水平井井眼轨迹控制
吉林油田大情子油田水平井井眼轨迹控制技术研究

吉林油田大情子油田水平井井眼轨迹控制技术研究【摘要】本文主要对吉林油田大情子油田水平井的井眼轨迹控制的难点进行阐述。
通过井眼轨迹优化与钻具组合的优化选择解决了岩屑床堆积和托压等多方面问题,形成了适合该地区水平井施工一整套的技术措施。
【关键词】钻具组合井眼轨迹优化狗腿度控制井眼清洁1 概述该地区水平井井眼轨迹控制技术难点主要有:(1)直井段长,直井段井斜控制难度大;(2)靶前位移短,造斜率高,pdc钻头工具面稳定难度大,造斜率不稳定,造斜率难以保证;(3)由于地面的条件限制,需要靶前扭方位(10°-60°),现场施工难度大,井下风险高;(4)目的层有效厚度2m左右,水平段延伸长(700米)钻遇率要求高(90%),油气层的垂深不确定,构造变化大,井眼轨迹增斜降斜变化不规律,增加了水平段的控制难度;(5)在大斜度段和水平段井眼内摩阻和扭矩大,造成滑动钻进时加压困难;2 针对该地区定向施工中的技术难点采取的技术措施 2.1 钻具组合的优化设计该地区水平井一般设计在1320米左右造斜,井斜控制要求高(500米内<0.5°,至造斜点<1°)。
直井段采用防斜塔式钻具组合,采用高转速(120r/min),低钻压钻进(2t)。
坚持每钻进50米测斜一次,发现井斜超标或者增斜趋势明显及时采取小钻压吊打和提高转速的方法控制井斜,必要时下入动力钻具纠斜。
直径段钻具组合如下:φ228.6mmpdc钻头+φ172mm双母接头+托盘+φ178mm非磁×1+φ178mm钻铤×6+φ165 mm钻铤×8+φ127mm钻杆+133mm×133mm 方钻杆直井段进行通井作业,采取慢下方式休整井壁。
在造斜点以上50米下入mwd,根据实钻直井段的连斜数据在造斜点之前对井眼轨迹进行修正。
造斜段井斜角小于45°的井段采取以下钻具组合:φ215.9mm钻头+172mm马达(1.5°)+箭式浮阀+定向接头(172mm)+φ165mm非磁(mwd)+φ165mm钻铤×6+ 127mm加重钻杆×30+φ127mm钻杆+133mm×133mm方钻杆.该钻具组合增加了钻具的刚性,工具面稳定,造斜率波动变化小。
DP19小井眼欠平衡水平井井眼轨迹控制技术

DP x 眼 欠 平 衡 水 平 井 井 眼 轨 迹 控 制 技 术 井 1d 9
崔 林 曹 生 杨 旭 唐 林 孙 坡 海 树 春 洪 连
( 利 石 油 管理 局 钻 井工 艺研 究 院 , 东 东营 胜 山 271) 5 07
摘要:在 简述 DP 9井储层地质情 况、 身结构和 井身轨迹 剖面的基础上 , 1 井 对井眼轨迹控制技 术难 点进行 了分析 , 阐述 了
Ke r s sm h l;n eb l cddii ; io e a l g oiotlet n h r otl eltjcoycnrl y d :l oe u dra ne rl g nt g n o m;o r na sci ; o zna w l r etr ot wo i a ln r f nh z o i ;a o
段和有效途径。 关键 词 :小井 眼 ;欠 平 衡 ; 气 泡 沫 ; 水 平 段 ;水 平井 ;轨 迹 控 制 氮 长
中图 分 类 号 :T 2 3 E4 文 献 标 识 码 :A
Hoe rjcoycnrleh oo yfr n eb ln e r l g l a tr o totcn lg d r aa cddii t e ou ln
o fDP. 9 si — l rz nt l l 1 l ho eho io a l m we
C 1 ai, A hsegY N hnu T N ogi S N Lap U i C OS uhn ,A GC ux ,A GH nl , U i 0 H l n n n
