有限元法及应用总结ppt课件

合集下载

有限元分析-动力学分析PPT课件

有限元分析-动力学分析PPT课件
有限元分析-动力学分析ppt课件
目录
• 引言 • 有限元分析基础 • 动力学分析基础 • 有限元分析在动力学中的应用 • 案例分析 • 结论与展望
01 引言
目的和背景
01
介绍有限元分析在动力学分析中 的应用和重要性。
02
阐述本课件的目标和内容,帮助 读者了解有限元分析在动力学分 析中的基本概念、方法和应用。
随着工程复杂性和精确度要求的提高,有限元分析在动力学分析中的 应用将更加重要和必要。
02
未来需要进一步研究有限元分析算法的改进和优化,以提高计算效率 和精度。
03
未来需要加强有限元分析与其他数值计算方法的结合,如有限差分、 有限体积等,以实现更复杂的动力学模拟和分析。
04
未来需要加强有限元分析在多物理场耦合和多尺度模拟中的应用,以 更好地解决工程实际问题。
有限元分析的优点和局限性
• 精确性:对于某些问题,可以得到相当精确的结 果。
有限元分析的优点和局限性
数值误差
由于离散化的近似性,结果存在一定的数值误 差。
计算成本
对于大规模问题,计算成本可能较高。
对模型简化的依赖
结果的准确性很大程度上依赖于模型的简化程度。
03 动力学分析基础
动力学简介
动力学是研究物体运 动过程中力与运动关 系的科学。
THANKS FOR WATCHING
感谢您的观看
ห้องสมุดไป่ตู้
求解等。
02 有限元分析基础
有限元方法概述
01
有限元方法是一种数值分析方法,通过将复杂的物理系统离散化为有 限个简单元(或称为元素)的组合,来模拟和分析系统的行为。
02
它广泛应用于工程领域,如结构分析、流体动力学、热传 导等领域。

有限元分析及应用课件

有限元分析及应用课件
参数设置
设置材料属性、单元类型等参数。
求解过程
刚度矩阵组装
根据每个小单元的刚度,组装成全局的刚度矩阵。
载荷向量构建
根据每个节点的外载荷,构建全局的载荷向量。
求解线性方程组
使用求解器(如雅可比法、高斯消元法等)求解线性方程组,得到节点的位移。
后处理
01
结果输出
将计算结果以图形、表格等形式输 出,便于观察和分析。
有限元分析广泛应用于工程领域,如结构力学、流体动力学、电磁场等领域,用于预测和优化结构的 性能。
有限元分析的基本原理
离散化
将连续的求解域离散化为有限 个小的单元,每个单元具有特
定的形状和属性。
数学建模
根据物理问题的性质,建立每 个单元的数学模型,包括节点 力和位移的关系、能量平衡等。
求解方程
通过建立和求解线性或非线性 方程组,得到每个节点的位移 和应力分布。
PART 05
有限元分析的工程应用实 例
桥梁结构分析
总结词
桥梁结构分析是有限元分析的重要应用之一,通过模拟桥梁在不同载荷下的响应,评估 其安全性和稳定性。
详细描述
桥梁结构分析主要关注桥梁在不同载荷(如车辆、风、地震等)下的应力、应变和位移 分布。通过有限元模型,工程师可以预测桥梁在不同工况下的行为,从而优化设计或进
刚性问题
刚性问题是有限元分析中的一种 特殊问题,主要表现在模型中某 些部分刚度过大,导致分析结果 失真
刚性问题通常出现在大变形或冲 击等动态分析中,由于模型中某 些部分刚度过高,导致变形量被 忽略或被放大。这可能导致分析 结果与实际情况严重不符。
解决方案:为避免刚性问题,可 以采用多种方法进行优化,如采 用更合适的材料模型、调整模型 中的参数设置、采用更精细的网 格等。同时,可以采用多种方法 对分析结果进行验证和校核,以 确保其准确性。

