关于高考文科数学导数专题复习

关于高考文科数学导数专题复习
关于高考文科数学导数专题复习

高考文科数学导数专题复习 第1讲 变化率与导数、导数的计算

知 识 梳 理

1.导数的概念

(1)函数y =f (x )在x =x 0处的导数f ′(x 0)或y ′|x =x 0,即f ′(x 0)=0

lim

x ?→f (x 0+Δx )-f (x 0)

Δx

.

(2)函数f (x )的导函数f ′(x )=0lim

x ?→f (x +Δx )-f (x )

Δx

为f (x )的导函数.

2.导数的几何意义函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,

f (x 0))处的切线的斜率,过点P 的切线方程为y -y 0=f ′(x 0)(x -x 0). 3.基本初等函数的导数公式

4.导数的运算法则若f ′(x ),g ′(x )存在,则有:

考点一 导数的计算

【例1】 求下列函数的导数:

(1)y =e x

ln x ;(2)y =x ?

????x 2+1x +1x 3;

解 (1)y ′=(e x

)′ln x +e x

(ln x )′=e x

ln x +e x

1

x =? ????ln x +1x e x .(2)因为y =x 3

+1+1x

2,

所以y ′=(x 3)′+(1)′+? ??

??

1x 2′=3x 2-2x 3.

【训练1】 (1) 已知函数f (x )的导函数为f ′(x ),且满足f (x )=2x ·f ′(1)+ln x ,则

f ′(1)等于( )

A.-e

B.-1

C.1

D.e

解析 由f (x )=2xf ′(1)+ln x ,得f ′(x )=2f ′(1)+1

x

,∴f ′(1)=2f ′(1)+1,则f ′(1)

=-1.答案 B

(2)(2015·天津卷)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________.

(2)f ′(x )=a ? ?

???ln x +x ·1x =a (1+ln x ).由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3,

所以a =3.答案 (2)3

考点二 导数的几何意义

命题角度一 求切线方程

【例2】 (2016·全国Ⅲ卷)已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1-x ,则曲线y =

f (x )在点(1,2)处的切线方程是________.解析 (1)设x >0,则-x <0,f (-x )=e x -1+x .又f (x )为偶函数,f (x )=f (-x )=e x -1+x ,所以当x >0时,f (x )=e x -1+x .因此,当x >0时,f ′(x )=e

x -1

+1,f ′(1)=e 0

+1=2.则曲线y =f (x )在点(1,2)处的切线的斜率为f ′(1)

=2,所以切线方程为y -2=2(x -1),即2x -y =0. 答案 2x -y =0

【训练2】(2017·威海质检)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线

y =f (x )相切,则直线l 的方程为( )A.x +y -1=0 B.x -y -1=0 C.x +y +1=0 D.x -y +1=0

(2)∵点(0,-1)不在曲线f (x )=x ln x 上,∴设切点为(x 0,y 0).又∵f ′(x )=1+ln x ,∴???y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得x 0=1,y 0=0.∴切点为(1,0),∴f ′(1)=1+ln 1=1.∴直线l 的方程为y =x -1,即x -y -1=0.答案 B

命题角度二 求切点坐标

【例3】 (2017·西安调研)设曲线y =e x 在点(0,1)处的切线与曲线y =1

x

(x >0)上点P 处的

切线垂直,则P 的坐标为________.

解析 由y ′=e x ,知曲线y =e x 在点(0,1)处的切线斜率k 1=e 0=1.设P (m ,n ),又y =1x

(x >0)

的导数y ′=-1x 2,曲线y =1x (x >0)在点P 处的切线斜率k 2=-1

m

2.依题意k 1k 2=-1,所以m

=1,从而n =1.

则点P 的坐标为(1,1).答案 (1,1)

【训练3】若曲线y =x ln x 上点P 处的切线平行于直线2x -y +1=0,则点P 的坐标是________.解析 (1)由题意得y ′=ln x +x ·1

x

=1+ln x ,直线2x -y +1=0的斜率为2.

设P (m ,n ),则1+ln m =2,解得m =e ,所以n =eln e =e ,即点P 的坐标为(e ,e). 答案 (1)(e ,e)

命题角度三 求与切线有关的参数值(或范围)

【例4】 (2015·全国Ⅱ卷)已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________.

解析由y=x+ln x,得y′=1+1

x

,得曲线在点(1,1)处的切线的斜率为k=y′|x=1=2,

所以切线方程为y-1=2(x-1),即y=2x-1.又该切线与y=ax2+(a+2)x+1相切,消去y,得ax2+ax+2=0,∴a≠0且Δ=a2-8a=0,解得a=8.答案8

【训练4】1.函数f(x)=ln x+ax的图象存在与直线2x-y=0平行的切线,则实数a的取值范围是________.

函数f(x)=ln x+ax的图象存在与直线2x-y=0平行的切线,即f′(x)=2在(0,+∞)

上有解,而f′(x)=1

x

+a,即

1

x

+a在(0,+∞)上有解,a=2-

1

x

,因为a>0,所以2-

1

x

2,所以a的取值范围是(-∞,2).答案 (2)(-∞,2)

2.点P是曲线x2-y-ln x=0上的任意一点,则点P到直线y=x-2的最小距离为( )

A.1

B.

3

2

C.

5

2

D.2

解析点P是曲线y=x2-ln x上任意一点,当过点P的切线和直线y=x-2平行时,点P

到直线y=x-2的距离最小,直线y=x-2的斜率为1,令y=x2-ln x,得y′=2x-1 x =

1,解得x=1或x=-1

2

(舍去),故曲线y=x2-ln x上和直线y=x-2平行的切线经过的

切点坐标为(1,1),点(1,1)到直线y=x-2的距离等于2,∴点P到直线y=x-2的最小距离为 2.答案D

第2讲导数在研究函数中的应用

知识梳理

函数的单调性与导数的关系函数y =f (x )在某个区间内可导,则:(1)若f ′(x )>0,则f (x )在这个区间内单调递增;(2)若f ′(x )<0,则f (x )在这个区间内单调递减;(3)若f ′(x )=0,则f (x )在这个区间内是常数函数.

考点一 利用导数研究函数的单调性

【例1】设f (x )=e x (ax 2+x +1)(a >0),试讨论f (x )的单调性.

解 f ′(x )=e x (ax 2+x +1)+e x (2ax +1)=e x [ax 2+(2a +1)x +2]=e x (ax +1)(x +2)

=a e x ? ?

???x +1a (x +2)①当a =12时,f ′(x )=12e x (x +2)2≥0恒成立,∴函数f (x )在R 上单调

递增;

②当0<a <12时,有1a >2,令f ′(x )=a e x ?

????x +1a (x +2)>0,有x >-2或x <-1a , 令f ′(x )=a e x ? ????x +1a (x +2)<0,有-1a <x <-2,∴函数f (x )在? ?

???-∞,-1a 和(-2,+

∞)上单调递增,在? ????-1a ,-2上单调递减;③当a >12时,有1a <2,令f ′(x )=a e x ? ?

???x +1a (x

+2)>0时,有x >-1

a 或x <-2,令f ′(x )=a e x

?

?

???x +1a (x +2)<0时,有-2<x <-1a ,

∴函数f (x )在(-∞,-2)和? ????-1a ,+∞上单调递增;在?

?

???-2,-1a 上单调递减.

【训练1】(2016·四川卷节选)设函数f (x )=ax 2-a -ln x ,g (x )=1x -e

e x ,其中a ∈R ,e =

2.718…为自然对数的底数.(1)讨论f (x )的单调性;(2)证明:当x >1时,g (x )>0.

(1)解 由题意得f ′(x )=2ax -1x =

2ax 2

-1

x

(x >0).当a ≤0时,f ′(x )<0,f (x )在(0,+∞)

内单调递减.当a >0时,由f ′(x )=0有x =1

2a ,当x ∈? ????0,12a 时,f ′(x )<0,f (x )单调递减;当x ∈? ??

??

12a ,+∞时,f ′(x )>0,f (x )单调递增.(2)证明 令s (x )=e x -1-x ,则s ′(x )=e x -1-1.当x >1时,s ′(x )>0,所以e x -1>x ,从而g (x )=1x -1

e

x -1>0.

考点二 求函数的单调区间

【例2】 (2015·重庆卷改编)已知函数f (x )=ax 3+x 2(a ∈R )在x =-4

3

处取得极值.

(1)确定a 的值;(2)若g (x )=f (x )e x ,求函数g (x )的单调减区间.

解 (1)对f (x )求导得f ′(x )=3ax 2

+2x ,因为f (x )在x =-43处取得极值,所以f ′? ???

