钛锆合金
《强变形加工钛锆合金的力学性能和摩擦行为研究》

《强变形加工钛锆合金的力学性能和摩擦行为研究》篇一一、引言近年来,钛锆合金因其在高强度、轻量化和耐腐蚀性等方面的优异性能,在航空、航天、医疗和汽车等领域得到了广泛应用。
然而,其力学性能和摩擦行为的研究仍处于发展阶段。
本研究致力于深入探索强变形加工钛锆合金的力学性能及摩擦磨损行为,旨在为实际生产提供理论支撑和实践指导。
二、材料与方法1. 材料制备本研究所用钛锆合金采用真空电弧熔炼法制备,经过均匀化处理和强变形加工后,获得所需的材料。
2. 力学性能测试通过拉伸试验、硬度测试等方法,研究材料的抗拉强度、屈服强度、延伸率等力学性能。
3. 摩擦行为研究采用摩擦磨损试验机,对材料进行不同条件下的摩擦磨损试验,观察其摩擦系数和磨损量的变化。
三、强变形加工钛锆合金的力学性能研究1. 抗拉强度与屈服强度强变形加工后的钛锆合金具有较高的抗拉强度和屈服强度,这得益于其独特的微观结构和晶粒细化效应。
在拉伸过程中,材料表现出较好的塑性变形能力和抵抗外力破坏的能力。
2. 延伸率与塑性变形能力尽管钛锆合金的抗拉强度和屈服强度较高,但其延伸率也相对较高,这表明材料在承受外力时具有较好的塑性变形能力。
此外,强变形加工过程中产生的晶粒细化效应也有助于提高材料的塑性变形能力。
3. 硬度与耐磨性通过硬度测试发现,强变形加工后的钛锆合金具有较高的硬度,这有助于提高材料的耐磨性。
此外,通过摩擦磨损试验发现,在一定的摩擦条件下,钛锆合金的磨损量较低,表现出较好的耐磨性能。
四、强变形加工钛锆合金的摩擦行为研究1. 摩擦系数变化规律在摩擦过程中,钛锆合金的摩擦系数呈现出先升高后降低的趋势。
这主要是由于在摩擦初期,材料表面存在一些杂质和氧化物,这些杂质和氧化物在摩擦过程中起到了润滑作用,导致摩擦系数升高;随着摩擦过程的进行,这些杂质和氧化物逐渐被磨去,使得材料表面逐渐暴露出真实的金属表面,从而使得摩擦系数降低。
2. 磨损机制分析通过观察和分析摩擦后的材料表面形貌及磨损轨迹,发现钛锆合金的磨损机制主要为磨粒磨损和粘着磨损。
锆合金和钛合金 硬度-概述说明以及解释

锆合金和钛合金硬度-概述说明以及解释1.引言1.1 概述锆合金和钛合金是两种常见的结构材料,具有相似的性质和应用领域,但在硬度方面存在一定差异。
锆合金是一种以锆为主要成分的合金材料,具有良好的耐热性、耐腐蚀性和高强度。
钛合金则是一种以钛为主要成分的合金材料,具有高强度、轻量化、耐腐蚀等特点。
硬度作为材料力学性能的重要指标之一,对材料的使用性能和工程应用起着关键性的作用。
在硬度方面,锆合金相对于钛合金来说相对较低。
锆合金的硬度主要受到其晶体结构和成分的影响。
锆合金晶体结构为六方最密堆积结构,其晶体间的键结构较弱,因此锆合金的硬度相对较低。
而钛合金具有良好的热处理性能,其中添加不同的合金元素可以显著提高钛合金的硬度。
锆合金和钛合金由于其特殊的物理和化学性质,被广泛应用于航空航天、能源、医疗器械和汽车等领域。
锆合金在核工业中具有重要的应用,可以用于制作核反应堆组件和核燃料包壳,其优异的耐腐蚀性能和高温稳定性使其成为核工程领域的理想材料。
而钛合金由于其优良的强度和轻量化特点,被广泛应用于航空航天和航空制造领域,用于制作飞机结构件和发动机部件。
针对锆合金和钛合金的制备方法,随着科学技术的进步,不断涌现出更多的先进制备技术。
常见的锆合金制备方法包括熔炼法、粉末冶金法和等离子喷涂法等,通过合理的工艺参数可以得到不同组织和性能的锆合金。
而钛合金制备方法主要包括粉末冶金法、熔炼法和等离子喷涂法等,通过优化合金配比和工艺参数可以得到具有不同性能的钛合金材料。
总之,锆合金和钛合金作为常见的结构材料在硬度方面存在一定差异。
随着科学技术的发展和材料制备技术的进步,锆合金和钛合金的硬度特性将得到进一步的优化和改进,为其在不同领域的广泛应用提供更好的支持。
1.2 文章结构文章结构:本文分为引言、正文和结论三个部分。
引言部分包括概述、文章结构和目的三个小节。
首先在概述部分,介绍了锆合金和钛合金硬度这一话题的背景和重要性。
接着在文章结构部分,说明了本文的大纲和各个章节的内容安排,以及各章节之间的逻辑关系。
钛锆合金在口腔修复中的应用及生物毒性

钛锆合金在口腔修复中的应用及生物毒性目的探讨钛锆合金在口腔修复中的应用,并分析其在体内外的生物毒性。
方法选择2007年3月~2010年3月来笔者所在医院口腔科采用钛锆合金进行修复的患者22例为观察对象,采用激光立体成形法制作钛锆合金可摘局部义齿、义齿的支架、基托、桩冠钉、牙体种植体及上部结构,并采用MTT法进行细胞毒性试验。
结果钛锆合金可摘局部义齿共12例35颗、义齿的支架38个、基托7个、桩冠钉8个、牙体种植体6颗。
随访观察后发现除1例牙齿支架损坏和1例牙齿支架松动外,所有患者的可摘除局部义齿的卡环固定力良好,未发现明显磨损的修复体;仅发现1例患者牙龈红肿、充血;50%浸提液的光吸收值(OD)均值为(0.371±0.02),RGR为98.8%,毒性分级为1级。
结论钛锆合金作为口腔修复的材料具有良好的机械性能,耐腐蚀性和耐磨损性良好,且生物安全性较高,适合口腔修复使用。
标签:钛锆合金;口腔修复;应用;生物毒性口腔修复是口腔健康的基本保障技术,是保证人群生活质量的前提,随着口腔修复材料的不断更新发展,合金材料以其良好的生物学特性和力学特性等被广泛应用,钛锆合金在临床口腔修复中应用也逐年增多[1]。
因修复材料需要在口腔内长期替代天然牙齿行使咬合功能,因此其生物安全性也越来越受关注。
本文观察了来笔者所在医院采用钛锆合金进行口腔修复的患者的临床疗效并评价了其生物毒性,现将结果报道如下。
1资料与方法1.1一般资料选择2007年3月~2010年3月来笔者所在医院口腔科采用钛锆合金进行修复的患者22例为观察对象,其中男18例,女4例,年龄25~45岁,平均29.6岁。
主要需要修复可摘局部义齿、义齿的支架、基托、桩冠钉、牙体种植体。
1.2口腔修复方法采用激光立体成形法制作钛锆合金可摘局部义齿、义齿的支架、基托、桩冠钉、牙体种植体及上部结构。
通过进行1~3年的随访,观察修复体的稳定性、腐蚀情况和生物相容性等情况。
钛合金的主要成分

钛合金的主要成分钛合金是由钛和其他合金元素组成的金属材料。
它具有较低的密度、高的强度、优良的抗腐蚀性能和良好的高温性能,因此广泛应用于航空航天、船舶、汽车、医疗器械、化工等领域。
钛合金的主要成分是钛,其名称来源于希腊神话中的“提坦”。
钛是一种石墨状金属,具有银灰色,富有光泽的外观。
它是地壳中第七位丰富的金属元素,与铝、锂等金属一起属于周期表中的“B族元素”。
钛的化学符号为Ti,原子序数为22,原子量为47.867。
钛是一种轻质金属,密度约为4.5g/cm³,比铁重约60%。
这使得钛合金在航空航天领域得到了广泛应用,可以减轻飞机和火箭的重量,提高载荷能力。
与钛合金常用的合金元素有铝、钒、铁、锡、锆、镁等。
合金化可以改善钛合金的性能,使其更加适合特定的应用。
以下是一些常见的钛合金和它们的主要成分:1.钛铝合金:由钛和铝组成,常用的合金有Ti-6Al-4V、Ti-6Al-2Sn-4Zr-2Mo等。
钛铝合金具有较高的强度、良好的韧性和抗蚀性能,在航空航天领域广泛应用。
2.钛铁合金:由钛和铁组成,常见的合金为Ti-Fe。
钛铁合金具有较高的强度和韧性,同时具备良好的耐磨性和耐蚀性,常用于汽车和船舶制造。
3.钛锡合金:由钛和锡组成,常见的合金有Ti-Sn、Ti-10Sn等。
钛锡合金具有较高的强度和硬度,同时具备良好的耐腐蚀性能,用于制造海洋工程设备和化工设备。
4.钛锆合金:由钛和锆组成,常见的合金有Ti-Zr。
钛锆合金具有良好的耐腐蚀性、优异的高温性能和良好的切削性能,在船舶和化工设备制造中广泛应用。
5.钛镁合金:由钛和镁组成,常用的合金有Ti-Mg。