有限元分析与应用——第一章 PPT课件

有限元分析与应用——第一章 PPT课件

0
0
k2u2 k2u3 k3u3 k3u4
k3u3 k3u4 k4u4 k4u5 0
k4u4 k4u5 P
写成矩阵的形式为
k1
=
k1 k1 k2 k2 0 0
k1 k1 0 0 0
0 k2 k 2 k3 k3 0
k1 k1 k2 k2 0 0
有限元方法与ANSYS简介
有限元方法是用于求解工程中各类问题的数值方法,应 力分析中稳态的、瞬态的、线性的或非线性的问题以及热传导、 流体流动和电磁学中的问题都可以用有限元方法进行分析解决。 现代有限元方法的20世纪早期开始,20世纪50年代,boeing公司 采用三角元对机翼进行建模,推动了有限元方法的应用。到20 世纪60年代,人们接受了“有限元”这个词。 ANSYS是一个通用的有限元计算机程序,其代码长度超 过10万行。应用ANSYS可以进行静态、动态、热传导、流体流 动和电磁学等分析。在过去的20多年里,ANSYS是主要的有限 元分析程序。现在ANSYS被广泛应用在如航天、汽车、电子、 核科学等领域。
第一章 概述
有限元方法是广泛用于解决应力分析、热传 递、电磁场和流体力学等工程问题的数值方 法。
本章的内容
(1)工程问题 (2)数值方法 (3)有限元方法与ANSYS简介 (4)有限元方法的基本步骤 (5)直接公式法 (6)最小总势能公式 (7)加权余数法 (8)结果的验证 (9)理解问题
工程问题
0
R1 0 0 0 0
0 k2 k 2 k3 k3 0
0 k3 k3 k 4 k4
0 u1 0 0 u 2 0 0 u3 0 k4 u 4 0 k4 P u5

《有限元分析及应用》PPT课件

《有限元分析及应用》PPT课件

41
2.3 基本变量的指标表达
指标记法的约定:
自由指标:在每项中只有一个下标出现,如

i,j为自由指标,它们可以自由变化;在三维ij 问题
中,分别取为1,2,3;在直角坐标系中,可表示
三个坐标轴x, y, z。
哑指标:在每项中有重复下标出现,如:
,j为哑指标。在三维问题中其变化的范ai围j x为j 1,b2i ,3
有限元方法的思路及发展过程
思路:以计算机为工具,分析任意变形体以获得所有 力学信息,并使得该方法能够普及、简单、高效、方 便,一般人员可以使用。 实现办法:
20
技术路线:
21
发展过程: 如何处理
对象的离散化过程
22
常用单元的形状
.点 (质量)
面 (薄壳, 二维实体,
.. 轴..对称实体.).......
3
有限元法是最重要的工程分析技术之一。 它广泛应用于弹塑性力学、断裂力学、流 体力学、热传导等领域。有限元法是60年 代以来发展起来的新的数值计算方法,是 计算机时代的产物。虽然有限元的概念早 在40年代就有人提出,但由于当时计算机 尚未出现,它并未受到人们的重视。
4
随着计算机技术的发展,有限元法在各个 工程领域中不断得到深入应用,现已遍及 宇航工业、核工业、机电、化工、建筑、 海洋等工业,是机械产品动、静、热特性 分析的重要手段。早在70年代初期就有人 给出结论:有限元法在产品结构设计中的 应用,使机电产品设计产生革命性的变化, 理论设计代替了经验类比设计。
由此得到
考虑 X 0
xyl ym zy n Y xl yxm zxn X
考虑
Z 0 xzl yzm zn Z
应力边界条件

有限元法及应用课件

有限元法及应用课件
13
载荷
节点: 空间中的坐标位置,具有 一定相应,相互之间存在物理 作用。 单元: 节点间相互作用的媒介, 用一组节点相互作用的数值矩阵 描述(称为刚度或系数矩阵)。
载荷
有限元模型由一些简单形状的单元组成,单 元之间通过节点连接,并承受一定载荷。
14
对于一个具体的工程结构,单元的划分越小, 求解的结果就越精确,同时,其计算工作量也就越 大。 梯子的有限元模型不到100个方程;
34
3)非线性边界 在加工、密封、撞击等问题中,接触和摩擦 的作用不可忽视,接触边界属于高度非线性边界。 平时遇到的一些接触问题,如齿轮传动、冲 压成型、轧制成型、橡胶减振器、紧配合装配等, 当一个结构与另一个结构或外部边界相接触时通 常要考虑非线性边界条件。 实际的非线性可能同时出现上述两种或三种 非线性问题。
10
2.几个基本概念 1)单元(element) 将求解的工程结构看成是 由许多小的、彼此用点联结的 基本构件如杆、梁、板和壳组 成的,这些基本构件称为单元。 在有限元法中,单元用一 组节点间相互作用的数值和矩 阵(刚度系数矩阵)来描述。
11
单元具有以下特征:

