分子生物学知识点

分子生物学知识点
分子生物学知识点

一、名词解释:

1. 基因:基因是位于染色体上的遗传基本单位,是负载特定遗传信息的DNA片段,编码具有生物功能的产物包括RNA和多肽链。

2. 基因表达:即基因负载遗传信息转变生成具有生物学功能产物的过程,包括基因的激活、转录、翻译以及相关的加工修饰等多个步骤或过程。

3.管家基因:在一个生物个体的几乎所有组织细胞中和所有时间段都持续表达的基因,其表达水平变化很小且较少受环境变化的影响。如GAPDH、β-肌动蛋白基因。

4. 启动子:是指位于基因转录起始位点上游、能够与RNA聚合酶和其他转录因子结合并进而调节其下游目的基因转录起始和转录效率的一段DNA片段。

5.操纵子:是原核生物基因表达的协调控制单位,包括有结构基因、启动序列、操纵序列等。如:乳糖操纵子、色氨酸操纵子等。

6.反式作用因子:指由其他基因表达产生的、能与顺式作用元件直接或间接作用而参与调节靶基因转录的蛋白因子(转录因子)。

7.顺式作用元件:即位于基因附近或内部的能够调节基因自身表达的特定DNA序列。是转录因子的结合位点,通过与转录因子的结合而实现对真核基因转录的精确调控。

8.Ct值:即循环阈值(cycle threshold,Ct),是指在PCR扩增过程中,扩增产物的荧光信号达到设定的荧光阈值所经历的循环数。(它与PCR扩增的起始模板量存在线性对数关系,由此可以对扩增样品中的目的基因的模板量进行准确的绝对和(或)相对定量。)

9.核酸分子杂交:是指核酸分子在变性后再复性的过程中,来源不同但互不配对

的核酸单链(包括DNA和DNA,DNA和RNA,RNA和RNA)相互结合形成杂合双链的特性或现象,依据此特性建立的一种对目的核酸分子进行定性和定量分析的技术则称为分子杂交技术。

10. 印迹或转印:是指将核酸或蛋白质等生物大分子通过一定的方法转移并固定至尼龙膜等支持载体上的一种方法,该技术类似于用吸墨纸吸收纸张上的墨迹。

11. 探针:是一种用同位素或非同位素标记核酸单链,通常是人工合成的寡核苷酸片段。

12. 基因芯片:又称DNA芯片或DNA微阵列,是基于核酸分子杂交原理建立的一种对DNA进行高通量、大规模、并进行分析的技术,其基本原理是将大量寡核苷酸分子固定于支持物上,然后与标记的待测样品进行杂交,通过检测杂交信号的强弱进而对待测样品中的核酸进行定性和定量分析。

13. 基因文库:是指通过克隆方法保存在适当宿主中的一群混合的DNA分子,所有这些分子中的插入片段的总和,可代表某种生物的全部基因组序列或全部的mRNA序列,因此基因文库实际上是包含某一生物体或生物组织样本的全部DNA序列的克隆群体。基因文库包括两类:基因组文库和cDNA文库。

14. 克隆:是来自同一始祖的相同副本或拷贝的集合。

15. 载体:为携带的目的基因,实现其无性繁殖或表达有意义的蛋白质所采用的一些DNA分子。

16. 限制性核酸内切酶:识别DNA的特意序列,并在识别位点或其周围切割双链DNA的一类内切酶。

17. 基因工程(Genetic Engineering):又称基因操作(gene manipulation)、DNA重组(DNA recombination),是指采用类似于工程建设的方式,按照预先设计

的蓝图,将一种或多种生物体(供体)的基因育载体在体外进行拼接重组构建成杂种DNA分子,然后转入另一种生物体(受体)内,以改变生物原有的遗传特性并表达出新的性状。获得新品种,生产新产品,或是研究基因的结构和功能。因此,供体、受体和载体称为基因工程的三大要素,其中相对于受体而言,来自供体的基因属于外源基因。由于DNA重组分子大都需在受体细胞中复制扩增,故还可以将基因工程表征为分子克隆(Molecular Cloning)或基因的无性繁殖。

18. 目的基因:感兴趣的基因或DNA序列。

19.生长因子:(growth factor)通过质膜上特异的受体,将信息传递至细胞内部,调节细胞生长与增殖的多肽类物质。

20. 基因组:泛指一个生命体、病毒或细胞器的全部遗传物质。

21. 蛋白质组:指一个细胞内的全套蛋白质,反映了特殊阶段、环境状态下,细胞或组织在翻译水平的蛋白质表达谱。

22. 人类基因组计划:是美国科学家于1986年率先提出,1990年正式启动的,这一计划的目标是为30亿个碱基对构成的人类基因组精确测序,从而最终弄清楚每种基因产生的蛋白质及其作用,它的实施将会为认识疾病的分子机制以及诊断和治疗提供重要依据。

23. 基因诊断:利用现代分子生物学和分子遗传学的技术方法直接检测基因结构及其表达水平是否正常,从而对人体状态和疾病做出诊断的方法。

24. 基因治疗:从广义来说,将某种遗传物质转移到患者细胞内,使其在体内发挥作用而达到治疗疾病目的的方法均称为基因治疗。

25. 基因替换:用正常的基因通过体内基因同源重组,原位替换病变细胞内的致病基因,使细胞内DNA完全恢复正常状态的基因治疗方法。

26. 自杀基因:某些病毒或细菌的基因所表达的酶能将对人体无毒或低毒的药物在人体细胞内转变为细胞毒性产物,从而导致携带该基因的受体细胞也被杀死,故称这类基因为“自杀基因”。

27. 转录组:是一个细胞内的一套RNA转录物,包含了某一环境条件下、某一生命阶段、某一生理或病理状态下,生命体的细胞或组织所表达的基因种类及水平。

28.癌基因:(oncogene)细胞内控制细胞生长和分化的基因,它的结构异常或表达异常,可以引起细胞癌变。

29. 病毒癌基因:存在于肿瘤细胞中,能使靶细胞发生恶性转化的基因。

30. 抑癌基因:也称为抗癌基因。抑癌基因的产物是抑制细胞增殖,促进细胞分化,和抑制细胞迁移,因此起负调控作用,抑癌基因的突变是隐性的

(也称抗癌基因。抑癌基因的产物是抑制细胞增殖,促进细胞分化,和抑制细胞迁移,因此起负调控作用,抑癌基因的突变是隐性的。)

31. 结构基因组学:是以全基因组测序为目标的基因结构研究,弄清楚基因组中全部基因的位置和结构,为基因功能的研究奠定基础。其主要内容就是制作高分辨率的人类基因组的遗传图和物理图,最终完成人类其他重要模式生物全部基因组DNA序列测定。

二、问答题

1.以乳糖操纵子为模型解释原核生物转录水平的调控模式

转录水平的调节——操纵子调控模式

(1)操纵子的概念:操纵子是原核生物基因表达的协调控制单位,包括有结构基因、启动序列、操纵序列等。如:乳糖操纵子、色氨酸操纵子等。

(2)乳糖操纵子的结构:乳糖操纵子包括调节基因I、一个操纵序列O、一个

启动序列P以及单个结构基因Z、Y、A。其中调节基因I编码生成阻遏蛋白,后者与操纵序列结合;RNA聚合酶与启动序列结合;分解代谢物基因激活蛋白(CAP)也结合在操纵序列附近;结构基因Z、Y和A分别编码三个与乳糖代谢有关的酶,即:β-半乳糖苷酶,透酶和乙酰转移酶。这三个酶的基因作为一个整体由同一个调控区调节,以实现基因的协调表达。

(3)其调节机制主要有正性和负性两种模式。

①阻遏蛋白的负性调节:当没有乳糖时,调节基因表达生成阻遏蛋白,阻遏蛋白结合操纵子序列出,阻碍RNA结合酶与启动序列结合,抑制结构基因的转录启动,此时操纵子处于阻遏状态;当有半乳糖存在时,乳糖首先被转变成半乳糖,半乳糖则作为一种诱导剂与阻遏蛋白结合,诱发蛋白质构象改变,使阻遏蛋白从启动序列上解离下来,从而启动结构基因的转录,此时操纵子处于诱导状态。

