-6x +c =0有一个根为2,则另一根为( )
A .2
B .3
C .4
D .8
2.(2013四川泸州)若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则实数k 的取值范围是( )
A .1k >-
B .1k <且0k ≠
C . 1k ≥-且0k ≠
D . 1k >-且0k ≠
3. (2013四川泸州,)设12,x x 是方程2330x x +-=的两个实数根,则
2112
x x x x +的值为( ) A .5 B .-5 C .1 D .-1
4. (2013福建福州,)下列一元二次方程有两个相等实数根的是( )
A .x 2+3=0
B .x 2+2x =0
C .(x +1)2=0
D .(x +3)(x -1)=0
5.(2013山东滨州,)对于任意实数k ,关于x 的方程程x 2-2(k +1)x -k 2+2k -1=0的根的情况为
A .有两个相等的实数根
B .没有实数根
C .有两个不相等的实数根
D .无法确定 6.(2013广东广州)若0205<+k ,则关于x 的一元二次方程042=-+k x x 的根的情况是( )
A .没有实数根
B .有两个相等的实数根
C .有两个不相等的实数根
D .无法判断
7.(2013山东日照)已知一元二次方程032=--x x 的较小根为1x ,则下面对1x 的估计准确的是 A .121-<<-x B .231-<<-x C .321<<x D .011<<-x
8.(2013·潍坊)已知关于x 的方程()0112
=--+x k kx ,下列说法准确的是( ) A .当0=k 时,方程无解 B .当1=k 时,方程有一个实数解
C .当1-=k 时,方程有两个相等的实数解
D .当0≠k 时,方程总有两个不相等的实数解
9.(2013·鞍山)已知b <0,关于x 的一元二次方程(x -1)2=b 的根的情况是( )
A .有两个不相等的实数根
B .有两个相等的实数根
C .没有实数根
D .有两个实数根
10.(2013贵州省六盘水,)已知关于x 的一元二次方程(k ﹣1)x 2﹣2x +1=0有两个不相等的实数根,则k 的取值范围是( )
A . k <﹣2
B . k <2
C . k >2
D . k <2且k ≠1
11.(2013湖北省鄂州市,)已知m ,n 是关于x 的一元二次方程x 2﹣3x +a =0的两个解,若(m ﹣1)(n ﹣1)=﹣6,则a 的值为( )
A.-10
B.4
C.-4
D.10
12. (2009年烟台市)设a b ,是方程220090x x +-=的两个实数根,则22a a b ++的值为( )
A .2006
B .2007
C .2008
D .2009
13.(2009年日照)若n (0n ≠)是关于x 的方程220x mx n ++=的根,则m +n 的值为
A.1
B.2
C.-1
D.-2
14.(2009年包头)关于x 的一元二次方程2210x mx m -+-=的两个实数根分别是12x x 、,且
22127x x +=,则212()x x -的值是( )
A .1
B .12
C .13
D .25
二、填空题 1.(2013湖北荆门)设x 1,x 2是方程x 2-x -2013=0的两实数根,则x 13+2014x 2-2013=______. 2.(2013四川绵阳)已知整数k <5,若△ABC 的边长均满足关于x 的方程2380x k x -+=,则△ABC 的周长是 。
3.(2013兰州,)若
,且一元二次方程kx 2+ax +b =0有两个实数根,则k 的取值范围是 .
5. (2013湖南张家界)若关于x 的一元二次方程kx 2+4x +3=0有实根,则k 的非负整数值是 .
6.(2013·聊城)若x 1=-1是关于x 的方程x 2+mx -5=0的一个根,则方程的另一个根x 2= .
7. (2013•新疆)如果关于x 的一元二次方程x 2﹣4x +k =0有实数根,那么k 的取值范围是
8.(2013贵州省黔东南州)若两个不等实数m 、n 满足条件:m 2﹣2m ﹣1=0,n 2﹣2n ﹣1=0,则m 2+n 2的值是 .
9.(2013贵州省黔西南州)已知x =1是一元二次方程x 2+ax +b =0的一个根,则代数式a 2+b 2+2ab 的值是 .
1月27日桂晓讲义
1.(2013山东菏泽)(1)已知m 方程220x x --=的一个实数根,求代数式22()(1)m m m m
--+的值. (2)已知,关于x 的方程x m mx x 222
2+-=-的两个实数根1x 、2x 满足12x x =,求实数m 的值.
