《整式的除法》常见题型

合集下载

整式的除法练习题含答案

整式的除法练习题含答案

整式的除法练习题(含答案)《整式的除法》习题一、选择题1.下列计算正确的是( )A.a 6÷a 2=a 3B.a +a 4=a 5C.(ab 3)2=a 2b 6D.a -(3b -a )=-3b2.计算:(-3b 3)2÷b 2的结果是( )A.-9b 4B.6b 4C.9b 3D.9b 43.“小马虎”在下面的计算中只做对一道题,你认为他做对的题目是( )A.(ab )2=ab 2B.(a 3)2=a 6C.a 6÷a 3=a 2D.a 3•a 4=a 124.下列计算结果为x 3y 4的式子是( )A.(x 3y 4)÷(xy )B.(x 2y 3)•(xy )C.(x 3y 2)•(xy 2)D.(-x 3y 3)÷(x 3y 2)5.已知(a 3b 6)÷(a 2b 2)=3,则a 2b 8的值等于( )A.6B.9C.12D.816.下列等式成立的是( )A.(3a 2+a )÷a =3aB.(2ax 2+a 2x )÷4ax =2x +4aC.(15a 2-10a )÷(-5)=3a +2D.(a 3+a 2)÷a =a 2+a7.下列各式是完全平方式的是( )A 、412+-x xB 、241x +C 、22b ab a ++D 、122-+x x8.下列计算正确的是( ) A 、222)2)(2(y xy x y x -=+- B 、229)3)(3(y x y x y x -=+- C 、1625)54)(54(2+=---n n n D 、22))((m n n m n m -=+---二、填空题9.计算:(a 2b 3-a 2b 2)÷(ab )2=_____.10.七年级二班教室后墙上的“学习园地”是一个长方形,它的面积为6a 2-9ab +3a ,其中一边长为3a ,则这个“学习园地”的另一边长为_____.11.已知被除式为x 3+3x 2-1,商式是x ,余式是-1,则除式是_____.12.计算:(6x 5y -3x 2)÷(-3x 2)=_____.13.若35,185==y x , 则y x 25-= 14.()()()()32223282y x x y x -⋅-⋅--= ;15.若1004x y +=,2x y -=,则代数式22xy -的值是 。

第一章第08讲 整式的除法(6类热点题型讲练)(解析版)

第一章第08讲 整式的除法(6类热点题型讲练)(解析版)

第08讲整式的除法(6类热点题型讲练)1.复习单项式乘以单项式的运算,探究单项式除以单项式的运算规律;2.复习单项式乘以多项式的运算,探究多项式除以单项式的运算规律;3.能运用单项式除以单项式、多项式除以单项式进行计算并解决问题.知识点01 单项式除以单项式单项式的除法法则:单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.注意:首先确定结果的系数(即系数相除),然后同底数幂相除,如果只在被除式里含有的字母,则连同它的指数作为商的一个因式.根据法则可知,单项式相除与单项式相乘计算方法类似,也是分成系数、相同字母与不相同字母三部分分别进行考虑.知识点02 多项式除以单项式多项式除以单项式的法则:多项式除以单项式,先把这个多项式的每一项除以这个单项式,在把所的的商相加.即(a+b+c)÷m=a÷m+b÷m+c÷m多项式除以单项式其特点是把多项式除以单项式转化成单项式除以单项式,另外还要特别注意符号.多项式除以单项式,注意多项式各项都包括前面的符号.题型01 单项式除以单项式1.(2023上·全国·八年级课堂例题)计算:(1)2284a b ab ¸;(2)32262x y x y -¸; (3)()233248x y y -¸-.【答案】(1)2ab(2)3xy-(3)23x 【分析】(1)根据单项式除以单项式的法则进行计算即可;(2)根据单项式除以单项式的法则进行计算即可;(3)根据单项式除以单项式的法则进行计算即可.【详解】(1)解:22842a b ab ab ¸=;(2)322623x y x y xy -¸=-;(3)()23322483x y y x -¸-=;题型02 多项式除以单项式【例题】(2023上·全国·八年级专题练习)计算:(1)()()235224332a b a b a b ab -+¸-; (2)()()2224122x y y x xy éù-+-¸-ëû.【答案】(1)3232ab a b-+(2)24y -+【分析】(1)根据多项式除以单项式,进行计算即可求解.(2)先根据单项式乘以多项式计算括号内的,然后合并同类项,最后根据多项式除以单项式进行计算即可求解.【详解】(1)解:()()235224332a b a b a b ab -+¸-()2352224332a b a b a b a b -+¸=3232ab a b =-+;(2)解:()()2224122x y y x xy éù-+-¸-ëû()()248222xy xy xy x x -¸-=+-()()2428y xy xy x ¸-=-24y =-+.【点睛】本题考查了整式的混合运算,熟练掌握整式的运算法则是解题的关键.【变式训练】题型03 含整式除法的整式四则混合运算【例题】(2023上·河南信阳·八年级统考阶段练习)计算:1.(2023上·辽宁盘锦·八年级校考阶段练习)计算:(1)()()()2353591x x x +---;(2) ()()()232222y x x y x x y xy x y ---¸-éùëû.【答案】(1)1834x -(2)1xy -【分析】本题考查了整式的混合运算;(1)根据平方差公式与完全平方公式进行计算,即可求解.(2)先根据单项式乘以多项式,再根据多项式除以单项式计算.【详解】(1)解:()()()2353591x x x +---()22925921x x x =---+229259189x x x =--+-1834x =-;7312x y =-;(4)解:()()222226633m n m n m m --¸-()()222221(3)3n n m m =-++-¸-2221n n =-++.题型04 整式的混合运算之化简求值题型05 含整式除法的新定义型问题【例题】(2023下·福建三明·七年级统考期中)若定义表示xyz ,表示4d b a c ,则运算 的结果为( )A .22m nB .24m nC .22mnD .24mn 【答案】A 【分析】根据定义的公式列式计算即可.【详解】解:由题意得:322422m n mn m n¸=故选:A .【点睛】此题考查了单项式除以单项式,正确理解定义的计算公式及单项式除以单项式的计算法则是解题的关键.【变式训练】题型06利用竖式的方法求整式中多项式除以单项式1.(2023下·江苏苏州·七年级统考期末)阅读理解:由两个或两类对象在某些方面的相同或相似,得出它们在其他方面也可能相同或相似的推理方法叫类比法.多项式除以多项式可以类比于多位数的除法进行计算.如图1:+27812232\¸=,()()32223133x x x x x \+-¸-=++.即多项式除以多项式用竖式计算,步骤如下:①把被除式和除式按同一字母的指数从大到小依次排列(若有缺项用零补齐).一、单选题1.(2023上·辽宁铁岭·八年级统考期末)计算82ab a ¸的结果是( )A .4bB .4abC .4aD .4【答案】A【分析】本题考查了单项式除以单项式的法则,被除式与除式的系数和相同变数字母的幂分别相除,其结果作为商的因式,据此即可作答.【详解】解:824ab a b¸=故选:A2.(2023上·陕西延安·八年级校联考阶段练习)下列计算正确的是( )A .()51x -B .()51x +C .()252x -D .()251x -【答案】A 【分析】本题考查了整式的除法,掌握多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加是解题的关键.【详解】解:()21022x x x-¸210222x x x x=¸-¸51x =-,故选:A .二、填空题三、解答题的次数低于除式的次数.(1)请把2456x x x ++-按x 的指数从大到小排列: .任务二 竖式计算:如下边竖式中,13579除以112,商为121,余数为27,而如下边竖式中,多项式4323579x x x x ++++除以22x x ++,商式为221x x ++,余式为27x +.(2)“刻苦小组”把小学的除法运算法则运用在多项式除法运算上,这里运用的数学思想是( )A .数形结合 B .类比 C .方程任务三 学以致用(3)请计算23(456)(2)x x x x ++-¸+的商式与余式【答案】(1)2466x x +-;(2)B ;(3)商式是221x x ++,余式是8-;。