每一个单元都有确定的方程来描述在一定载荷 下的响应; 模型中所有单元响应的“和”给出了设计的总 体响应; 单元中未知量的个数是有限的,因此称为“有


限单元”。
12
2)节点(node) 单元与单元之间的联结点,称为节点。在有 限元法中,节点就是空间中的坐标位置,它具有 物理特性,且存在相互物理作用。 3)有限元模型(node) 有限元模型真实系统理想化的数学抽象。由 一些形状简单的单元组成,单元之间通过节点连 接,并承受一定载荷。 每个单元的特性是通过一些线性方程式来描 述的。作为一个整体,所有单元的组合就形成了 整体结构的数学模型。

《有限元基础》课件

《有限元基础》课件
广泛适用性
有限元方法可以应用于各种物理问题和工程领域 ,如结构力学、流体力学、热传导、电磁场等。
高效性
有限元方法采用分块逼近的方式,将整体问题分 解为多个子问题,从而大大降低了问题的规模和 复杂度,提高了计算效率。
精度可控制
通过选择足够小的离散元尺寸和足够多的元数目 ,可以控制求解的精度,使得结果更加精确可靠 。
有限元方法对初值和边界条件 的选取比较敏感,不同的初值 和边界条件可能导致截然不同 的结果。
高阶偏微分方程的离散化 困难
对于一些高阶偏微分方程,有 限元方法的离散化过程可能会 变得相当复杂和困难。
有限元方法的发展趋势
并行化和高性能计算
随着计算机技术的发展,有限元方法的计算效率和精度得到了极大的提高。未来,随着并行化和高性能计算技术的进 一步发展,有限元方法的计算效率将会得到进一步提升。
02
有限元的数学基础
线性代数基础知识
向量与矩阵
介绍向量的基本概念、向量的运算、矩阵的表示和基 本运算。
线性方程组
阐述线性方程组的基本概念、解法以及在有限元分析 中的应用。
特征值与特征向量
介绍特征值和特征向量的概念、计算方法以及在有限 元分析中的应用。
变分法基础知识
变分法的基本概念
阐述变分法的基本思想、定义和定理,以及在 有限元分析中的作用。
弱收敛与弱*收敛
03
介绍弱收敛和弱*收敛的概念、性质以及在有限元分析中的应用

03
有限元方法的基本步骤
问题的离散化
总结词
将连续的问题离散化,将连续体划分为有限个小的单元,每个单元称为有限元 。
详细描述
在有限元方法中,首先需要对实际问题进行离散化,即将连续的问题划分为有 限个小的单元,每个单元称为有限元。离散化的目的是将连续的物理量近似为 离散的数值,以便进行数值计算。

有限元法和应用总结课件

有限元法和应用总结课件

线弹性有限元
线弹性有限元是以理想弹性体为研究对象旳, 所考虑旳变形建立在小变形假设旳基础上。在 此类问题中,材料旳应力与应变呈线性关系, 满足广义胡克定律;应力与应变也是线性关系, 线弹性问题可归结为求解线性方程问题,所以 只需要较少旳计算时间。假如采用高效旳代数 方程组求解措施,也有利于降低有限元分析旳 时间。
平面单元划分原则
• 1.单元形状:常用单元形状有三角形单元、矩形单元和等 参数单元。他们旳特点是单元旳节点数越多,其计算精 度越高,三角形单元与等参数单元可适应任意边界。
• 2.划分原则: • 1)划分单元旳个数,视计算机要求旳精度和计算机容量
而定,单元分得越多,块越小其精度越高,但需要旳计 算机容量越大,所以,须根据实际情况而定。 • 2)划分单元旳大小,可根据部位不同有所不同,在位 移或应力变化大旳部位取得单元要小;在位移或应力变 化小旳部位取得单元要大,在边界比较平滑旳部位,单 元可大。
移,另一部分基本未知量为节点力。
*8.有限元法分析过程(续)
• 有限元位移法计算过程旳系统性、规律性强,尤 其合适于编程求解。一般除板壳问题旳有限元应 用一定量旳混正当外,其他全部采用有限元位移 法。所以,一般不做尤其申明,有限元法指旳是 有限元位移法。
• 有限元分析旳后处理主要涉及对计算成果旳加工 处理、编辑组织和图形表达三个方面。它能够把 有限元分析得到旳数据,进一步转换为设计人员 直接需要旳信息,如应力分布状态、构造变形状 态等,而且绘成直观旳图形,从而帮助设计人员 迅速旳评价和校核设计方案。
• 虚位移原理是平衡方程和力旳边界条件旳等效积 分旳“弱”形式;
• 虚应力原理是几何方程和位移边界条件旳等效积 分“弱”形式。
3.虚功原理(续)