钛镁合金具有较高的强度和韧性,同时具备良好的耐腐蚀性能和低密度,用于制造航空航天设备和汽车零部件。
此外,钛合金还可以与其他金属元素如铜、镍、钛、铌、锑等进行合金化,以获得更多种类和更优异的性能。
钛合金的成分设计和加工工艺的不同,可以得到不同性能和用途的材料,满足各种工程要求。
《强变形加工钛锆合金的力学性能和摩擦行为研究》

《强变形加工钛锆合金的力学性能和摩擦行为研究》篇一一、引言在金属材料科学领域,钛锆合金以其优异的机械性能和化学稳定性而备受关注。
特别是在航空、航天、生物医疗和海洋工程等领域,强变形加工钛锆合金的应用日益广泛。
然而,其力学性能和摩擦行为的研究仍需深入。
本文旨在探讨强变形加工钛锆合金的力学性能及摩擦行为,为该合金的进一步应用提供理论依据。
二、钛锆合金的强变形加工强变形加工是改善金属材料性能的重要手段之一。
通过冷轧、热轧、等通道转角挤压等工艺,可以显著提高钛锆合金的力学性能。
在强变形过程中,合金的晶粒结构、位错密度等微观结构发生变化,从而影响其宏观力学性能。
三、力学性能研究3.1 弹性性能通过拉伸试验和硬度测试,可以评估钛锆合金的弹性性能。
在强变形加工后,合金的弹性模量和屈服强度均有所提高,表明其抵抗弹性变形的能力增强。
3.2 塑性性能塑性是金属材料在承受外力时发生塑性变形而不破裂的能力。
通过拉伸试验,可以研究钛锆合金的塑性性能。
强变形加工后,合金的延伸率和断面收缩率均有所提高,表明其塑性得到改善。
3.3 疲劳性能疲劳性能是金属材料在循环应力作用下抵抗破坏的能力。
通过疲劳试验,可以研究强变形加工对钛锆合金疲劳性能的影响。
结果表明,强变形加工可以显著提高钛锆合金的抗疲劳性能。
四、摩擦行为研究4.1 摩擦系数摩擦系数是衡量材料摩擦性能的重要参数。
通过摩擦磨损试验,可以研究钛锆合金在不同条件下的摩擦系数。
结果表明,强变形加工后,钛锆合金的摩擦系数有所降低,表明其摩擦性能得到改善。
4.2 磨损行为磨损是材料在摩擦过程中逐渐失去物质的过程。
通过观察和分析磨损表面的形貌和成分,可以研究钛锆合金的磨损行为。
强变形加工后,钛锆合金的耐磨性得到提高,磨损率降低。
五、结论本文通过对强变形加工钛锆合金的力学性能和摩擦行为进行研究,得出以下结论:1. 强变形加工可以显著提高钛锆合金的力学性能,包括弹性性能、塑性性能和疲劳性能。
钛锆钝化工艺研究报告

钛锆钝化工艺研究报告
钛锆合金是一种广泛应用于航空、航天、石油、化工和医疗等领域的高强度、耐腐蚀性能优良的材料。
然而,由于钛锆合金的表面活性较高,容易受到外界环境的侵蚀。
钝化工艺是通过表面处理来改善钛锆合金的耐腐蚀性能,提高其使用寿命。
本次研究旨在探究钛锆钝化工艺对其耐腐蚀性能的影响。
实验采用了不同的钝化剂和工艺参数,对钛锆合金进行了表面处理,并进行了耐蚀性测试。
首先,实验制备了一种钛锆合金样品,并在室温下进行了表面处理。
钝化剂方面,我们选择了硝酸、硫酸和酒石酸作为试验剂,分别对样品进行了处理。
处理时间分别为30分钟、60分钟、90分钟三种情况。
处理后,对样品进行了光学显微镜观察、X射线衍射分析和电化学测试。
实验结果表明,不同的钝化剂和处理时间对钛锆合金的表面形貌、晶体结构和耐蚀性能有明显的影响。
硝酸钝化剂处理可以获得较为光滑的表面,并且能够形成一层致密的氧化层,这有利于提高钛锆合金的耐蚀性能。
硫酸和酒石酸钝化剂处理后的样品表面较为粗糙,氧化层形成不完整,导致耐蚀性能略差。
此外,处理时间对钛锆合金的钝化效果也有一定的影响。
处理时间过短时,钝化效果不明显;处理时间过长时,可能会导致氧化层过厚,反而降低了材料的耐蚀性能。
因此,合适的处理时间是保证钝化效果的关键。
综上所述,钛锆钝化工艺对其耐蚀性能具有重要的影响。
硝酸钝化剂处理可获得最佳的钝化效果,其形成的致密氧化层能够有效保护钛锆合金的表面免受腐蚀侵蚀。
适当选择合适的处理时间也是保证钝化效果的关键。
本次研究为进一步优化钛锆钝化工艺提供了可靠的理论基础。
钛合金中zr元素的作用

钛合金中zr元素的作用
钛合金是一种重要的金属材料,其中的锆元素在钛合金中起到了重要的作用。
本文将从不同的角度探讨锆元素在钛合金中的作用。
锆元素可以提高钛合金的强度和硬度。
锆元素与钛元素形成的固溶体具有较高的强度和硬度,这使得钛合金具有出色的力学性能。
锆元素的加入可以有效地阻碍钛合金的晶体生长,使其晶界更加细小和均匀,从而提高材料的强度和硬度。
锆元素可以改善钛合金的耐腐蚀性能。
锆元素在钛合金中可以形成致密的氧化物膜,并且这种氧化物膜具有较好的耐腐蚀性能,能够有效地防止钛合金与外界环境的接触,减少了钛合金的腐蚀速度。
因此,锆元素的加入可以提高钛合金的耐腐蚀性能,延长其使用寿命。
锆元素还可以改善钛合金的加工性能。
由于锆元素的加入可以细化钛合金的晶粒,使其具有更好的塑性和可锻性。
这使得钛合金在加工过程中更容易塑性变形,提高了其可锻性和可塑性。
同时,锆元素还可以降低钛合金的热变形温度,减少加工过程中的变形阻力,提高加工效率。
锆元素还可以改善钛合金的热稳定性。
锆元素的加入可以阻止钛合金晶粒的长大,减缓了晶粒的长大速率,提高了钛合金的热稳定性。
这使得钛合金在高温环境下具有更好的性能,能够保持其原有的力
学性能和耐腐蚀性能。
锆元素在钛合金中起到了多方面的作用。
它不仅可以提高钛合金的强度和硬度,改善其耐腐蚀性能,还可以改善其加工性能和热稳定性。
因此,在钛合金的研发和应用中,锆元素的加入是非常重要的。
随着对钛合金性能要求的不断提高,锆元素在钛合金中的作用将得到更加深入的研究和应用。
《2024年热机械加工锆及钛锆合金的微结构与性能研究》范文

《热机械加工锆及钛锆合金的微结构与性能研究》篇一一、引言随着现代工业技术的飞速发展,对材料性能的要求日益提高。
锆及钛锆合金因其独特的物理和化学性质,在航空、航天、核能等领域得到了广泛的应用。
热机械加工技术是改善和优化合金材料微结构和性能的重要手段。
本文旨在研究热机械加工过程中锆及钛锆合金的微结构演变及其对性能的影响,为进一步优化合金的性能提供理论依据。
二、锆及钛锆合金的基本性质锆及钛锆合金具有高熔点、良好的耐腐蚀性、优异的力学性能等特点。
其中,锆元素具有较高的中子吸收能力,在核能领域具有重要应用。
而钛锆合金则结合了钛和锆的优点,具有更高的强度和更好的耐腐蚀性。
了解其基本性质,对于研究其热机械加工过程中的微结构演变及性能优化具有重要意义。
三、热机械加工过程热机械加工是一种通过控制材料的热处理和机械变形来改善其微结构和性能的方法。
在热机械加工过程中,合金的微结构会发生变化,从而影响其性能。
本文将重点研究热机械加工过程中锆及钛锆合金的微结构演变。
四、微结构研究4.1 晶体结构通过X射线衍射等技术手段,研究热机械加工过程中锆及钛锆合金的晶体结构变化。
在加热和变形过程中,合金的晶体结构会发生转变,从而影响其力学性能和耐腐蚀性。
4.2 晶粒尺寸与形态晶粒尺寸和形态是影响材料性能的重要因素。
通过金相显微镜、电子背散射衍射等技术手段,研究热机械加工过程中晶粒的演变规律,分析晶粒尺寸和形态对材料性能的影响。
4.3 相变与析出行为在热机械加工过程中,合金会发生相变和析出现象。
通过透射电子显微镜等技术手段,研究相变和析出行为对合金微结构和性能的影响。
五、性能研究5.1 力学性能通过拉伸、压缩等实验手段,研究热机械加工后锆及钛锆合金的力学性能,包括屈服强度、抗拉强度、延伸率等。
分析微结构对力学性能的影响,为优化合金性能提供依据。
5.2 耐腐蚀性通过电化学腐蚀等实验手段,研究热机械加工后锆及钛锆合金的耐腐蚀性。