?-43=0,即3a ·169+2·? ??

??-43=16a 3-8

3=0,解得a =12.

(2)由(1)得g (x )=? ????12x 3+x 2e x 故g ′(x )=? ????32x 2+2x e x +? ????

12x 3+x 2e x =? ????12x 3+52x 2+2x e x =12x (x

+1)(x +4)e x .令g ′(x )<0,得x (x +1)(x +4)<0.解之得-1

【训练2】 已知函数f (x )=x 4+a x -ln x -3

2,其中a ∈R ,且曲线y =f (x )在点(1,f (1))

处的切线垂直于直线y =1

2

x .(1)求a 的值;(2)求函数f (x )的单调区间.

解 (1)对f (x )求导得f ′(x )=14-a x 2-1

x ,由f (x )在点(1,f (1))处的切线垂直于直线y =

12x 知f ′(1)=-34-a =-2,解得a =54.(2)由(1)知f (x )=x 4+54x -ln x -32

,(x >0).则f ′(x )=x 2-4x -54x 2.令f ′(x )=0,解得x =-1或x =5.但-1?(0,+∞),舍去.当x ∈(0,5)

时,f ′(x )<0;当x ∈(5,+∞)时,f ′(x )>0.∴f (x )的增区间为(5,+∞),减区间为(0,5).

考点三 已知函数的单调性求参数

【例3】 (2017·西安模拟)已知函数f (x )=ln x ,g (x )=1

2

ax 2+2x (a ≠0).

(1)若函数h (x )=f (x )-g (x )存在单调递减区间,求a 的取值范围; (2)若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求a 的取值范围.

解 (1)h (x )=ln x -12ax 2-2x ,x >0.∴h ′(x )=1

x -ax -2.若函数h (x )在(0,+∞)上存在

单调减区间,则当x >0时,1x -ax -2<0有解,即a >1x 2-2x 有解.设G (x )=1x 2-2

x

,所以只要

a >G (x )min .(*)又G (x )=? ????1x -12

-1,所以G (x )min =-1.所以a >-1.即实数a 的取值范围是

(-1,+∞).

(2)由h (x )在[1,4]上单调递减,∴当x ∈[1,4]时,h ′(x )=1

x

-ax -2≤0恒成立,(**)

则a ≥1

x 2-2

x 恒成立,所以a ≥G (x )max .又G (x )=? ??

??1x -12

-1,x ∈[1,4]因为x ∈[1,4],所

以1

x ∈??????

14,1,所以G (x )max =-716(此时x =4),所以a ≥-716.当a =-716时,h ′(x )=1x +716x -2=16+7x 2-32x 16x =(7x -4)(x -4)16x ,∵x ∈[1,4],∴h ′(x )=

(7x -4)(x -4)16x ≤0,当且仅当x =4时等号成立.(***)

∴h (x )在[1,4]上为减函数.故实数a 的取值范围是??????

-716,+∞.

【训练3】 已知函数f (x )=x 3-ax -1.

(1)若f (x )在R 上为增函数,求实数a 的取值范围;(2)若函数f (x )的单调减区间为(-1,1),求a 的值.

解 (1)因为f (x )在R 上是增函数,所以f ′(x )=3x 2-a ≥0在R 上恒成立,即a ≤3x 2对x ∈R 恒成立.因为3x 2≥0,所以只需a ≤0.又因为a =0时,f ′(x )=3x 2≥0,当且仅当x =0时取等号.∴f (x )=x 3-1在R 上是增函数.所以实数a 的取值范围是(-∞,0].(2)f ′(x )=3x 2-a .当a ≤0时,f ′(x )≥0,f (x )在(-∞,+∞)上为增函数,

所以a ≤0不合题意.当a >0时,令3x 2-a <0,得-3a 3

3

,∴f (x )的单调递减区间为? ??

??

-3a 3,

3a 3, 依题意,

3a

3

=1,即a =3. 第3讲 导数与函数的极值、最值

知 识 梳 理

1.函数的极值与导数的关系(1)函数的极小值与极小值点:若函数f(x)在点x=a处的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0,而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则点a叫做函数的极小值点,f(a)叫做函数的极小值.(2)函数的极大值与极大值点:若函数f(x)在点x=b处的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0,而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则点b叫做函数的极大值点,f(b)叫做函数的极大值.

2.函数的最值与导数的关系(1)函数f(x)在[a,b]上有最值的条件:如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)求y=f(x)在[a,b]上的最大(小)值的步骤

考点一用导数研究函数的极值

命题角度一根据函数图象判断极值

【例1】设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)

的图象如图所示,则下列结论中一定成立的是( )

A.函数f(x)有极大值f(2)和极小值f(1)

B.函数f(x)有极大值f(-2)和极小值f(1)

C.函数f(x)有极大值f(2)和极小值f(-2)

D.函数f(x)有极大值f(-2)和极小值f(2)

解析由题图可知,当x<-2时,1-x>3,此时f′(x)>0;当-22时,1-x<-1,此时f′(x)>0,由此可以得到函数f(x)在x=-2处取得极大值,在x=2处取得极小值.答案D

命题角度二求函数的极值

【例2】求函数f(x)=x-a ln x(a∈R)的极值.

解 由f ′(x )=1-a x =x -a

x ,x >0知:(1)当a ≤0时,f ′(x )>0,函数f (x )为(0,+∞)

上的增函数,函数f (x )无极值;(2)当a >0时,令f ′(x )=0,解得x =a .又当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞),f ′(x )>0,从而函数f (x )在x =a 处取得极小值,且极小值为f (a )=a -a ln a ,无极大值.综上,当a ≤0时,函数f (x )无极值;当a >0时,函数

f (x )在x =a 处取得极小值a -a ln a ,无极大值. 命题角度三 已知极值求参数

【例3】 已知关于x 的函数f (x )=-13x 3+bx 2+cx +bc 在x =1处有极值-4

3,试求b ,c

的值.

解 ∵f ′(x )=-x 2+2bx +c ,由f (x )在x =1处有极值-

4

3

,可得?

??f ′(1)=-1+2b +c =0,f (1)=-13+b +c +bc =-43.解得??

?b =1,c =-1或???b =-1,

c =3.

若b =1,c =-1,则f ′(x )=

-x 2+2x -1=-(x -1)2≤0,f (x )没有极值.若b =-1,c =3,则f ′(x )=-x 2-2x +3=-(x +3)(x -1).当x 变化时,f (x )与f ′(x )的变化情况如下表:

∴当x =1时,f (x )有极大值-4

3

,满足题意.故b =-1,c =3为所求.

【训练1】 设函数f (x )=ax 3-2x 2+x +c (a >0).

(1)当a =1,且函数图象过(0,1)时,求函数的极小值;(2)若f (x )在R 上无极值点,求a 的取值范围.

解 由题意得f ′(x )=3ax 2-4x +1.(1)函数图象过(0,1)时,有f (0)=c =1.当a =1时,

f ′(x )=3x 2-4x +1.令f ′(x )>0,解得x <1

3或x >1;令f ′(x )<0,解得13

-2×12+1+1=1.

(2)若f (x )在R 上无极值点,则f (x )在R 上是单调函数,故f ′(x )≥0或f ′(x )≤0恒成立.当a =0时,f ′(x )=-4x +1,显然不满足条件;当a ≠0时,f ′(x )≥0或f ′(1)≤0恒成立的充要条件是Δ=(-4)2-4×3a ×1≤0,即16-12a ≤0,解得a ≥4

3.综上,a 的取

值范围是????

??

43,+∞.

考点二 利用导数求函数的最值

【例4】 (2017·郑州模拟)已知函数f (x )=(x -k )e x . (1)求f (x )的单调区间;(2)求f (x )在区间[0,1]上的最小值.

解 (1)由f (x )=(x -k )e x ,得f ′(x )=(x -k +1)e x ,令f ′(x )=0,得x =k -1. 当x 变化时,f (x )与f ′(x )的变化情况如下表:

所以,f (x )的单调递减区间是(-∞,k -1);单调递增区间是(k -1,+∞).

(2)当k -1≤0,即k ≤1时,函数f (x )在[0,1]上单调递增,所以f (x )在区间[0,1]上的最小值为f (0)=-k ,当0

综上可知,当k ≤1时,f (x )min =-k ;当1

【训练2】 设函数f (x )=a ln x -bx 2(x >0),若函数f (x )在x =1处与直线y =-1

2相切,

(1)求实数a ,b 的值;(2)求函数f (x )在????

??

1e ,e 上的最大值.