2.(2013山东菏泽)已知:关于x 的一元二次方程2(41)330kx k x k -+++=(k 是整数). (1)求证:方程有两个不相等的实数根;
(2)若方程的两个实数根分别为x 1,x 2(其中12x x <),设y = x 2 - x 1,判断y 是否为变量k 的函数?如果是,请写出函数表达式;若不是,请说明理由.
3.(2013四川南充)关于x 的一元二次方程为012)1(2
=++--m mx x m .
(1)求出方程的根;
(2)m 为何整数时,此方程的两个根都为正整数?
4.(2013湖北孝感)已知关于x 的一元二次方程x 2﹣(2k +1)x +k 2+2k =0有两个实数根x 1,x 2.
(1)求实数k 的取值范围;
(2)是否存有实数k 使得
≥0成立?若存有,请求出k 的值;若不存有,请说明理由.
5.(2013四川乐山)已知关于x 的一元二次方程()22x 2k 1x k k 0-+++=。
(1)求证:方程有两个不相等的实数根;
(2)若△ABC 的两边AB 、AC 的长是方程的两个实数根,第三边BC 的长为5。
当△ABC 是等腰三角形时,求k 的值。
6. (2012湖北孝感)已知关于x 的一元二次方程x 2+(m +3)x +m +1=0.
(1)求证:无论m 取何值,原方程总有两个不相等的实数根;
(2)若x 1、x 2是原方程的两根,且|x 1-x 2|=,求m 的值和此时方程的两根.
7. (2012湖北鄂州)关于x 的一元二次方程22x (m 3)x m 0---=.
(1)证明:方程总有两个不相等的实数根;
(2)设这个方程的两个实数根为x 1,x 2,且|x 1|=|x 2|-2,求m 的值及方程的根。
8. (2012湖南怀化)已知12x ,x 是一元二次方程2(a 6)x 2ax a 0-++=的两个实数根.
(1)是否存有实数a ,使1122x x x 4x -+=+成立?若存有,求出a 的值;若不存有,请你说明理由;
(2)求使12(x 1)(x 1)++为负整数的实数a 的整数值.
9. (2012四川内江)如果方程20x px q ++=的两个根是12,x x ,那么1212,.,x x p x x q +=-=请根据以
上结论,解决下列问题:
1.已知关于x 的方程20,(0),x mx n n ++=≠求出一个一元二次方程,使它的两个根分别是已知方程两根的倒数;
2.已知a 、b 满足2215a 50,1550a b b ---==-,求a b b a
+的值; 3.已知a 、b 、c 满足0,16a b c abc ++==求正数c 的最小值。
10. (2012四川南充)关于x 的一元二次方程x 2+3x +m -1=0的两个实数根分别为x 1,x 2.
(1)求m 的取值范围.
(2)若2(x 1+x 2)+ x 1x 2+10=0.求m 的值.
11. (2011四川南充市)关于的一元二次方程x 2+2x +k +1=0的实数解是x 1和x 2。
(1)求k 的取值范围;
(2)如果x 1+x 2-x 1x 2<-1且k 为整数,求k 的值。
17. (2010湖北孝感)已知关于x 的方程x 2-2(k -1)x+k 2=0有两个实数根x 1,x 2.
(1)求k 的取值范围;
(2)若12121x x x x +=-,求k 的值.
12.(2010广东中山)已知一元二次方程022=+-m x x .
(1)若方程有两个实数根,求m 的范围;
(2)若方程的两个实数根为1x ,2x ,且1x +32x =3,求m 的值。
13.(2010四川乐山)从甲、乙两题中选做一题。
如果两题都做,只以甲题计分.
题甲:若关于x 的一元二次方程012)2(222=++--k x k x 有实数根βα、.
(1) 求实数k 的取值范围;
(2) 设k t βα+=
,求t 的最小值.
14.(2010 四川绵阳)已知关于x 的一元二次方程x 2 = 2(1-m )x -m 2 的两实数根为x 1,x 2.
(1)求m 的取值范围;
(2)设y = x 1 + x 2,当y 取得最小值时,求相对应m 的值,并求出最小值.
15.(2010 湖北孝感)关于x 的一元二次方程1201x p x x 有两实数根=-+-、.2x
(1)求p 的取值范围;(4分)
(2)若p x x x x 求,9)]1(2)][1(2[2211=-+-+的值.(6分)。