根的判别式韦达定理
根的判别式与韦达定理

九年级数学讲义根的判别式与韦达定理知识要点:1. 根的判别式:设一元二次方程ax 2+bx+c=0(a ≠0),其根的判别式为Δ=b 2-4acΔ>0 ⇔方程有两个不相等的实数根 Δ=0⇔方程有两个相等的实数根 Δ<0 ⇔方程没有实数根2. 根与系数的关系:设一元二次方程ax 2+bx+c=0(a ≠0)的两个根分别为x 1,x 2x 1+x 2=-a b x 1·x 2=ac例1、关于x 的两个方程x 2+4mx +4m 2+2m +3=0,x 2+(2m +1)x +m 2=0中至少有一个方程有实数根,求m 的取值范围。
例2、求证:m 为任何实数时,方程21402x m x m +-+-=()有两个不相等的实数根。
例3、已知x 1、x 2是方程x 2+3x -5=0的两根。
则x x -2122+4x 1-2x 2= 。
例4、已知方程x 2+px +q =0的两根之积比两根的和大5,且两根的平方和为25,求p 和q 的值。
例5、已知α、β是方程x 2+5x +2=0的两根求αββα+的值。
例6、已知a 、b 、c 均为实数,且a +b +c=0,abc=1。
求证:a 、b 、c 中必有一个大于23。
练习:1、不解方程,判断下列方程的根的情况。
()127302x x +-= ( )()221202()()y y y -++=( )()3912402x x ++= ( )()423402x x --= ( )()551702()x x +-= ( )()62102x mx --= ( )2、一元二次方程ax x 2210-+=有实数根,那么a 的取值范围是 。
3、方程380312x x m m -+==的两根之比为,则:。
4、已知: 方程x x p p 226250-+-+=一根为2,则p =_______,它的另一个根为_________。
5、设0342,2=-+x x 是方程βα的两个根,那么ααββ223-+= 。
第三讲 一元二次方程根的判别式与韦达定理(精讲)(解析版)

2023年初高中衔接素养提升专题讲义第三讲 一元二次方程根的判别式与韦达定理(精讲)(解析版)【知识点透析】1、一元二次根的判别式一元二次方程20 (0)ax bx c a ++=≠,用配方法将其变形为:2224()24b b ac x a a -+=,把24b ac -叫做一元二次方程20 (0)ax bx c a ++=≠的根的判别式,表示为:24b ac∆=-(1) 当Δ=240b ac ->时,方程有两个不相等的实数根:x =(2) 当Δ=240b ac -=时,因此,方程有两个相等的实数根:1,22b x a=-(3) 当Δ=240b ac -<时,因此,方程没有实数根.【知识点精讲】【例1】已知关于x 的一元二次方程2320x x k -+=,根据下列条件,分别求出k 的范围:(1) 方程有两个不相等的实数根;(2) 方程有两个相等的实数根(3)方程有实数根;(4) 方程无实数根.【解析】:2(2)43412k k ∆=--⨯⨯=-(1) 141203k k ->⇒<;(2) 141203k k -=⇒=;(3) 141203k k -≥⇒≥;(4) 141203k k -<⇒<.【变式1】((2022秋·重庆开州·八年级统考期中)使得关于x 的不等式组6x ―a ≥―10―1+12x <―18x +32有且只有4个整数解,且关于x 的一元二次方程(a ―5)x 2+4x +1=0有实数根的所有整数a 的值之和为( )A .35B .30C .26D .21【答案】B【分析】先求出不等式组的解集,根据有且只有4个整数解可确定a 的取值范围,再通过根的判别式确定a 的取值范围,最后结合两个取值范围找出满足条件的整数相加即可.【详解】解:整理不等式组得:6x ―a ≥―10①―8+4x <―x +12②由①得:x ≥a ―106,由②得:x<4∵不等式组有且只有4个整数解,∴不等式组的4个整数解是:3,2,1,0,∴―1<a―106≤0,解得:4<a≤10,∵(a―5)x2+4x+1=0有实数根,∴Δ=b2―4ac=16―4×(a―5)×1=36―4a≥0,解得:a≤9,∵方程(a―5)x2+4x+1=0是一元二次方程,∴a≠5∴4<a≤9,且a≠5,满足条件的整数有:6、7、8、9;∴6+7+8+9=30,故选:B.【变式2】.已知关于x的一元二次方程:x2﹣(2k+1)x+4(k―12)=0.(1)求证:这个方程总有两个实数根;(2)若等腰△ABC的一边长a=4b、c恰好是这个方程的两个实数根,求△ABC 的周长.【解答】(1)证明:Δ=(2k+1)2﹣4×1×4(k―12)=4k2﹣12k+9=(2k﹣3)2,∵无论k取什么实数值,(2k﹣3)2≥0,∴△≥0,∴无论k取什么实数值,方程总有实数根;(2)解:∵x=2k+1±(2k―3)2,∴x1=2k﹣1,x2=2,∵b,c恰好是这个方程的两个实数根,设b=2k﹣1,c=2,当a 、b 为腰,则a =b =4,即2k ﹣1=4,解得k =52,此时三角形的周长=4+4+2=10;当b 、c 为腰时,b =c =2,此时b +c =a ,故此种情况不存在.