②CAP的正性调节:当没有葡萄糖时,cAMP浓度升高,与CAP结合,CAP进而结合在启动序列附近,从而进一步促进结构基因的转录。当有葡萄糖时,cAMP浓度降低,结合在启动序列附近的CAP减少,结构基因转录速率降低。

③协调调节:实际情况下,上述两种调节方式是相辅相成、相互协调的。譬如:在无乳糖且有葡萄糖时,阻遏蛋白负性调节起作用,此时结构基因不被转录;在有乳糖且有葡萄糖时,阻遏蛋白负性调节不起作用,此时结构基因转录水平低;在有乳糖且无葡萄糖时,阻遏蛋白的抑制作用不解除,CAP正性调节被激活,此时结构基因的转录水平最高。

2.生长因子的作用机制

生长因子由不同的细胞的细胞合成后分泌,作用于靶细胞上的相应受体,这些受体有的是位于细胞膜上的,有的是位于细胞内部。生长因子与受体结合后,激活

细胞内信号传递体系,产生相应的生物学作用。根据受体的分布和对生长因子不同的响应,生长因子是作用机制分为三种情况:

①生长因子与具有酪氨酸蛋白激酶(TPK)活性的跨膜受体结合,TPK被活化,磷酸化相应蛋白质,产生生理效应。

②与膜上受体结合,通过胞内信息传递,产生第二信使,是蛋白激酶活化,再磷酸化相应的效应蛋白质,这些被磷酸化的蛋白质再活化核内的转录因子,引发基因转录,达到调节生长与分化的作用。

③与膜内受体结合,形成生长因子-受体复合物,进入胞核活化相关基因,促进细胞生长。

DNA

①变性(denature):模板DNA经加热至95℃左右一定时间后,使模板DNA双链或经PCR扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应作准备。

②退火(annealing)(复性):模板DNA经加热变性成单链后,将温度降至引物的Tm值左右或以下(55℃左右),引物与模板DNA单链的互补序列配对结合,形成杂交链。

③延伸(extension):DNA模板-引物结合物在TaqDNA聚合酶的作用下,以dNTP 为反应原料,靶序列为模板,按碱基配对与半保留复制原理,合成一条新的与模板DNA链互补的半保留复制链。

以上三步为一个循环,约需2~4分钟,每一循环的产物作为下一个循环的模板,如此循环30次,大约2~3小时后,新生DNA片段理论上可达到2n-1个分子拷贝。

4.定量PCR技术的基本原理

基本原理:将荧光信号强弱与PCR扩增情况结合在一起,通过监测PCR反应管内荧光信号的变化来实时检测PCR反应进行的情况,PCR反应管内的荧光信号强度达到设定阈值所经历的循环数(即Ct值)与扩增的起始模板量进行准确的绝对和(或)相对定量。

循环阈值(cycle threshold,Ct)是指在PCR扩增过程中,扩增产物的荧光信号达到设定的荧光阈值所经历的循环数。

荧光阈值(threshold)一般是以PCR反应的前15个循环的荧光信号作为荧光本底信号(baseline),缺省设置是3~15个循环的荧光信号的标准偏差的10倍。实际上就是荧光信号开始由本底信号进入指数增长阶段的拐点时的荧光信号强度。

5.Sanger测序法的基本原理

Sanger法也称双脱氧链末端终止法,是目前应用最为广泛的方法。

基本原理:它巧妙地利用了DNA复制的原理,是利用ddNTP来代替常规的dNTP 作为底物进行DNA合成反应。在DNA合成时,一旦ddNTP参入到合成的DNA链中,由于ddNTP脱氧核糖的3'-位碳原子上缺少羟基而不能与下一位核苷酸的5'-位磷

酸基之间形成3',5'-磷酸二酯键,从而使得正在延伸的DNA链在此ddNTP处终止。

6.Southern印迹、Northern印迹的异同

相同点:基本流程相似

不同点:

7.基因工程中如何选择载体

基因工程选择载体的标准如下:①能自主复制②具有两个以上的遗传标记物,便于重组体的筛选和鉴定③有克隆位点(外源DNA插入点),常具有多个单一酶切位点,称为多克隆位点④分子量小,以容纳较大的外源DNA

8.重组DNA技术的基本步骤

重组DNA技术的基本操作过程可形象的归纳为“分、切、接、转、筛”,即“目的基因的获取→克隆载体的选择和构建→外源基因与载体的连接→DNA导入受体细胞→重组体的筛选→克隆基因的表达”。分述如下:①目的基因的获取。可通过化学合成法、基因组DNA文库、cDNA文库、PCR等方法获取。②克隆载体的选择和构建。根据实验目的和操作基因的性质选择合适的载体和改建方法。③外源基因与载体的连接。将外援DNA通过DNA连接酶进行共价连接。④DNA导入受体细胞。

重组DNA分子导入相应宿主细胞后,随受体细胞生长、增殖而得以复制、扩增。

⑤重组体的筛选根据载体体系、宿主细胞特性及外源基因在受体细胞表达情况,采取直接选择法和非直接选择法进行筛选,获得含有重组DNA分子的克隆。⑥克隆基因的表达。克隆的目的基因如果需要正确而大量表达有特殊意义的蛋白质,则需要建立相应的表达体系,包括表达载体的构建、受体细胞的建立及表达产物的分离、纯化等。

9.目前基因治疗采用的方法分为哪几种

基因治疗的方法分为以下:①基因矫正,将致病基因的异常碱基进行纠正,而正常部分予以保留的基因治疗方法;②基因置换,用正常的基因通过体内基因同源重组,原位替换病变细胞内的致病基因,使细胞内DNA完全恢复正常状态的基因治疗方法;③基因增补,将目的基因导入病变或其他细胞,不去除异常基因,通过目的基因的非定点整合,使其表达产物补偿缺陷基因的功能或使原有的功能得以加强的基因治疗方法;④基因失活,将特定的序列导入细胞后,在转录或翻译水平阻断某些基因的异常表达的治疗方法;⑤自杀基因的应用,用某些病毒或细菌的基因所表达的酶能将对人体无毒或低毒的药物前体在人体细胞内转变为细胞毒性产物,从而导致携带该基因的受体细胞也被杀死,故称这类基因为“自杀基因”。

10.基因治疗的基本过程

基因治疗的基本过程包括:①治疗性基因的选择,选择对疾病有治疗作用的特定目的基因是基因治疗的首要问题;②基因载体的选择,目前使用的载体分病毒性载体和非病毒性载体两类,而一般临床多选用病毒性载体。目前被用作基因转移的病毒有逆转录病毒、腺病毒、腺相关病毒;③靶细胞的选择,根据受体细胞的

不同,基因治疗可分为体细胞的基因治疗和生殖细胞的基因治疗,而目前基因治疗禁止使用生殖细胞,仅限于使用体细胞为靶细胞。④基因转移,如何有效地将外源基因导入受体细胞,是基因治疗研究的一个重要环节,可分为非病毒介导的基因转移和病毒介导的基因转移;⑤外源基因表达的筛检,一般利用载体中的标记基因对转染细胞进行筛检,再检测转化细胞中的标记基因表达情况;⑥回输体内,将治疗基因修饰的细胞以不同的方式回输体内以发挥治疗作用。

11.人类基因组计划的基本任务及意义

HCG内容包括人类基因组作图及序列分析,基因的鉴定、基因组研究技术的建立与创新、模式生物基因组作图和测序、信息系统的建立、存储及相应软件的开发、相关产业的开发等。HCG基本任务可用四张图谱来概括,即遗传图、物理图、转录图(基因图)、序列图。①遗传图:又称连锁图,是具有遗传多态性的遗传标记作为“位标”,遗传学距离为“图距”的基因组图。需要应用多态性标志——RFLP、VNTR、SNP。②物理图谱:是以一段已知核苷酸的DNA片段为“位标”,以DNA实际长度(Mb或kb)作为图距的基因组图。③5转录图:是以表达序列标记作为位标,实际上就是人类“基因图”的雏形,又称cDNA图或“表达序列图”。④序列图:也就是人类基因组核苷酸序列图,是分子水平上最高层次、最详尽的物理图。这四张图被誉为人类“分子水平上的解剖图”或“生命元素周期表”,可见其重要性。