解 (1)由f (x )=a ln x -bx 2,得f ′(x )=a x

-2bx (x >0).∵函数f (x )在x =1处与直线y =

-12相切.∴???f ′(1)=a -2b =0,f (1)=-b =-12,解得???a =1,b =12.

(2)由(1)知f (x )=ln x -1

2

x 2

,则f ′(x )=1

x -x =1-x 2x ,当1e ≤x ≤e 时,令f ′(x )>0,得1

e

f ′(x )<0,得1

在? ??

??

1e ,1上单调递增,在(1,e)上单调递减, ∴f (x )max =f (1)=-1

2

.

考点三 函数极值与最值的综合问题

【例5】 已知函数f (x )=

ax 2+bx +c

e

x

(a >0)的导函数y =f ′(x )的两个零点为-3和0.

(1)求f (x )的单调区间;(2)若f (x )的极小值为-e 3,求f (x )在区间[-5,+∞)上的最大值.

解 (1)f ′(x )=(2ax +b )e x -(ax 2+bx +c )e x (e x )2=-ax 2+(2a -b )x +b -c

e x .令g (x )=

-ax 2+(2a -b )x +b -c ,由于e x >0.令f ′(x )=0,则g (x )=-ax 2+(2a -b )x +b -c =0,∴-3和0是y =g (x )的零点,且f ′(x )与g (x )的符号相同.又因为a >0,所以-3

g (x )>0,即f ′(x )>0,当x <-3或x >0时,g (x )<0,即f ′(x )<0,所以f (x )的单调递增区间是(-3,0),单调递减区间是(-∞,-3),(0,+∞).

(2)由(1)知,x =-3

是f (x )的极小值点,所以有

?????9a -3b +c

e -3

=-e 3

,g (0)=b -c =0,g (-3)=-9a -3(2a -b )+b -c =0,

解得a =1,b =5,c =5,所以f (x )=x 2

+5x +5

e

x

.因为f (x )的单调递增区间是(-3,0),单调递减区间是(-∞,-3),(0,+∞).所以f (0)=5为函数f (x )的极大值,故f (x )在区间[-5,+∞)上的最大值取f (-5)和f (0)中的最大者,又f (-5)=

5e

-5=5e 5>5=f (0),所数f (x )在区间[-5,+∞)上的最大值是5e 5

.

【训练3】(2017·衡水中学月考)已知函数f(x)=ax-1-ln x(a∈R).

(1)讨论函数f(x)在定义域内的极值点的个数;

(2)若函数f(x)在x=1处取得极值,?x∈(0,+∞),f(x)≥bx-2恒成立,求实数b的最大值.

解(1)f(x)的定义域为(0,+∞),f′(x)=a-1

x

ax-1

x

.当a≤0时,f′(x)≤0在(0,

+∞)上恒成立,函数f(x)在(0,+∞)上单调递减.∴f(x)在(0,+∞)上没有极值点.当

a>0时,由f′(x)<0,得0

a

;由f′(x)>0,得x>

1

a

,∴f(x)在

?

?

?

?

?

0,

1

a上递减,在?

?

?

?

?

1

a

,+∞

上递增,即f(x)在x=1

a

处有极小值.综上,当a≤0时,f(x)在(0,+∞)上没有极值点;

当a>0时,f(x)在(0,+∞)上有一个极值点.

(2)∵函数f(x)在x=1处取得极值,∴f′(1)=a-1=0,则a=1,从而f(x)=x-1-ln

x.因此f(x)≥bx-2?1+1

x

ln x

x

≥b,令g(x)=1+

1

x

ln x

x

,则g′(x)=

ln x-2

x2

,令g′(x)

=0,得x=e2,则g(x)在(0,e2)上递减,在(e2,+∞)上递增,∴g(x)min=g(e2)=1-1

e2,

即b≤1-1

e2

.故实数b的最大值是1-

1

e2

.

第4讲导数与函数的综合应用

考点一利用导数研究函数的性质

【例1】(2015·全国Ⅱ卷)已知函数f(x)=ln x+a(1-x).

(1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值范围.

解 (1)f (x )的定义域为(0,+∞),f ′(x )=1

x

-a .若a ≤0,则f ′(x )>0,所以f (x )在(0,

+∞)上单调递增.若a >0,则当x ∈? ????0,1a 时,f ′(x )>0;当x ∈? ????

1a ,+∞时,f ′(x )<0.

所以f (x )在? ????0,1a 上单调递增,在? ????

1a ,+∞上单调递减.(2)由(1)知,当a ≤0,f (x )在(0,

+∞)上无最大值;当a >0时,f (x )在x =1a 取得最大值,最大值为f ? ????1a =ln 1a +a ? ?

???1-1a =

-ln a +a -1.因此f ? ????

1a >2a -2等价于ln a +a -1<0.令g (a )=ln a +a -1,则g (a )在(0,

+∞)上单调递增,g (1)=0.于是,当01时,g (a )>0.因此,a 的取值范围是(0,1).

【训练1】设f (x )=-13x 3+12x 2+2ax .(1)若f (x )在? ????

23,+∞上存在单调递增区间,求a 的

取值范围;

(2)当0<a <2时,f (x )在[1,4]上的最小值为-16

3

,求f (x )在该区间上的最大值.

解 (1)由f ′(x )=-x 2

+x +2a =-? ????x -122+14+2a ,当x ∈????

??

23,+∞时,f ′(x )的最大

值为f ′? ????23=29+2a ;令29+2a >0,得a >-19.所以,当a >-19时,f (x )在? ????

23,+∞上存

在单调递增区间.

(2)已知0<a <2,f (x )在[1,4]上取到最小值-16

3

,而f ′(x )=-x 2+x +2a 的图象开口

向下,且对称轴x=1

2

,∴f′(1)=-1+1+2a=2a>0,f′(4)=-16+4+2a=2a-12<

0,则必有一点x0∈[1,4],使得f′(x0)=0,此时函数f(x)在[1,x0]上单调递增,在[x0,

4]上单调递减,f(1)=-1

3

1

2

+2a=

1

6

+2a>0,∴f(4)=-

1

3

×64+

1

2

×16+8a=-

40

3

+8a

=-16

3

?a=1.此时,由f′(x0)=-x20+x0+2=0?x0=2或-1(舍去),所以函数f(x)max=f(2)

=10 3 .

考点二利用导数研究函数的零点或方程的根

【例2】(2015·北京卷)设函数f(x)=x2

2

-k ln x,k>0.

(1)求f(x)的单调区间和极值;(2)证明:若f(x)存在零点,则f(x)在区间(1,e]上仅有一个零点.

(1)解由f(x)=x2

2

-k ln x(k>0),得x>0且f′(x)=x-

k

x

x2-k

x

.由f′(x)=0,解得x

=k(负值舍去).f(x)与f′(x)在区间(0,+∞)上的情况如下:

所以f(x)的单调递减区间是(0,k),单调递增区间是(k,+∞).f(x)在x=k处取得

极小值f (k )=

k (1-ln k )

2

.

(2)证明 由(1)知,f (x )在区间(0,+∞)上的最小值为f (k )=

k (1-ln k )

2

.因为f (x )

存在零点,所以

k (1-ln k )

2

≤0,从而k ≥e.当k =e 时,f (x )在区间(1,e)上单调递减,

且f (e)=0,所以x =e 是f (x )在区间(1,e]上的唯一零点.当k >e 时,f (x )在区间(0,e)上单调递减,且f (1)=12>0,f (e)=e -k 2

<0,

所以f (x )在区间(1,e]上仅有一个零点.综上可知,若f (x )存在零点,则f (x )在区间(1,e]上仅有一个零点.

【训练2】 (2016·北京卷节选)设函数f (x )=x 3+ax 2+bx +c .

(1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)设a =b =4,若函数f (x )有三个不同零点,求c 的取值范围.

解 (1)由f (x )=x 3+ax 2+bx +c ,得f ′(x )=3x 2+2ax +b .因为f (0)=c ,f ′(0)=b ,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =bx +c .

(2)当a =b =4时,f (x )=x 3+4x 2+4x +c ,所以f ′(x )=3x 2+8x +4.令f ′(x )=0,得3x 2+8x +4=0,解得x =-2或x =-2

3

.当x 变化时,f (x )与f ′(x )的变化情况如下:

所以,当c >0且c -

3227<0,存在x 1∈(-4,-2),x 2∈? ????-2,-23,x 3∈? ??

??

-23,0,使得f (x 1)

=f (x 2)=f (x 3)=0.由f (x )的单调性知,当且仅当c ∈? ?