综上所述,△ABC 的周长为10.【例2】已知实数x 、y 满足22210x y xy x y +-+-+=,试求x 、y 的值.【解析】:可以把所给方程看作为关于x 的方程,整理得:22(2)10x y x y y --+-+=由于x 是实数,所以上述方程有实数根,因此:222[(2)]4(1)300y y y y y ∆=----+=-≥⇒=,代入原方程得:22101x x x ++=⇒=-.综上知:1,0x y =-=【变式1】(2022秋·湖北武汉·八年级武汉市第一初级中学校考期末)已知a ,b ,c 满足a 2+6b =7,b 2―2c =―1,c 2―2a =―17,则a ―b +c 的值为( )A .―1B .5C .6D .―7【答案】B【分析】首先把a 2+6b =7,b 2―2c =―1,c 2―2a =―17,两边相加整理成a 2+6b +b 2―2c +c 2―2a +11=0,分解因式,利用非负数的性质得出a 、b 、c 的数值,代入求得答案即可.【详解】解:∵a 2+6b =7,b 2―2c =―1,c 2―2a =―17,∴a 2+6b +b 2―2c +c 2―2a =―,∴a 2+6b +b 2―2c +c 2―2a +11=0∴(a ―1)2+(b +3)2+(c ―1)2=0,∴a =1,b =―3,c =1,∴a ―b +c =1+3+1=5.故选:B .【变式2】((2022秋·江苏扬州·八年级统考期中)新定义,若关于x 的一元二次方程:m (x ―a )2+b =0与n (x ―a )2+b =0,称为“同类方程”.如2(x ―1)2+3=0与6(x ―1)2+3=0是“同类方程”.现有关于x 的一元二次方程:2(x ―1)2+1=0与(a +6)x 2―(b +8)x +6=0是“同类方程”.那么代数式ax 2+bx +2022能取的最大值是_________.【答案】2023【分析】根据“同类方程”的定义,可得出a ,b 的值,从而解得代数式的最大值.【详解】∵2(x ―1)2+1=0与(a +6)x 2―(b +8)x +6=0是“同类方程”,∴(a +6)x 2―(b +8)x +6=(a +6)(x ―1)2+1,∴(a +6)x 2―(b +8)x +6=(a +6)x 2―2(a +6)x +a +7,∴b +8=2(a +6)6=a +7 ,解得:a =―1b =2,∴a x 2+bx +2022=―x 2+2x +2022=―(x ―1)2+2023∴当x =1时,a x 2+bx +2022取得最大值为2023.故答案为:2023.2、一元二次方程的根与系数的关系一元二次方程20 (0)ax bx c a ++=≠的两个根为:x x ==所以:12b x x a+==-,12244ac c x x a a⋅====韦达定理:如果一元二次方程20 (0)ax bx c a ++=≠的两个根为12,x x ,那么:1212,b c x x x x a a+=-=【知识点精讲】【例3】若12,x x 是方程2220070x x +-=的两个根,试求下列各式的值:(1) 2212x x +;(2) 1211x x +;(3) 12(5)(5)x x --;(4) 12||x x -.【解析】:由题意,根据根与系数的关系得:12122,2007x x x x +=-=-(1) 2222121212()2(2)2(2007)4018x x x x x x +=+-=---=(2) 121212112220072007x x x x x x +-+===-(3) 121212(5)(5)5()2520075(2)251972x x x x x x --=-++=---+=-(4) 12||x x -====常见的一些变形结论:利用根与系数的关系求值,要熟练掌握以下等式变形:222121212()2x x x x x x +=+-,12121211x x x x x x ++=,22121212()()4x x x x x x -=+-,12||x x -=2212121212()x x x x x x x x +=+,33312121212()3()x x x x x x x x +=+-+等等.韦达定理体现了整体思想.【例4】.已知关于x 的方程220x mx m -+=.(1)若2m =-,方程两根分别为1x ,2x ,求12x x -和3312x x +的值;(2)若方程有一正数,有一负数根,求实数m 的取值范围.【答案】.(14- (2)m <0【解析】(1)由22121212=()4x x x x x x -+-,33212121212()[()3]x x x x x x x x +=++-,借助韦达定理求解.(2)借助韦达定理表示方程有一正数,有一负数根的等价条件,进而求解.