( ii cnoyR sac si t,h n lP t lu d nsrt nB ra , o g i 5 0 7 C ia Dr lgT h lg eerh n tueS egi e oe mA mii ai ue u D n yn 2 7 1 , hn) ln e I t r t o g
水平井井眼轨迹控制技术探讨

1 井身轨迹控制常规的水平井都由直井段、增斜段和水平段3部分组成。
由直井段末端的造斜段(kop)到钻至靶窗的增斜井段,这一控制过程为着陆控制;在靶体内钻水平段这一控制过程称为水平控制。
水平井的垂直段与常规直井及定向井的直井段控制没有根本区别。
水平井井眼轨道控制的突出特点集中体现在着陆控制和水平控制,设计到一些新的概念指标和特殊的控制方法。
1.1 水平井井眼轨道控制技术的特点水平井钻井技术是定向井技术的延伸和发展。
水平井的井眼轨道控制技术与定向井相比有类似之处,但也有显著差异,体现了水平井轨道控制的突出技术特征。
1.1.1中靶要求高定向井的靶区为目的层上的一个圆形,通称靶圆,靶圆中心称为靶心。
靶心是井身设计轨道中靶的理论位置,而靶圆是考虑到因误差而造成的实钻轨道中靶的允差范围。
一般来说,定向井的目的层越深,其靶圆半径也越大。
例如一口井垂深为1800-2100m的定向井,其靶圆半径通为30-45m,如上所述,水平井的靶体是一个以矩形靶窗为前端面的呈水平或近似水平放置的长方体或与之接近的几何体(拟柱体,棱台等)。
靶窗的高度与油层状况有关,宽度一般是高度的5倍,水平井长度则和水平井的增斜段曲率半径类型有关。
例如,对厚油层,其靶窗高度可达20m,但对薄油层,该高度可小到4m甚至更小。
按我国对石油水平井的规定,水平段井斜角应在86°以上,长、中、短半径3类水平井的水平段长度一般分别不得小于500m,300m,60m 。
很显然,水平井的目标(靶体)比定向井的目标(靶圆)要求苛刻,前者是立体(三维),后者是平面(二维),因此中靶要求更高。
对于水平井来说,井眼轨道进入目标窗口(靶窗)还不够,还要防止在钻水平段的过程中钻头穿出靶体造成脱靶,而对定向井来说,只要保证钻入靶圆即为成功。
1.1.2控制难度大由于上述定向井和水平井的目标性质与要求对比可知,水平井轨道控制难度大于定向井。
而且,由于常规定向井的最大井斜角一般在60°以内,不存在因目的层的地质误差造成脱靶的问题。
定向井、水平井井身轨迹控制

第三章定向井、水平井井身轨迹控制技术第一节定向井、水平井井眼轨迹控制理论无论是定向井,还是水平井,控制井眼轨迹的最终目的都是要按设计要求中靶。
但因水平井的井身剖面特点、目的层靶区的要求等与普通定向井和多目标井不同,在井眼轨迹控制方面具有许多与定向井、多目标井不同的新概念,需要建立一套新的概念和理论体系来作为水平井井眼轨迹控制的理论依据和指导思想。
我们在长、中半径水平井的井眼轨迹控制模式的形成和验证过程中,针对不断出现的轨迹控制问题,建立了适应于水平井轨迹控制特点的几个新概念。
一、水平井的中靶概念地质给出的水平井靶区通常是一个在目的层内以设计的水平井眼轨道为轴线的柱状靶,其横截面多为矩形或圆。
我们可以把这个柱状靶看成是由无数个相互平行的法面平面组成,因此,控制水平井井眼轨迹中靶,与普通定向井、多目标井是个截然不同的新概念,主要体现是:井眼轨迹中靶时进入的平面是一个法平面(也称目标窗口),但中靶的靶区不是一个平面,而是一个柱状体,因此,不仅要求实钻轨迹点在窗口平面的设计范围内,而且要求点的矢量方向符合设计,使实钻轨迹点在进入目标窗口平面后的每一个点都处于靶柱所限制的范围内。
也就是说,控制水平井井眼轨迹中靶的要素是实钻轨迹在靶柱内的每一点的位置要到位(即入靶点的井斜角、方位角、垂深和位移在设计要求的范围内),也就是我们所讲的矢量中靶。