???0,3227时,函数f (x )=x 3+4x 2+4x

+c 有三个不同零点.

考点三 导数在不等式中的应用

命题角度一 不等式恒成立问题

【例3】 (2017·合肥模拟)已知f (x )=x ln x ,g (x )=x 3+ax 2-x +2.

(1)如果函数g (x )的单调递减区间为? ????

-13,1,求函数g (x )的解析式;

(2)对任意x ∈(0,+∞),2f (x )≤g ′(x )+2恒成立,求实数a 的取值范围.

解 (1)g ′(x )=3x 2+2ax -1,由题意3x 2+2ax -1<0的解集是? ????

-13,1,即3x 2+2ax -1

=0的两根分别是-13,1.将x =1或-1

3

代入方程3x 2+2ax -1=0,得a =-1.所以g (x )=

x 3-x 2-x +2.

(2)由题意2x ln x ≤3x 2+2ax -1+2在x ∈(0,+∞)上恒成立,可得a ≥ln x -32x -1

2x ,

设h (x )=ln x -32x -12x ,则h ′(x )=1x -32+12x 2=-(x -1)(3x +1)

2x 2

,令h ′(x )=0,

得x=1或-1

3

(舍),当00,当x>1时,h′(x)<0,所以当x=1时,h(x)

取得最大值,h(x)max=-2,所以a≥-2,所以a的取值范围是[-2,+∞).【训练3】已知函数f(x)=x2-ln x-ax,a∈R.

(1)当a=1时,求f(x)的最小值;(2)若f(x)>x,求a的取值范围.

解(1)当a=1时,f(x)=x2-ln x-x,f′(x)=(2x+1)(x-1)

x

.当x∈(0,1)时,

f′(x)<0;当x∈(1,+∞)时,f′(x)>0.所以f(x)的最小值为f(1)=0.

(2)由f(x)>x,得f(x)-x=x2-ln x-(a+1)x>0.由于x>0,所以f(x)>x等价于x-ln x x

>a

+1.令g(x)=x-ln x

x

,则g′(x)=

x2-1+ln x

x2

.当x∈(0,1)时,g′(x)<0;当x∈(1,

+∞)时,g′(x)>0.故g(x)有最小值g(1)=1.故a+1<1,a<0,即a的取值范围是(-∞,0).

命题角度二证明不等式

【例4】(2017·昆明一中月考)已知函数f(x)=ln x-(x-1)2

2

.

(1)求函数f(x)的单调递增区间;(2)证明:当x>1时,f(x)

(1)解f′(x)=1

x

-x+1=

-x2+x+1

x

,x∈(0,+∞).由f′(x)>0得

?

?

?x>0,

x2+x+1>0.

解得

0

2

.故f(x)的单调递增区间是

?

?

?

?

?

0,

1+5

2

.(2)证明令F(x)=f(x)-(x-1),

x∈(0,+∞).则有F′(x)=1-x2

x

.当x∈(1,+∞)时,F′(x)<0,所以F(x)在(1,+∞)

上单调递减,故当x>1时,F(x)

即当x>1时,f(x)1时,f(x)

(1)求函数F(x)=f(x)

x

1

2

的最大值;(2)证明:

f(x)

x

1

2

(1)解F(x)=f(x)

x

1

2

ln x

x

1

2

,F′(x)=

1-ln x

x2

,当F′(x)>0时,0

F′(x)<0时,x>e,故F(x)在(0,e)上是增函数,在(e,+∞)上是减函数,故F(x)

max

=F(e)

=1

e

1

2

.

(2)证明令h(x)=x-f(x)=x-ln x,则h′(x)=1-1

x

x-1

x

,当h′(x)<0时,0

当h′(x)>0时,x>1,故h(x)在(0,1)上是减函数,在(1+∞)上是增函数,

故h(x)min=h(1)=1.又F(x)max=1

e

1

2

<1,故F(x)

f(x)

x

1

2

高考文科数学专题复习导数训练题(文)

考点一:求导公式。 例1. ()f x '是3 1()213f x x x =++的导函数,则(1)f '-的值是 。 解析: ()2'2 +=x x f ,所以()3211'=+=-f 答案:3 考点二:导数的几何意义。 例2. 已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是1 22y x = +,则(1)(1)f f '+= 。 解析:因为 21=k ,所以()211'=f ,由切线过点(1(1))M f ,,可得点M 的纵坐标为25,所以()251= f , 所以()()31'1=+f f 答案:3 例3.曲线 32 242y x x x =--+在点(13)-,处的切线方程是 。 解析: 443'2 --=x x y ,∴点(13)-,处切线的斜率为5443-=--=k ,所以设切线方程为b x y +-=5,将点(13)-, 带入切线方程可得2=b ,所以,过曲线上点(13)-,处的切线方程为:025=-+y x 考点三:导数的几何意义的应用。 例4.已知曲线C : x x x y 232 3+-=,直线kx y l =:,且直线l 与曲线C 相切于点()00,y x 00≠x ,求直线l 的方程及切点坐标。 解析: 直线过原点,则 ()000 ≠= x x y k 。由点()00,y x 在曲线C 上,则02 0300 23x x x y +-=,∴ 2302 00 0+-=x x x y 。又263'2 +-=x x y ,∴ 在 () 00,y x 处曲线C 的切线斜率为 ()263'02 00+-==x x x f k ,∴ 2632302 002 0+-=+-x x x x , 整理得:03200=-x x ,解得: 2 30= x 或00=x (舍),此时, 830-=y ,41-=k 。所以,直线l 的方程为x y 41 -=,切点坐标是??? ??-83,23。 考点四:函数的单调性。 例5.已知 ()132 3+-+=x x ax x f 在R 上是减函数,求a 的取值围。 解析:函数()x f 的导数为 ()163'2 -+=x ax x f 。对于R x ∈都有()0'a 时,函数()x f 在R 上存在增区间。所以,当3->a 时,函数()x f 在R 上不是单调递减函数。 综合(1)(2)(3)可知3-≤a 。 答案:3-≤a 考点五:函数的极值。 例6. 设函数3 2 ()2338f x x ax bx c =+++在1x =及2x =时取得极值。 (1)求a 、b 的值;(2)若对于任意的[03]x ∈, ,都有2 ()f x c <成立,求c 的取值围。 解析:(1) 2 ()663f x x ax b '=++,因为函数()f x 在1x =及2x =取得极值,则有(1)0f '=,(2)0f '=.即6630241230a b a b ++=?? ++=?, .,解得3a =-,4b =。 (2)由(Ⅰ)可知,32()29128f x x x x c =-++, 2 ()618126(1)(2)f x x x x x '=-+=--。

高考数学(文科)中档大题规范练(导数的应用)(含答案)

中档大题规范练——导数的应用 1.已知函数f (x )=x 3-2x +1,g (x )=ln x . (1)求F (x )=f (x )-g (x )的单调区间和极值; (2)是否存在实常数k 和m ,使得x >0时,f (x )≥kx +m 且g (x )≤kx +m ?若存在,求出k 和m 的值;若不存在,说明理由. 解 (1)由F (x )=x 3-2x +1-ln x (x >0), 得F ′(x )=3x 3-2x -1x (x >0), 令F ′(x )=0得x =1,易知F (x )在(0,1)上单调递减,在(1,+∞)上单调递增,从而F (x )的极小值为F (1)=0. (2)易知f (x )与g (x )有一个公共点(1,0),而函数g (x )在点(1,0)处的切线方程为y =x -1,下面只需 验证????? f (x )≥x -1 g (x )≤x -1都成立即可. 设 h (x )=x 3-2x +1-(x -1)(x >0), 则h ′(x )=3x 2-3=3(x +1)(x -1)(x >0). 易知h (x )在(0,1)上单调递减,在(1,+∞)上单调递增, 所以h (x )的最小值为h (1)=0, 所以f (x )≥x -1恒成立. 设k (x )=ln x -(x -1),则k ′(x )=1-x x (x >0). 易知k (x )在(0,1)上单调递增,在(1,+∞)上单调递减, 所以k (x )的最大值为k (1)=0, 所以g (x )≤x -1恒成立. 故存在这样的实常数k =1和m =-1,使得x >0时,f (x )≥kx +m 且g (x )≤kx +m . 2.设函数f (x )=ax 3+bx 2+cx 在区间[0,1]上单调递增,在区间(-∞,0),(1,+∞)上单调递 减,又f ′(12)=32 . (1)求f (x )的解析式. (2)若在区间[0,m ](m >0)上恒有f (x )≤x 成立,求m 的取值范围. 解 (1)f ′(x )=3ax 2+2bx +c , 由已知f ′(0)=f ′(1)=0, 即????? c =0,3a +2b +c =0,解得????? b =-32a ,c =0.