【详解】(1)当2m =-时,2222x x +-=即:210x x +-=1212140,1,1x x x x ∆=+>+=-=-因此:2212121212=()45x x x x x x x x -+-=∴-=3322212121212121212()[]()[()3]4x x x x x x x x x x x x x x +=++-=++-=-(2)220x mx m -+=212128,,22m m m m x x x x ∆=-+==21280002m m m m x x ⎧∆=->⎪∴<⎨=<⎪⎩【变式1】已知两不等实数a ,b 满足222a a =-,222b b =-,求22b a a b +的值.【解析】:b a ,是一元二次方程0222=-+x x 的不等实根则有2,2-=-=+ab b a原式=5)(]3))[(()())(()(22222233-=-++=+-+=+ab ab b a b a ab b ab a b a ab b a 【变式2】(2022秋·浙江杭州·八年级杭州外国语学校校考期末)设m 是不小于﹣1的实数,使得关于x 的方程x 2+2(m ﹣2)x +m 2﹣3m +3=0有两个实数根x 1,x 2.(1)若x 21+x 22=2,求m 的值;(2)令T =mx 11―x 1+mx 21―x 2,求T 的取值范围.【答案】(1)1 (2)0<T ≤4且T ≠2【分析】首先根据方程有两个实数根及m 是不小于-1的实数,确定m 的取值范围,根据根与系数的关系,用含m 的代数式表示出两根的和、两根的积.(1)变形x 12+x 22为(x 1+x 2)2-2x 1x 2,代入用含m 表示的两根的和、两根的积得方程,解方程根据m 的取值范围得到m 的值;(2)化简T ,用含m 的式子表示出T ,根据m 的取值范围,得到T 的取值范围.(1)∵关于x 的方程x 2+2(m -2)x +m 2-3m +3=0有两个实数根,∴Δ=4(m -2)2-4(m 2-3m +3)≥0,解得m ≤1,∵m 是不小于-1的实数,∴-1≤m ≤1,∵方程x 2+2(m -2)x +m 2-3m +3=0x 1,x 2,∴x 1+x 2=-2(m -2)=4-2m ,x 1•x 2=m 2-3m +3.∵x 12+x 22=2,∴(x 1+x 2)2-2x 1x 2=2,∴4(m -2)2-2(m 2-3m +3)=2,整理得m 2-5m +4=0,解得m 1=1,m 2=4(舍去),∴m 的值为1;(2)T =mx 11―x 1+mx 21―x 2,=mx 1(1―x 2)+mx 2(1―x 1)(1―x 1)(1―x 2)=m [(x 1+x 2)―2x 1x 2]1―(x 1+x 2)+x 1x 2=m (4―2m ―2m 2+6m ―6)1―4+2m +m 2―3m +3=―2m(m ―1)2m 2―m=―2m(m ―1)2m (m ―1)=2-2m .∵当x =1时,方程为1+2(m ﹣2)+m 2﹣3m +3=0,解得m =1或m =0.∴当m =1或m =0时,T 没有意义.∴―1≤m <1且m ≠0∴0<2-2m ≤4且T ≠2.即0<T ≤4且T ≠2.【变式3】.已知12x x ,是一元二次方程24410kx kx k -++=的两个实数根.(1)是否存在实数k ,使12123(2)(2)2x x x x --=-成立?若存在,求出k 的值,若不存在,请说明理由;(2)若k 是整数,求使12212x x x x +-的值为整数的所有k 的值.【答案】(1)不存在k ;理由见解析;(2)235k =---,,.【详解】(1)假设存在实数k ,使()()12123222x x x x --=-成立.∵一元二次方程24410kx kx k -++=的两个实数根∴()()24004441160k k k k k k ≠⎧⎪⇒<⎨∆=--⋅+=-≥⎪⎩,又1x ,2x 是一元二次方程24410kx kx k -++=的两个实数根∴1212114x x k x x k +=⎧⎪+⎨=⎪⎩∴()()()()222121212121212222529x x x x x x x x x x x x --=+-=+-939425k k k +=-=-⇒=,但0k < .∴不存在实数k ,使()()12123222x x x x --=-成立.(2)∵()22212121221121244224411x x x x x x k x x x x x x k k +++-=-=-=-=-++∴要使其值是整数,只需1k +能整除4,∴11k +=±,2±,4±,注意到0k <,要使12212x x x x +-的值为整数的实数k 的整数值为-2,-3,-5.所以k 的值为235k =---,,【变式4】(2022秋·四川凉山·八年级校考阶段练习)设一元二次方程x 2―2022x +1=0的两根分别为a ,b ,根据一元二次方程根与系数的关系可知:ab =1,记S 1=11+a +11+b ,S 2=11+a2+11+b2,S3=11+a3+11+b3,⋯,S100=11+a100+11+b100,那么S1+S2+S3+⋯+S100=______.【答案】100【分析】根据ab=1得到b=1a ,b2=1a2,b3=1a3,…b100=1a100,代入计算即可.【详解】∵一元二次方程x2―2022x+1=0的两根分别为a,b,∴ab=1,∴b=1a ,b2=1a2,b3=1a3,…b100=1a100,∴S1=11+a+11+1a=11+a+a1+a=1+a1+a=1,S2=11+a2+11+1a2=11+a2+a21+a2=1+a21+a2=1,S100=11+a100+11+1a100=11+a100+a1001+a100=1+a1001+a100=1,∴S1+S2+S3+⋯+S100=1+1+1+…+1100=100,故答案为:100.。