二、水平井增斜井段井眼轨迹控制的特点及影响因素对一口实钻水平井,从造斜点到目的层入靶点的设计垂深增量和水平位移增量是一定的,如果实钻轨迹点的位置和矢量方向偏离设计轨道,势必改变待钻井眼的垂深增量和位移增量的关系,也直接影响到待钻井眼轨迹的中靶精度。
水平井钻井工程设计中所给定的钻具组合是在一定的理论计算和实践经验的基础上得出的,随着理性认识的深化和实践经验总结,设计的钻具组合钻出实际井眼轨迹与设计轨道曲线的符合程度会不断提高。
但是,由于井下条件的复杂性和多变性,这个符合程度总是相对的。
水平井水平段轨迹控制课件

应用范围扩大
随着技术的进步和应用的不断扩 大,水平井的应用范围越来越广 泛,已经成为石油、天然气和矿 产开发中的重要技术手段之一。
02 水平井轨迹控制技术
CHAPTER
水平井轨迹控制的基本原理
01
水平井轨迹控制的基本原理是通 过钻具组合的设计和钻进参数的 优化,实现对井眼轨迹的精确控 制。
产数据等。
控制优化
03
根据预测模型,优化控制参数如水平段位置、钻井液排量等,
实现水平段轨迹的精确控制。
基于优化算法的智能控制策略
优化算法控制策略
利用遗传算法、粒子群算法等优 化算法,寻找最优的控制参数组
合。
遗传算法
通过模拟生物进化过程,寻找最优 解。在水平井轨迹控制中,可应用 于寻找最优的钻井液排量、水平段 位置等参数组合。
基于人工智能的自适应控制的水平井轨迹控制实例
基于人工智能的自适应控制是一种新兴的控制方法,通过机器学习等技术对系统进行学习和 自适应。在水平井轨迹控制中,可以使用人工智能技术对地下井眼模型进行学习和自适应, 并制定相应的控制策略。
基于人工智能的自适应控制的优势在于能够自适应地处理复杂的非线性系统,并具有较好的 泛化性能。此外,人工智能技术可以处理大量的数据,并通过数据挖掘等技术提取出有用的 信息。
要点三
测量与导向系统
测量与导向系统是实现水平井轨迹控 制的关键技术之一。目前,该领域仍 存在一些技术瓶颈,如测量精度不高 、导向稳定性不足等。这些问题的解 决需要进一步研究和改进测量与导向 系统技术。
06 结论与展望
CHAPTER
主要结论
水平井水平段轨迹控制技术的发 展趋势是高效、精准、智能化。
• 水平井轨迹控制需要解决防斜打直问题,确保井眼 轨迹的垂直性和稳定性。
第6讲 水平井井眼轨迹控制技术

2. 工具造斜能力误差
» 因受地层、工具面摆放不到位、送钻不均匀及理 论计算误差等影响,工具造斜能力不能准确预测;
3. 轨迹预测误差
» 由于MWD离钻头有一定的距离引起的。
6.2 水平井找油方案
1. 导眼法
» 先打一导眼WD,探知油顶位置和油层厚度, 然后回填至合适高度增斜中靶。
W C
D
A
B
6.2 水平井找油方案
避免、减少井下复杂情况并可在一定程度上加以解除。
» 具体考虑:
• • • 使用“倒装钻柱” ; 为了防止卡钻事故,一般在套管内的钻柱中装震击器; 校核钻机提升能力,并对钻柱强度进行详细校核。
6.4 水平井着陆控制
着陆控制是指从直井段的造斜点开始钻至 油层内的靶窗这一过程。其技术要点有:
1. 工具造斜率的选择“略高勿低”;
第6讲 水平井井眼轨迹控制技术
• 6.1 轨迹控制过程中的误差来源
• 6.2 水平井找油方案 • 6.3 水平井底部钻具组合及钻柱设计 • 6.4 水平井着陆控制 • 6.5 水平井水平段控制
6.1 轨迹控制过程中的误差来源
1. 地质误差
» 地质靶点垂深的误差对水平井着陆控制造成很大 困难,当这种误差较大或在薄油层中钻水平井时 问题更为突出;
2. 应变法
» 以一定的稳斜角探油顶,探知油顶后,直接增 斜中靶,通过稳斜段长短对靶点垂深的补偿作 用消除地质靶点的不确定性
可能油顶位置1 可能油顶位置2 可能油顶位置3
d
opt
t
6.3 水平井底部钻具组合及钻柱设计
1. 底部钻具组合设计
» 水平井底部钻具组合设计的首要原则是造斜率原 则,保证设计组合的造斜率达到设计轨道要求并