意义:①鉴定人类的全部基因,推动生物技术的进一步发展;②将把人类带入基因医学的新时代;③推动模式生物基因组的研究;④促进学科交叉与重组。

12.什么是基因组学包括哪些内容

基因组学于1986年被首次提出,以“人类基因组计划”为诞生标志,由“后基因

组计划”的实施推动其发展的一门学科。

基因组学的内容

亚领域内容

结构基因组学整个基因组的遗传制图、物理制图及DNA测序

功能基因组学认识、分析整个基因组所包含的基因、非基因序列及其功能比较基因组学比较不同物种整个基因组,增强对各个基因组功能及发育相

关性的认识

13.蛋白质组学研究的主要内容及方法有哪些

蛋白质组是指基因组表达的所有相应的蛋白质;研究细胞内全部蛋白质的组成及其活动规律的科学称为蛋白质组学。

蛋白质组研究包括两个方面的内容:一是对蛋白质组成(表达模式)的研究,二是对蛋白质组功能模式的研究。前者主要采取双向凝胶电泳和质谱技术。后者采用酵母双杂交系统。

分子生物学与基因工程主要知识点

分子生物学与基因工程复习重点 第一讲绪论 1、分子生物学与基因工程的含义 从狭义上讲,分子生物学主要是研究生物体主要遗传物质-基因或DNA的结构及其复制、转录、表达和调节控制等过程的科学。 基因工程是一项将生物的某个基因通过载体运送到另一种生物的活体细胞中,并使之无性繁殖和行使正常功能,从而创造生物新品种或新物种的遗传学技术。 2、分子生物学与基因工程的发展简史,特别是里程碑事件,要求掌握其必要的理由 上个世纪50年代,Watson和Crick提出了的DNA双螺旋模型; 60年代,法国科学家Jacob和Monod提出了的乳糖操纵子模型; 70年代,Berg首先发现了DNA连接酶,并构建了世界上第一个重组DNA分子; 80年代,Mullis发明了聚合酶链式反应(Polymerase Chain Reaction,PCR)技术; 90年代,开展了“人类基因组计划”和模式生物的基因组测序,分子生物学进入“基因组时代”; 目前,分子生物学进入了“后基因组时代”或“蛋白质组时代”。 3、分子生物学与基因工程的专业地位与作用:从专业基础课角度阐述对专业课程的支 撑作用 第二讲核酸概述 1、核酸的化学组成(图画说明) 2、核酸的种类与特点:DNA和RNA的区别 (1)DNA含的糖分子是脱氧核糖,RNA含的是核糖; (2)DNA含有的碱基是腺嘌呤(A)、胞嘧啶(C)、鸟嘌呤(G)和胸腺嘧啶(T),RNA含有的碱基前3个与DNA完全相同,只有最后一个胸腺嘧啶被尿嘧啶(U)所代替; (3)DNA通常是双链,而RNA主要为单链;

(4)DNA的分子链一般较长,而RNA分子链较短。 3、DNA作为遗传物质的直接和间接证据; 间接: (1)一种生物不同组织的细胞,不论年龄大小,功能如何,它的DNA含量是恒定的,而生殖细胞精子的DNA含量则刚好是体细胞的一半。多倍体生物细胞的DNA含量是按其染色体倍数性的增加而递增的,但细胞核里的蛋白质并没有相似的分布规律。 (2)DNA在代谢上较稳定。 (3)DNA是所有生物的染色体所共有的,而某些生物的染色体上则没有蛋白质。(4)DNA通常只存在于细胞核染色体上,但某些能自体复制的细胞器,如线粒体、叶绿体有其自己的DNA。 (5)在各类生物中能引起DNA结构改变的化学物质都可引起基因突变。 直接:肺炎链球菌试验、噬菌体侵染实验 4、DNA的变性与复性:两者的含义与特点及应用 变性:它是指当双螺旋DNA加热至生理温度以上(接近100oC)时,它就失去生理活性。这时DNA双股链间的氢键断裂,最后双股链完全分开并成为无规则线团的过程。简而言之,就是DNA从双链变成单链的过程。增色效应:它是指在DNA的变性过程中,它在260 nm的吸收值先是缓慢上升,到达某一温度后即骤然上升的效应。 复性:它是指热变性的DNA如缓慢冷却,已分开的互补链又可能重新缔合成双螺旋的过程。复性的速度与DNA的浓度有关,因为两互补序列间的配对决定于它们碰撞频率。DNA复性的应用-分子杂交:由DNA复性研究发展成的一种实验技术是分子杂交技术。杂交可发生在DNA和DNA或DNA与RNA间。 5、Tm的含义与影响因素 Tm的含义:是指吸收值增加的中点。 影响因素: 1)DNA序列中G + C的含量或比例含量越高,Tm值也越大(决定性因素);2)溶液的离子强度 3)核酸分子的长度有关:核酸分子越长,Tm值越大

分子生物学总结(朱玉贤版)(2020年10月整理).pdf

结合着下载的资料复习吧~~~~ 绪论 分子生物学的发展简史 Schleiden和Schwann提出“细胞学说” 孟德尔提出了“遗传因子”的概念、分离定律、独立分配规律 Miescher首次从莱茵河鲑鱼精子中分离出DNA Morgan基因存在于染色体上、连锁遗传规律 Avery证明基因就是DNA分子,提出DNA是遗传信息的载体 McClintock首次提出转座子或跳跃基因概念 Watson和Crick提出DNA双螺旋模型 Crick提出了“中心法则” Meselson与Stah用N重同位素证明了DNA复制是一种半保留复制 Jacob和Monod提出了著名的乳糖操纵子模型 Arber首次发现DNA限制性内切酶的存在 Temin和Baltimore发现在病毒中存在以RNA为模板,逆转录成DNA的逆转录酶 哪几种经典实验证明了DNA是遗传物质? (Avery等进行的肺炎双球菌转化实验、Hershey 利用放射性同位素35S和32P分别标记T2噬菌体的蛋白质外壳和DNA) 第二章染色体与DNA 第一节染色体 一、真核细胞染色体的组成 DNA:组蛋白:非组蛋白:RNA = 1:1:(1-1.5):0.05 (一)蛋白质(组蛋白、非组蛋白) (1)组蛋白:H1、H2A、H2B、H3、H4 功能:①核小体组蛋白(H2A、H2B、H3、H4)作用是将DNA分子盘绕成核小体

②不参加核小体组建的组蛋白H1,在构成核小体时起连接作用 (2)非组蛋白:包括以DNA为底物的酶、作用于组蛋白的酶、RNA聚合酶等。常见的有(HMG蛋白、DNA结合蛋白) 二、染色质 染色体:分裂期由染色质聚缩形成。 染色质:线性复合结构,间期遗传物质存在形式。 常染色质(着色浅) 具间期染色质形态特征和着色特征染色质 异染色质(着色深) 结构性异染色质兼性异染色质 (在整个细胞周期内都处于凝集状态)(特定时期处于凝集状态)三、核小体 由H2A、H2B、H3、H4各2 分子组成的八聚体和绕在八聚体外的DNA、一分 子H1组成。八聚体在中央,DNA分子盘绕在外,由此形成核心颗粒。,H1结合在核心颗粒外侧DNA双链的进出口端,如搭扣将绕在八聚体外DNA链固定,核心颗粒之间的连接部分为连接DNA。 核小体的定位对转录有促进作用