根的判别式与韦达定理

根的判别式ac b 42-根的判别式的作用:①判定根的个数;②求待定系数的值;③应用于其它。
例1、若关于x 的方程0122=-+x k x 有两个不相等的实数根,则k 的取值范围是 。
例2、已知方程022=+-mx mx 有两个不相等的实数根,则m 的值是 . 例3、关于x 的方程()0212=++-m mx x m 有实数根,则m 的取值范围是( )A.10≠≥且m mB.0≥mC.1≠mD.1>m例4、已知关于x 的方程()0222=++-k x k x(1)求证:无论k 取何值时,方程总有实数根;(2)若等腰∆ABC 的一边长为1,另两边长恰好是方程的两个根,求∆ABC 的周长。
例5、已知二次三项式2)6(92-++-m x m x 是一个完全平方式,试求m 的值.例6、已知关于x 的方程0k x 4k 2x 2=++-有两个不相等的实数根,(1)求k 的取值范围。
(2)化简4k 4k 2k 2+-+--针对练习:1、当k 时,关于x 的二次三项式92++kx x 是完全平方式。
2、当k 取何值时,多项式k x x 2432+-是一个完全平方式?这个完全平方式是什么?3.关于x 的方程(a -5)x 2-4x -1=0有实数根,则a 满足( )A .a ≥1B .a >1且a ≠5C .a ≥1且a ≠5D .a ≠54.对任意实数m ,求证:关于x 的方程042)1(222=++-+m mx x m 无实数根.5.k 为何值时,方程0)3()32()1(2=+++--k x k x k 有实数根.6. 已知a 、b 、c 是ABC ∆三条边的长,那么方程()042=+++c x b a cx 的根的情况是考点五、方程类问题中的“分类讨论”典型例题:例1、关于x 的方程()03212=-++mx x m⑴有两个实数根,则m 为 ,⑵只有一个根,则m 为 。
例2、如果关于x 的方程022=++kx x 及方程022=--k x x 均有实数根,问这两方程是否有相同的根?若有,请求出这相同的根及k 的值;若没有,请说明理由。
韦达定理与根的判别式

韦达定理与根的判别式这个专题是一二次方程是的判别式与韦达定理知识要点和练习韦达定理与根的判别式知识点:1、根的判别式b24ac(1)b24ac 0 ,方程有两个不相等的实数根;(2)b2 4ac 0,方程有两个相等的实数根;(3)b2 4ac 0,方程没有实数根;2、韦达定理已知x1,x2是一元二次方程的两根,则有xb1 x2ax1x2ca例1:已知一元二次方程x22x m 1 0 (1)当m取何值时,方程有两个不相等的实数根?(2)设x21,x2是方程的两个实数根,且满足x1 x1x2 1,求m的值练习:1、方程x23 0的根的情况是()A有两个不等的有理实根B有两个相等的有理实根C有两个不等的无理实根D有两个相等的无理实根2、已知x2 1,x2是方程2x 3x 4 0的两个根,则()A x331 x2 2 ,x1x2 2 B x1 x2 2 ,x1x2 2 C x1 x322,x1x2 2 D x31 x22,x1x2 23、已知方程x2 2 0,则此方程()A 无实数根B两根之和为C两根之积为2D有一根为2 1这个专题是一二次方程是的判别式与韦达定理知识要点和练习4、已知x1,x2是方程2x 3x 1 0的两个根,则3221x11x2的值为()A 3B -3C D5、若将二次三项式x2 px 6因式分解,分解后的一个因式是x-3,则p的值是()A -5 B -1 C 1 D 56、已知x1,x2是方程x 4x 3 0的两个根,那么x1x2的值是() A - 4 B 4 C -3 D 37、在一元二次方程ax2 bx c 0(a 0)中,若a与c异号,则方程()A 有两个不相等的实数根 B 有两个相等的实数根 C 没有实数根 D 根的情况无法确定8、已知一元二次方程的两根分别为x1 3,x2 4,则这个方程为() A (x 3)(x 4) 0 B (x 3)(x 4) 0 C (x 3)(x 4) 0 D (x 3)(x 4) 09、关于x的一元二次方程3x 2x k 1 0有两个不相等的实数根,则k的取值范围是() A k432243且k 1 C k2243D k4310、若关于x的一元二次方程(m 2)x (2m 1)x 1 0有两个不相等的实数根,则m的取值范围为() A m43B m43C m43且m 2 D m43且m 22211、已知一直角三角形的三边为a、b、c,∠B=90 ,那么关于x的方程a(x 1) 2cx b(x 1) 0的根的情况为()A 有两个不相等的实数根B 有两个相等的实数根C 没有实数根D 无法确定12、设x1,x2是方程2x 4x 3 0的两个根,则2221x11x213、已知关于x的方程x 2(m 2)x m 0有两个实数根,且两根的平方和等于16,则m的值为14、已知方程x (12x20的两根为x1,x2,则x1 x2的值为2215、关于x的一元二次方程mx (3m 1)x m 0,其根的判别式的值为1,求m的值及该方程的根。