涪陵页岩气田三维水平井井眼的轨迹控制技术

控制工作中,工作人员可以结合偏移距离变化和靶前位移变化,控制难度比较大。
1.3 三维眼井摩阻扭矩较大在三维水平井斜井段,需要适当的增斜和扭方位,在下钻和滑动钻钻进过程中,钻具很容易发生屈曲问题,钻具接触井壁之后会产生较大的摩阻扭矩,产生严重的托压问题,不利于向钻头传递钻压,降低了钻井速度,延长了定向钻的周期。
由于上孔的扭转方向增加了全角度变化率和摩擦扭矩,定向工具面无法放置在正确位置,在同一位置反复升降钻具,增加了定向钻进的难度,延长了定向钻进的钻进周期[1]。
2 涪陵页岩气田三维水平井井眼轨迹控制技术思路采用原有的井眼轨迹设计模式,不利于实现三维水平井优化和快速定向钻井。
其工作目标是使摩擦力矩最小。
在实际工作中,有必要对原始井眼轨迹类型进行优化,改进轨迹参数,优化三维井眼轨迹设计技术,以提高定向钻井速度。
因为三维井眼轨迹控制工作具有较大的难度,为了保障钻井的安全性,提高现场定向施工的便利性,需要利用精细控制措施,严格控制井段井眼轨迹,优化涪陵页岩气田三维水平井井眼轨迹控制技术,降低整体施工难度。
面临三维井眼摩阻扭矩较大的问题,工作人员可以利用降摩减扭工具,避免发生托压问题,利用三维井眼降摩减阻技术,高效控制三维井眼轨迹。
要想优化三维井眼轨道,工作人员需要合理选择三维井眼轨道,把握入窗时机,提高施工现场的操作性。
利用预目标位移,尽可能调整倾斜点,缩短稳定段长度,有效缩短钻进周期。
为了降低整体工作量,要在稳斜段改变方位。
结合降摩减扭的工作理念,优化轨道全角的变化率,控制稳斜段的井斜角[3]。
在实际应用中,将三维水平井轨迹分为六段。
在纠偏井段的井眼内设置二维增斜段,以保证增斜效果。
在稳斜边变方位井段,施工人员需要全力扭方位,有效减少工作量。
在边增斜边调整方位井段,应合理调整调整工具面,合理调整方位角。
在着陆段利用增斜入窗,合理调整参数。
3 涪陵页岩气田三维水平井井眼轨迹控制关键技术三维水平井偏移距比较大,同时也会增加变方位工作量,在大斜度井段调整方位难度较大,定向钻工作周期比较长,井眼轨迹缺乏圆滑性,将会影响到后续井下作业的安全性。
北布扎奇水平井井眼轨迹控制工艺——以NB6165-2H水平井为例

西部 探矿工 程
.
8 5
O 5 5 船
O
5 3 9 2
驵
∞
∞ ∞ ∞
趴
北 布 扎 奇 水 平 井 井 眼 轨 迹 控 制 工 艺 以 NB 5 H 水 平 井 为 例 6 6 —2 1
— —
陈水新 , 因平 , 蒋 马宗军
( 西部钻探 定 向井技 术服 务公 司 , 新疆 克拉玛依 84 0) 3 00
* 收稿 日期 :0 11—2 2 1 —22
第一作者简介 : 陈水 新(9 4) 男( 17 一 , 汉族 )湖北天门人 , , 工程 师。 现从事定 向井钻井技术服务工作。
8 6
西部探 矿 工程
21 0 2年第 8期
斜能力高于设计造斜率 , 有利于对轨迹 的调整, 二开完 钻前 轨迹 点位置 超前予设 计线 , 超前 量要满 足三 开轨迹 控制要求 。三开选用』 10 m1 7。 2 2m . 5单弯螺杆钻具 , 『 从 前期 水平井 施工 看 , 螺杆 造 斜 率 为 ( 1~ 1。/0 该 1。 3)3m, 预计 三开 以单 圆弧 方 式 人靶 , 造斜 率 1。3 m, 靶 点 2/0 入 选择在 上靶 窗 顶点 , 靶井 斜 在 8 。 右 , 入 水 平 段 人 2左 进 以后 , 在靶 区范 围 内把 井斜 调整 到 设计 范 围 , 靶井 斜 人 不可选 择过 小 , 则会在 调整井斜 过 程 中实 钻轨迹 线穿 否 出下靶 框 , 10 2mm25单弯螺 杆钻具 作 为救急螺 杆 。 .。 3 3 2 二 开造斜段 (3  ̄ 4 4 .. 