整式的除法练习题(含答案)

整式的除法练习题(含答案)

《整式的除法》习题之迟辟智美创作一、选择题1.下列计算正确的是()A.a6÷a2=a3B.a+a4=a5C.(ab3)2=a2b6D.a-(3b-a)=-3b2.计算:(-3b3)2÷b2的结果是()b4b4C.9b3b43.“小马虎”在下面的计算中只做对一道题,你认为他做对的题目是()A.(ab)2=ab2B.(a3)2=a6C.a6÷a3=a2D.a3•a4=a124.下列计算结果为x3y4的式子是()A.(x3y4)÷(xy)B.(x2y3)•(xy)C.(x3y2)•(xy2)D.(-x3y3)÷(x3y2)5.已知(a3b6)÷(a2b2)=3,则a2b8的值即是().9C6.下列等式成立的是()A.(3a2+a)÷a=3aB.(2ax2+a2x)÷4ax=2x+4aC.(15a2-10a)÷(-5)=3a+2D.(a3+a2)÷a=a2+a二、填空题7.计算:(a2b3-a2b2)÷(ab)2=_____.8.七年级二班教室后墙上的“学习园地”是一个长方形,它的面积为6a2-9ab+3a,其中一边长为3a,则这个“学习园地”的另一边长为_____.9.已知被除式为x3+3x2-1,商式是x,余式是-1,则除式是_____.10.计算:(6x5y-3x2)÷(-3x2)=_____.三、解答题11.三峡一期工程结束后的昔时发电量为5.5×109度,某市有10万户居民,若平均每户用电2.75×103度.那么三峡工程该年所发的电能供该市居民使用几多年?(结果用科学记数法暗示)12.计算.(1)(30x4-20x3+10x)÷10x(2)(32x3y3z+16x2y3z-8xyz)÷8xyz(3)(6a n+1-9a n+1+3a n-1)÷3a n-1.13.若(x m÷x2n)3÷x2m-n与2x3是同类项,且m+5n=13,求m2-25n的值.14.若n为正整数,且a2n=3,计算(3a3n)2÷(27a4n)的值.15.一颗人造地球卫星的速度是2.6×107m/h,一架飞机的速度是1.3×106m/h,人造地球卫星的速度飞机速度的几倍?参考谜底一、选择题1.谜底:C解析:【解答】A、a6÷a2=a4,故本选项毛病;B、a+a4=a5,不是同类项不能合并,故本选项毛病;C、(ab3)2=a2b6,故本选项正确;D、a-(3b-a)=a-3b+a=2a-3b,故本选项毛病.故选C.【分析】根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;积的乘方,把每一个因式分别乘方,再把所得的幂相乘,对各选项计算后利用排除法求解.2.谜底:D解析:【解答】(-3b3)2÷b2=9b6÷b2=9b4.故选D.【分析】根据积的乘方,即是把积中的每一个因式分别乘方,再把所得的幂相乘;单项式相除,把系数与同底数幂分别相除作为商的因式,对只在被除式里含有的字母,则连同它的指数作为商的一个因式,计算即可.3.谜底:B解析:【解答】A、应为(ab)2=a2b2,故本选项毛病;B、(a3)2=a6,正确;C、应为a6÷a3=a3,故本选项毛病;D、应为a3•a4=a7,故本选项毛病.故选B.【分析】根据积的乘方,即是把积的每一个因式分别乘方,再把所得的幂相乘;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减;同底数幂相乘,底数不变指数相加;对各选项分析判断后利用排除法求解.4.谜底:B解析:【解答】A、(x3y4)÷(xy)=x2y3,本选项分歧题意;B、(x2y3)•(xy)=x3y4,本选项符合题意;C、(x3y2)•(xy2)=x4y4,本选项分歧题意;D、(-x3y3)÷(x3y2)=-y,本选项分歧题意,故选B【分析】利用单项式除单项式法则,以及单项式乘单项式法则计算获得结果,即可做出判断.5.谜底:B解析:【解答】∵(a3b6)÷(a2b2)=3,即ab4=3,∴a2b8=ab4•ab4=32=9.故选B.【分析】单项式相除,把系数和同底数幂分别相除,作为商的因式,对只在被除式里含有的字母,则连同它的指数一起作为商的一个因式,利用这个法则先算出ab4的值,再平方.6.谜底:D解析:【解答】A、(3a2+a)÷a=3a+1,本选项毛病;B、(2ax2+a2x)÷4ax=x+a,本选项毛病;C、(15a2-10a)÷(-5)=-3a2+2a,本选项毛病;D、(a3+a2)÷a=a2+a,本选项正确,故选D【分析】A、利用多项式除以单项式法则计算获得结果,即可做出判断;B、利用多项式除以单项式法则计算获得结果,即可做出判断;C、利用多项式除以单项式法则计算获得结果,即可做出判断;D、利用多项式除以单项式法则计算获得结果,即可做出判断.二、填空题7.谜底:b-1解析:【解答】(a2b3-a2b2)÷(ab)2=a2b3÷a2b2-a2b2÷a2b2=b-1.【分析】本题是整式的除法,相除时可以根据系数与系数相除,相同的字母相除的原则进行,对多项式除以单项式可以是将多项式中的每一个项分别除以单项式.8.谜底:2a-3b+1解析:【解答】∵长方形面积是6a2-9ab+3a,一边长为3a,∴它的另一边长是:(6a2-9ab+3a)÷3a=2a-3b+1.故谜底为:2a-3b+1.【分析】由长方形的面积求法可知由一边乘以另一边而得,则本题由面积除以边长可求得另一边.9.谜底:x2+3x解析:【解答】[x3+3x2-1-(-1)]÷x=(x3+3x2)÷x=x2+3x.【分析】有被除式,商及余数,被除式减去余数再除以商即可获得除式.10.谜底:-2x3y+1解析:【解答】(6x5y-3x2)÷(-3x2)=6x5y÷(-3x2)+(-3x2)÷(-3x2)=-2x3y+1.【分析】利用多项式除以单项式的法则,先用多项式的每一项除以单项式,再把所得的商相加计算即可.三、解答题11.谜底:2×10年解析:【解答】该市用电量为2.75×103×105=2.75×108(5.5×109)÷(2.75×108)=(5.5÷2.75)×109-8=2×10年.答:三峡工程该年所发的电能供该市居民使用2×10年.【分析】先求出该市总用电量,再用昔时总发电量除以用电量;然后根据同底数幂相乘,底数不变指数相加和同底数幂相除,底数不变指数相减计算.12.谜底:(1)3x3-2x2+1;(2)4x2y2+16xy2-1;(3)(-3a n+1+3a n-1)÷3a n-1=-3a2+1.解析:【解答】(1)(30x4-20x3+10x)÷10x=3x3-2x2+1;(2)(32x3y3z+16x2y3z-8xyz)÷8xyz=4x2y2+16xy2-1;(3)(6a n+1-9a n+1+3a n-1)÷3a n-1=(-3a n+1+3a n-1)÷3a n-1=-3a2+1.【分析】(1)根据多项式除以单项式的法则计算即可;(2)根据多项式除以单项式的法则计算即可;(3)先合并括号内的同类项,再根据多项式除以单项式的法则计算即可.13.谜底:39.解析:【解答】(x m÷x2n)3÷x2m-n=(x m-2n)3÷x2m-n=x3m-6n÷x2m-n=x m-5n因它与2x3为同类项,所以m-5n=3,又m+5n=13,∴m=8,n=1,所以m2-25n=82-25×12=39.【分析】根据同底数幂相除,底数不变指数相减,对(x m÷x2n)3÷x2m-n化简,由同类项的界说可得m-5n=2,结合m+5n=13,可得谜底.14.谜底:1解析:【解答】原式=9a6n÷(27a4n)=a2n,∵a2n=3,∴原式=×3=1.【分析】先进行幂的乘方运算,然后进行单项式的除法,最后将a2n=3整体代入即可得出谜底.15.谜底:20.解析:【解答】根据题意得:(2.6×107)÷(1.3×106)=2×10=20,则人造地球卫星的速度飞机速度的20倍.【分析】根据题意列出算式,计算即可获得结果.。

