从基材性能告诉你氮化铝和氧化铝陶瓷基板工艺有什么不同

合集下载

七个方面让你全面了解氧化铝陶瓷基板的优势和应用

七个方面让你全面了解氧化铝陶瓷基板的优势和应用
(HTCC)、 直接接合铜陶瓷基板(DBC)、直接镀铜基 板(DPC)、激光活化金属化技术(LAM)等等。。。。。。
六.氧化铝陶瓷基板烧结温度 一般氧化铝陶瓷基板或氧化铝陶瓷结构件通常需要在较高的烧结温度(≥1750 ℃) 下进行烧结。由于烧结温度极高,超过一般连续式电热隧道窑的极限使用温度 (1680 ℃),现有的连续式电热隧道窑不能满足烧结要求,必须采用间歇式氢气气氛 炉或传统热压烧结炉,而气氛炉或热压烧结的方法都对设备要求高,产量少,成本高。 过高的烧结温度,除能源成本消耗较高以外,窑炉和窑具损耗大。另外 99 氧化铝陶瓷 基板可以用 Y2O3、ZrO2、MgO 中的两种或三种混合组成助烧剂来降低 99 氧化铝陶 瓷的烧结温度,但该专利中并未提到可以使用 Li2O 作为 99 氧化铝陶瓷的烧结助剂。 七,氧化铝陶瓷基板的用途和应用领域 ◆ 大功率电力半导体模块; ◆半导体致冷器、电子加热器; ◆功率控制电路,功率混合电路。 ◆智能功率组件;高频开关电源,固态继电器。 ◆汽车电子,航天航空及军用电子组件。 ◆太阳能电池板组件;电讯专用交换机,接收系统;激光等工业电子。 ◆LED 功率照明 通过以上七个方面相信您对氧化铝陶瓷基板有一个更加深入的认知了,如果您想制 造氧化铝陶瓷基板可以找金瑞欣特种电路。金瑞欣是氧化铝陶瓷基板厂家,行业经验丰 富,目前在 LED ,半导体,汽车电子,大功率模组等领域合作经验丰富,欢迎咨询。
经中南大学粉末冶金研究所测定,其耐磨性相当于锰钢的 266 倍,高铬铸铁的 171.5 倍。根据我们十几年来的客户跟踪调查,在同等工况下,可至少延长设备使用寿命十倍 以上。
3. 重量轻 其密度为 3.5g/cm3,仅为钢铁的一半,可大大减轻设备负荷。 氧化铝陶瓷主要技术指标 氧化铝陶瓷含量 ≥92% 密度 ≥3.6 g/cm3 洛氏硬度 ≥80 HRA 抗压强度 ≥850 Mpa 断裂韧性 KΙC ≥4.8MPa·m1/2 抗弯强度 ≥290MPa 导热系数 30~ 50W/m.K 热膨胀系数: 7.2×10-6m/m.K 4,缺点 : 比较易碎:相对与氮化铝陶瓷基板来说,更容易碎 导热没有氮化铝更好:氮化铝陶瓷基板导热可以到 190~260W,氧化铝一般是 25W~50W 五,氧化铝陶瓷基板导热 氧化铝陶瓷基板有较好的传导性、机械强度和耐高温性。氧化铝陶瓷基板的导热率 差不多在 45 W/(m·K)左右。一般看到的就是这基板的覆铜对导热率也会有一定的影响, 陶瓷板覆铜工艺也分很多种,有高温熔合陶瓷基板(HTFC) 、低温共烧陶瓷基板

氮化铝陶瓷基板制备工艺的研究

氮化铝陶瓷基板制备工艺的研究

氮化铝陶瓷基板制备工艺的研究氮化铝陶瓷基板是一种新型的高性能电子封装材料,具有高热导率、低热膨胀系数、优良的电绝缘性能等优点,广泛应用于高功率半导体器件和封装材料领域。