2 0 ,3 m) 选 用 如 下 钻 具 组 合 : 2 2 2 mm 牙 轮 钻 头 + 2. 5 』 12 m单 弯螺杆 钻具 (. 5) 2 7r 『 a 17。 + 12 7 mm 单 流 阀 十 M W D+ 1 9 5 mm 无 磁 钻 铤 ×1根 + 1 7 2mm 斜 坡 钻 杆× 1 2根 + j 1 7 2 2 mm 斜 坡 加 重 钻 杆 × 1 『 1根 十 19 5mm随钻 震 击 器 + 17 2mm 斜 坡 加 重 钻 杆 ×3 根 + 1 7 斜坡钻 杆 +13 方钻 杆 。 2 mm 3mm 钻井参 数 : 压 4 t排量 2 ̄3 I s 钻 ~8, 8 2 。 / 早 扭方位 , 井斜较 小 的时候 方位 到 位 。实 钻井 眼轨 迹尽量控制在设 计线 附近 之上运 行 , 离太 大 会造 成全 偏 角变化率过大 , 容易 引起后 期作 业 通井 、 下技 套 困难 , 也 增加 了轨迹控 制难 度 。轨迹偏上 时 , 造斜率应 小于设 计 ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水平井井眼轨道控制
班级:采油60901
学号:200962276
序号:4
姓名:蒋凯
指导老师:卢林祝
在长、中半径水平井的井眼轨迹控制模式的形成和验证过程中,针对不断出现的轨迹控制问题,建立了适应于水平井轨迹控制特点的几个新概念。
一、水平井的中靶概念
地质给出的水平井靶区通常是一个在目的层内以设计的水平井眼轨道为轴线的柱状靶,其横截面多为矩形或圆。
可以把这个柱状靶看成是由无数个相互平行的法面平面组成,因此,控制水平井井眼轨迹中靶,与普通定向井、多目标井是个截然不同的新概念,主要体现是:
井眼轨迹中靶时进入的平面是一个法平面(也称目标窗口),但中靶的靶区不是一个平面,而是一个柱状体,因此,不仅要求实钻轨迹点在窗口平面的设计范围内,而且要求点的矢量方向符合设计,使实钻轨迹点在进入目标窗口平面后的每一个点都处于靶柱所限制的范围内。
也就是说,控制水平井井眼轨迹中靶的要素是实钻轨迹在靶柱内的每一点的位置要到位(即入靶点的井斜角、方位角、垂深和位移在设计要求的范围内),也就是我们所讲的矢量中靶。
二、水平井增斜井段井眼轨迹控制的特点及影响因素
对一口实钻水平井,从造斜点到目的层入靶点的设计垂深增量和水平位移增量是一定的,如果实钻轨迹点的位置和矢量方向偏离设计轨道,势必改变待钻井眼的垂深增量和位移增量的关系,也直接影响到待钻井眼轨迹的中靶精度。
水平井钻井工程设计中所给定的钻具组合是在一定的理论计算
和实践经验的基础上得出的,随着理性认识的深化和实践经验总结,设计的钻具组合钻出实际井眼轨迹与设计轨道曲线的符合程度会不断提高。
但是,由于井下条件的复杂性和多变性,这个符合程度总是相对的。
实钻井眼轨迹点的位置相对于设计轨道曲线总是会提前、或适中、或滞后,点的井斜角大小也可能是超前、适中或滞后。
实钻轨迹点的位置和点的井斜角大小对待钻井眼轨迹中靶的影响规律是:
①实钻轨迹点的位置超前,相当于缩短了靶前位移。
此时若井斜角偏大,会使稳斜钻至目的层所产生的位移接近甚至超过目标窗口平面的位置,必将延迟入靶,且往往在窗口处脱靶。
②轨迹点位置适中,若此时井斜角大小也适中,是实钻轨迹与设计轨道符合的理想状态。
但若井斜角大小超前过多,往往需要加长稳斜段,可能造成延迟入靶,或在窗口处脱靶。
③轨迹点的位置滞后,相当于加长靶前位移。
此时若井斜角偏低,就需要提高造斜率以改变待钻井眼垂深和位移增量之间的关系,往往要采用较高的造斜率而提前入靶。
实践表明,控制轨迹点的位置接近或少量滞后于设计轨道,并保持合适的井斜角,有利于井眼轨迹的控制。
点的井斜角偏大可能导致脱靶或入靶前所需要的造斜率偏高。
实际上,水平井造斜段井眼轨迹控制也是轨迹点的位置和矢量方向的综合控制,这对于没有设计稳斜调整段的井身剖面更是如此。