分子生物学知识点

第一章染色体与DNA 1.原核生物的DNA的主要特征:一般只有一条染色体且大都带有单拷贝基因,只有少数的基因是以多拷贝形式存在的;整个染色体DNA几乎全部由功能基因与调控序列所组成;几乎每个基因序列都与它所编码的蛋白质序列呈线性对应状态。 2.真核生物染色体所具有的特征:分子结构稳定;能够自我复制,使亲代之间保持连续性;能够知道蛋白质的合成,从而控制整个生命活动过程;能够产生可遗传的变异。 3.染色体上的蛋白质主要包括组蛋白和非组蛋白。组蛋白是染色体的结构蛋白,与DNA组成核小体。其中组蛋白又分为:H1、H2、H2B、H3及H4。 4.组蛋白的特性:①进化上的极端保守性:不同种生物组蛋白的氨基酸组成是十分相似的②无组织特异性③肽链上的氨基酸分布的不对称性:碱性氨基酸集中分布在N端的半条链上④组蛋白的修饰作用:包括甲基化、乙酰化、磷酸化、泛素华及ADP核糖基化(修饰作用只发生在细胞周期的特定时间和组蛋白的特定位点上)⑤富含赖氨酸的组蛋白H5。 5.非组蛋白包括酶类,与细胞分裂有关的收缩蛋白、骨架蛋白、核孔复合蛋白以及肌动蛋白、肌球蛋白、微管蛋白、原基蛋白等。 ①HMG蛋白:其特点在于能与DNA结合,也能与H1作用,但都容易用低盐溶液抽提,说明他们与DNA的结合并不牢靠。 ②DNA结合蛋白:相对分子质量较低的蛋白质,约占非组蛋白的20%,可能是一些与DNA的复制或者转录相关的酶或调节物质。 ③A24非组蛋白:其有两个N端,呈酸性,含有较多的谷氨酸和天冬氨酸,总含量大约是H2A的1%,位于核小体内。 6.C值(C value):一种生物单倍体基因组DNA的总量。 C值反常现象:某些两栖类的C值甚至比哺乳动物还大,而在两栖类中C值的变化也很大,可相差100倍。 7.真核细胞的DNA序列大概可分为三类(根据对DNA的动力学): ①不重复序列:这些序列一般只有一个或几个拷贝,它占DNA总量的40%—80%。注:单拷贝基因通过基因扩增仍可合成大量蛋白质。 ②中度重复序列:序列的重复次数为10-10000,约占总DNA的10%—40%。 ③高度重复序列(卫星序列):只在真核生物中发现,这类DNA是高度浓缩的,是异染色质的组成部分。 8.真核生物基因组的结构特点总结:①基因组庞大,一般大于原核生物的基因组 ②存在大量的重复序列③大部分为非编码序列,占整个基因组序列的90%以上,该特点是真核生物与细菌和病毒之间的最主要区别④转录产物为单顺反子⑤存在大量的顺式作用元件,包括启动子、增强子、沉默子等⑥存在大量的DNA多态性。DNA多态性指DNA序列中发生变异而导致的个体间核苷酸序列的差异⑦真核基因是断裂基因,有内含子结构⑧具有端粒结构。端粒是真核生物线性基因组DNA末端的一段特殊结构,它是一段DNA序列和蛋白质形成的复合体。

分子生物学问题汇总

Section A 细胞与大分子 简述复杂大分子的生物学功能及与人类健康的关系。 Section C 核酸的性质 1.DNA的超螺旋结构的特点有哪些? A 发生在闭环双链DNA分子上 B DNA双链轴线高卷曲,与简单的环状相比,连接数发生变化 C 当DNA扭曲方向与双螺旋方向相同时,DNA变得紧绷,为正超螺旋,反之变得松弛为负超螺旋。自然界几乎所有DNA分子超螺旋都为负的,因为能量最低。 2.简述核酸的性质。 A 核酸的稳定性:由于核酸中碱基对的疏水效应以及电荷偶极作用而趋于稳定 B 酸效应:在强酸和高温条件下,核酸完全水解,而在稀酸条件下,DNA的核苷键被选择性地断裂生成脱嘌呤核酸 C 碱效应:当PH超出生理范围时(7-8),碱基的互变异构态发生变化 D 化学变性:一些化学物质如尿素,甲酰胺能破坏DNA和RNA二级结构中的 而使核酸变性。 E 粘性:DNA的粘性是由其形态决定的,DNA分子细长,称为高轴比,可被机械力和超声波剪切而粘性下降。 F 浮力密度:1.7g/cm^3,因此可利用高浓度分子质量的盐溶液进行纯化和分析 G 紫外线吸收:核酸中的芳香族碱基在269nm 处有最大光吸收 H 减色性,热变性,复性。 思考题:提取细菌的质粒依据是核酸的哪些性质? 质粒是抗性基因,,在基因组或者质粒DNA中用碱提取法。 Sectio C 课前提问 1.在1.5mL的离心管中有500μL,取出10 μL稀释至1000 μL后进行检测,测得A260=0.15。 问(1):试管中的DNA浓度是多少? 问(2):如果测得A280=0.078, .A260/A280=?说明什么问题? (1)稀释前的浓度:0.15/20=0.0075 稀释后的浓度:0.0075/100=0.75ug/ml (2)0.15/0.078=1.92〉1.8,说明DNA中混有RNA样品。 2.解释以下两幅图

分子生物学知识点总结

, 宛 本人自己总结,大家随便一看。 基因与基因组 基因(gene ):储存有功能的蛋白质多肽链或 RNA 序列信息,及表达这些信息所必须的全部 核苷酸序列所构成的遗传单位。 1.顺式作用元件有:启动子和上游启动子元件,反应元件,增强子,沉默子,Poly 加尾信号 启动子:有方向性,转录起始位点上游,TATA 盒,B 地贫,与 RNA 聚合酶特异结合及启 动转录 上游启动子元件:TATA 盒上游,与反式作用因子结合,调控基因转录效率。CAAT 盒,GC 盒,CACA 盒—B 地贫 反应元件:与激活的信息分子受体结合,调控基因表达 增强子:与反式作用因子结合,基因表达正调控,无方向性 沉默子:与反式作用因子结合,基因表达负调控 Poly 加尾信号:结构基因末端 AATAAA 及下游富含 GT 或 T 区,多聚腺苷酸化特异因子, 在 3 末端加 200 个 A B 地贫 1.除逆转录病毒外,通常为单倍体基因组。 逆转录病毒:单股正链二倍体 RNA ,三个结构基因,gag ,pol ,env ,5 端甲基化帽,3 端 poly 加尾。 HIV 免疫缺陷病毒,白血病病毒,肉瘤病毒 感染细菌的病毒基因组与细菌相似,基因连续,感染真核细胞的病毒基因组与真核细胞相似, 有内含子,基因不连续。 3.基因组连续:冠状病毒,脊髓灰质炎病毒,鼻病毒 4.编码区占大部分 原核生物基因组 1.由一条环状双链 DNA 分子组成,通常只有一个复制起点。 2.结构基因大多组成操纵子,形成多顺反子(mRNA ) 3.非编码区主要是调控序列。(转录终止区可有强终止子有反向重复序列,形成茎环结构) 4.存在可移动的 DNA 序列(转座因子:能够在一个 DNA 内或两个 DNA 间移动的 DNA 片 段转座因子:插入序列,转座子,可转座的噬菌体,转座作用的机制:复制性转座,简单转 座,共整合体,插入突变) 5.编码区大于非编码区 真核生物基因组 1.有同源性的功能相关基因构成基因家族 核酸序列相同,核酸序列高度同源,编码产物的功能或功能区相同,假基因 2.真核基因为断裂基因,编码为单顺反子。 3.有单一序列(低度重复序列) 中度重复序列,高度重复序列(反向重复序列—发卡结构, 卫星 DNA :大卫星 DNA ,高度多态性:小卫星 DNA ,微卫星 DNA ) 基因表达调控 基因表达:。生物基因组中结构基因所携带的遗传信息,经过转录、翻译等一系列过程,合 成具有特定的生物学功能和生物学效应的 RNA 或蛋白质的全过程。包括 rRNA 和 tRNA 的 转录过程。 基因表达特点:时间特异性,空间特异性 按对刺激的反应性分类:基本表达(管家基因),诱导和阻遏表达。协同表达 基因表达调控:机体各种细胞中含有的相同遗传信息(相同的结构基因),根据机体的不同发

现代分子生物学总结(朱玉贤、最新版)

现代分子生物学总结(朱玉贤、最新版)

一、绪论 两个经典实验 1、肺炎球菌在老鼠体内的毒性实验:先将光滑型致病菌(S型)烧煮杀活性以后、以及活的粗糙型细菌(R型)分别侵染小鼠发现这些细菌自然丧失了治病能力;当他们将经烧煮杀死的S型细菌和活的R型细菌混合再感染小鼠时,实验小鼠每次都死亡。解剖死鼠,发现有大量活的S型细菌。实验表明,死细菌DNA 进行了可遗传的转化,从而导致小鼠死亡。 2、T2噬菌体感染大肠杆菌:当细菌培养基中分别带有35S或32P标记的氨基酸或核苷酸,子代噬菌体就相应含有35S标记的蛋白质或32P标记的核酸。分别用这些噬菌体感染没有放射性标记的细菌,经过1~2个噬菌体DNA 复制周期后进行检测,子代噬菌体中几乎不含带35S标记的蛋白质,但含30%以上的32P 标记。说明在噬菌体传代过程中发挥作用的可能是DNA而不是蛋白质。 基因的概念:基因是产生一条多肽链或功能RNA分子所必需的全部核苷酸序列。