整式除法练习题带答案

整式除法练习题带答案

整式除法练习题带答案整式除法是初中代数中的重要内容,也是数学学习中一个相对难以掌握的部分。

在整式除法的练习题中,我们需要运用相关的规则和方法来求解问题。

下面我将给大家一些整式除法的练习题,并附上答案,在答案的解析中也会说明解题思路和关键步骤,希望能对大家的学习有所帮助。

练习题一:求解下列整式的除法,并写出商和余式:1. (2x^3 - 4x^2 + 3x - 1) ÷ (x - 1)2. (3x^4 + 2x^3 - 5x^2 + x - 2) ÷ (x + 2)解析一:1. 首先,我们将除式(x - 1)乘以被除数前面的最高次项系数,即x乘以2x^3,得2x^4;然后将这个结果(x^4)写在答案的位置上;接着,将刚刚得到的2x^4乘以除式的(-1),得-2x^4;将这部分的结果(-2x^4)与被除数中同类项(- 4x^2)相加或相减,然后将结果写在答案的位置上,即- 4x^2 + 2x^4;接下来,将刚刚得到的结果(- 4x^2 + 2x^4)中,x^2的系数2x^2,乘以除式(x - 1),得到2x^3 - 2x^2;将刚刚得到的2x^3 - 2x^2分别与被除数同类相消去,然后将结果2x^3 - 2x^2写在答案的位置上;将2x^3 - 2x^2中的x^2的系数(-2x)乘以除式(x - 1),得到-2x^2 + 2x;将刚刚得到的-2x^2 + 2x分别与被除数中同类项3x相减或相加后,将结果写在答案的位置上,即 3x - 2x^2 + 2x;将3x - 2x^2 + 2x中的x的系数2乘以除式(x - 1),得到2x - 2;将刚刚得到的2x - 2分别与被除数中同类项(-1)相减或相加后,将结果写在答案的位置上,即 -1 + 2x - 2;将-1 + 2x - 2中的常数项(-1)乘以除式(x - 1),得到-1;将刚刚得到的-1与被除数中同类项1相减或相加后,将结果写在答案的位置上,即 0。

专题1.2 整式的乘除法【十一大题型】(举一反三)(北师大版)(解析版)

专题1.2 整式的乘除法【十一大题型】(举一反三)(北师大版)(解析版)