在制备氮化铝陶瓷基板的过程中,工艺参数的选择对最终产品的性能具有重要影响。

本文将介绍氮化铝陶瓷基板的制备工艺的研究。

首先,原料制备是制备氮化铝陶瓷基板的关键环节之一、常用的原料包括氮化铝粉末、Y2O3等掺杂剂。

在原料制备的过程中,需要严格控制粉末的粒度和杂质含量。

通常采用溶胶-凝胶法或高温固相反应法制备氮化铝陶瓷基板的原料。

溶胶-凝胶法是在溶胶中加入凝胶剂,通过凝胶化和热解过程来制备氮化铝粉末。

高温固相反应法则是在高温条件下,将氮化铝和掺杂剂进行反应,生成氮化铝陶瓷粉末。

其次,氮化铝陶瓷基板的制备工艺主要包括成型、烧结和后处理。

成型过程可采用注塑成型、压制成型和挤出成型等方法。

注塑成型是将粉末与有机物混合,通过高压注塑成型,然后将成型体干燥。

压制成型则是将粉末填充到模具中,并施加压力,使其保持一定的形状。

挤出成型则是将粉末与添加剂混合,在一定的温度下加热,并通过挤出机将热塑性混合物挤出到模具中。

成型后,需要进行烧结,该过程分为氮化烧结和真空烧结两种方式。

氮化烧结是在氮气保护气氛中,将成型体进行烧结,使其形成致密的氮化铝陶瓷基板。

真空烧结则是在高真空条件下烧结,以提高烧结密度和降低杂质含量。

最后,还需要进行后处理,包括修整、加工和测试等工序。

此外,制备氮化铝陶瓷基板的工艺中还存在一些问题需要解决。

例如,如何提高烧结密度、降低杂质含量和控制烧结过程中的晶粒尺寸等问题。

目前,一种较为有效的方法是添加适量的助烧结剂,如铝酸盐、硼酸盐和硅酸盐等,以促进烧结反应的进行。

此外,还可以通过控制烧结温度和时间等参数来调节烧结过程,进一步优化制备工艺。

综上所述,氮化铝陶瓷基板的制备工艺是一个复杂的工程,需要控制好原料制备、成型、烧结和后处理等工艺参数。

dpc陶瓷基板成分

dpc陶瓷基板成分

dpc陶瓷基板成分DPC陶瓷基板是一种用于电子元器件封装的重要材料。

其成分主要包括氧化铝、氮化铝和氮化硅等多种材料。

以下将详细介绍DPC陶瓷基板的成分及其特点。

一、氧化铝氧化铝是DPC陶瓷基板中最主要的成分之一。

它具有优异的绝缘性能和高的热导率,能够有效隔离电子元器件之间的电流和热量。

同时,氧化铝还具有良好的耐高温性能,能够在高温环境下保持稳定的性能。

此外,氧化铝还具有良好的机械强度和化学稳定性,能够有效保护电子元器件不受外界环境的影响。

二、氮化铝氮化铝是DPC陶瓷基板的另一重要成分。

它具有较高的热导率和优异的绝缘性能,能够有效传导和隔离电子元器件之间的热量和电流。

与氧化铝相比,氮化铝的热导率更高,能够更快地将热量传导到散热器或其他散热设备上,提高元器件的散热效果。

此外,氮化铝还具有较高的机械强度和化学稳定性,能够有效保护电子元器件不受外界环境的影响。

三、氮化硅氮化硅是DPC陶瓷基板中的第三种重要成分。

它具有优异的绝缘性能和较低的介电常数,能够有效隔离电子元器件之间的电流和信号。

与氧化铝和氮化铝相比,氮化硅的介电常数更低,能够减少信号传输过程中的能量损耗和干扰。

此外,氮化硅还具有较高的机械强度和化学稳定性,能够有效保护电子元器件不受外界环境的影响。

DPC陶瓷基板的成分主要包括氧化铝、氮化铝和氮化硅等多种材料。

这些材料具有优异的绝缘性能、高的热导率、较低的介电常数、良好的机械强度和化学稳定性等特点,能够有效保护和提高电子元器件的性能和可靠性。

在电子行业中,DPC陶瓷基板被广泛应用于集成电路、功率模块、光电子器件等领域,为电子设备的稳定运行提供了重要的支持。

最适合LED的散热基板——氮化铝陶瓷基板

最适合LED的散热基板——氮化铝陶瓷基板

最适合LED的散热基板——氮化铝陶瓷基板目前,随着国内外LED行业向高效率、高密度、大功率等方向发展,从2017到2018就可以看出,整体国内LED有了突飞猛进的进展,功率也是越来越大,开发性能优越的散热材料已成为解决LED散热问题的当务之急。