分析微结构对耐腐蚀性的影响,为提高合金在恶劣环境下的使用性能提供参考。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Grindability of Dental Cast Ti-Zr AlloysMasatoshi Takahashi,Masafumi Kikuchi and Osamu OkunoDivision of Dental Biomaterials,Tohoku University Graduate School of Dentistry,Sendai980-8575,Japan The purpose of this study was to improve the grindability of titanium by alloying with zirconium.The grindability of dental cast Ti-Zr alloys(10,20,30,40and50mass%Zr)was evaluated using a carborundum wheel.The Ti-Zr alloys up to30mass%Zr formed an structure, and the40mass%Zr and50mass%Zr alloys formed an 0structure.The Ti-40mass%Zr alloy at up to1000m/min and the Ti-50mass%Zr alloy at up to1250m/min exhibited significantly higher grindability than titanium.More than twice the volume of metal was removed from the alloys than from titanium per minute.The improved grindability could be attributed to the 0structure in addition to the decrease in elongation. The Ti-Zr alloys,which formed an 0phase structure,are candidates for use as machinable biomaterial in dental applications.[doi:10.2320/matertrans.MRA2008403](Received October27,2008;Accepted January13,2009;Published February25,2009)Keywords:biomaterial,titanium alloy,grindability,microstructure,dental alloy1.IntroductionAs a dental biomaterial,titanium has a reputation for offering excellent biocompatibility and corrosion resistance. However,it is considered one of the most difficult metals to machine(cut or grind).1)The poor machinability of titanium leads to a long processing time and short tool life.1) Therefore,improving the machinability of titanium will encourage practical dental applications of titanium.Further-more,improved machinability may also promote the appli-cation of titanium using dental CAD/CAM.We investigated the machinability of various experimental binary titanium alloys.2–6)The grindability of some Ti-Ag, Ti-Cu,and Ti-Nb alloys was superior to that of titanium.2,3) The common features of alloys with favorable grindability were not only a decreased elongation but also the existence of a secondary phase.For example,the Ti-Ag,Ti-Cu or Ti-Nb alloys precipitated a Ti2Ag,Ti2Cu or!phase in the matrix, respectively.The precipitated secondary phase might work as a local brittle zone similar to the free-machining inclusions of free-machining materials.7)On the other hand,the grind-ability of Ti-Hf alloys that formed a single phase did not improve,although their elongation decreased.5) Zirconium is known to show chemical and physical properties that are similar to titanium.According to the equilibrium phase diagram,8)the Ti-Zr system is an - isomorphous system,and there is no solubility limit for Zr in the titanium matrix.Zirconium improved the strength and hardness of titanium and decreased its elongation.9–15)Many studies have reported that Ti-Zr binary alloys showed superior corrosion resistance and biocompatibility when compared with titanium.16–19)Ho et al.investigated the grindability of Ti-Zr alloys up to37mass%Zr,which formed a single phase,and reported that the37mass%Zr alloy had better grindability than titanium at low speed14)(hereafter, mass%is expressed as%).The alloy phases of Ti-Zr alloys varied according to the compositions and cooling condi-tions.20,21)If the cooling rate from the -region is fast enough, an acicular or lath-like martensite is formed.The martensite has a distorted hexagonal crystal lattice,similar to that of , and is referred to as 0.22,23)The alloy phases for the Ti-Zr