专题1.2 整式的乘除法【十一大题型】【北师大版】【题型1 利用整式乘法求值】 (1)【题型2 利用整式乘法解决不含某项问题】 (2)【题型3 利用整式乘法解决错看问题】 (5)【题型4 利用整式乘法解决遮挡问题】 (7)【题型5 整式乘法的计算】 (8)【题型6 整式乘法的应用】 (9)【题型7 整式除法的运算与求值】 (12)【题型8 整式除法的应用】 (16)【题型9 整式乘法中的新定义问题】 (18)【题型10 整式乘法中的规律探究】 (22)【题型11 整式乘法与面积的综合探究】 (26)【知识点 整式的乘法】单项式×单项式:系数相乘,字母相乘.()xy xy x y 22312æö2×=ç÷33èø单项式×多项式:乘法分配律.()m a b c ma mb mc ++=++多项式×多项式:乘法分配律.()()m n a b ma mb na nb++=+++【题型1 利用整式乘法求值】【例1】(2023春·江苏无锡·七年级期中)若(x−1)(x +b)=x 2+ax−2,则a +b 的值为 .【答案】3【分析】由多项式乘多项式计算得x 2+(b ﹣1)x ﹣b =x 2+ax ﹣2,根据对应系数相等即可得出答案.【详解】解:∵(x ﹣1)(x +b )=x 2+bx ﹣x ﹣b =x 2+(b ﹣1)x ﹣b ,∴x 2+(b ﹣1)x ﹣b =x 2+ax ﹣2,∴b ﹣1=a ,﹣b =﹣2,解得:b =2,a =1,∴a +b =3,故答案为:3.【点睛】本题主要考查了多项式乘多项式,熟练掌握多项式乘多项式的法则进行计算是解决本题的关键.【变式1-1】(2023·七年级单元测试)已知x2+x+1=0,则x3−x2−x+7=【答案】9.【分析】观察发现,对x3−x2−x+7的前三项可以提出公因式x,即可发现解答思路.【详解】解:∵x2+x+1=0,∴x3−x2−x+7=x3+x2+x−2x2−2x−2+9=x(x2+x+1)−2(x2+x+1)+9=9【点睛】本题考查了多项式乘法的逆用,解题的关键在于寻找所求多项式与已知等式的关系.【变式1-2】(2023春·上海松江·七年级校考阶段练习)已知:x2+3x=10,则代数式(x−2)2+x(x+10)−5=.【答案】19【分析】先把代数式(x−2)2+x(x+10)−5化简得2(x2+3x)−1,再把已知整式x2+3x=10整体代入其中即可求解.【详解】原式=x2−4x+4+x2+10x−5=2x2+6x−1=2(x2+3x)−1把x2+3x=10整体代入上式:2(x2+3x)−1=2×10−1=19故答案为19.【点睛】本题主要考查整体代入的数学思想.【变式1-3】(2023·七年级单元测试)如果a、b、m均为整数,且(x+a)⋅(x+b)=x2+mx+15,则所有的m的和为.【答案】0【分析】已知等式左边利用多项式乘以多项式法则计算,利用多项式相等的条件即可求出m的值.【详解】∵(x+a)⋅(x+b)=x2+(a+b)x+ab=x2+mx+15∴a+b=m,ab=15,∴{a=1b=15或{a=−1b=−15或{a=15b=1或{a=−15b=−1或{a=3b=5或{a=−3b=−5或{a=5b=3或{a=−5b=−3,∴m取值有16,-16,8,-8.则所有的m的和为0.故答案为0.【点睛】本题考查了多项式乘以多项式,熟练掌握运算法则是解题的关键.【题型2利用整式乘法解决不含某项问题】【例2】(2023春·浙江·七年级专题练习)已知将(x3+mx+n)(x2-3x+4)展开的结果不含x3和x2项,求m、n的值.【答案】m=-4,n=-12.【分析】先利用多项式乘法法则把多项式展开,那么原式=x5-3x4+4x3+mx3-3mx2+4mx+nx2-3nx+4n=x5-3x4+(4+m)x3+(-3m+n)x2+(4m-3n)x+4n.由于展开后不含x3和x2项,则含x3和x2项的系数为0,由此可以得到4+m=0,-3m+n=0,解方程组即可以求出m、n.【详解】解:原式=x5-3x4+4x3+mx3-3mx2+4mx+nx2-3nx+4n=x5-3x4+(4+m)x3+(-3m+n)x2+(4m-3n)x+4n.∵不含x3和x2项,∴4+m=0,-3m+n=0,解得m=-4,n=-12.【点睛】考查了多项式乘多项式,关键是根据多项式相乘法则以及多项式的项的定义解答.【变式2-1】(2023春·广东佛山·七年级校考阶段练习)如果(y+5)(y+m)的乘积中不含y的一次项.则m的值为()A.-5B.5C.0D.3【答案】A【分析】原式利用多项式乘多项式法则计算,根据结果不含y的一次项,确定出m的值即可.【详解】解:原式=y2+(m+5)y+5m,由结果不含y的一次项,得到m+5=0,解得:m=-5,故选:A.【点睛】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.【变式2-2】(2023春·四川资阳·七年级统考期末)已知a为任意实数,有多项式M=x2+3ax+6,N=x+3,且MN=A,当多项式A中不含2次项时,a的值为().D.1A.-1B.0C.−23【答案】A【分析】根据题意列出整式相乘的式子,再计算多项式乘多项式,最后进行合并同类项,令二次项的系数等于0即可.【详解】解:∵MN=(x2+3ax+6)(x+3)=x3+3ax2+6x+3x2+9ax+18=x 3+(3a +3)x 2+(9a +6)x +18∴A =MN =x 3+(3a +3)x 2+(9a +6)x +18∴3a +3=0∴a =-1故选A .【点睛】本题考查的是整式的乘法—多项式乘多项式,正确进行多项式的乘法是解答此题的关键.【变式2-3】(2023春·七年级课时练习)若x 2+x 2−3x +n )的积中不含有x 与x 3项.(1)直接写出m 、n 的值,即m =___________,n = ___________;(2)求代数式(−m 2n )3+(9mn )2+(3m )2014n 2016的值.【答案】(1)1,−13(2)9427【分析】(1)根据多项式乘多项式法则计算,然后根据积中不含有x 与x 3项可以求解m 、n 的值.(2)将m 、n 的值代入代数式求值即可.【详解】(1)解:x 2+x 2−3x +n ) =x 4−3x 3+n x 2+3m x 3−9m x 2+3mnx−13x 2+x−13n=x 4+(3m−3)x 3+(n−9m−13)x 2+(3mn +1)x−13n ,∵积中不含有x 与x 3项,∴3m−3=0,3mn +1=0,解得m =1,n =−13.故答案为:1,−13.(2)解:当m =1,n =−13时,(−m 2n )3+(9mn )2+(3m )2014n 2016=−12×−+9×1×−+32014×−=+(−3)2+3×−×−=127+9+19=9427.【点睛】本题考查多项式乘多项式以及代数式求值,解题关键是熟知多项式乘多项式的计算法则.【题型3利用整式乘法解决错看问题】【例3】(2023春·四川内江·七年级校考阶段练习)在数学课堂上,老师写出一道整式乘法题:(2y+a) (3y+b).王建由于把第一个多项式中的“+a”抄成了“−a”,得到的结果为6y2+5y−10;李楠由于漏抄了第二个多项式中y的系数,得到的结果为2y2−7y+10.(1)求正确的a,b的值;(2)计算这道乘法题的正确结果.