在实际井眼轨迹控制过程中,我们根据造斜段井眼轨迹控制的新
概念和实钻轨迹点的位置、点的井斜角大小对待钻井眼轨迹中靶的影响规律,将造斜井段井眼轨迹的控制程度限定在有利于入靶点矢量中靶的范围内。
也就是说,在轨迹预测计算结果表明有余地、并有后备工具条件时,应当充分发挥动力钻具的一次造斜能力,以提高工作效率,减少起下钻次数。
三、井身剖面的特点及广义调整井段的概念
根据长、中半径水平井常用井身剖面曲线的特点,剖面类型大致可分为单圆弧增斜剖面、具有稳斜调整段的剖面和多段增斜剖面(或分段造斜剖面)几种类型,不同的剖面类型在轨迹控制上有不同的特点,待钻井眼轨迹的预测和现场设计方法也有所不同。
(一)水平井常用井身剖面曲线的特点
1、单圆弧增斜剖面
单圆弧增斜剖面是最简单的剖面,它从造斜点开始,以不变的造斜率钻达目标,胜利油田的樊13- 平1 井采用了这种剖面。
这种剖面要求靶区范围足够宽,以满足钻具造斜率偏差的要求,除非能够准确地控制钻具的造斜性能,否则需要花较大的工作量随时调整和控制造斜率,因而一般很少采用这种剖面。
2、具有切线调整段的剖面
具有切线调整段的剖面,它又可分为:
(1)单曲率—切线剖面:具有造斜率相等的两个造斜段,中间以稳斜段调整。
(2)变曲率—切线剖面:由两个(或两个以上)造斜率不相等
的造斜段组成,中间用一个(或一个以上)稳斜段来调整。
如永35—平1 井、草20—平1 井、草20—平2 井等就属于这种剖面。
这是最常用的剖面类型,因为多数造斜钻具的造斜特性不可能保持非常稳定,常常产生一定程度的偏差,这就需要在造斜井段之间增加一斜直井段来调节补偿这种偏差。
单曲率—切线剖面后一段的造斜率可以在钻第一造斜段的过程中比较精确地预测出来,然后及时计算修改稳斜段的长度,以补偿第一段造斜率与设计的偏差,使井眼轨迹准确地钻达目标点的垂深。
3、多造斜率剖面
多造斜率剖面(或分段造斜剖面),造斜曲线由两个以上不同造斜率的造斜段组成,是一种比较复杂的井身剖面。
在水平4 井攻关和试验过程中,•我们根据胜利油田地质地层特点,采用了三段增斜方法设计水平井井眼轨道,在实钻过程中可以充分发挥动力钻具和转盘钻具各自的优势,提高钻井速度。
将常规设计的稳斜井段改为第二增斜段,通过调整该段的造斜率和段长,同样可以弥补钻具造斜能力的偏差,而且还可以实现用一套钻具组合完成第一造斜段的通井和第二造斜段的钻进,并减少了起下钻次数。
转盘增斜钻具组合与稳斜的刚性钻具组合比较,其刚性小,摩阻力小,不易出新井眼,有利于井下安全。
采用转盘钻具钻进可以使用较大的钻压以提高机械钻速,缩短钻井周期。
(二)广义的调整井段概念
据国外水平井资料介绍,在多数水平井设计中习惯采用具有稳斜
调整段的剖面,用稳斜段作为轨迹控制的调整井段。
通过实践我们认识到,水平井的调整井段还有更为广泛的含义。
首先,我们知道,目的层入靶点位置的准确性和目的层厚度是影响水平井中靶的重要因素之一。
如何利用稳斜调整井段来提高中靶精度,对目的层是薄产层的水平井尤为重要。
由于在井斜角较大时,增斜率的偏差主要影响水平位移,而对垂深的影响很小,可以在大井斜角度下提高垂深的精度。
因此,在入靶前的大井斜角井段增加一稳斜调整段,既可调整垂深精度,又有助于及时辨别地质标准层,以便及时准确地确定目的层入靶点的相对位置。
其次,由于目前的硬件条件不十分完善,在钻中半径水平井的两趟动力钻具组合井段之间选择一调整井段,采用柔性的转盘增斜钻具组合来钻进,不仅可以钻出较小的造斜率井段以缓解第一和第三段造斜率,满足对井眼轨迹控制的需要,而且对改变井眼的清洁状况、防止出新眼都具有十分重要的作用。
因此,调整井段的广义概念不仅是调整井眼轨迹,同时可以调整钻井过程中井眼的清洁净化状况;不仅调整井眼轨迹的中靶精度,还可根据地质要求及时调整目的层入靶点的相对位置;不仅可以是稳斜井段,还可以是适当造斜率的增斜井段。