alloys have been reported to be as follows:for dental cast Ti-Zr alloys with39to85%Zr(25to75mol%Zr),a martensitic structure 0;10)for quenched alloys with Zr!30%, þ ;13,24)and for quenched60%Zr(50mol%Zr)alloys, a precipitated hexagonal crystal structure of the!.25)Phase transformations or the existence of secondary phases for the Ti-Zr alloys may drastically improve the grindability of titanium.In the present study,the grindability of dental cast experimental Ti-Zr alloys up to50%Zr was evaluated and compared with that of titanium.X-ray diffractometry(XRD) and microstructural observations of cast alloys were also performed to characterize the relationship between the grindability and the alloy phases.2.Experimental Procedure2.1Preparation of specimensExperimental binary titanium alloys with10,20,30,40 and50%Zr were examined.Titanium was included as the control in this study.The desired amounts of titanium sponge(>99:8%,grade S-90,Sumitomo Titanium Corp., Amagasaki,Japan)and zirconium sponge(>99:6%,Toho Technical Service Co.,Ltd,Chigasaki,Japan)were melted into one,15g button for each alloy in an argon-arc melting furnace(TAM-4S,Tachibana Riko,Sendai,Japan).Each button was melted six times and invertedfive times to ensure alloy homogeneity.Each alloy was cast into a plate pattern(3:5mmÂ8:5mmÂ30:5mm)using a magnesia investment(Selevest CB,Selec,Osaka,Japan)in an argon gas-pressure dental casting machine(Castmatic-S,Iwatani,Osaka,Japan)at 200 C and then bench-cooled.Prior to testing,all the surfaces(approximately250m m)of each casting were ground to remove the hardened surface layer,producing specimens measuring3:0mmÂ8:0mmÂ30mm.Three specimens were made for each metal.2.2X-ray diffractometry and microstructural observa-tionXRD was performed using Cu K radiation generated at 30kV and15mA in an X-ray diffractometer(Miniflex CN2005,Rigaku,Tokyo,Japan).The peaks on the XRDMaterials Transactions,Vol.50,No.4(2009)pp.859to863 #2009The Japan Institute of Metalspatterns were indexed using the powder diffraction file (PDF-2,JCPDS-ICDD 2004).The specimen surfaces were polished and etched with an etching solution (1.0ml HF,4.0ml HNO 3and 300ml H 2O).The etched surfaces were observed using an optical micro-scope (PMG3-614U,Olympus,Tokyo,Japan).2.3Grinding testA carborundum wheel [#4(diameter 15.8mm,thickness 1.6mm),Shofu,Kyoto,Japan]placed on an electric dental handpiece (LM-I,GC,Tokyo,Japan)was used to grind the experimental metals as in previous studies.2–5)A 3.0mm thick cross section of the specimens was ground for one minute at one of five circumferential speeds,i.e.,500,750,1000,1250or 1500m/min,at 0.98N.Grindability was evaluated as the volume of metal removed per minute (grinding rate)and the volume ratio of metal removed compared to the wheel material lost (grinding ratio),which was calculated from its diameter loss.The grinding rate and the grinding ratio are related to the processing time and tool life,respectively.The test was performed twice for each specimen and grinding speed.A new wheel was employed for every test.The results (n ¼6)were statistically analyzed by one-way ANOVA and the Tukey HSD test at a significance level of ¼0:05.After the grinding test,the metal chips,surfaces of the wheels,and ground surfaces of the metals were observed using a scanning electron microscope (JSM-6060,JEOL,Tokyo,Japan).2.4Hardness testBulk hardness was determined by a Vickers microhardness tester (HM-102,Akashi,Yokohama,Japan)with a 1.961N (200gf)load and 30s dwell time.Three randomly chosen points of each specimen were measured.The results were statistically analyzed by one-way ANOVA and the Tukey HSD test at a significance level of ¼0:05.3.Results3.1X-ray diffractometry and metallographyXRD patterns of the Ti-Zr alloys and titanium are displayed in Fig.1.The peaks in the XRD pattern for titanium matched the diffraction angles of titanium well.With an increase in the Zr concentration,the peaks slightly shifted to the low angle side.There was no indication that the phase or the !phase was included in any of the present diffraction patterns.The microstructures of the etched Ti-Zr alloys are shown in Fig.2.The microstructures of Zr 30%and Zr !40%were different.Coarse laths with a width of 1to 3m m could be seen in the specimen of the Ti-Zr alloys with Zr 30%.Fine laths of about 500nm could be seen in the 40%Zr and 50%Zr alloys.3.2GrindabilityThe grinding rates of the Ti-Zr alloys at five different grinding speeds are shown in Fig.3.The grinding rates of the Ti-Zr alloys tended to increase as the concentration of Zr increased at 500and 750m/min.The rates for the alloys with Zr !30%were significantly higher (p <0:05)than that for titanium at the low speeds.At 1000m/min or above,the rates for the alloys with Zr 30%were not higher than that for titanium.On the other hand,40%Zr alloys at 1000m/min and 50%Zr alloys at 1000m/min and 1250m/min exhibited significantly higher grinding rates (p <0:05)than titanium.The rates of the alloys were more than twice that of titanium.The grinding ratios of the Ti-Zr alloys at five different grinding speeds are shown in Fig.4.The grinding ratios of the Ti-Zr alloys had large standard deviations,and no significant difference with titanium was found in any composition or grinding speed (p >0:05).3.3Observation of metal chips,wheels,and ground surfaces after grindingTypical metal chips that resulted from grinding are shown in Fig.5.Although no quantitative analysis was performed,the size of the metal chips of the Ti-Zr alloys with Zr 30%30405060708090Diffraction Angle, 2/°I n t e n s i t y (a .u .)θFig.1X-ray diffraction patterns of Ti-Zr alloys.20µm10%Zr 20µm 20%Zr 30%Zr 40%Zr 50%Zr20µm20µm 20µm Fig.2Microstructures of etched Ti-Zr alloys.860M.Takahashi,M.Kikuchi and O.Okuno(80to 150m m in length)generally appeared to be somewhat smaller than that of the chips of titanium (150to 200m m in length).The size of the metal chips of the alloys with Zr !40%rger metal chips (approximately 200m m in length),on the whole,were observed more frequently for these alloys.Wheel surfaces after the grinding test at 1000m/min are shown in Fig.6.The adhesion of metal to the wheel surfaces was observed in a large area of the wheels used for titanium and the alloys with Zr 30%at high grinding speeds and the 40%Zr and 50%Zr alloys at the 1500m/min.A grinding burn (discoloration of the surface caused by the heat of grinding)7)was found on the ground surfaces of these alloys.On the other hand,adhesion of metal was observed partly in the wheel used for the 40%Zr and 50%Zr alloys at 1000and 1250m/min,and a grinding burn was not observed on the ground surfaces of these alloys.No clear difference was