三次函数的根的判别式和韦达定理

三次函数,即形如f(x) = ax^3 + bx^2 + cx + d的函数,其中a, b, c, d 为实数,且a不为0。
这种函数在数学中有着重要的应用价值。
对于三次函数,其根的判别式和韦达定理是两个重要的数学工具,用于研究函数的性质。
首先,我们来了解一下根的判别式。
对于一元二次方程,根的判别式是b^2 - 4ac,而对于三次函数,我们可以通过对其进行求导,然后观察导函数的零点来找到极值点。
三次函数的导函数为f'(x) = 3ax^2 + 2bx + c,对其求导后,再求出导函数的零点,即令f'(x) = 0,解出x的值,这些x的值就是三次函数的极值点。
接下来,我们来看看韦达定理。
韦达定理是用于求解一元二次方程的根的一种方法,但对于三次方程,我们可以通过观察其根的分布情况来找到三次函数的极值点。
如果三次方程有三个不同的实根,那么这三个实根就是三次函数的三个极值点。
如果三次方程有两个相同的实根,那么这两个相同的实根就是三次函数的拐点。
在实际应用中,我们可以利用韦达定理来判断三次函数的单调性。
如果三次函数在某个区间内单调递增,那么这个区间内一定存在一个或多个极小值点;反之,如果三次函数在某个区间内单调递减,那么这个区间内一定存在一个或多个极大值点。
此外,我们还可以利用韦达定理来判断三次函数的图像的形状。
如果三次函数的图像是一个连续的曲线,那么这个曲线一定是由多个单调递增或递减的区间段组成的;如果三次函数的图像是一个折线图,那么这个折线图一定是由多个单调递增或递减的区间段组成的。
综上所述,根的判别式和韦达定理是两个重要的数学工具,用于研究三次函数的性质。
利用这两个工具,我们可以更好地理解三次函数的图像和性质,从而更好地解决相关的数学问题。
韦达定理,根的判别式携手求最值

韦达定理,根的判别式携手求最值
韦达定理:两根之和等于-b/a,两根之差等于c/a:x1*x2=c/a;x1+x2=-b/a。
韦达定理公式变形:x12+x22=(x1+x2)2-2x1x2,1/x12+1/x22=(x12+x22)/x1x2,
x13+x23=(x1+x2)(x12-x1x2+x22)等。
韦达定理说明了一元二次方程中根和系数之间的关系。
法国数学家弗朗索瓦·韦达在著作《论方程的识别与订正》中建立了方程根与系数的关系,提出了这条定理。
由于韦达最早发现代数方程的根与系数之间有这种关系,人们把这个关系称为韦达定理。
韦达定理在求根的对称函数,讨论二次方程根的符号、解对称方程组以及解一些有关二次曲线的问题都凸显出独特的作用。
一元二次方程的根的判别式为:(a,b,c分别为一元二次方程的二次项系数,一次项系数和常数项)。
韦达定理与根的判别式的关系更是密不可分。
根的判别式是判定方程是否有实根的充要条件,韦达定理说明了根与系数的关系。
无论方程有无实数根,实系数一元二次方程的根与系数之间适合韦达定理。
判别式与韦达定理的结合,则更有效地说明与判定一元二次方程根的状况和特征。
根的判别式与韦达定理

一元二次方程根与系数的关系应用例析及训练对于一元二次方程)0(02≠=++a c bx ax ,当判别式042≥-=∆ac b 时,其求根公式为:aacb b x 24221-±-=、;当0≥∆时,设一元二次方程的两根为21x x 、,有:abx x -=+21,a c x x =⋅21;根与系数的这种关系又称为韦达定理;它的逆定理也是成立的,即当ab x x -=+21,ac x x =⋅21时,那么21x x 、则是方程)0(02≠=++a c bx ax 的两根。
一元二次方程的根与系数的关系,综合性强,应用极为广泛,在中学数学中占有极重要的地位,也是数学学习中的重点。
学习中,除了要求熟记一元二次方程)0(02≠=++a c bx ax 根的判别式ac b 42-=∆存在的三种情况外,还常常要求应用韦达定理解答一些变式题目,以及应用求根公式求出方程)0(02≠=++a c bx ax 的两个根21x x 、,进而分解因式,即))((212x x x x a c bx ax --=++。
下面就对韦达定理的应用可能出现的问题举例做些分析,希望能带来小小的帮助。
一、根据判别式,讨论一元二次方程的根。
例1:已知关于x 的方程(1)03)21(22=-+--a x a x 有两个不相等的实数根,且关于x 的方程(2)01222=-+-a x x 没有实数根,问a 取什么整数时,方程(1)有整数解?分析:在同时满足方程(1),(2)条件的a 的取值范围中筛选符合条件的a 的整数值。
解:说明:熟悉一元二次方程实数根存在条件是解答此题的基础,正确确定a 的取值范围,并依靠熟练的解不等式的基本技能和一定的逻辑推理,从而筛选出a ,这是解答本题的基本技巧。
二、判别一元二次方程两根的符号。
例2:不解方程,判别方程07322=-+x x 两根的符号 。