二、染色体与DNA 嘌呤嘧啶 腺嘌呤鸟嘌呤胞嘧啶尿嘧啶胸腺嘧啶 染色体 性质:1、分子结构相对稳定;2、能够自我复制,使亲、子代之间保持连续性;3、能指导蛋白质的合成,从而控制生命过程;4、能产生可遗传的变异。 组蛋白一般特性:1、进化上极端保守,特别是H3、H4;2、无组织特异性;3、肽链上氨基酸分布的不对称性;4、存在较普遍的修饰作用;5、富含赖氨酸的组蛋白H5 非组蛋白:HMG蛋白;DNA结合蛋白;A24非组蛋白

真核生物基因组DNA 真核细胞基因组最大特点是它含有大量的重复序列,而且功能DNA序列大多被不编码蛋白质的非功能蛋白质所隔开。人们把一种生物单倍体基因组DNA的总量称为C值,在真核生物中C 值一般是随着生物进化而增加的,高等生物的C 值一般大于低等动物,但某些两栖类的C值甚至比哺乳动物还大,这就是著名的C值反常现象。真核细胞DNA序列可被分为3类:不重复序列、中度重复序列、高度重复序列。 真核生物基因组的特点:1、真核生物基因组庞大,一般都远大于原核生物的基因组;2、真核基因组存在大量的的重复序列;3、真核基因组的大部分为非编码序列,占整个基因组序列的90%以上,这是真核生物与细菌和病毒之间的最主要的区别;4、真核基因组的转录产物为单顺反之;5、真核基因组是断裂基因,有内含子结构;6、真核基因组存在大量的顺式元件,包括启动子、增强子、沉默子等;7、真核基因组中存在大量的DNA多态性;8、真核基因组具有端粒结构。

分子生物学知识点整理知识讲解

分子生物学知识点整 理

一、名词解释: 1. 基因:基因是位于染色体上的遗传基本单位,是负载特定遗传信息的DNA 片段,编码具有生物功能的产物包括RNA和多肽链。 2. 基因表达:即基因负载遗传信息转变生成具有生物学功能产物的过程,包括基因的激活、转录、翻译以及相关的加工修饰等多个步骤或过程。 3.管家基因:在一个生物个体的几乎所有组织细胞中和所有时间段都持续表达的基因,其表达水平变化很小且较少受环境变化的影响。如GAPDH、β-肌动蛋白基因。 4. 启动子:是指位于基因转录起始位点上游、能够与RNA聚合酶和其他转录因子结合并进而调节其下游目的基因转录起始和转录效率的一段DNA片段。 5.操纵子:是原核生物基因表达的协调控制单位,包括有结构基因、启动序列、操纵序列等。如:乳糖操纵子、色氨酸操纵子等。 6.反式作用因子:指由其他基因表达产生的、能与顺式作用元件直接或间接作用而参与调节靶基因转录的蛋白因子(转录因子)。 7.顺式作用元件:即位于基因附近或内部的能够调节基因自身表达的特定DNA 序列。是转录因子的结合位点,通过与转录因子的结合而实现对真核基因转录的精确调控。 8. Ct值:即循环阈值(cycle threshold,Ct),是指在PCR扩增过程中,扩增产物的荧光信号达到设定的荧光阈值所经历的循环数。(它与PCR扩增的起始模板量存在线性对数关系,由此可以对扩增样品中的目的基因的模板量进行准确的绝对和(或)相对定量。)

9.核酸分子杂交:是指核酸分子在变性后再复性的过程中,来源不同但互不配对的核酸单链(包括DNA和DNA,DNA和RNA,RNA和RNA)相互结合形成杂合双链的特性或现象,依据此特性建立的一种对目的核酸分子进行定性和定量分析的技术则称为分子杂交技术。 10. 印迹或转印:是指将核酸或蛋白质等生物大分子通过一定的方法转移并固定至尼龙膜等支持载体上的一种方法,该技术类似于用吸墨纸吸收纸张上的墨迹。 11. 探针:是一种用同位素或非同位素标记核酸单链,通常是人工合成的寡核苷酸片段。 12. 基因芯片:又称DNA芯片或DNA微阵列,是基于核酸分子杂交原理建立的一种对DNA进行高通量、大规模、并进行分析的技术,其基本原理是将大量寡核苷酸分子固定于支持物上,然后与标记的待测样品进行杂交,通过检测杂交信号的强弱进而对待测样品中的核酸进行定性和定量分析。 13. 基因文库:是指通过克隆方法保存在适当宿主中的一群混合的DNA分子,所有这些分子中的插入片段的总和,可代表某种生物的全部基因组序列或全部的mRNA序列,因此基因文库实际上是包含某一生物体或生物组织样本的全部DNA序列的克隆群体。基因文库包括两类:基因组文库和cDNA文库。 14. 克隆:是来自同一始祖的相同副本或拷贝的集合。 15. 载体:为携带的目的基因,实现其无性繁殖或表达有意义的蛋白质所采用的一些DNA分子。 16. 限制性核酸内切酶:识别DNA的特意序列,并在识别位点或其周围切割双链DNA的一类内切酶。

(完整版)分子生物学总结完整版

分子生物学 第一章绪论 分子生物学研究内容有哪些方面? 1、结构分子生物学; 2、基因表达的调节与控制; 3、DNA重组技术及其应用; 4、结构基因组学、功能基因组学、生物信息学、系统生物学 第二章DNA and Chromosome 1、DNA的变性:在某些理化因素作用下,DNA双链解开成两条单链的过程。 2、DNA复性:变性DNA在适当条件下,分开的两条单链分子按照碱基互补原则重新恢复天然的双螺旋构象的现象。 3、Tm(熔链温度):DNA加热变性时,紫外吸收达到最大值的一半时的温度,即DNA分子内50%的双链结构被解开成单链分子时的温度) 4、退火:热变性的DNA经缓慢冷却后即可复性,称为退火 5、假基因:基因组中存在的一段与正常基因非常相似但不能表达的DNA序列。以Ψ来表示。 6、C值矛盾或C值悖论:C值的大小与生物的复杂度和进化的地位并不一致,称为C值矛盾或C值悖论(C-Value Paradox)。 7、转座:可移动因子介导的遗传物质的重排现象。 8、转座子:染色体、质粒或噬菌体上可以转移位置的遗传成分 9、DNA二级结构的特点:1)DNA分子是由两条相互平行的脱氧核苷酸长链盘绕而成;2)DNA分子中的脱氧核苷酸和磷酸交替连接,排在外侧,构成基本骨架,碱基排列在外侧;3)DNA分子表面有大沟和小沟;4)两条链间存在碱基互补,通过氢键连系,且A=T、G ≡ C(碱基互补原则);5)螺旋的螺距为3.4nm,直径为2nm,相邻两个碱基对之间的垂直距离为0.34nm,每圈螺旋包含10个碱基对;6)碱基平面与螺旋纵轴接近垂直,糖环平面接近平行 10、真核生物基因组结构:编码蛋白质或RNA的编码序列和非编码序列,包括编码区两侧的调控序列和编码序列间的间隔序列。 特点:1)真核基因组结构庞大哺乳类生物大于2X109bp;2)单顺反子(单顺反子:一个基因单独转录,一个基因一条mRNA,翻译成一条多肽链;)3)基因不连续性断裂基因(interrupted gene)、内含子(intron)、外显子(exon);4)非编码区较多,多于编码序列(9:1) 5)含有大量重复序列 11、Histon(组蛋白)特点:极端保守性、无组织特异性、氨基酸分布的不对称性、可修饰作用、富含Lys的H5 12、核小体组成:由组蛋白和200bp DNA组成 13、转座的机制:转座时发生的插入作用有一个普遍的特征,那就是受体分子中有一段很短的被称为靶序列的DNA会被复制,使插入的转座子位于两个重复的靶序列之间。 复制型转座:整个转座子被复制,所移动和转位的仅为原转座子的拷贝。 非复制型转座:原始转座子作为一个可移动的实体直接被移位。 第三章DNA Replication and repair 1、半保留复制:DNA生物合成时,母链DNA解开为两股单链,各自作为模板(template)按碱