一般来说,LED发光效率和使用寿命会随结温的增加而下降,当结温达到125℃以上时,LED甚至会出现失效。

为使L ED结温保持在较低温度下,必须采用高热导率、低热阻的散热基板材料和合理的封装工艺,以降低LED总体的封装热阻。

现阶段常用基板材料有Si、金属及金属合金材料、陶瓷和复合材料等,它们的热膨胀系数与热导率如下表所示。

其中Si材料成本高;金属及金属合金材料的固有导电性、热膨胀系数与芯片材料不匹配;陶瓷材料难加工等缺点,均很难同时满足大功率基板的各种性能要求。

功率型LED封装技术发展至今,可供选用的散热基板主要有环氧树脂覆铜基板、金属基覆铜基板、金属基复合基板、陶瓷覆铜基板等。

环氧树脂覆铜基板是传统电子封装中应用最广泛的基板。

它起到支撑、导电和绝缘三个作用。

其主要特性有:成本低、较高的耐吸湿性、密度低、易加工、易实现微细图形电路、适合大规模生产等。

但由于FR-4的基底材料是环氧树脂,有机材料的热导率低,耐高温性差,因此FR-4不能适应高密度、高功率LED封装要求,一般只用于小功率LED封装中。

金属基覆铜基板是继FR-4后出现的一种新型基板。

它是将铜箔电路及高分子绝缘层通过导热粘结材料与具有高热导系数的金属、底座直接粘结制得,其热导率约为1.12 W/m·K,相比FR-4有较大的提高。

由于具有优异的散热性,它已成为目前大功率LED散热基板市场上应用最广泛的产品。

但也有其固有的缺点:高分子绝缘层的热导率较低,只有0.3 W/m·K,导致热量不能很好的从芯片直接传到金属底座上;金属Cu、Al的热膨胀系数较大,可能造成比较严重的热失配问题。

金属基复合基板最具代表性的材料是铝碳化硅。

氮化铝陶瓷基板制作技术有哪些关键问题

氮化铝陶瓷基板制作技术有哪些关键问题

氮化铝陶瓷基板制作技术有哪些关键问题氮化铝陶瓷基板制作技术有哪些关键问题氮化铝陶瓷基板在大功率器件领域,因其导热率而被市场受用。

那么今天天小编要分享的氮化铝陶瓷基板制作技术的关键词问题。

一,氮化铝基板简介和应用概况1.氮化铝材料有哪些突出特性氮化铝是氮和二元系列中唯一稳定的化合物,具有高的熔点和良好的导热特性。

晶形:六方晶系钙钛矿型分解温度:2500摄氏度理论热导率:320W/m.k导热率是氧化铝的7倍,高温导热优于氧化铍;热膨胀系数:与硅热膨胀系数匹配电特性:高电绝缘,低介电常数;耐腐蚀特性:对熔融金属有优良的耐腐蚀特殊性。

无毒,高纯,综合性能优异的电子封装材料。

2,氮化铝应用背景。

氮化铝陶瓷覆铜板满足高压IGBT模块,广泛应用于高铁、电动汽车、智能电网和新能源等“绿色经济”。

氮化铝陶瓷封装基板满足大功率LED芯片散热的需求,在汽车大灯、室外照明、舞台灯等高速LED中应用广泛。

氮化铝薄膜封装基板满足芯片功率散热、高频传输等方面,在光通讯中的TOSA/ROSA/TO 中的PD、LD器件中应用广泛。

氮化铝具有高热导率、高强度、低介电常数、热膨胀系数接近和无毒等优异的综合性能。

光通讯领域、微波通讯领域、LED领域等军民各个高功率需要氮化铝封装和基板作为关键散热材料。

氧化铝是未来小型化、集成化、多功能电子封装发展必不可缺的材料之一,前景广阔。

二,氮化铝基板制作关键技术问题1氮化铝粉体和烧结助剂选择。

氮化铝粉体:高纯度、粒度小、比表面积大、碳含量低、氧含量低、杂质金属离低。

烧结助剂于AIN粉表面的氧化铝成份在烧结过程中反应形成低熔点的复合氧化物,从而烧结体中产生液相。

这些液相包围AIN颗粒,在毛细管力的作用下发生颗粒重排和内部气孔排出,最终实现AIN 瓷的致密烧结。

2.氮化铝成型工艺流延成型:浆料稳定性及粘度的控制流延带料厚度均匀性控制带料X-Y方向收缩率控制3.氮化铝烧结工艺氮化铝陶瓷烧结需要注意的问题:选取合适烧结制度(升温制度、烧结温度、保温时间)采用合适的保护气氛防止氮化铝陶瓷的氧化烧结设备:温度均匀性4.氮化铝金属化工艺氮化铝厚膜金属化金属化体系:金属化结合力:2KG/平方毫米表面覆铜100um满足电流承载需求表面镀覆镍适合键合和焊接5氮化铝薄膜基板:采用磁控溅射工艺设备,线条精度高;可预制焊料、电阻等体系。