2020年高考文科数学《导数的综合应用》题型归纳与训练

a - a (- ),( , +∞) 单调递增, 在 (- ( 2020 年高考文科数学《导数的综合应用》题型归纳与训练 【题型归纳】 题型一 含参数的分类讨论 例1 已知函数 f ( x ) = ax 3 - 12 x ,导函数为 f '( x) , (1)求函数 f ( x ) 的单调区间; (2)若 f '(1)= -6, 求函数f ( x ) 在[—1,3]上的最大值和最小值。 【答案】略 【解析】(I ) f '( x ) = 3ax 2 - 12 = 3(ax 2 - 4) ,(下面要解不等式 3(ax 2 - 4) > 0 ,到了分类讨论的时机,分 类标准是零) 当 a ≤ 0时, f '( x ) < 0, f ( x )在(-∞, +∞) 单调递减; 当 a > 0时,当x 变化时, f '( x ), f ( x ) 的变化如下表: x (-∞, - 2 ) 2 2 2 , ) a a 2 a ( 2 a , +∞) f '( x ) + 0 — + f ( x ) 极大值 极小值 此时, f ( x )在(-∞, - 2 2 6 a 2 2 , ) 单调递减; a a (II )由 f '(1) = 3a -12 = -6, 得a = 2. 由(I )知, f ( x )在(-1, 2) 单调递减 ,在( 2 ,3)单调递增。 【易错点】搞不清分类讨论的时机,分类讨论不彻底 【思维点拨】分类讨论的难度是两个, 1)分类讨论的时机,也就是何时分类讨论,先按自然的思路推理, 由于参数的存在,到了不能一概而论的时候,自然地进入分类讨论阶段;(2)分类讨论的标准,要做到不 重复一遗漏。还要注意一点的是,最后注意将结果进行合理的整合。 题型二 已知单调性求参数取值范围问题 例 1 已知函数 f ( x) = 1 3 x 3 + x 2 + ax - 5 , 若函数在[1,+∞) 上是单调增函数,求 a 的取值范围

人教版2017年高考数学真题导数专题

2017年高考真题导数专题   一.解答题(共12小题) 1.已知函数f(x)=ae2x+(a﹣2)e x﹣x. (1)讨论f(x)的单调性; (2)若f(x)有两个零点,求a的取值范围. 2.已知函数f(x)=ax2﹣ax﹣xlnx,且f(x)≥0. (1)求a; (2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2. 3.已知函数f(x)=x﹣1﹣alnx. (1)若f(x)≥0,求a的值; (2)设m为整数,且对于任意正整数n,(1+)(1+)…(1+)<m,求m的最小值. 4.已知函数f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值) (1)求b关于a的函数关系式,并写出定义域; (2)证明:b2>3a; (3)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围. 5.设函数f(x)=(1﹣x2)e x. (1)讨论f(x)的单调性; (2)当x≥0时,f(x)≤ax+1,求a的取值范围. 6.已知函数f(x)=(x﹣)e﹣x (x≥). (1)求f(x)的导函数; (2)求f(x)在区间[,+∞)上的取值范围. 7.已知函数f(x)=x2+2cosx,g(x)=e x(cosx﹣sinx+2x﹣2),其中e≈2.17828…是自然对数的底数. (Ⅰ)求曲线y=f(x)在点(π,f(π))处的切线方程;

(Ⅱ)令h(x)=g (x)﹣a f(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值. 8.已知函数f(x)=e x cosx﹣x. (1)求曲线y=f(x)在点(0,f(0))处的切线方程; (2)求函数f(x)在区间[0,]上的最大值和最小值. 9.设a∈Z,已知定义在R上的函数f(x)=2x4+3x3﹣3x2﹣6x+a在区间(1,2)内有一个零点x0,g(x)为f(x)的导函数. (Ⅰ)求g(x)的单调区间; (Ⅱ)设m∈[1,x0)∪(x0,2],函数h(x)=g(x)(m﹣x0)﹣f(m),求证:h(m)h(x0)<0; (Ⅲ)求证:存在大于0的常数A,使得对于任意的正整数p,q,且 ∈[1,x0)∪(x0,2],满足|﹣x0|≥. 10.已知函数f(x)=x3﹣ax2,a∈R, (1)当a=2时,求曲线y=f(x)在点(3,f(3))处的切线方程; (2)设函数g(x)=f(x)+(x﹣a)cosx﹣sinx,讨论g(x)的单调性并判断有无极值,有极值时求出极值. 11.设a,b∈R,|a|≤1.已知函数f(x)=x3﹣6x2﹣3a(a﹣4)x+b,g(x) =e x f(x). (Ⅰ)求f(x)的单调区间; (Ⅱ)已知函数y=g(x)和y=e x的图象在公共点(x0,y0)处有相同的切线,(i)求证:f(x)在x=x0处的导数等于0; (ii)若关于x的不等式g(x)≤e x在区间[x0﹣1,x0+1]上恒成立,求b的取值范围. 12.已知函数f(x)=e x(e x﹣a)﹣a2x. (1)讨论f(x)的单调性; (2)若f(x)≥0,求a的取值范围.

高考文科数学专题复习导数训练题

高考文科数学专题复习导数训练题(文) 一、考点回顾和基础知识 1.导数的概念及其运算是导数应用的基础,是高考重点考查的内容.考查方式以客观题为主,主要考查导数的基本公式和运算法则,以及导数的几何意义. 2.导数的应用是高中数学中的重点内容,导数已由解决问题的工具上升到解决问题必不可少的工具,特别是利用导数来解决函数的单调性与最值问题是高考热点问题.选择填空题侧重于利用导数确定函数的单调性、单调区间和最值问题,解答题侧重于导数的综合应用,即与函数、不等式、数列的综合应用. 3.应用导数解决实际问题,关键是建立适当的数学模型(函数关系),如果函数在给定区间内只有一个极值点,此时函数在这点有极值,而此时不用和端点值进行比较,也可以得知这就是最值. 在0x 处有增量x ?,称为函数)(x f y =在则称函数)(x f y =在)0或0|'x x y =,即 f . )(v u v u ±=±)(...)()()(...)()(2121x f x f x f y x f x f x f y n n +++=?+++=?''''''')()(cv cv v c cv u v vu uv =+=?+=(c 为常数) )0(2''' ≠-= ?? ? ??v v u v vu v u *复合函数的求导法则:)()())(('''x u f x f x ??= 或x u x u y y '''?= 4.几种常见的函数导数: I.0'=C (C 为常数) x x cos )(sin ' = 1')(-=n n nx x (R n ∈) x x sin )(cos '-= II. x x 1)(ln '= e x x a a log 1 )(log '= x x e e =')(a a a x x ln )('= 二、经典例题剖析 考点一:求导公式

高考文科数学真题汇编:导数及应用老师版.doc

2012-2017 年高考文科数学真题汇编:导数及应用老师版

学科教师辅导教案 学员姓名年级高三辅导科目数学 授课老师课时数2h 第次课授课日期及时段2018 年月日: —: 历年高考试题汇编(文)——导数及应用 1.(2014 大纲理)曲线y xe x 1在点(1,1)处切线的斜率等于( C ) A .2e B.e C.2D.1 2.(2014 新标 2 理) 设曲线 y=ax-ln(x+1) 在点 (0,0)处的切线方程为 y=2x,则 a= ( D ) A. 0 B. 1 C. 2 D. 3 3.( 2013 浙江文 ) 已知函数 y=f(x)的图象是下列四个图 象之一,且其导函数 y=f′(x)的图象如右图所示,则该函数的图象是 ( B ) 4.(2012 陕西文)设函数 f(x)= 2x +lnx 则( D )A .x= 1为 f(x) 的极大值点B.x= 1为

f(x) 的极小值点 C.x=2 为 f(x) 的极大值点D.x=2 为 f(x) 的极小值点 5.(2014 新标 2 文) 函数f (x)在x x0 处导数存在,若p : f ( x0 )0 : q : x x0是 f ( x) 的极值点,则 A .p是q的充分必要条件 B. p是q的充分条件,但不是 q 的必要条件 C. p是q的必要条件,但不是q的充分条件 D. p既不是 q 的充分条件,也不是 q 的必要条件 【答案】 C 6.(2012 广东理)曲线y x3 x 3 在点 1,3 处的切线方程为 ___________________. 【答案】 2x-y+1=0 7.(2013 广东理)若曲线y kx ln x 在点 (1,k) 处的切线平行于 x 轴,则k 【答案】 -1 8.(2013 广东文)若曲线y ax2 ln x 在点 (1,a) 处的切线平行于 x 轴,则 a . 【答案】1 2 9 . ( 2014 广东文 ) 曲线y 5 e x 3 在点 (0, 2) 处的切线方程为.