分子生物学知识点归纳

分子生物学 1.DNA的一级结构:指DNA分子中核苷酸的排列顺序。 2.DNA的二级结构:指两条DNA单链形成的双螺旋结构、三股螺旋结构以及四股螺旋结构。3.DNA的三级结构:双链DNA进一步扭曲盘旋形成的超螺旋结构。 4.DNA的甲基化:DNA的一级结构中,有一些碱基可以通过加上一个甲基而被修饰,称为DNA的甲基化。甲基化修饰在原核生物DNA中多为对一些酶切位点的修饰,其作用是对自身DNA产生保护作用。真核生物中的DNA甲基化则在基因表达调控中有重要作用。真核生物DNA中,几乎所有的甲基化都发生于二核苷酸序列5’-CG-3’的C上,即5’-mCG-3’. 5.CG岛:基因组DNA中大部分CG二核苷酸是高度甲基化的,但有些成簇的、稳定的非甲基化的CG小片段,称为CG岛,存在于整个基因组中。“CG”岛特点是G+C含量高以及大部分CG二核苷酸缺乏甲基化。 6.DNA双螺旋结构模型要点: (1)DNA是反向平行的互补双链结构。 (2)DNA双链是右手螺旋结构。螺旋每旋转一周包含了10对碱基,螺距为3.4nm. DNA 双链说形成的螺旋直径为2 nm。每个碱基旋转角度为36度。DNA双螺旋分子表面 存在一个大沟和一个小沟,目前认为这些沟状结构与蛋白质和DNA间的识别有关。(3)疏水力和氢键维系DNA双螺旋结构的稳定。DNA双链结构的稳定横向依靠两条链互补碱基间的氢键维系,纵向则靠碱基平面间的疏水性堆积力维持。 7.核小体的组成: 染色质的基本组成单位被称为核小体,由DNA和5种组蛋白H1,H2A,H2B,H3和H4共同构成。各两分子的H2A,H2B,H3和H4共同构成八聚体的核心组蛋白,DNA双螺旋缠绕在这一核心上形成核小体的核心颗粒。核小体的核心颗粒之间再由DNA和组蛋白H1构成的连接区连接起来形成串珠样结构。 8.顺反子(Cistron):由结构基因转录生成的RNA序列亦称为顺反子。 9.单顺反子(monocistron):真核生物的一个结构基因与相应的调控区组成一个完整的基因,即一个表达单位,转录物为一个单顺反子。从一条mRNA只能翻译出一条多肽链。10.多顺反子(polycistron): 原核生物具有操纵子结构,几个结构基因转录在一条mRNA 链上,因而转录物为多顺反子。每个顺反子分别翻译出各自的蛋白质。 11.原核生物mRNA结构的特点: (1) 原核生物mRNA往往是多顺反子的,即每分子mRNA带有几种蛋白质的遗传信息。 (2)mRNA 5‘端无帽子结构,3‘端无多聚A尾。 (3)mRNA一般没有修饰碱基。 12.真核生物mRNA结构的特点: (1)5‘端有帽子结构。即7-甲基鸟嘌呤-三磷酸鸟苷m7GpppN。 (2)3‘端大多数带有多聚腺苷酸尾巴。 (3)分子中可能有修饰碱基,主要有甲基化。 (4)分子中有编码区和非编码区。 14.tRNA的结构特点 (1)tRNA是单链小分子。 (2)tRNA含有很多稀有碱基。 (3)tRNA的5‘端总是磷酸化,5’末端核苷酸往往是pG. (4)tRNA的3‘端是CCA-OH序列。是氨基酸的结合部位。 (5)tRNA的二级结构形状类似于三叶草,含二氢尿嘧啶环(D环)、T环和反密码子环。

分子生物学总结完整版

分子生物学总结完整版 1、结构分子生物学; 2、基因表达的调节与控制; 3、DNA重组技术及其应用; 4、结构基因组学、功能基因组学、生物信息学、系统生物学 第二章DNA and Chromosome 1、DNA的变性:在某些理化因素作用下,DNA双链解开成两条单链的过程。 2、 DNA复性:变性DNA在适当条件下,分开的两条单链分子按照碱基互补原则重新恢复天然的双螺旋构象的现象。 3、 Tm(熔链温度): DNA加热变性时,紫外吸收达到最大值的一半时的温度,即DNA分子内50%的双链结构被解开成单链分子时的温度) 4、退火:热变性的DNA经缓慢冷却后即可复性,称为退火 5、假基因:基因组中存在的一段与正常基因非常相似但不能表达的DNA序列。以Ψ来表示。 6、 C值矛盾或C值悖论:C值的大小与生物的复杂度和进化的地位并不一致,称为C值矛盾或C值悖论(C-Value Paradox)。 7、转座:可移动因子介导的遗传物质的重排现象。 8、转座子:染色体、质粒或噬菌体上可以转移位置的遗传成分

9、 DNA二级结构的特点:1)DNA分子是由两条相互平行的脱氧核苷酸长链盘绕而成;2)DNA分子中的脱氧核苷酸和磷酸交替连接,排在外侧,构成基本骨架,碱基排列在外侧;3)DNA分子表面有大沟和小沟;4)两条链间存在碱基互补,通过氢键连系,且A=T、G ≡ C(碱基互补原则);5)螺旋的螺距为 3、4nm,直径为2nm,相邻两个碱基对之间的垂直距离为0、34nm,每圈螺旋包含10个碱基对;6)碱基平面与螺旋纵轴接近垂直,糖环平面接近平行 10、真核生物基因组结构:编码蛋白质或RNA的编码序列和非编码序列,包括编码区两侧的调控序列和编码序列间的间隔序列。特点:1)真核基因组结构庞大哺乳类生物大于2X109bp;2)单顺反子(单顺反子:一个基因单独转录,一个基因一条mRNA,翻译成一条多肽链;)3)基因不连续性断裂基因(interrupted gene)、内含子(intron)、外显子(exon);4)非编码区较多,多于编码序列(9:1) 5)含有大量重复序列1 1、Histon(组蛋白)特点:极端保守性、无组织特异性、氨基酸分布的不对称性、可修饰作用、富含Lys的H5 12、核小体组成: 由组蛋白和200bp DNA组成 13、转座的机制:转座时发生的插入作用有一个普遍的特征,那就是受体分子中有一段很短的被称为靶序列的DNA会被复

现代分子生物学总结题库

第一章、基因的结构和功能实体及基因组 1、基因定义 基因(遗传因子)是遗传的物质基础,是DNA(脱氧核糖核酸)分子上具有遗传信息的特定核苷酸序列的总称,携带有遗传信息的DNA序列,是具有遗传效应的DNA分子片段,是控制性状的基本遗传单位,通过指导蛋白质的合成来表达自己所携带的遗传信息,从而控制生物个体的性状表现。 2、DNA修复 DNA修复(DNA repairing)是细胞对DNA受损伤后的一种反应,这种反应可能使DNA结构恢复原样,重新能执行它原来的功能;但有时并非能完全消除DNA的损伤,只是使细胞能够耐受这DNA的损伤而能继续生存。也许这未能完全修复而存留下来的损伤会在适合的条件下显示出来(如细胞的癌变等),但如果细胞不具备这修复功能,就无法对付经常在发生的DNA损伤事件,就不能生存。对不同的DNA损伤,细胞可以有不同的修复反应。3、DNA损伤 DNA损伤是复制过程中发生的DNA核苷酸序列永久性改变,并导致遗传特征改变的现象。情况分为:substitutation (替换)deletion (删除)insertion (插入)exon skipping (外显子跳跃)。 DNA损伤的改变类型:a、点突变:指DNA上单一碱基的变异。嘌呤替代嘌呤(A与G之间的相互替代)、嘧啶替代嘧啶(C与T之间的替代)称为转换(transition);嘌呤变嘧啶或嘧啶变嘌呤则称为颠换(transvertion)。b、缺失:指DNA链上一个或一段核苷酸的消失。c、插入:指一个或一段核苷酸插入到DNA链中。在为蛋白质编码的序列中如缺失及插入的核苷酸数不是3的整倍数,则发生读框移动(reading frame shift),使其后所译读的氨基酸序列全部混乱,称为移码突变(frame-shift mutaion)。d、倒位或转位:(transposition)指DNA链重组使其中一段核苷酸链方向倒置、或从一处迁移到另一处。 e、双链断裂:对单倍体细胞一个双链断裂就是致死性事件。 4、同源重组 同源重组,(Homologus Recombination)是指发生在姐妹染色单体(sister chromatin) 之间或同一染色体上含有同源序列的DNA分子之间或分子之内的重新组合。同源重组需要一系列的蛋白质催化,如原核生物细胞内的RecA、RecBCD、RecF、RecO、RecR等;以及真核生物细胞内的Rad51、Mre11-Rad50等等。同源重组反应通常根据交叉分子或holiday 结构(Holiday Juncture Structure) 的形成和拆分分为三个阶段,即前联会体阶段、联会体形成和Holiday 结构的拆分。 a、基因敲除 基因敲除(geneknockout),是指对一个结构已知但功能未知的基因,从分子水平上设计实验,将该基因去除,或用其它顺序相近基因取代,然后从整体观察实验动物,推测相应基因的功能。这与早期生理学研究中常用的切除部分-观察整体-推测功能的三部曲思想相似。基因敲除除可中止某一基因的表达外,还包括引入新基因及引入定点突变。既可以是用突变基因或其它基因敲除相应的正常基因,也可以用正常基因敲除相应的突变基因。 b、因转移法 同源重组(homologousrecombination)是将外源基因定位导人受体细胞染色体上的方法,因为在该座位有与导人基因同源的序列,通过单一或双交换,新基因片段可替换有缺陷的基因片段,达到修正缺陷基因的目的。位点特异性重组是发生在两条DNA链特异位点上的重组,重组的发生需一段同源序列即特异性位点(又称附着点;attachmentsite,att)和位点特异性的蛋白因子即重组酶参与催化。重组酶仅能催化特异性位点间的重组,因而重组具有特异性和高度保守性。