判别根的符号,需要把“根的判别式”和“根与系数的关系”结合起来进行确定,倘若由题中021<⋅x x ,所以可判定方程的根为一正一负;倘若021>⋅x x ,仍需考虑21x x +的正负,倘若021>+x x ,则方程有两个正数根;倘若021<+x x ,则方程有两个负数根。
判别式与韦达定理

判别式与韦达定理1、 一元二次方程的根的判别式一元二次方程ax 2+bx+c=0(a ≠0)的根的判别式△=b 2-4ac当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根,当△<0时,方程没有实数根.2.一元二次方程的根与系数的关系(1)如果一元二次方程ax 2+bx+c=0(a ≠0)的两个根是x 1,x 2,那么a b x x -=+21,ac x x =21 (2)如果方程x 2+px+q=0的两个根是x 1,x 2,那么x 1+x 2=-P ,x 1x 2=q(3)以x 1,x 2为根的一元二次方程(二次项系数为1)是x 2-(x 1+x 2)x+x 1x 2=0.3.二次三项式的因式分解(公式法)在分解二次三项式ax 2+bx+c 的因式时,如果可用公式求出方程ax 2+bx+c=0的两个根是x 1,x 2,那么ax 2+bx+c=a(x-x 1)(x-x 2).〖考查重点与常见题型〗1.利用根的判别式判别一元二次方程根的情况,有关试题出现在选择题或填空题中,如:关于x 的方程ax 2-2x +1=0中,如果a<0,那么梗的情况是( )(A )有两个相等的实数根 (B )有两个不相等的实数根(C )没有实数根 (D )不能确定2.利用一元二次方程的根与系数的关系求有关两根的代数式的值,有关问题在中考试题中出现的频率非常高,多为选择题或填空题,如:设x 1,x 2是方程2x 2-6x +3=0的两根,则x 12+x 22的值是( )(A )15 (B )12 (C )6 (D )33.在中考试题中常出现有关根的判别式、根与系数关系的综合解答题。
在近三年试题中又出现了有关的开放探索型试题,考查了考生分析问题、解决问题的能力。
考查题型1.关于x 的方程ax 2-2x +1=0中,如果a<0,那么根的情况是( )(A )有两个相等的实数根 (B )有两个不相等的实数根(C )没有实数根 (D )不能确定2.设x 1,x 2是方程2x 2-6x +3=0的两根,则x 12+x 22的值是( )(A )15 (B )12 (C )6 (D )33.下列方程中,有两个相等的实数根的是( )(A ) 2y 2+5=6y (B )x 2+5=2 5 x (C ) 3 x 2- 2 x+2=0(D )3x 2-2 6 x+1=04.以方程x 2+2x -3=0的两个根的和与积为两根的一元二次方程是( )(A ) y 2+5y -6=0 (B )y 2+5y +6=0 (C )y 2-5y +6=0 (D )y 2-5y -6=05.如果x 1,x 2是两个不相等实数,且满足x 12-2x 1=1,x 22-2x 2=1,那么x 1·x 2等于( )(A )2 (B )-2 (C )1 (D )-16.如果一元二次方程x 2+4x +k 2=0有两个相等的实数根,那么k =7.如果关于x 的方程2x 2-(4k+1)x +2 k 2-1=0有两个不相等的实数根,那么k 的取值范围是8.已知x 1,x 2是方程2x 2-7x +4=0的两根,则x 1+x 2= ,x 1·x 2= ,(x 1-x 2)2=9.若关于x 的方程(m 2-2)x 2-(m -2)x +1=0的两个根互为倒数,则m =二、考点训练:1、 不解方程,判别下列方程根的情况:(1)x 2-x=5 (2)9x 2-6 2 +2=0 (3)x 2-x+2=02、 当m= 时,方程x 2+mx+4=0有两个相等的实数根;当m= 时,方程mx 2+4x+1=0有两个不相等的实数根;3、 已知关于x 的方程10x 2-(m+3)x+m -7=0,若有一个根为0,则m= ,这时方程的另一个根是 ;若两根之和为-35,则m= ,这时方程的两个根为 . 4、 已知3- 2 是方程x 2+mx+7=0的一个根,求另一个根及m 的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程根的判别式和韦达定理知识点1.根的判别式21.4022.02043.,22ac b b ac b x x a a ⎧⎪≠-∆⎪⎪∆>⎧⎪⎪⎪∆=⎨⎨⎪⎪∆<⎩⎪⎪-±--±∆⎪==⎪⎩22概念:对于一个一元二次方程ax +bx+c=0(a 0)来说,b 称为根的判别式,记为。
时,方程有个不相等的根根的判别式意义:时,方程有个相等的根时,方程没有实数根公式法:解为即为补充:0≥∆时,方程有2个解,但不知道两个解是否相等。
例题讲解例1.当m 取什么值时,关于x 的方程0)22()12(222=++++m x m x 。
(1)有两个相等实根;(2)有两个不相等的实根; (3)没有实根。
例2.当m 为什么值时,关于x 的方程01)1(2)4(22=+++-x m x m 有实根。
小结:对于求一元二次方程中字母的取值或取值范围问题,一定要考虑全面。