noted in the appearance of the wheel and the ground surface among the Ti-Zr alloys and titanium at low grinding speeds.123500750100012501500Grinding Speed, S /m·min -1G r i n d i n g R a t i oFig.4Grinding ratio of Ti-Zr alloys.200µm200µm 200µm 200µmFig.6Wheel surfaces after grinding.The arrow indicates the adhered metals.200µm200µm200µm200µm200µm 200µm200µm 200µm Fig.5Metal chips resulting from grinding:(a)titanium,(b)30%Zr,(c)40%Zr and (d)50%Zr at 500m/min;and (e)titanium,(f)30%Zr,(g)40%Zr and (h)50%Zr at 1000m/min.246500750100012501500Grinding Speed, S /m·min -1G r i n d i n g R a t e , R /m m 3·m i n-1Fig.3Grinding rate of Ti-Zr alloys.Identical letters indicate no statistical differences among each grinding speed (p >0:05).Grindability of Dental Cast Ti-Zr Alloys 8613.4HardnessThe results of the hardness test for the Ti-Zr alloys are shown in Fig.7.The hardness of the Ti-Zr alloys increased as the concentration of the Zr increased,and it was significantly higher (p <0:05)than that of titanium.4.Discussion4.1Alloy phasesThe XRD peaks for Ti-Zr alloys resembled the peaks for titanium.It is difficult to identify the differences between 0and by XRD because the crystal structure of 0is a slightly deformed crystal structure of ,and 0shows almost the same XRD peaks as .Therefore,the phases in this study were determined by microstructural observations,as in previous studies.9,10,12,13)The microstructures in the Ti-Zr alloy with Zr 30%resembled the typical acicular structure of titanium.22,23)On the other hand,the fine martensitic laths in the Ti-Zr alloy with Zr !40%closely resembled the martensite microstructures of 0,which had been shown by E.Kobayashi et al.10)and S.Kobayashi et al.26)Judging from the microstructures,the alloy phase of Zr 30%was the phase,and the phase of Zr !40%was the 0phase.4.2Mechanical propertiesThe Ti-Zr alloys became harder than that of titanium as the concentration of Zr increased.The increased hardness was caused by solid-solution hardening.The hardness of the alloys in this study was similar to that in previous studies.10–12)Many studies have reported on the mechanical properties of Ti-Zr alloys.9–15)Thus,we assume that the other mechanical properties were also similar to those in previous studies.4.3Grinding rates of Ti-Zr alloys with Zr 30%One approach to improving machinability is to reduce the ductility of an alloy.27,28)The elongation of Ti-Zr alloys became lower than that of titanium as the concentration of Zr increased.11–13)The grinding rates of the Ti-Zr alloys increased at low speed as the concentration of Zr increased,in other words,as their elongation decreased,and the rates ofthe 30%Zr alloy were significantly higher than those of titanium.These results were similar to those found by Ho et al.14)The alloy with higher grinding rates produced smaller metal chips than that of titanium (Fig.4),as in previous studies.2,3)Despite the finer metal chips,the grinding rates of the Ti-Zr alloy with Zr 30%tended to decrease at 1000m/min or above.A decrease in the rate of metal chip formation (grinding rate)resulted in overheating and a grinding burn on the ground surfaces because the majority of the grinding heat is carried away with the metal chips.The reason for the decreased grinding rate was the occurrence of adhesion of metal on the wheel surface.The adhesion