高二生物会考知识点总结5篇精选

高二生物会考知识点总结5篇精选 直到高二,学生的学习自觉性增强,获取知识一方面从教师那里接受,但这种接受也应该有别于以前的被动接受,它是在经过自己思考、理解的基础上接受。另一方面通过自学主动获取知识。能否顺利实现转变,是成绩能否突破的关键。下面就是给大家带来的高二生物会考知识点,希望能帮助到大家! 1.酶的定义?由活细胞产生的具有催化作用的生物大分子 2.ATP的中文名称、结构简式?腺苷三磷酸A-P~P~P 3.叶绿体层析在滤纸条上的名称和颜色分布?自上而下:胡萝卜素(橙黄色,蓝紫光)叶黄素(黄色,蓝紫光)叶绿素a(蓝绿色,红橙光、蓝紫光)叶绿素b(黄绿色,红橙光、蓝紫光) 4.光合作用的光反应和暗反应的能量变化光:光能-活跃化学能暗:活跃化学能-稳定化学能 5.光合作用的反应式?6CO2+12H2O——>C6H12O6+6H2O+6O2 6.影响光合作用的因素?温度、光照、CO2浓度

7.有氧呼吸的场所?细胞质基质、线粒体 8.无氧呼吸的2个反应式?C6H12O6→C2H5OH+CO2+能量、C6H12O6→2C3H6O3(乳酸)+能量 9.呼吸作用的意义?氧化分解有机物,为生命活动提供能量 10.糖代谢的途径?多糖分为肝糖原与肌糖原,肝糖原能合成葡萄糖 1.解旋酶:作用于氢键,是一类解开氢键的酶,由水解ATP来供给能量它们常常依赖于单链的存在,并能识别复制叉的单链结构。在细菌中类似的解旋酶很多,都具有ATP酶的活性。大部分的移动方向是5′→3′,但也有3′→5′移到的情况,如n′蛋白在φχ174以正链为模板合成复制形的过程中,就是按3′→5′移动。在DNA复制中起作用。 2.DNA聚合酶:在DNA复制中起作用,是以一条单链DNA为模板,将单个脱氧核苷酸通过磷酸二酯键形成一条与模板链互补的DNA 链,形成链与母链构成一个DNA分子。 3.DNA连接酶:其功能是在两个DNA片段之间形成磷酸二酯键。如果将经过同一种内切酶剪切而成的两段DNA比喻为断成两截的梯

分子生物学实习总结

分子生物学实习总结 三天的分子生物学实习,我能认真听老师的讲解和很好的按照老师的安排完成实验。期间,接触和学习到了很多有关分子生物学实验的方法、仪器的使用、技术,而且对分子生物学实验有一个大致的了解,学习到很多以前没有接触过的知识。 这几天来做的不足的地方有: 1.预习不够充分。只是浏览了实验报告上的原理、操作等内容,并没有深入了解每一个步骤的操作会对实验有什么的作用和影响。实验失败了,不能自主找到原因。 2.实验操作过程不够细心。实验要求十分细心,严谨和专注。实验中很多细小的地方还是没有很好的注意到。 3.遇到不懂的没有及时发问。实验就是一个让我们实操的过程,一边操作一边巩固书本上的知识。过程中,遇到不明白的地方应该及时问别人活着自己翻阅资料,力求把实验弄透彻。 但是我还是有很多收获的: 1.对分子生物学实验有了了解。例如实验的基本的流程和操作,常用的方法等基础知识已经有了一定了解,对以后的实验会有一定的帮助。 2.最基本的移液枪、离心机、涡旋器等的使用还有实验中的PCR仪、电泳等有一定的认。 3.学会了严谨和细心。实验所用的材料都是比较昂贵的,而且实验只要一步错了,就得重做。所以需要非常严谨。不仅仅是分子生物学实验,其他实验也要求,所以培养这个有点对以后的实验非常有好处。 4.学会了坚持。很多次因为实验做的时间很长,大家都会很累,但是,还是要坚持,一点点累都受不了是不能把实验做好的。开始慢慢了解到做科研的人员的辛酸,长时间整天呆在实验室做实验,这需要很大的毅力。 5.把握实验机会,让自己学得更多。实验过程中,只要有实操的机会,我都会去操作。因为说和做是不一样的。而且在操作中能加深巩固知识和学得更加深入。 三天的分子生物学实习虽然很累,因为要天天去院楼,而却实验时间都比较长。但是 还是很有意义的,因为学习到很到东西,收获了很多。 老师也为我们准备了很多的材料和准备,实验才做得那么快和顺利,其实,实验室简 化了很多了,而且我们所做的实验都是已经设计好的,按照操作做就行了。如果时间和资 金允许,应该设立一些自主完成的实验,这样可以培养我们更加多的能力,开阔知识面和 拓宽思维。

研究生分子生物学知识点

分子生物学知识点总结 1.蛋白质组(proteome):proteins expressed by a genome, 即基因组表达的 全套蛋白质。蛋白质组学(Protemics)则是以蛋白质组为研究对象,从整体角度,分析细胞或组织内蛋白质构成的动态变化和活动规律的科学。(相互作用网络PPI) 2.表达蛋白质组学研究的基本流程:蛋白样品的制备及定量-总蛋白的双向凝 胶电泳(染色)-凝胶分析软件分析-胶内酶解(胰肽酶)-质谱分析(肽质量指纹图谱)-数据库搜索鉴定蛋白性质 3.双向凝胶电泳:相互垂直的两个方向上,分别基于蛋白质不同的等电点和分 子量,先经等电聚焦电泳(isoelectric focusing, IEF),再经变性聚丙烯酰胺凝胶电泳(SDS-PAGE)把复杂的蛋白质成分分离。 4.比较蛋白质组学:通过比较同一个体肿瘤细胞(组织)与正常细胞(组织) 之间蛋白质在表达数量、表达位置和修饰状态上的差异,发现与肿瘤发病或者发展有关的分子标记,用来作为肿瘤诊断的肿瘤相关蛋白。 5.软电离:所谓“软电离”是指样品分子电离时保留整个分子的完整性,不会 形成碎片离子。 6.肿瘤血清蛋白质分析方法(tumor serologic proteome analysis, SERPA): 是从肿瘤免疫学观点出发建立的一种蛋白质组学和肿瘤免疫学相结合的方法。 SERPA其实验过程如下: ①双向电泳分离肿瘤组织(细胞)总蛋白质; ②转膜; ③建立western blotting蛋白质印迹反应图谱(与患者或正常人血清反应); ④软件分析确定差异反应的蛋白质斑点; ⑤质谱鉴定和生物信息对肿瘤组织平行胶(replica gel)中相应的差异蛋白 质点进行鉴定,筛选出肿瘤分子标志物; ⑥用ELISA、免疫组化等方法对该分子标志物进行原位验证,或者进一步分 析该蛋白功能,研究其在肿瘤进展中发挥的作用。 7.蛋白质芯片:是将大量蛋白质分子按预先设置的排列固定于一种载体表面, 形成微阵列,根据蛋白质分子间特异性结合的原理,构建微流体生物化学分析系统,以实现对生物分子的准确、快速、大信息量的检测。 8.功能蛋白质组学:是指对蛋白质间、蛋白质与DNA/RNA间的相互作用的研究。 以细胞内与某个功能有关或某种条件下的一群蛋白质为主要研究内容,由此建立细胞内外信号传递的复杂网络。研究方法主要有: ●蛋白质芯片技术 目前常用蛋白质芯片有: 1. SELDI-TOF-MS蛋白质芯片 2. 抗体芯片 3. 靶蛋白质芯片 4. 液相蛋白质芯片 ●噬菌体展示技术 ●酵母双杂交系统 ●免疫共沉淀