《有限元法及其应用》课件

《有限元法及其应用》课件
实例
某型战斗机的机翼设计过程中,通过有限元分析,优化了机翼的结构和材料分布,提高了机翼的抗弯和 抗扭能力,同时减小了机翼的气动阻力,为飞机的高性能提供了保障。
汽车碰撞模拟
01
总结词
利用有限元法模拟汽车碰撞过程,评估汽车的安全性能和 改进设计方案。
02 03
详细描述
汽车碰撞是交通事故中最为严重的一种情况,有限元法能 够模拟汽车碰撞过程,对汽车的结构、材料和吸能设计等 进行评估,为汽车的安全性能提供科学依据。同时,通过 模拟不同碰撞条件下的结果,可以为汽车设计提供改进方 案。
通过离散化的方法,将连续的偏微分 方程转化为离散的代数方程组。
刚度矩阵与载荷向量
刚度矩阵
描述了每个单元的刚度关系,反 映了单元之间的相互作用。
载荷向量
描述了作用在每个节点上的外力 。
位移求解与应力分析
位移求解
通过求解离散化的代数方程组,得到每个节点的位移。
应力分析
根据位移求解的结果,通过计算得到每个单元的应力应变状态。
有限元法的应用领域
结构分析
有限元法在结构分析中应用最为广泛,可 以用于分析各种结构的应力、应变、位移
等。
电磁场分析
有限元法可以用于分析电磁场中的电场强 度、磁场强度、电流密度等,如电磁兼容
性分析、天线设计等。
流体动力学
有限元法可以用于模拟流体在各种复杂环 境下的流动行为,如航空航天、船舶、汽 车等领域的流体动力学问题。
应用领域
广泛应用于科学研究和工 程领域,如化学、生物医 学、电磁学等。
FE-SAFE
概述
FE-SAFE是一款用于结构疲劳分析的有限元软件 ,基于有限元方法进行疲劳寿命预测。
特点
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弹性有限元法是非线性有限元法的基础,二者不但在分析方法和研究步 骤上有类似之处,而且后者常常要引用前者的某些结果。
7
线弹性有限元 线弹性有限元是以理想弹性体为研究对象的,所考虑的变形建立在小变
形假设的基础上。在这类问题中,材料的应力与应变呈线性关系,满足 广义胡克定律;应力与应变也是线性关系,线弹性问题可归结为求解线 性方程问题,所以只需要较少的计算时间。如果采用高效的代数方程组 求解方法,也有助于降低有限元分析的时间。 线弹性有限元一般包括线弹性静力学分析与线弹性动力学分析两方面。
5
4.有限元法涉及的内容有哪些? 有限元法在数学和力学领域所依据的理论; 单元的划分原则; 形状函数的选取及协调性; 有限元法所涉及的各种数值计算方法及其误差、收敛性和稳定性; 计算机程序设计技术; 向其他各领域的推广。
6
5.有限元法的分类 • 有限元法可以分为两类,即线弹性有限元法和非线性有限元法。其中线
选择得到不同的加权余量计算方法,主要有:配点法、子域法、最小二 乘法、力矩法和伽辽金法。其中伽辽金法的精度最高。
13
2. 里兹方法 • 里兹方法:如果微分方程具有线性和自伴随的性质,那么它不仅可以建
立它的等效积分形式,并利用加权余量法求其近似解,而且还可以建立 与之相等效的变分原理,从而得到的另一种近似求解方法。 • 自然变分原理:原问题的微分方程和边界条件的等效积分的伽辽金法等 效于它的变分原理,即原问题的微分方程和边界条件等效于泛函的变分 为零,亦即泛函取驻值。反之,如果泛函取驻值则等效于满足问题的微 分方程和边界条件。而泛函可以通过原问题的等效积分的伽辽金法而得 到,我们称这样得到的变分原理为自然变分原理。
移呈线性关系,这类问题属于材料的非线性问题。由于从理论上还不能 提供能普遍接受的本构关系,所以,一般材料的应力与应变之间的非线 性关系要基于试验数据,有时非线性材料特性可用数学模型进行模拟, 尽管这些模型总有他们的局限性。 在工程实际中较为重要的材料非线性问题有:非线性弹性(包括分段线 弹性)、弹塑性、粘塑性及蠕变等。
8