caused filling of the pores of the grinding wheel (loading)and obstructed self-dressing of the wheel.7)Similar results were found for Ti-Au alloys.4)4.4Grinding rates of Ti-Zr alloys with Zr 40%The grinding rates of the alloys with Zr !40%increased drastically at 1000m/min or above.In contrast to the Ti-Zr alloys with Zr 30%,adhesion of metal was seldom observed on the wheel used for the 40%Zr and 50%Zr alloys,and self-dressing of the wheel was not obstructed.Because the 40%Zr and 50%Zr alloys were harder and stronger than the 30%Zr alloy,9–11)40%Zr and 50%Zr would not work as well as 30%Zr for grinding.Although reduced elongation of the alloy helps improve machinabil-ity,27,28)the elongation did not decrease significantly from the 30%Zr to the 50%Zr alloy.9–11)Unlike the cases of Ti-Ag or Ti-Cu alloys with better grindability,the metal chips of the 40%Zr and 50%Zr alloys were not smaller than those of titanium (Fig.4).Therefore,the abrupt increase in the grinding rate of the Ti-Zr alloys from Zr 30%to Zr !40%at high speed cannot be explained by their reduced elongation alone.One explanation for the abrupt increase could be a microstructural change because the phase (Zr 30%)changed to an 0phase (Zr !40%).The alloy phase of 37%Zr alloy by Ho et al.was a single phase,and the grinding rates of the 37%Zr did not increase at high grinding speeds.14)On the other hand,the alloy phase of the 40%Zr alloy in our study was the 0phase,and the grinding rates increased significantly at high speeds.The strain rate and temperature differed between the grinding test and the tensile test.The 0phase in the Ti-Zr alloys might show different mechanical properties at a grinding test and a tensile test.At the 1500m/min,the rates of the alloys with Zr !40%were similar to that of titanium,and a grinding burn was found on the alloys.The grinding speed of 1500m/min was apparently too fast to grind the alloys.4.5Grinding ratios of Ti-Zr alloysAlthough the mean values of the grinding ratios of some Ti-Zr alloys were higher than those of titanium,no significant difference between the Ti-Zr alloys and titanium was found with any composition or grinding speed because the ratios had large standard deviations.On the other hand,Ho et al.14)found a significant difference in the grinding ratios in some compositions or grinding speeds despite achieving large standard deviations similar to those in our results.A discrepancy in the results could probably be attributed toa01002003004001020304050Concentration of Zr (mass%)V i c k e r s H a r d n e s sFig.7Hardness of Ti-Zr alloys.862M.Takahashi,M.Kikuchi and O.Okunodifference in the statistical procedures.Duncan’s multiple comparison test,which was used by Ho et al.,has high type I error rates and occasionallyfinds a statistically significant difference when no significant difference actually exists.29) Many statisticians have said that Duncan’s test cannot be recommended.30,31)Because no significant difference was found in the grinding ratio between the experimental Ti-Zr alloys and titanium,the addition of Zr to titanium did not help improve tool life.However,the addition of Zr helped improve processing time because the grinding rates of the Ti-Zr alloys were significantly higher than those of titanium.Therefore, Ti-Zr alloys,especially Zr!40%,had excellent grindability.5.ConclusionDental