现代分子生物学总结

第一章、基因的结构与功能实体及基因组 1、基因定义 基因(遗传因子)就是遗传的物质基础,就是DNA(脱氧核糖核酸)分子上具有遗传信息的特定核苷酸序列的总称,携带有遗传信息的DNA序列,就是具有遗传效应的DNA分子片段,就是控制性状的基本遗传单位,通过指导蛋白质的合成来表达自己所携带的遗传信息,从而控制生物个体的性状表现。 2、DNA修复 DNA修复(DNA repairing)就是细胞对DNA受损伤后的一种反应,这种反应可能使DNA结构恢复原样,重新能执行它原来的功能;但有时并非能完全消除DNA的损伤,只就是使细胞能够耐受这DNA的损伤而能继续生存。也许这未能完全修复而存留下来的损伤会在适合的条件下显示出来(如细胞的癌变等),但如果细胞不具备这修复功能,就无法对付经常在发生的DNA 损伤事件,就不能生存。对不同的DNA损伤,细胞可以有不同的修复反应。 3、DNA损伤 DNA损伤就是复制过程中发生的DNA核苷酸序列永久性改变,并导致遗传特征改变的现象。情况分为:substitutation (替换)deletion (删除)insertion (插入)exon skipping (外显子跳跃)。DNA损伤的改变类型:a、点突变:指DNA上单一碱基的变异。嘌呤替代嘌呤(A与G之间的相互替代)、嘧啶替代嘧啶(C与T之间的替代)称为转换(transition);嘌呤变嘧啶或嘧啶变嘌呤则称为颠换(transvertion)。b、缺失:指DNA链上一个或一段核苷酸的消失。c、插入:指一个或一段核苷酸插入到DNA链中。在为蛋白质编码的序列中如缺失及插入的核苷酸数不就是3的整倍数,则发生读框移动(reading frame shift),使其后所译读的氨基酸序列全部混乱,称为移码突变(frame-shift mutaion)。d、倒位或转位:(transposition) 指DNA链重组使其中一段核苷酸链方向倒置、或从一处迁移到另一处。e、双链断裂:对单倍体细胞一个双链断裂就就是致死性事件。 4、同源重组 同源重组,(Homologus Recombination)就是指发生在姐妹染色单体(sister chromatin) 之间或同一染色体上含有同源序列的DNA分子之间或分子之内的重新组合。同源重组需要一系列的蛋白质催化,如原核生物细胞内的RecA、RecBCD、RecF、RecO、RecR等;以及真核生物细胞内的Rad51、Mre11-Rad50等等。同源重组反应通常根据交叉分子或holiday结构(Holiday Juncture Structure) 的形成与拆分分为三个阶段,即前联会体阶段、联会体形成与Holiday 结构的拆分。 a、基因敲除 基因敲除(geneknockout),就是指对一个结构已知但功能未知的基因,从分子水平上设计实验,将该基因去除,或用其它顺序相近基因取代,然后从整体观察实验动物,推测相应基因的功能。这与早期生理学研究中常用的切除部分-观察整体-推测功能的三部曲思想相似。基因敲除除可中止某一基因的表达外,还包括引入新基因及引入定点突变。既可以就是用突变基因或其它基因敲除相应的正常基因,也可以用正常基因敲除相应的突变基因。 b、因转移法 同源重组(homologousrecombination)就是将外源基因定位导人受体细胞染色体上的方法,因为在该座位有与导人基因同源的序列,通过单一或双交换,新基因片段可替换有缺陷的基因片段,达到修正缺陷基因的目的。位点特异性重组就是发生在两条DNA链特异位点上的重组,重组的发生需一段同源序列即特异性位点(又称附着点;attachmentsite,att)与位点特异性的蛋白因子即重组酶参与催化。重组酶仅能催化特异性位点间的重组,因而重组具有特异性与高度保守性。 5、碱基错配对修复

分子生物学重要知识点

分子生物学重要知识点名词解释 1、半保留复制:指新老搭配,由1条母代DNA链和1条子代DNA链配对产生自带双螺旋DNA。 2、冈崎片段:DNA复制时,1条链的合成方向和复制叉的前进方向相同,可以连续复制,这条链叫前导链,而另一条链的合成方向和复制叉的前进方向正好相反,不能连续复制,只能分成几个片段合成,故称为滞后链,滞后链片段又叫冈崎片段。 3、复制体:在DNA合成的生长点(growth point),即复制叉上,分布着各种各样与复制有关的酶和蛋白质因子,它们构成的复合物称复合体。 4、C值:是指某物种单倍体基因组的全部DNA含量的总和。不同物种的C值差异很大。 5、C值矛盾::①与预期相比,C 值明显过大;②同一物种,C 值相差很大。这种C值与生物进化复杂性不相对应的现象称为C值矛盾或C值悖理 6、启动子:是基因转录起始所必须的一段DNA序列,一般位于结构基因的上游,是DNA分子上与RNA聚合酶特异性结合而使转录起始的部位,启动子本身不被转录。 7、hnRNA:在真核生物中,最初转录生成的RNA称为不均一核RNA(heterogeneous nuclear RNA,hnRNA),然而在细胞浆中起作用,作为蛋白质的氨基酸序列合成模板的是mRNA(messenger RNA)。hnRNA是mRNA的未成熟前体。两者之间的差别主要有两点:一是hnRNA核苷酸链中的一些片段将不出现于相应的mRNA中,这些片段称为内含子(intron),而那些保留于mRNA中的片段称为外显子(exon)。 8、转录:是以DNA中的一条单链为模板,游离碱基为原料,在DNA依赖的RNA聚合酶催化下合成RNA链的过程。 9、同功受体tRNA :转运同一种氨基酸的几种tRNA称为同功受体tRNA 。 10、操纵子:指包含结构基因、操纵基因以及调节基因的一些相邻基因组成的DNA片段,其中结构基因的表达受到操纵基因的调控。 11、SD序列:mRNA中用于结合原核生物核糖体的序列。 12、持家基因:又称管家基因,是指所有细胞中均要表达的一类基因,其产物是对维持细胞基本生命活动所必需的。 13、顺式作用组件:指对基因表达有调节活性的DNA序列,其活性只影响与其自身同处在一个DNA分子上的基因:这种DNA序列通常不编码蛋白质,多位于基因旁侧或内含子中。 14、反式作用因子:指能直接或间接地识别或结合在各类顺式作用元件核心序列上参与调控靶基因转录效率的蛋白质。 15、同源重组:是指发生在非姐妹染色单体(sister chromatin) 之间或同一染色体上含有同源序列的DNA分子之间或分子之内的重新组合。 (又称为一般性重组它是由两条同源互补的DNA分子通过配对链的断裂和再连接而产生片段交换的过程) 16、转座子:就是基因组上不必借助于同源序列、也不需要重组酶就可移动的DNA片段,它们可以直接从基因组内的一个位点移到另一个位点,发生转座重组,从而改变染色体的结构。 17、遗传密码:指信使RNA(mRNA)分子上从5'端到3'端方向,由起始密码子AUG开始,每三个核苷酸组成的三联体。它决定肽链上某一个氨基酸或蛋白质合成的起始、终止信号。

相关文档
最新文档