【答案】(1)a=−3b=−2;(2)6y2−13y+6【分析】(1)先根据多项式乘以多项式展开,合并同类项,得出两个二元一次方程,组成方程组,求出方程组的解即可;(2)根据多项式乘以多项式法则求出答案即可.【详解】(1)根据王建的解法得:(2y−a)(3y+b)=6y2+2by−3ay−ab=6y2+(2b−3a)y−ab=6y2+5y−10,∴2b−3a=5①根据李楠的解法的:(2y+a)(y+b)=2y2+2by+ay+ab=2y2+(2b+a)y+ab=2y2−7y+10,∴2b+a=−7②联立①②得方程组解得:a=−3b=−2;(2)这道题的正确解法是:(2y−3)(3y−2)=6y2−4y−9y+6=6y2−13y+6.【点睛】本题考查了多项式乘以多项式,解二元一次方程组等知识点,能得出关于a、b的方程组是解此题的关键.【变式3-1】(2023春•潍坊期末)小明在进行两个多项式的乘法运算时,不小心把乘以(x﹣2y)错抄成除以(x﹣2y),结果得到(3x﹣y),则正确的结果是( )A.3x2﹣7xy+2y2B.3x2+7xy+2y2C.3x3﹣13x2y+16xy2﹣4y3D.3x3﹣13x2y+16xy2+4y3【分析】直接利用多项式乘多项式运算法则计算得出答案.【解答】解:∵小明在进行两个多项式的乘法运算时,不小心把乘以(x﹣2y)错抄成除以(x﹣2y),结果得到(3x﹣y),∴原式=(3x﹣y)(x﹣2y)=3x2﹣6xy﹣xy+2y2=3x2﹣7xy+2y2,则正确计算结果为:(3x2﹣7xy+2y2)(x﹣2y)=3x3﹣7x2y+2xy2﹣6x2y+14xy2﹣4y3=3x3﹣13x2y+16xy2﹣4y3.故选:C.【变式3-2】(2023春•云县期末)在计算(x+a)(x+b)时,甲错把b看成了6,得到结果x2+8x+12;乙错把a看成了﹣a,得到结果x2+x﹣6.你能正确计算(x+a)(x+b)吗?(a、b都是常数)【分析】根据甲的做法求出a的值,根据乙的做法求出b的值,代入原式中计算即可.【解答】解:∵(x+a)(a+6)=x2+(6+a)x+6a=x2+8x+12,∴6+a=8,∴a=2;∵(x﹣a)(x+b)=x2+(b﹣a)x﹣ab=x2+x﹣6,∴b﹣a=1,∴b=3,∴(x+a)(a+b)=(x+2)(x+3)=x2+5x+6.【变式3-3】(2023春•河源期末)甲、乙两人共同计算一道整式:(x+a)(2x+b),由于甲抄错了a的符号,得到的结果是2x2﹣7x+3,乙漏抄了第二个多项式中x的系数,得到的结果是x2+2x﹣3.(1)求(﹣2a+b)(a+b)的值;(2)若整式中的a的符号不抄错,且a=3,请计算这道题的正确结果.【分析】(1)按甲乙错误的说法计算得出的系数的数值求出a,b的值;(2)将a,b的值代入原式求出整式乘法的正确结果.【解答】解:(1)甲抄错了a的符号的计算结果为:(x﹣a)(2x+b)=2x2+(﹣2a+b)x﹣ab=2x2﹣7x+3,故:对应的系数相等,﹣2a+b=﹣7,ab=﹣3;乙漏抄了第二个多项式中x的系数,计算结果为:(x+a)(x+b)=x2+(a+b)x+ab=x2+2x﹣3.故:对应的系数相等,a+b=2,ab=﹣3,∴−2a+b=−7 a+b=2,解得:a=3b=−1,∴(﹣2a+b)(a+b)=[(﹣2)×3﹣1](3﹣1)=﹣7×2=﹣14;(2)由(1)可知,b=﹣1正确的计算结果:(x+3)(2x﹣1)=2x2+5x﹣3.【题型4利用整式乘法解决遮挡问题】【例4】(2023春•河南月考)今天数学课上,老师讲了单项式乘多项式,放学回到家,小明拿出课堂笔记复习,发现一道题:﹣7xy(2y﹣x﹣3)=﹣14xy2+7x2y□,□的地方被钢笔水弄污了,你认为□内应填写( )A.+21xy B.﹣21xy C.﹣3D.﹣10xy【分析】先把等式左边的式子根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加,所得结果与等式右边的式子相对照即可得出结论.【解答】解:﹣7xy(2y﹣x﹣3)=﹣14xy2+7x2y+21xy.故选:A.【变式4-1】(2023春•天津期末)在一次数学课上,学习了单项式乘多项式,小明回家后,拿出课堂笔记本复习,发现这样一道题:﹣3x(﹣2x2+3x﹣1)=6x3+□+3x,“□”的地方被墨水污染了,你认为“□”内应填写( )A.9x2B.﹣9x2C.9x D.﹣9x【分析】根据单项式与多项式相乘的运算法则计算可得出答案.【解答】解:﹣3x(﹣2x2+3x﹣1)=6x3﹣9x2+3x,故选:B.【变式4-2】(2023春•岳麓区校级期中)已知x3﹣6x2+11x﹣6=(x﹣1)(x2+mx+n),其中m、n是被墨水弄脏了看不清楚的两处,请求出m2+6mn+9n2的值.【分析】将(x﹣1)(x2+mx+n)展开求得m和n的值后代入代数式即可求得其值.【解答】解:∵x3﹣6x2+11x﹣6=(x﹣1)(x2+mx+n)=x3+(m﹣1)x2+(n﹣m)x﹣n,∴m﹣1=﹣6,n=6,∴m =﹣5,∴m2+6mn+9n2=(﹣5)2+6×(﹣5)×6+9×62=25﹣180+324=169.【变式4-3】(2023春•江都区期中)今天数学课上,老师讲了单项式乘以多项式,放学后,小华回到家拿出课堂笔记,认真复习老师课上讲的内容,他突然发现一道题3x 2y (2xy 2﹣xy ﹣1)=6x 3y 3 ﹣3x 3y 2 ﹣3x 2y ,空格的地方被钢笔水弄污了,你认为横线上应填写 ﹣3x 3y 3 .【分析】直接利用单项式乘以多项式运算法则计算得出答案.【解答】解:∵3x2y (2xy2﹣xy ﹣1)=6x3y3﹣3x3y2﹣3x2y ,∴横线上应填写﹣3x3y2,故答案为:﹣3x3y2,﹣3x3y2.【题型5 整式乘法的计算】【例5】(2023春·重庆渝中·七年级校考期中)(1)计算:x ⋅2x +x(x−2);(2)(m +1)(m−5)−m(m−6)【答案】(1)3x 2−2x ;(2)2m-5【分析】(1)利用整式的混合运算法则求解即可.(2)根据单项式乘多项式,多项式乘多项式的运算方法计算即可.【详解】(1)x ⋅2x+x(x−2)=2x 2+x 2−2x=3x 2−2x.(2)(m+1)(m-5)-m (m-6)=m 2-5m+m-5-m 2+6m=2m-5;【点睛】此题考查整式的混合运算,解题关键在于掌握运算法则.【变式5-1】(2023春·上海·七年级期中)−12x 2y 2⋅2−8xy +【答案】15x 6y 2−2x 5y 3+112x 4y 2【分析】先计算积的乘方,再根据单项式乘以多项式法则进行计算即可.【详解】解:原式=14x 4y 2⋅(45x 2−8xy +13)=15x 6y 2−2x 5y 3+112x 4y 2.【点睛】本题考查整式的混合运算,能灵活运用知识点进行化简是解题的关键.【变式5-2】(2023春·七年级课时练习)先化简,再求值:x (x +2)+(1+x )(1−x ),其中x =-2.【答案】2x +1,-3【分析】原式根据单项式乘以多项式运算法则以及平方差公式去括号,合并同类项;再代入求值即可.【详解】解:x(x+2)+(1+x)(1−x)=x2+2x+1−x2=2x+1,当x=-2时,原式=2×(−2)+1=−3.