氧化铝陶瓷材料中氮化处理对性能的影响与优化

氧化铝陶瓷材料中氮化处理对性能的影响与优化

氧化铝陶瓷材料中氮化处理对性能的影响与优化氧化铝陶瓷是一种具有优异性能的陶瓷材料,具有高温稳定性、高硬度、低导热性等特点,在航空航天、化工、电子等领域有着广泛的应用。

然而,氧化铝陶瓷的性能仍然有待进一步提高,因此研究新的改性方法是十分必要的。

氮化处理是一种常见的改性方法,能够改善氧化铝陶瓷的力学性能、导热性能和化学稳定性等方面的性能。

首先,氮化处理可以显著提高氧化铝陶瓷的硬度。

氮化处理通常是将氧化铝陶瓷置于高温氮气中,使氮气中的氮原子渗透到陶瓷材料表面,并与氧化铝反应生成氮化铝。

氮化铝具有较高的硬度,能够显著提高氧化铝陶瓷的硬度。

研究表明,经过氮化处理后的氧化铝陶瓷的硬度可以提高20%以上,使其更适用于一些对硬度要求较高的应用领域。

其次,氮化处理可以改善氧化铝陶瓷的导热性能。

氮化铝具有较高的导热系数,接近于金属材料。

通过氮化处理,可以在氧化铝陶瓷的表面形成导热性能更好的氮化铝层,提高整体陶瓷材料的导热性能。

研究表明,经过氮化处理后的氧化铝陶瓷的导热系数可以提高30%以上,使其适用于一些对导热性能要求较高的应用领域,如热导片、散热器等。

此外,氮化处理还可以提高氧化铝陶瓷的化学稳定性。

氮化铝具有较高的化学稳定性,能够抵抗酸、碱等强腐蚀性介质的侵蚀。

经过氮化处理后的氧化铝陶瓷的化学稳定性可以得到显著提高,使其在强腐蚀环境下仍然能够保持较好的性能。

这对于一些特殊环境下的应用领域,如化工设备、气体分离膜等具有重要意义。

总的来说,氮化处理对氧化铝陶瓷材料的性能有着显著的影响,并且在提高硬度、导热性能和化学稳定性方面具有优势。

然而,氮化处理的最佳条件还需要进一步研究和优化。

例如,氮化处理的温度、时间以及氮气流量等影响氮化效果的参数需要进行系统的实验研究,以找到最佳的处理条件。

此外,还可以结合其他改性方法,如添加适量的陶瓷颗粒增强材料等,进一步提高氧化铝陶瓷的性能。

总之,氮化处理是一种有效的提高氧化铝陶瓷性能的方法,可以提高硬度、导热性能和化学稳定性等方面的性能。

什么是氮化铝陶瓷基板amb工艺?有哪一些优势?

什么是氮化铝陶瓷基板amb工艺?有哪一些优势?

什么是氮化铝陶瓷基板amb工艺?有哪一些优势?氮化铝陶瓷陶瓷amb工艺备受关注,工艺相对更加先进,被广泛应用轨道交通、大功率电力半导体模块、高频开关、风力发电,新能源汽车、动力机车、航空航天等领域。

今天小编就来分享一下:什么是氮化铝陶瓷基板AMB工艺以及优势。

什么是amb氮化铝覆铜陶瓷基板?氮化铝覆铜陶瓷基板是使用AMB(Active Metal Brazing)技术将铜箔钎焊到陶瓷表面的一种散热基础材料。

相比于传统的DBC基板,使用AMB工艺制得的氮化铝覆铜陶瓷基板不仅具有更高的热导率、铜层结合强度高等特点,而且其热膨胀系数与硅接近,可应用于高电压操作且没有局部放电现象。