cast Ti-Zr alloys with40%Zr and50%Zr formed an 0structure.The Ti-40%Zr alloy at up to1000m/min and the Ti-50%Zr alloy at up to1250m/min exhibited signifi-cantly higher grindability than titanium.The improved grindability could be attributed to the 0structure in addition to the decrease in elongation.Ti-Zr alloys,which formed an 0phase structure,are candidates for use as machinable biomaterial in dental applications.AcknowledgmentsThe authors gratefully acknowledge Sumitomo Titanium Corporation for supplying the high-purity titanium sponge. AppendixA preliminary report on this study was presented at the 85th General Session&Exhibition of the International Association for Dental Research on March2007. REFERENCES1) A.R.Machado and J.Wallbank:Proc.Inst.Mech.Eng.Part B204(1990)53–60.2)M.Kikuchi,M.Takahashi,T.Okabe and O.Okuno:Dent.Mater.J.22(2003)191–205.3)M.Kikuchi,M.Takahashi and O.Okuno:Dent.Mater.J.22(2003)328–342.4)M.Takahashi,M.Kikuchi and O.Okuno:Dent.Mater.J.23(2004)203–210.5)M.Kikuchi,M.Takahashi,H.Sato,O.Okuno,M.Nunn and T.Okabe:J.Biomed.Mater.Res.B77(2006)34–38.6)M.Kikuchi,M.Takahashi and O.Okuno:Dent.Mater.J.27(2008)216–220.7)J.R.Davis:Asm materials engineering dictionary,(ASM International,Materials Park,1992)pp.127–256.8)J.L.Murray:Phase diagrams of binary titanium alloys,(ASMInternational,Metals Park,1987)pp.340–345.9) E.Kobayashi,H.Doi,T.Yoneyama,H.Hamanaka,S.Matsumoto andK.Kudaka:J.J.Dent.Mater.14(1995)321–328.10) E.Kobayashi,S.Matsumoto,H.Doi,T.Yoneyama and H.Hamanaka:J.Biomed.Mater.Res.29(1995)943–950.11)Y.Etchu,M.Okazaki,H.Noguchi and E.Masuhara:J.J.Dent.Mater.11(1992)270–271.12)O.Okuno,A.Shimizu and I.Miura:J.J.Dent.Mater.4(1985)708–715.13) A.G.Imgram,D.N.Williams and H.R.Ogden:J.Less-CommonMetals.4(1962)217–225.14)W.F.Ho,W.K.Chen,S.C.Wu and H.C.Hsu:J.Mater.Sci.Mater.Med.19(2008)3179–3186.15)M.Takahashi,E.Kobayashi,H.Doi,T.Yoneyama and H.Hamanaka:J.Japan Inst.Metals64(2000)1120–1126.16)T.Tsuchiya,A.Nakamura,Y.Ohshima,E.Kobayashi,H.Doi,T.Yoneyama and H.Hamanaka:Tissue Eng.4(1998)197–204.17)S.Y.Yu,J.R.Scully and C.M.Vitus:J.Electrochem.Soc.148(2001)68–78.18)N.T.C.Oliveira,S.R.Biaggio,R.C.Rocha-Filho and N.Bocchi:J.Biomed.Mater.Res.A74(2005)397–407.19)Y.Ikarashi,K.Toyoda,E.Kobayashi,H.Doi,T.Yoneyama,H.Hamanaka and T.Tsuchiya:Mater.Trans.46(2005)2260–2267. 20)Y.C.Huang,S.Suzuki,H.Kaneko and T.Sato:Proc.Int.Conf.,ed.byR.I.Jaffee,(Sci.Technol.Appl.Titanium,1970)pp.691–693.21)Y.C.Huang,S.Suzuki,H.Kaneko and T.Sato:Proc.Int.Conf.,ed.byR.I.Jaffee,(Sci.Technol.Appl.Titanium,1970)pp.695–698.22)G.F.Vander Voort:ASM handbook,volume9metallography andmicrostructures,(ASM International,Materials Park,2004)pp.899–917.23)R.Boyer,G.Welsch and E.W.Collings:Materials propertieshandbook:titanium alloys,(ASM International,Materials Park,1994) pp.1051–1060.24)P.Duwez:J.Inst.Met.80(1952)525–527.25) B.A.Hatt,J.A.Roberts and G.I.Williams:Nature180(1957)1406.26)S.Kobayashi,K.Nakai and Y.Ohmori:Mater.Trans.42(2001)2398–2405.27)T.Okabe,M.Kikuchi,C.Ohkubo,M.Koike,O.Okuno and Y.Oda:JOM J.Miner.Met.Mater.Soc.56(2004)46–48.28)K.S.Chan,M.Koike and T.Okabe:Metall.Mater.Trans.A37(2006)1323–1331.29)J.L.Gill:J.Dairy Sci.64(1981)1494–1519.30)J.W.Tukey:Statist.Sci.6(1991)100–116.31)J.C.Hsu:Multiple comparisons theory and methods,(Chapman&Hall,London,1996)pp.119–144.Grindability of Dental Cast Ti-Zr Alloys863。