【点睛】本题主要考查整式的化简求值,熟练掌握整式的混合运算顺序和运算法则是解题的关键.【变式5-3】(2023春·七年级课时练习)计算:(1)(a-1)(a2+a+1);(2)(2x+5)(2x-5)-(x+1)(x-4);(3)(3x-2)(2x+3)(x-2).【答案】(1) a3-1;(2) 3x2+3x-21;(3)6x3-7x2-16x+12.【分析】(1)利用多项式乘以多项式,去括号合并即可得到结果;(2)原式第一项利用平方差公式化简,第二项利用多项式乘以多项式,去括号合并即可得到结果;(3)利用多项式乘以多项式,去括号合并即可得到结果.【详解】(1)原式=a·a2+a·a+a·1-a2-a-1=a3-1.(2)原式=4x2-25-x2+3x+4=3x2+3x-21.(3)原式=(6x2+9x-4x-6)(x-2)=(6x2+5x-6)(x-2)=6x3+5x2-6x-12x2-10x+12=6x3-7x2-16x+12.【点睛】此题考查了多项式乘以多项式,以及平方差公式,熟练掌握公式是解本题的关键.【题型6整式乘法的应用】【例6】(2023春·浙江宁波·七年级校考期中)长方形的长和宽分别是a厘米、b厘米,如果长方形的长和宽各减少3厘米.新长方形的面积比原长方形的面积减少了多少平方厘米(用含的代数式表示)?【答案】3a+3b-9【详解】分析:根据题意表示出原来长方形与新长方形的面积,相减即可得到结果;详解:根据题意得,原长方形的面积为:ab平方厘米,新长方形的面积为:(a−2)(b−2)平方厘米,则新长方形的面积比原长方形的面积减少了:ab−(a−3)(b−3)=ab−ab+3a+3b−9=3a+3b−9(平方厘米).点睛:本题考查了长方形的面积和整式的混合运算,长方形的面积=长×宽,整式的混合运算是先算乘方,再算乘除,后算加减.【变式6-1】(2023春·上海静安·七年级新中初级中学校考期末)用长为24米的木条,做成一个“目”字形的窗框(如图所示,窗框外沿ABCD是长方形),若窗框的横条长度都为x米.(1)用代数式表示长方形ABCD的面积.(2)当x=3时,求出长方形ABCD的面积.【答案】(1)−2x2+12x;(2)18m2.【分析】(1)根据题意“目”字形的窗框,长有4段,总长为4AD=4x米,则AB=24−4x米,再根据长方形2面积计算公式即可得出答案;(2)把x=3代入(1)中关于面积的代数式中即可得出答案.=12−2x,【详解】(1)根据题意得AB=24−4x2∴S长方形ABCD=(12−2x)⋅x=−2x2+12x.(2)当x=3时,−2x2+12x=−2×9+12×3=−18+36=18m2.答:长方形ABCD面积为18m2.【点睛】本题主要考查了列代数及代数式的求值,根据题意列出合理的代数式是解决本题的关键.【变式6-2】(2023春·上海·七年级专题练习)如图,用一张高为30cm,宽为20cm的长方形打印纸打印文档,如果左右的页边距都为xcm,上下页边距比左右页边距多1cm.(1)请用x的代数式表示中间打印部分的面积.(2)当x=2时,中间打印部分的面积是多少平方厘米?【答案】(1)4x2-96x+560;(2)384cm2.【分析】(1)分别用含x的代数式表示出中间打印部分的高和宽,利用长方形面积公式即可得答案;(2)把x=2代入(1)中代数式,即可得答案.【详解】(1)∵左右的页边距都为xcm,上下页边距比左右页边距多1cm,∴中间打印部分的高为30-2(x+1)=28-2x,宽为20-2x,∴中间打印部分的面积为(28-2x)(20-2x)=4x2-96x+560.(2)由(1)得中间打印部分的面积为4x2-96x+560,∴当x=2时,中间打印部分的面积为4×22-96×2+560=384(cm2).答:当x=2时,中间打印部分的面积是384cm2.【点睛】本题考查了列代数式,正确理解题意,根据图示表示出中间打印部分的高和宽是解题关键.【变式6-3】(2023春·广东茂名·七年级校联考阶段练习)有一电脑程序:每按一次按键,屏幕的A区就会自动减去a,同时B区就会自动加上3a,且均显示化简后的结果.已知A,B两区初始显示的分别是25和﹣16(如图所示).例如:第一次按键后,A,B两区分别显示:25﹣a,﹣16+3a.(1)那么第二次按键后,A区显示的结果为______,B区显示的结果为______.(2)计算(1)中A、B两区显示的代数式的乘积,并求当a=1时,代数式乘积的值.【答案】(1)A区显示的结果为-2a+25;B区显示的结果为6a-16(2)−12a 2+182a−400;代数式乘积的值为−230【分析】(1)根据题意列出代数式即可;(2)根据多项式乘以多项式法则进行计算,然后将a =1代入求值即可.【详解】(1)第二次按键后,A 区显示的结果为25−2a ,B 区显示的结果为6a−16 故答案为:25−2a ,6a−16(2)(-2a+25)(6a -16)=−12a 2+182a−400 当a =1时原式=﹣12+182﹣400=−230【点睛】本题考查了列代数式、多项式乘以多项式,准确理解题意,并熟练掌握运算法则是解题的关键.【知识点2 整式的除法】单项式÷单项式:系数相除,字母相除.xy xy y21æö2¸=6ç÷3èø()多项式÷单项式:除法性质.()a b c m a m b m c m++¸=¸+¸+¸多项式÷多项式:大除法.()()x x x x23+3¸+1=3【题型7 整式除法的运算与求值】【例7】(2023春·河北承德·七年级统考期末)下列计算27a 2÷13a 3÷9a 2的顺序不正确的是( )A .27a 2÷(13a 3÷9a 2)B .(27a 2÷13a 3)÷9a 2C .(27÷13÷9)a 2−3−2D .(27a 2÷9a 2)÷13a【答案】A【分析】本题是单项式的连除运算,根据运算顺序、除法的性质及单项式除以单项式的法则即可求解.【详解】解:A 、∵27a 2÷(13a 3÷9a 2)=27a 2÷127a =729a ,27a 2÷13a 3÷9a 2=81a −1÷9a 2=9a −3,∴27a 2÷(13a 3÷9a 2)≠27a 2÷13a 3÷9a 2,故A 项错误;B 、根据运算顺序连续除以两个数即从左往右依次计算,可知27a 2÷13a 3÷9a 2=(27a 2÷13a 3)÷9a 2,故B 项正确;C 、根据单项式除以单项式的法则,可知27a 2÷13a 3÷9a 2=(27÷13÷9)a 2−3−2,故C 项正确;D 、根据运算顺序及除法的性质,可知27a 2÷13a 3÷9a 2=(27a 2÷9a 2)÷13a ,故D 项正确.故选∶A .【点睛】本题主要考查了连除的运算顺序及单项式除以单项式的法则.熟练掌握单项式除以单项式的运算法则是解题的关键.【变式7-1】(2023春·陕西咸阳·七年级统考期末)已知4m 2−7m +6=0,求代数式(3m 2−2m )÷m−(2m−1)2的值.【答案】3【分析】首先求出4m 2−7m =−6,再根据完全平方公式,多项式除以单项式化简代数式得出原式−4m 2+7m−3,代入即可得出答案.【详解】解:∵ 4m 2−7m +6=0∴ 4m 2−7m =−6∴ (3m 2−2m )÷m−(2m−1)2=3m−2−(4m 2−4m +1)=3m−2−4m 2+4m−1=−4m 2+7m−3=−(4m 2−7m )−3=6−3=3.