(完整)高考文科数学导数专题复习

高考文科数学导数专题复习 第1讲 变化率与导数、导数的计算 知 识 梳 理 1.导数的概念 (1)函数y =f (x )在x =x 0处的导数f ′(x 0)或y ′|x =x 0,即f ′(x 0)=0 lim x ?→f (x 0+Δx )-f (x 0) Δx . (2)函数f (x )的导函数f ′(x )=0 lim x ?→f (x +Δx )-f (x ) Δx 为f (x )的导函数. 2.导数的几何意义函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率,过点P 的切线方程为y -y 0=f ′(x 0)(x -x 0). 3.基本初等函数的导数公式 4.导数的运算法则若f ′(x ),g ′(x )存在,则有: 考点一 导数的计算 【例1】 求下列函数的导数: (1)y =e x ln x ;(2)y =x ? ?? ??x 2+1x +1x 3; 解 (1)y ′=(e x )′ln x +e x (ln x )′=e x ln x +e x 1x =? ?? ??ln x +1x e x .(2)因为y =x 3 +1+1x 2, 所以y ′=(x 3)′+(1)′+? ?? ??1x 2′=3x 2 -2x 3. 【训练1】 (1) 已知函数f (x )的导函数为f ′(x ),且满足f (x )=2x ·f ′(1)+ln x ,则f ′(1)等于( ) A.-e B.-1 C.1 D.e 解析 由f (x )=2xf ′(1)+ln x ,得f ′(x )=2f ′(1)+1 x ,∴f ′(1)=2f ′(1)+1,则f ′(1)=-1.答案 B (2)(2015·天津卷)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________. (2)f ′(x )=a ? ?? ??ln x +x ·1x =a (1+ln x ).由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3,所以a =3.答案 (2)3 考点二 导数的几何意义 命题角度一 求切线方程 【例2】 (2016·全国Ⅲ卷)已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1 -x ,则曲线y =f (x )在点(1,2)处的 切线方程是________.解析 (1)设x >0,则-x <0,f (-x )=e x -1 +x .又f (x )为偶函数,f (x )=f (-x )=e x -1 +x , 所以当x >0时,f (x )=e x -1 +x .因此,当x >0时,f ′(x )=e x -1 +1,f ′(1)=e 0 +1=2.则曲线y =f (x )在点(1, 2)处的切线的斜率为f ′(1)=2,所以切线方程为y -2=2(x -1),即2x -y =0. 答案 2x -y =0 【训练2】(2017·威海质检)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为( )A.x +y -1=0 B.x -y -1=0 C.x +y +1=0 D.x -y +1=0

2019年高考文科数学导数及其应用分类汇编

导数及其应用 1.【2019年高考全国Ⅱ卷文数】曲线y =2sin x +cos x 在点(π,-1)处的切线方程为 A .10x y --π-= B .2210x y --π-= C .2210x y +-π+= D .10x y +-π+= 【答案】C 【解析】2cos sin ,y x x '=-π2cos πsin π2,x y =∴=-=-' 则2sin cos y x x =+在点(,1)π-处的切线方程为(1)2()y x --=--π,即2210x y +-π+=. 故选C . 2.【2019年高考全国Ⅲ卷文数】已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则 A .e 1a b ==-, B .a=e ,b =1 C .1e 1a b -==, D .1e a -=,1b =- 【答案】D 【解析】∵e ln 1,x y a x '=++ ∴切线的斜率1|e 12x k y a ='==+=,1e a -∴=, 将(1,1)代入2y x b =+,得21,1b b +==-. 故选D . 3.【2019年高考浙江】已知,a b ∈R ,函数32,0()11(1),03 2x x f x x a x ax x 0 C .a >–1,b <0 D .a >–1,b >0 【答案】C 【解析】当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b =0,得x , 则y =f (x )﹣ax ﹣b 最多有一个零点; 当x ≥0时,y =f (x )﹣ax ﹣b x 3 (a +1)x 2+ax ﹣ax ﹣b x 3 (a +1)x 2﹣b ,

高中数学文科导数练习题

数学导数练习(文) 一、1. 一个物体的运动方程为S=1+t+t^2其中s 的单位是米,t 的单位是秒,那么物体在3秒末的瞬时速度是( )A 7米/秒 B 6米/秒 C 5米/秒 D 8米/秒 2. 已知函数f (x )=ax 2+c ,且(1)f '=2,则a 的值为( ) A.1 B.2 C.-1 D. 0 3 ()f x 与()g x 是定义在R 上的两个可导函数,若()f x ,()g x 满足''()()f x g x =,则 ()f x 与()g x 满足( )A ()f x =2()g x B ()f x -()g x 为常数函数 C ()f x =()0g x = D ()f x +()g x 为常数函数 4. 函数3y x x =+的递增区间是( )A )1,(-∞ B )1,1(- C ),(+∞-∞ D ),1(+∞ 5.若函数f(x)在区间(a ,b )内函数的导数为正,且f(b)≤0,则函数f(x)在(a , b )内有( )A. f(x) 〉0 B.f(x)〈 0 C.f(x) = 0 D.无法确定 6.0'()f x =0是可导函数y =f(x)在点x =x 0处有极值的 ( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .非充分非必要条件 7.曲线3()2f x x x =+-在0p 处的切线平行于直线41y x =-,则0p 点的坐标为( ) A (1,0) B (2,8) C (1,0)和(1,4)-- D (2,8)和(1,4)-- 8.函数313y x x =+- 有 ( ) A.极小值-1,极大值1 B. 极小值-2,极大值3 C.极小值-1,极大值3 D. 极小值-2,极大值2 9 对于R 上可导的任意函数()f x ,若满足'(1)()0x f x -≥,则必有( ) A (0)(2)2(1)f f f +< B (0)(2)2(1)f f f +≤ C (0)(2)2(1)f f f +≥ D (0)(2)2(1)f f f +> 10.函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在 ),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内 有极小值点( ) A. 1个 B.2个 C.3个 D.4个 二、11.函数3 2 y x x x =--的单调区间为___________________________________. 12.已知函数3 ()f x x ax =+在R 上有两个极值点,则实数a 的取值范围是 . 13.曲线x x y 43 -=在点(1,3)- 处的切线倾斜角为__________. 14. 曲线3 x y =在点()1,1处的切线与x 轴、直线2=x 所围成的三角形的面积为 __________。 15. 已知曲线3 1433 y x = + ,在点(2,4)P 的切线方程是______________ a b x y ) (x f y '=O

2019年高考数学理科数学 导数及其应用分类汇编

2019年高考数学理科数学 导数及其应用 1.【2019年高考全国Ⅲ卷理数】已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则 A .e 1a b ==-, B .a=e ,b =1 C .1e 1a b -==, D .1e a -=,1b =- 【答案】D 【解析】∵e ln 1,x y a x '=++ ∴切线的斜率1|e 12x k y a ='==+=,1e a -∴=, 将(1,1)代入2y x b =+,得21,1b b +==-. 故选D . 2.【2019年高考天津理数】已知a ∈R ,设函数222,1, ()ln , 1.x ax a x f x x a x x ?-+≤=?->?若关于x 的不等式()0 f x ≥在R 上恒成立,则a 的取值范围为 A .[] 0,1 B .[] 0,2 C .[]0,e D .[] 1,e 【答案】C 【解析】当1x =时,(1)12210f a a =-+=>恒成立; 当1x <时,2 2 ()22021 x f x x ax a a x =-+≥?≥-恒成立, 令2 ()1 x g x x =-, 则222(11)(1)2(1)1 ()111x x x x g x x x x -----+=-=-=- --- 11122(1)2011x x x x ???? =--+-≤--?= ? ? ?--???? , 当1 11x x -= -,即0x =时取等号, ∴max 2()0a g x ≥=,则0a >.