特别注意“0≠a ”!例3.已知关于x 的方程01)12(22=+-+x k x k 有两个不相等的实数根1x 、2x ,问是否存在实数k ,使方程的两实数根互为相反数?如果存在,求出k 的值;如果不存在,请说明理由。
小结:这一类的题要注意3个方面:0≠a ,∆与0的关系,另外1x 和2x 间的数量关系课堂练习1、下列方程①012=+x ;②02=+x x ;③012=-+x x ;④02=-x x 中,无实根的方程是 。
2、已知关于x 的方程022=+-mx x 有两个相等的实数根,那么m 的值是 。
3、下列方程中,无实数根的是( )A 、011=-+-x xB 、 762=+y yC 、021=++xD 、0232=+-x x4、若关于x 的一元二次方程01)12()2(22=+++-x m x m 有两个不相等的实根,则m 的取值范围是( ) A 、43<m B 、m ≤43 C 、43>m 且m ≠2 D 、m ≥43且m ≠25、在方程02=++c bx ax (a ≠0)中,若a 与c 异号,则方程( )A 、有两个不等实根B 、有两个相等实根C 、没有实根D 、无法确定 6、关于x 的一元二次方程x 2+kx -1=0的根的情况是 ( )A 、有两个不相等的同号实数根B 、有两个不相等的异号实数C 、有两个相等的实数根D 、没有实数根7、 m 取何值时,方程()0112)2(22=++--x m x m (1)有两个不相等的实数根 (2)有两个相等的实数根;(3)没有实数根8、试证:关于x 的方程1)2(2-=+-x m mx 必有实根。
9、已知关于x 的方程022=-+-n m mx x 的根的判别式为零,方程的一个根为1,求m 、n 的值。
10、已知关于x 的方程02)12(22=++++m x m x 有两个不等实根,试判断直线x m y )32(-=74+-m 能否通过A (-2,4),并说明理由。
知识点2.根与系数的关系(韦达定理)1.如果)0(02≠=++a c bx ax 的两个根是,,21x x 则ac x x a b x x =⋅-=+2121, 2.利用两根构造一元二次方程:x 2-( x 1+x 2)x + x 1x 2=0补充公式:()2122122212x x x x x x -+=+;()2221222112x x x x x x +-=+说明:①根与系数的关系必须是在方程有解的情况下才能够应用。
即:应用根与系数的关系时,还要考虑ac b 42-的情况题型1、求待定系数及另一根例1.已知3-2是方程x 2+mx+7=0的一个根,则m=________,另一根为_______.例2.已知关于x 的一元二次方程02=++c bx ax 两根之积为12,两根的平方和为25,写出符合此条件的一个方程 。
例 3.若关于x 的一元二次方程22430x kx k ++-=的两个实数根分别是12,x x ,且满足1212x x x x +=.则k 的值为 。
例 4.关于x 的方程10422=-+kx x 的一个根是-2,则方程的另一根是 ;k = 。
小结:注意利用韦达定理求另一根快捷简便,并学会利用根之间的关系列所求字母的方程 题型2.根与系数的关系与判别式的应用例1.已知关于x 的方程05)2(222=-+++m x m x 有两个实数根,并且这两个根的平方和比这两个根的积大16,求m 的值。
例2.已知1x 、2x 是关于x 的一元二次方程0)1(4422=+-+m x m x 的两个非零实数根,问:1x 与2x 能否同号?若能同号请求出相应的m 的取值范围;若不能同号,请说明理由。
小结:利用韦达定理和题目所给根之间关系的条件解出的字母取值,一定要经历0≥∆和0≠a 的考验课堂练习1.已知方程x 2+(2k+1)x+k 2-2=0的两实根的平方和等于11,k 的取值是( )A .-3或1B .-3C .1D .32.若,αβ是方程2220050x x +-=的两个实数根,则23ααβ++的值为( )A .2005B .2003C .-2005D .40103.若关于x 的一元二次方程2x 2-2x +3m -1=0的两个实数根x 1,x 2,且x 1·x 2>x 1+x 2-4,则实数m 的取值范围是( )A .m >53-B . m ≤12C .m <53-D .53-<m ≤124.关于x 的方程20x px q ++=的两根同为负数,则( )A .0p >且q >0B .0p >且q <0C .0p <且q >0D .0p <且q <05.如果关于x 的一元二次方程x 2+px +q=0两个实数根分别为x 1=3,x 2=1,那么这个一元二次方程是( )A .x 2+3x +4=0B .x 2-4x +3=0C .x 2+4x -3=0D .x 2+3x -4=06.若是m ,n 方程x 2+2002x -1=0的两个实数根,则m 2n+mn 2-mn 的值为 7.已知1x 、2x 是方程0132=+-x x 的两根,则11124221++x x 的值为 。