非线性有限元 非线性问题与线弹性问题的区别: 1)非线性问题的方程是非线性的,一般需要迭代求解; 2)非线性问题不能采用叠加原理; 3)非线性问题不总有一致解,有时甚至没有解。 以上三方面的因素使得非线性问题的求解过程比线弹性问题更加复杂、费
用更高和更具有不可预知性。
9
1)材料非线性问题 有限元求解非线性问题可分为以下三类: 1)材料非线性问题 材料的应力和应变是非线性的,但应力与应变却很微小,此时应变与位
14
2. 里兹方法(续) • 对于具有线性、自伴随性质的微分方程在得到与它相等效的变分原理以
后,可以用来建立求近似解,这一过程即里兹方法。它的实质是从一族 假定解中寻求满足泛函变分的“最好的”解。显然,近似解的精度与试 探函数(形函数或试函数)的选择有关,如果知道所求解的一般性质, 那么可以通过选择反映此性质的试探函数来改进近似解,提高近似解的 精度。
12
*6.有限元的基础理论包括哪几部分? 1.加权余量法 加权余量法:是指采用使余量的加权函数为零求得微分方程近似解的方
法称为加权余量法。(Weighted residual method WRM) 加权余量法是求解微分方程近似解的一种有效的方法。 显然,任何独立的完全函数集都可以作为权函数。按照对权函数的不同
《有限元法及应用》总结 串讲
1
1.有限元的作用是什么? 1)减少模型试验的数量;
• 计算机模拟允许对大量的假设情况进行快速而有效的试验。
2)模拟不适合在原型上试验的设计;例如:器官移植,比如人造膝盖。 3)节省费用,降低设计与制造、开发的成本; 4)节省时间,缩短产品开发时间和周期; 5)创造出更可靠、高品质的设计。
2
2.有限元的基本概念
有限元:通俗的讲就是对一个真实的系统用有限个单元来描述。
有限元法:把求解区域看作由许多小的在节点处相互连接的单元(子域) 所构成,其模型给出基本方程的分片(子域)近似解,由于单元(子域) 可以被分割成各种形状和大小不同的尺寸,所以它能很好地适应复杂的 几何形状、复杂的材料特性和复杂的边界条件。
3)非线性边界(接触问题) 在加工、密封、撞击等问题中,接触和摩擦的作用不可忽视,接触边界
属于高度非线性边界。 平时遇到的一些接触问题,如齿轮传动、冲压成型、轧制成型、橡胶减
振器、紧配合装配等,当一个结构与另一个结构或外部边界相接触时通 常要考虑非线性边界条件。 实际的非线性可能同时出现上述两种或三种非线性问题。
4
3.有限单元法的特点有哪些? 1)把连续体划分成有限个单元,把单元的交界结点(节点)作为离散
点; 2)不考虑微分方程,而从单元本身特点进行研究。 3)理论基础简明,物理概念清晰,且可在不同的水平上建立起对该法
的理解。 4)具有灵活性和适用性,适应性强。(它可以把形状不同、性质不同
的单元组集起来求解,故特别适用于求解由不同构件组合的结构,应用 范围极为广泛。它不仅能成功地处理如应力分析中的非均匀材料、各向 异性材料、非线性应力、应变以及复杂的边界条件等问题,且随着其理 论基础和方法的逐步完善,还能成功地用来求解如热传导、流体力学及 电磁场领域的许多问题。) 5)在具体推导运算过程中,广泛采用了矩阵方法。
再加上它有成熟的大型软件系统支持,使其已成为一种非常受欢迎的、 应用极广的数值计算方法。
3
有限元模型与有限元分析 有限元模型:它是真实系统理想化的数学抽象。由一些简单形状的单元
组成,单元之间通过节点连接,并承受一定载荷。 载荷工况)
进行模拟。并利用简单而又相互作用的元素,即单元,就可以用有限数 量的未知量去逼近无限未知量的真实系统。
10
2)几何非线性问题 几何非线性问题是由于位移之间存在非线性关系引起的。 当物体的位移较大时,应变与位移的关系是非线性关系。研究这类问题
一般都是假定材料的应力和应变呈线性关系。它包括大位移大应变及大 位移小应变问题。如结构的弹性屈曲问题属于大位移小应变问题,橡胶 部件形成过程为大应变问题。
11
相关文档
最新文档