以下是氮化铝陶瓷基板amb的技术参数:关于覆铜陶瓷基板AMB工艺介绍:AMB(Active Metal Bonding,AMB|)的简称,就是活性金属钎焊覆铜技术,顾名思义,依靠活性金属钎料实现氮化铝与无氧铜的高温冶金结合,以结合强度高、冷热循环可靠性好等优点而备受关注,应用前景极为广阔。

但同时也应该看到,AMB工艺的可靠性很大程度上取决于活性钎料成分、钎焊工艺、钎焊层组织结构等诸多关键因素,工艺难度大,而且还要兼顾成本方面的考虑。

依据目前的市场调研结果来看,氮化铝AMB覆铜板国内相关研发机构(生产企业)与国外竞争对手存在较大的技术差距。

氮化铝陶瓷覆铜板是IGBT模块领域的核心重要部件。

氮化铝陶瓷覆铜板是IGBT模块的重要组成部件,其具有陶瓷的高导热、高绝缘、高机械强度、低膨胀等特性,又兼具无氧铜的高导电性和优异焊接性能,且能像PCB线路板一样刻蚀出各种图形。

已成为新一代半导体(SiC)和新型大功率电力电子器件的首选封装材料。

金瑞欣特种特种电路是专业的陶瓷基板生产厂家,主营氧化铝陶瓷基板和氮化铝陶瓷基板,陶瓷基板领域有深入的专研,氮化铝陶瓷基板amb工艺,导热更高,铜的结合更好。

目前普通在使用的DPC工艺,DBC工艺以及高温烧结我们目前也非常熟练。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

从基材性能告诉你氮化铝和氧化铝陶瓷基板工艺有什么不同
氮化铝陶瓷基板和氧化铝陶瓷基板都同属于陶瓷基板,他们的制作工艺大致是一样的,都有都才可以采用薄膜工艺和厚膜工艺,DBC工艺、HTCC工艺和LTCC工艺,那么不同的什么呢?
氮化铝和氧化铝陶瓷基板工艺的不同主要是因为基材的性能和结构决定了,他们烧结温度的不同。

氮化铝陶瓷基板的结构和性能原理:
1、氮化铝陶瓷(Aluminium Nitride Ceramic)是以氮化铝(AIN)为主晶相的陶瓷。

2、AIN晶体以〔AIN4〕四面体为结构单元共价键化合物,具有纤锌矿型结构,属六方晶系。

3、化学组成AI65.81%,N34.19%,比重3.261g/cm3,白色或灰白色,单晶无色透明,常压下的升华分解温度为2450℃。

4、为一种高温耐热材料。

热膨胀系数(4.0-6.0)X10(-6)/℃。

5、多晶AIN热导率达260W/(m.k),比氧化铝高5-8倍,所以耐热冲击好,能耐2200℃的极热。

6、此外,氮化铝具有不受铝液和其它熔融金属及砷化镓侵蚀的特性,特别是对熔融铝液具有极好的耐侵蚀性。

氧化铝陶瓷基板的结构和性能:
1、氧化铝陶瓷是一种以氧化铝(Al2O3)为主体的陶瓷材料,用于厚膜集成电路。

2、氧化铝陶瓷有较好的传导性、机械强度和耐高温性。

需要注意的是需用超声波进行洗涤。

3、氧化铝陶瓷是一种用途广泛的陶瓷,因为其优越的性能,在现代社会的应用已经越来越广泛,满足于日用和特殊性能的需要。

对比可知:氮化铝和氧化铝陶瓷基板工艺的最大区别主要是烧结温度的区别。

氮化铝陶瓷基板是氧化铝陶瓷基板5-8倍,能耐2200℃的极的级热,导热可达260W/(m.k),氧化铝陶瓷基板导热一般在30W/(m.k)左右,好的可以做到50W/(m.k).氮化铝陶瓷陶瓷可以加工更加精密的线路,耐高温,更耐压,制作工艺相对氧化铝陶瓷基板而已烧结的温度把控是不一样的。

如果是一个需要用氮化铝陶瓷基板的高精密线路板,用氧化铝陶瓷基板来替代,那肯定会造成基材大量的耗费,制作的难度增加,良品率和低。

以上是小编讲述的氮化铝和氧化铝陶瓷基板工艺不同点的阐述,希望可以解答这个问题。

更多陶瓷基板的工艺问题可以咨询金瑞欣特种电路,金瑞欣是专业的陶瓷基板生产厂家,拥有十多年陶瓷基板的行业经验和制作经验。

相关文档
最新文档