当1x >时,()ln 0f x x a x =-≥,即ln x a x ≤恒成立, 令()ln x h x x = ,则2ln 1()(ln )x h x x -'=, 当e x >时,()0h x '>,函数()h x 单调递增, 当0e x <<时,()0h x '<,函数()h x 单调递减, 则e x =时,()h x 取得最小值(e)e h =, ∴min ()e a h x ≤=, 综上可知,a 的取值范围是[0,e]. 故选C. 3.(2019浙江)已知,a b ∈R ,函数32 ,0 ()11(1),03 2x x f x x a x ax x 0 C .a >–1,b <0 D .a >–1,b >0 【答案】C 【解析】当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b =0,得x , 则y =f (x )﹣ax ﹣b 最多有一个零点; 当x ≥0时,y =f (x )﹣ax ﹣b x 3 (a +1)x 2+ax ﹣ax ﹣b x 3 (a +1)x 2﹣b , 2(1)y x a x =+-', 当a +1≤0,即a ≤﹣1时,y ′≥0,y =f (x )﹣ax ﹣b 在[0,+∞)上单调递增, 则y =f (x )﹣ax ﹣b 最多有一个零点,不合题意; 当a +1>0,即a >﹣1时,令y ′>0得x ∈(a +1,+∞),此时函数单调递增, 令y ′<0得x ∈[0,a +1),此时函数单调递减,则函数最多有2个零点. 根据题意,函数y =f (x )﹣ax ﹣b 恰有3个零点?函数y =f (x )﹣ax ﹣b 在(﹣∞,0)上有一个零点,在[0,+∞)上有2个零点, 如图:

高考文科数学导数全国卷

导数高考题专练 1、(2012课标全国Ⅰ,文21)(本小题满分12分) 设函数f (x )= e x -ax -2 (Ⅰ)求f (x )的单调区间 (Ⅱ)若a =1,k 为整数,且当x >0时,(x -k ) f ′(x )+x +1>0,求k 的最大值 2、(2013课标全国Ⅰ,文20)(本小题满分12分) 已知函数f (x )=e x (ax +b )-x 2-4x ,曲线y =f (x )在点(0,f (0))处的切线方程为y =4x +4. (1)求a ,b 的值; (2)讨论f (x )的单调性,并求f (x )的极大值. 3、(2015课标全国Ⅰ,文21).(本小题满分12分) 设函数2()ln x f x e a x =-. (Ⅰ)讨论()f x 的导函数'()f x 零点的个数; (Ⅱ)证明:当0a >时,2 ()2ln f x a a a ≥+。 4、(2016课标全国Ⅰ,文21)(本小题满分12分) 已知函数.2)1(2)(-+-= x a e x x f x )( (I)讨论)(x f 的单调性; (II)若)(x f 有两个零点,求的取值范围. 5、((2016全国新课标二,20)(本小题满分12分) 已知函数()(1)ln (1)f x x x a x =+--. (I )当4a =时,求曲线()y f x =在()1,(1)f 处的切线方程;

(II)若当()1,x ∈+∞时,()0f x >,求a 的取值范围. 6(2016山东文科。20)(本小题满分13分) 设f (x )=x ln x –ax 2+(2a –1)x ,a ∈R . (Ⅰ)令g (x )=f'(x ),求g (x )的单调区间; (Ⅱ)已知f (x )在x =1处取得极大值.求实数a 的取值范围. 2017.(12分) 已知函数)f x =(a e 2x +(a ﹣2) e x ﹣x . (1)讨论()f x 的单调性; (2)若()f x 有两个零点,求a 的取值范围. 2018全国卷)(12分) 已知函数()1 ln f x x a x x = -+. ⑴讨论()f x 的单调性; ⑵若()f x 存在两个极值点1x ,2x ,证明: ()()1212 2f x f x a x x -<--. 导数高考题专练(答案) 1 2解:(1)f ′(x )=e x (ax +a +b )-2x -4. 由已知得f (0)=4,f ′(0)=4. 故b =4,a +b =8. 从而a =4,b =4. (2)由(1)知,f (x )=4e x (x +1)-x 2-4x ,

高考文科数学专题复习导数训练题文

欢迎下载学习好资料 高考文科数学专题复习导数训练题(文)一、考点回顾导数的概念及其运算是导数应用的基础,是高考重点考查的内容。考查方式以客观题为主,主1. 要考查导数的基本公式和运算法则,以及导数的几何意义。导数的应用是高中数学中的重点内容,导数已由解决问题的工具上升到解决问题必不可少的工2.具,特别是利用导数来解决函数的单调性与最值问题是高考热点问题。选择填空题侧重于利用导不等式、解答题侧重于导数的综合应用,即与函数、数确定函数的单调性、单调区间和最值问题,数列的综合应用。3.应用导数解决实际问题,关键是建立恰当的数学模型(函数关系),如果函数在给定区间内只有一个极值点,此时函数在这点有极大(小)值,而此时不用和端点值进行比较,也可以得知这就是最大(小)值。 二、经典例题剖析 考点一:求导公式。 13f(x)?x?2x?1??ff(?1)(x)3的值是的导函数,则。例1. 是 ????2?1?2?1?f'32x??xf'解析:,所以 答案:3 点评:本题考查多项式的求导法则。 考点二:导数的几何意义。 1x?y?2(1?(1))f(x)My,f2,点则图数2. 例已知函的象程的处切线方在是 ??(1)(f1?)f。 115???fk?'1M(1,f(1))222,所的纵坐标为,所以,由切线过点,可得点M 解析:因为5???f1?????3'f1?f12以,所以3 答案: 学习好资料欢迎下载 32?3)(1,2??4x?yx?2x例3. 。在点曲线处的切线方程是 2?3)(1,4??4xy'?3x5?k?3?4?4??解析:,所以设切线方程,处切线的斜率为点?3)(1, ?3)y??5x?b(1,2b?,将点处的切线为带入切线方程可得,所以,过曲线上点5x?y?2?0方程为:5x?y?2?0答案:点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。 ??23x?,y0x l:y?kx x?3x?2y?xl与曲线C且直线相切于点,,例,4.已知曲线C:直线000l的方程及切点坐标。求直线y??00k??x??0x y,x?0在曲析解:线直线过原点,C则。由点上, ??00232x?2x?3xy?x yx,y'?3x?6x?2??0在,处,。又 则00y20?x?3x?2 000000??222x?3x?2?3x?6x?22x?'6x??3xk?f?,整曲线C,的切线斜率为 0000000331y???k??x03x??2x x?00082400。所以,(舍),此时,,解得:理得:,或033??1,???y??x82l??4的方程为,切点坐标是直线。 33??1,???y??x82l??4的方程为,切点坐标是答案:直线点评:本小题考查导数

(完整版)专题05导数与函数的极值、最值—三年高考(2015-2017)数学(文)真题汇编.doc

1. 【 2016 高考四川文科】已知函数的极小值点,则=( ) (A)-4 (B) -2 (C)4 (D)2 【答案】 D 考点:函数导数与极值. 【名师点睛】本题考查函数的极值.在可导函数中函数的极值点是方程但是极大值点还是极小值点,需要通过这点两边的导数的正负性来判断,在 的解,附近,如 果时,,时,则是极小值点,如果时,,时,,则是极大值点, 2. 【 2015 高考福建,文A.充分而不必要条 件12】“对任意 B.必要而不充分条件 ,”是“ C .充分必要条件 D ”的() .既不充分也不必 要条件 【答案】 B 【解析】当时,,构造函数,则 .故在单调递增,故,则;当时,不等式等价于,构造函数 ,则,故在递增,故 ”是“,则.综上 ”的必要不充分条件,选 所述,“ 对任 意B. ,

【考点定位】导数的应用. 【名师点睛】 本题以充分条件和必要条件为载体考查三角函数和导数在单调性上的应用, 根 据已知条件构造函数,进而研究其图象与性质,是函数思想的体现,属于难题. 3. (2014 课标全国Ⅰ,文 12) 已知函数 f ( x ) = ax 3 - 3 2 + 1,若 f ( ) 存在唯一的零点 x 0 ,且 x x x 0>0,则 a 的取值范围是 ( ) . A . (2 ,+∞ ) B . (1 ,+∞) C . ( -∞,- 2) D .( -∞,- 1) 答案: C 解析:当 a = 0 时, f ( x ) =- 3x 2+ 1 存在两个零点,不合题意; 当 a >0 时, f ′(x ) = 3ax 2- 6x = , 令 ′( ) = 0,得 x 1 = 0, , fx 所以 f ( x ) 在 x =0 处取得极大值 f (0) = 1,在 处取得极小值 , 要使 f ( x ) 有唯一的零点,需 ,但这时零点 x 0 一定小于 0,不合题意; 当 a <0 时, f ′(x ) = 3ax 2- 6x = , 令 f ′(x ) = 0,得 x 1=0, ,这时 f ( x ) 在 x =0 处取得极大值 f (0) = 1,在 处取得极小值 , 要使 f ( x ) 有唯一零点,应满足 ,解得 a <- 2( a > 2 舍去 ) ,且这时 零点 x 0 一定大于 0,满足题意,故 a 的取值范围是 ( -∞,- 2) . 名师点睛:本题考查导数法求函数的单调性与极值,函数的零点,考查分析转化能力,分类讨论思想, 较难题 . 注意区别函数的零点与极值点 . 4. 【 2014 辽宁文 12】当 时,不等式 恒成立,则实数 a 的取 值范围是()