【点睛】本题考查代数式求值,完全平方公式,多项式除以单项式,得出4m 2−7m =−6,正确化简代数式是解题的关键.【变式7-2】(2023·四川·石室佳兴外国语学校七年级阶段练习)已知多项式2x 2﹣4x ﹣1除以一个多项式A ,得商式为2x ,余式为x ﹣1,则这个多项式A =_____.【分析】根据“除式=(被除式-余式)÷商”列式,再利用多项式除单项式,先把多项式的每一项除以单项式,再把所得的商相加,计算即可.【解答】解:由题意可得:A =[(2x 2−4x −1)−(x −1)]÷2x =(2x 2−5x)÷2x =x −52故答案为:x−52【变式7-3】(2023春·江苏苏州·七年级统考期末)阅读理解:由两个或两类对象在某些方面的相同或相似,得出它们在其他方面也可能相同或相似的推理方法叫类比法.多项式除以多项式可以类比于多位数的除法进行计算.如图1:∴278÷12=232,∴(x3+2x2−3)÷(x−1)=x2+3x+3.即多项式除以多项式用竖式计算,步骤如下:①把被除式和除式按同一字母的指数从大到小依次排列(若有缺项用零补齐).②用竖式进行运算.③当余式的次数低于除式的次数时,运算终止,得到商式和余式.若余式为零,说明被除式能被除式整除.例如:(x3+2x2−3)÷(x−1)=x2+3x+3余式为0,∴x3+2x−3能被x−1整除.根据阅读材料,请回答下列问题:(1)多项式x2+5x+6除以多项式x+2,所得的商式为______ ;(2)已知x3+2x2−ax−10能被x−2整除,则a=______ ;(3)如图2,有2张A卡片,21张B卡片,40张C卡片,能否将这63片拼成一个与原来总面积相等且一边长为(a+8b)的长方形?若能,求出另一边长;若不能,请说明理由.【答案】(1)x+3(2)3(3)能,另一边长为(2a+5b)【分析】(1)列竖式进行计算即可得到答案;(2)列竖式计算,根据整除的意义,利用对应项的系数对应倍数即可得到答案;(3)根据题意,得到63张卡片的总面积为2a2+21ab+40b2,列竖式计算,根据2a2+21ab+40b2能被a+8b整除,即可得到答案.【详解】(1)解:列竖式如下:x+2x+3x2+2x3x+63x+6∴多项式x2+5x+6除以多项式x+2,所得的商式为x+3,故答案为:x+3;(2)列竖式如下:x−2x2+4x+(8−a)x3−2x24x2−ax−104x2−8x(8−a)x−10(8−a)x−2(8−a)2(8−a)−10∵x3+2x2−ax−10能被x−2整除,∴2(8−a)−10=0,解得:a=3,故答案为:3;(3)解:能,理由如下:根据题意,A卡片的面积是a2,B卡片的面积是ab,C卡片的面积是b2,∴2张A卡片,21张B卡片,40张C卡片的总面积为2a2+21ab+40b2,列竖式如下:a+8b2a+5b2a2+16ab5ab+40b25ab+40b2∵余式为0,∴2a2+21ab+40b2能被a+8b整除,商式为2a+5b,∴可以拼成与原来总面积相等且一边长为(a+8b)的长方形,另一边长为(2a+5b).【点睛】本题考查了利用竖式计算整式的除法,解题关键是注意同类项的对应,理解被除式=除式×商式+余式.【题型8 整式除法的应用】【例8】(2023春·七年级统考期末)某农场种植了蔬菜和水果,现在还有两片空地,农场计划在这两片空地上种植水果黄瓜、白黄瓜和青黄瓜.已知不同品种的黄瓜亩产量不同,其中白黄瓜的亩产量是青黄瓜的12,如果在空地种植白黄瓜、青黄瓜和水果黄瓜的面积之比为2:3:4,则水果黄瓜的产量是白黄瓜与青黄瓜产量之和的2倍;如果在空地上种植白黄瓜、青黄瓜和水果黄瓜的面积之比为5:4:3,则白黄瓜、青黄瓜和水果黄瓜的总产量之比为 .【答案】5:8:12【分析】设青黄瓜的亩产量为x ,则白黄瓜的亩产量为12x ,白黄瓜的种植面积为2y ,青黄瓜的种植面积为3y ,水果黄瓜的种植面积为4y ,据此求出水果黄瓜的产量是8xy ,进而得到水果黄瓜的亩产量为2x ,再根据种植面积的比值即可得到答案.【详解】解:设青黄瓜的亩产量为x ,则白黄瓜的亩产量为12x ,白黄瓜的种植面积为2y ,青黄瓜的种植面积为3y ,水果黄瓜的种植面积为4y ,∴青黄瓜的产量为3xy ,白黄瓜的产量为xy ,∴水果黄瓜的产量是2(3xy +xy )=8xy ,∴水果黄瓜的亩产量为8xy4y =2x ,∴当种植白黄瓜、青黄瓜和水果黄瓜的面积之比为5:4:3,则白黄瓜、青黄瓜和水果黄瓜的总产量之比为5×12x:4x:3×2x =5:8:12,故答案为:5:8:12.【点睛】本题主要考查了整式的加减计算,单项式除以单项式,正确根据题意求出水果黄瓜的亩产量为2x 是解题的关键.【变式8-1】(2023春•渝中区校级期中)某玩具加工厂要制造如图所示的两种形状的玩具配件,其中,配件①是由大、小两个长方体构成的,大长方体的长、宽、高分别为:52a 、2a 、32a ,小长方体的长、宽、高分别为:2a 、a 、a2;配件②是一个正方体,其棱长为a(1)生产配件①与配件②分别需要多长体积的原材料(不计损耗)?(2)若两个配件①与一个配件②可以用于加工一个玩具,每个玩具在市场销售后可获利30元,则1000a 3体积的这种原材料可使该厂最多获利多少元?【分析】(1)先算出两个长方体的体积,再相加,即可得出配件①的体积,求出棱长为a 的正方体体积,即可得出配件②的体积;(2)根据题意列出算式1000a3÷(2×172a3+a3)×30,求出即可.【解答】解:(1)生产配件①需要的原材料的体积是:52a •2a •32a+2a •a •a2=172a3;生产配件②需要的原材料的体积是:a •a •a =a3;(2)根据题意得:1000a3÷(2×172a3+a3)×30=50003(元),答:1000a3体积的这种原材料可使该厂最多获利50003元.【变式8-2】(2023春•蜀山区期中)爱动脑筋的丽丽与娜娜在做数学小游戏,两人各报一个整式,丽丽报的整式A 作被除式,娜娜报的整式B 作除式,要求商式必须为﹣3xy (即A ÷B =﹣3xy )(1)若丽丽报的是x 3y ﹣6xy 2,则娜娜应报什么整式?(2)若娜娜也报x 3y ﹣6xy 2,则丽丽能报一个整式吗?若能,则是个什么整式?说说你的理由.【分析】根据A ÷B =﹣3xy ,可知:(1)B =(x 3y ﹣6xy 2)÷(﹣3xy )=−13x 2+2y ;(2)A =(x 3y ﹣6xy 2)(﹣3xy )=﹣3x 4y 2+18x 2y 3;【解答】解:(1)A =x 3y ﹣6xy 2,∴B =(x 3y ﹣6xy 2)÷(﹣3xy )=−13x 2+2y ;(2)A =(x 3y ﹣6xy 2)(﹣3xy )=﹣3x 4y 2+18x 2y 3【变式8-3】(2023·七年级单元测试)甲、乙两个同学从A 地到B 地,甲步行的速度为3千米/小时,乙步行的速度是5千米/小时,两人骑车的速度都是15千米/小时.现在甲先步行,乙先骑自行车,两人同时从A 地出发,走了一段路程后,乙放下自行车步行,甲到乙放自行车的地方处改骑自行车.后面不断这样交替进行,两人恰好同时到达B 地.那么,甲走全程的平均速度是多少?【答案】457千米/小时.【分析】根据题意甲、乙从A 地到B 地,即甲步行共走的路程恰好等于乙骑车共走的路程;甲骑车共走的路程恰好等于乙步行共走的路程.