8.关于x 的方程x 2+px +1=0的一个实数根的倒数是它的本身,那么p 的值为__________ 9.已知关于x 的方程x 2-ax -3a =0的一个根是-2,则它的另一个根是_______10.已知关于x 的方程03)1(222=-++-m x m x (1)当m 取何值时,方程有两个不相等的实数根?(2)设1x 、2x 是方程的两根,且012)()(21221=-+-+x x x x ,求m 的值。
11.已知21,x x 是方程0)12(22=+-+a x a x 的两个实数根,且())2(221++x x =11,求a 的值(-1)12.已知关于x 的方程0)2(222=+--m x m x ,问:是否存在实数m ,使方程的两个实数根的平方和等于56?若存在,求出m 的值;若不存在,请说明理由。
13.已知关于x 的一元二次方程01222=+--m mx x 的两个根的平方和是429,求m 的值14.已知关于x 的方程01322=+-+m x x 的两根的倒数和为3,求m 的值因式分解法解一元二次方程一、知识点因式分解法:通过因式分解,把一元二次方程化成两个一次因式的积等于零的形式,从而把解一元二次方程的问题转化为解一元一次方程的问题,像这样解一元二次方程的方法叫做因式分解法。
因式分解法解一元二次方程的一般步骤是: (1)化方程为一般形式; (2)将方程左边因式分解;(3)根据“两个因式的积等于零,至少有一个因式为零”,转化为两个一元一次方程;(4)分别解两个一元一次方程,它们的根就是原方程的根。
注意:1、当一元二次方程不能变形为a x =2(a ≥0)的形式时,我们可以考虑用因式分解法求解,但首先要将方程先化成一般形式;2、因式分解法前提:方程()002≠=++a c bx ax 中,左边的多项式c bx ax ++2可以因式分解;3、因式分解方法有:提公因式法,运用公式法,十字相乘法,其中十字相乘法:))(()(2b x a x ab x b a x ++=+++例题讲解:一、因式分解的回忆1、x 2-5x 因式分解结果为_______;2x (x-3)-5(x-3)因式分解的结果是______. 2、将下列各式因式分解:(1)3x 2+2x= (2)16x 2-25= (3)x 2-10x+25=二、因式分解解一元二次方程 基础例题例1、判断:(1)若ab=0, 则a=0或b=0 ( )(2) 若ab=1,则a=1或b=1 ( ) (3)若(x-5)(x+2)=0,则x-5=0或x+2=0 ( ) (4) 若(x-5)(x+2)=1,则x-5=1或x+2=1 ( )提公因式法 例2:解下列方程:(1)3x 2+2x=0 (2)x 2=3x十字相乘法例3、填写解方程2-2-3=0x x 的过程 解: x -3x 1-3x+x=-2x所以2-2-3=x x(x- )(x+ )即(x- )(x+ )=0即x- =0或x+ =0∴x1=__________,x2=__________例4、用十字相乘法解方程6x2-x-1=0解:2x -13x 12x- x=-x所以6x2-x-1=(2x )()即(2x )()=0即2x =0或 =0∴x1=__________,x2=__________例5、解下列方程(1)x2=4x (2)x2-25=0(3)x2-4x+4=0 (4)x2-2x+1=4 (5)(x+1)2=(2x-1)2(6)3x2+4x-7=0 (7)(x+3)(x-1)=5 (8)(3-x)2+x2=9(9)2(2x-3)2-3(2x-3)=0 (10)067-2=+xx(11)5x2-2x-14=x2-2x+34例6、已知x 2+3xy -4y 2=0(y ≠0),试求yx yx +-的值. 已知a 2-5ab +6b 2=0,则a b b a+等于多少?课后作业1. 如果 022=++m x x 有两个同号的实数根,则m 的取值范围是( )A. 1<mB. m <0≤1C. 0≤1<mD. 0>m2. 用配方法解一元二次方程0142=--x x ,配方后得到的方程是( )A. 1)2(2=-xB. 4)2(2=-xC. 5)2(2=-xD. 3)2(2=-x3. 若方程0482=-+x x 的两个根分别为1x 、2x ,则2111x x +的值为( ) A. 2 B. 2-C. 1D. 1-4. 以1、3为根的一元二次方程是( )A. 0342=-+x xB. 0342=+-x xC. 0342=++x xD.0342=++-x x5. 两个不相等的实数根m 、n 满足462=-m m ,462=-n n ,则mn 的值为( )A. 6B. 6-C. 4D. 4-6. 已知1x 、2x 是关于x 的方程01)1(22=-++-a x x a 的两个实数根,且3121=+x x ,则21·x x =______________.7. 若m 是实数,则关于x 的方程023222=+++-m m mx x 的根的情况是____.8. 若t 是一元二次方程)0(02≠=++a c bx ax 的根,则判别式ac 4b 2-=△和完全平方式2)2(b at M +=的关系式()A △=MB △>MC △<MD 大小关系不能确定9.若一元二次方程06)4(22=+--x kx x 无实数根,求k 的最小整数值。