高三文科数学导数及其应用

导数及其应用 导数的几何意义与运算 1.常见函数的导数 (1)C '=0(C 为常数) (2)()n x '=1n nx - (3)(sin )x '=cos x (4)(cos )x '=sin x - (5)()x e '=x e (6)()x a '=ln x a a (7)(ln )x '=1x (8)(log )a x '=11log ln a e x x a = 2.可导函数四则运算的求导法则 (1)()u v '±=u v ''± (2)()uv '=u v uv ''+ (3)()u v '=2u v uv v ''-(0)v ≠ 3.导数的几何意义 4.已知切线的斜率,求切线方程 例题1 曲线3 11y x =+在点(1,12)P 处的切线与y 轴交点的纵坐标是( ) A.9- B. 3- C. 9 D. 15 例题2已知函数()f x 的导函数为()f x ',且满足()2(1)ln ,f x xf x '=+则(1)f '=( ) A.e - B. 1- C. 1 D. e 例题3函数2(0)y x x =>的图象在点2(,)k k a a 处的切线与x 轴交点的横坐标为1,k a k +为正整数,116,a =则 135a a a ++的值为__________ 例题4在平面直角坐标系xOy 中,已知点P 是函数)0()(>=x e x f x 的图象上的动点,该图象在P 处的切线l 交y 轴于点M ,过点P 作l 的垂线交y 轴于点N ,设线段MN 的中点的纵坐标为t ,则t 的最大值是_______ 利用导数研究函数的单调性

A. (,2)-∞ B. (0,3) C. (1,4) D. (2,)+∞ 例题2设函数22 ()ln ,0f x a x x ax a =-+> (Ⅰ)求()f x 的单调区间; 例题3已知函数()ln()x f x e x m =-+. (Ⅰ)设0x =是()f x 的极值点,求m ,并讨论()f x 的单调性; 利用导数研究函数的极值与最值 [高考常考] 例题1设函数2()(,,)f x ax bx c a b c R =++∈,若1x =-为函数()x f x e 的一个极值点,则下列图象不可能为

(完整版)高三文科数学导数专题复习

高三文科数学导数专题复习 1.已知函数)(,3 ,sin )(x f x x b ax x f 时当π =+=取得极小值 33 -π . (Ⅰ)求a ,b 的值; (Ⅱ)设直线)(:),(:x F y S x g y l ==曲线. 若直线l 与曲线S 同时满足下列两个条件: (1)直线l 与曲线S 相切且至少有两个切点; (2)对任意x ∈R 都有)()(x F x g ≥. 则称直线l 为曲线S 的“上夹线”. 试证明:直线2:+=x y l 是曲线x b ax y S sin :+=的“上夹线”. 2. 设函数3 221()231,0 1.3 f x x ax a x a =- +-+<< (1)求函数)(x f 的极大值; (2)若[]1,1x a a ∈-+时,恒有()a f x a '-≤≤成立(其中()f x '是函数()f x 的导函数),试确定实数a 的取值范围. 3.如图所示,A 、B 为函数)11(32 ≤≤-=x x y 图象上两点,且AB//x 轴,点M (1,m )(m>3)是△ABC 边AC 的中点. (1)设点B 的横坐标为t ,△ABC 的面积为S ,求S 关于t 的函数关系式)(t f S =; (2)求函数)(t f S =的最大值,并求出相应的点C 的坐标.

4. 已知函数x a x x f ln )(2-=在]2,1(是增函数,x a x x g -=)(在(0,1)为减函数. (I )求)(x f 、)(x g 的表达式; (II )求证:当0>x 时,方程2)()(+=x g x f 有唯一解; (III )当1->b 时,若21 2)(x bx x f -≥在x ∈]1,0(内恒成立,求b 的取值范围 5. 已知函数3 2 ()f x x ax bx c =+++在2x =处有极值,曲线()y f x =在1x =处的切线平行于直线32y x =--,试求函数()f x 的极大值与极小值的差。 6.函数x a x x f - =2)(的定义域为]1,0((a 为实数). (1)当1-=a 时,求函数)(x f y =的值域; (2)若函数)(x f y =在定义域上是减函数,求a 的取值范围; (3)求函数)(x f y =在∈x ]1,0(上的最大值及最小值,并求出函数取最值时x 的值. 7.设x=0是函数2()()()x f x x ax b e x R =++∈的一个极值点. (Ⅰ)求a 与b 的关系式(用a 表示b ),并求)(x f 的单调区间; (Ⅱ)设]2,2[,,)1()(,0212 2-∈++-=>+ξξ问是否存在x e a a x g a ,使得|1|)()(21≤-ξξg f 成立?若存在,求a 的取值范围;若不存在,说明理由. 8. 设函数()2ln q f x px x x =- -,且()2p f e qe e =--,其中e 是自然对数的底数. (1)求p 与q 的关系;

高考文科数学专题复习导数训练题(文)

高考文科数学专题复习导数训练题(文) 一、考点回顾 1.导数的概念及其运算是导数应用的基础,是高考重点考查的内容。考查方式以客观题为主,主要考查导数的基本公式和运算法则,以及导数的几何意义。 2.导数的应用是高中数学中的重点内容,导数已由解决问题的工具上升到解决问题必不可少的工具,特别是利用导数来解决函数的单调性与最值问题是高考热点问题。选择填空题侧重于利用导数确定函数的单调性、单调区间和最值问题,解答题侧重于导数的综合应用,即与函数、不等式、数列的综合应用。 3.应用导数解决实际问题,关键是建立恰当的数学模型(函数关系),如果函数在给定区间内只有一个极值点,此时函数在这点有极大(小)值,而此时不用和端点值进行比较,也可以得知这就是最大(小)值。 二、经典例题剖析 考点一:求导公式。 例1. ()f x '是3 1()213f x x x =++的导函数,则(1)f '-的值是 。 解析: ()2'2+=x x f ,所以()3211'=+=-f 答案:3 点评:本题考查多项式的求导法则。 考点二:导数的几何意义。 例2. 已知函数()y f x =的图象在点(1 (1))M f ,处的切线方程是1 22y x = +,则 (1)(1)f f '+= 。 解析:因为 21= k ,所以()211'= f ,由切线过点(1(1))M f ,,可得点M 的纵坐标为25 ,所 以 ()25 1= f ,所以()()31'1=+f f 答案:3

例3.曲线 32 242y x x x =--+在点(13)-,处的切线方程是 。 解析: 443'2 --=x x y ,∴点(13)-,处切线的斜率为5443-=--=k ,所以设切线方程为b x y +-=5,将点(13)-, 带入切线方程可得2=b ,所以,过曲线上点(13)-,处的切线方程为:025=-+y x 答案:025=-+y x 点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。 例4.已知曲线C :x x x y 232 3+-=,直线kx y l =:,且直线l 与曲线C 相切于点()00,y x 00 ≠x ,求直线l 的方程及切点坐标。 解析: 直线过原点,则 ()000 ≠= x x y k 。由点 () 00,y x 在曲线C 上,则 02 30023x x x y +-=,∴?2302 00 0+-=x x x y 。又263'2 +-=x x y ,∴ 在 ()00,y x 处 曲线C 的切线斜率为 ()263'02 00+-==x x x f k ,∴?2632302 002 0+-=+-x x x x ,整理 得:0 3200=-x x ,解得: 230= x 或00=x (舍),此时,830-=y ,41 - =k 。所以,直线l 的方程为 x y 41 -=,切点坐标是??? ??-83,23。 答案:直线l 的方程为 x y 41 -=,切点坐标是??? ??-83,23 点评:本小题考查导数几何意义的应用。解决此类问题时应注意“切点既在曲线上又在切线上”这个条件的应用。函数在某点可导是相应曲线上过该点存在切线的充分条件,而不是必要条件。 考点四:函数的单调性。 例5.已知()132 3 +-+=x x ax x f 在R 上是减函数,求a 的取值范围。 解析:函数()x f 的导数为 ()163'2 -+=x ax x f 。对于R x ∈都有()0'

相关文档
最新文档