故首先设甲步行共走x千米,骑车共走y千米,则乙骑车共行x千米,步行共行y千米.再根据路程=速度×时间,且甲、乙两人行走过程中经过的时间相同,那么可列出方程x3+y15=x 15+y5,解方程可得y用x表示表达式.再根据平均速度=总路程总时间,在求解过程中约去x,即可甲走完全程的平均速度.【详解】解:设甲步行共走x千米,骑车共走y千米,则乙骑车共行x千米,步行共行y千米.则根据题意,得x3+y15=x15+y5,解得y=2x.故甲的平均速度为(x+y)÷+=457(千米/时);答:甲走完全程的平均速度457(千米/时).【点睛】考查了一元一次方程的应用.本题解决的关键是根据题意画出路线草图,明白甲步行共走的路程恰好等于乙骑车共走的路程,甲骑车共走的路程恰好等于乙步行共走的路程;再就是求解过程中能够约去未知数.【题型9整式乘法中的新定义问题】【例9】(2023春·江苏宿迁·七年级统考期中)海伦是古希腊数学家,约公元62年左右活跃于亚历山大,年青时海伦酷爱数学,他的代表作《量度论》主要是研究面积、体积和几何分比问题,其中一段探究三角形面积的方法翻译如下:如图,设三角形面积为S,以三角形各边为边向外作正方形,三个正方形的面积分别记作S1、S2、S3,定义:S=S1S2S32;S′1=S−S1;S′2=S−S2;S′3=S−S3;Fs=S′1×S′2+S′2×S′3+S′3×S′1,经研究发现,F s=4S2.如:三角形三条边分别为13、14、15,则S1=169,S2=196,S3=225,S=295,S′1=126;S′2=99;S′3=70;Fs=28224,所以S2=28224÷4=7056=842,故三角形的面积S=84.(1)若S 1=3,S 2=4,S 3=5,则S =_______.F s =_______.(2)当S ′1=x−3;S ′2=x +3;S ′3=5−x 时.①求F s 的表达式;②若S 1+S 2+S 3=20,求三角形的面积.【答案】(1)6,11(2)①−x 2+10x−9;②三角形的面积S =2.【分析】(1)根据定义计算即可求解;(2)①根据F s =S ′1×S ′2+S ′2×S ′3+S ′3×S ′1,利用整式乘法运算法则计算即可求解;②先求得S 的值,再根据定义分别求得S 1、S 2、S 3的值,根据S 1+S 2+S 3=20,求得x =5,代入①中即可求解.【详解】(1)解:∵S 1=3,S 2=4,S 3=5,∴S =S 1S 2S 32=3452=6,S ′1=S−S 1=6−3=3;S ′2=S−S 2=6−4=2;S ′3=S−S 3=6−5=1;∴F s =S ′1×S ′2+S ′2×S ′3+S ′3×S ′1=3×2+2×1+1×3=11;故答案为:6,11;(2)解:①∵S ′1=x−3;S ′2=x +3;S ′3=5−x ,∴F s =S ′1×S ′2+S ′2×S ′3+S ′3×S ′1=(x−3)(x +3)+(x +3)(5−x)+(5−x)(x−3)=x 2−9+5x−x 2+15−3x +5x−15−x 2+3x =−x 2+10x−9;②∵S 1+S 2+S 3=20,∴S =S 1S 2S 32=10,∴S1′=S−S1=10−S1=x−3,故S1=10−(x−3)=13−x;S2′=S−S2=10−S2=x+3,故S2=10−(x+3)=7−x;S3′=S−S3=10−S3=5−x,故S3=10−(5−x)=5+x;∴S1+S2+S3=13−x+7−x+5+x=25−x=20,∴x=5,∴F S=−x2+10x−9=−52+10×5−9=16,∴S2=F s÷4=16÷4=4,故三角形的面积S=2.【点睛】本题考查了整式的乘法的应用,掌握新定义的内容,整式乘法的运算法则是解题的关键.【变式9-1】(2023春·浙江衢州·七年级统考期中)定义新运算|a b c d|=ad+3b−2c,如|1537|=1×7+3×5−2×3=7+15−6=16.(1)计算|23−14|的值;(2)化简:|x+y7xy−x22xy−3x2+1−3x−y|.【答案】(1)19;(2)−y2+13xy−2.【分析】(1)根据定义的新运算,把相关数值代入计算即可;(2)把相关式子代入,进行整式运算即可.【详解】(1)|23−14|=2×4+3×3−2×(−1)=19.(2)|x+y7xy−x22xy−3x2+1−3x−y|=(x+y)(−3x−y)+3(7xy−x2)−2(2xy−3x2+1)=−3x2−4xy−y2+21xy−3x2−4xy+6x2−2=−y2+13xy−2.【点睛】本题考查了新定义下的实数运算、整式的混合运算,正确理解定义的新运算的含义,根据数(式)位置确定a、b、c、d的值是解题关键.【变式9-2】(2023春·安徽六安·七年级六安市第九中学校考期中)给出如下定义:我们把有序实数对(a,b,c)叫做关于x的二次多项式a x2+bx+c的特征系数对,把关于x的二次多项式a x2+bx+c叫做有序实数对(a,b,c)的特征多项式.(1)关于x的二次多项式3x2+2x−1的特征系数对为__________;(2)求有序实数对(1,4,4)的特征多项式与有序实数对(1,−4,4)的特征多项式的乘积;(3)有序实数对(2,1,1)的特征多项式与有序实数对(a,−2,4)的特征多项式的乘积不含x2项,求a的值;【答案】(1)(3,2,-1);(2)x4−8x2+16;(3)-6【分析】(1)根据定义得到a,b,c的值即可得到答案;(2)根据特征多项式的定义得到两个多项式,根据多项式乘以多项式的计算法则计算可得答案;(3)根据定义得到特征多项式,计算乘积,根据特征多项式的乘积不含x2项得到x2项的系数等于0,由此求出a.【详解】(1)解:由定义得a=3,b=2,c=-1,∴二次多项式3x2+2x−1的特征系数对为(3,2,-1),故答案为:(3,2,-1);(2)有序实数对(1,4,4)的特征多项式为x2+4x+4,有序实数对(1,−4,4)的特征多项式为x2−4x+4,∴(x2+4x+4)(x2−4x+4)=(x+2)2(x−2)2=[(x+2)(x−2)]2=(x2−4)2=x4−8x2+16;(3)有序实数对(2,1,1)的特征多项式为2x2+x+1,有序实数对(a,−2,4)的特征多项式为a x2−2x+4,∴(2x2+x+1)(a x2−2x+4)=2a x4+(a−4)x3+(6+a)x2+2x+4,∵乘积不含x2项,∴6+a=0,解得a=-6.【点睛】此题考查了新定义,多项式乘以多项式的计算法则,以及多项式不含项的应用,正确理解新定义得到多项式是解题的关键.【变式9-3】(2023春·四川宜宾·七年级统考期中)阅读下列材料,解答下列问题:定义:如果一个数的平方等于−1,记为i2=−1,这个数i叫做虚数单位,把形如a+bi(a,b为实数)的数叫做复数,其中a叫这个复数的实部,b叫做这个复数的虚部,它的加、减、乘法运算与整式的加、减、乘法运算类似.例如计算:(2−i)+(5+3i)=(2+5)+(−1+3)i=7+2i;(1+i)×(2−i)=1×2−i+2×i−i2=2+(−1+2)i+1=3+i;根据以上信息,完成下列问题:(1)填空:i3=________,i4=________;(2)计算:(2+3i)×(3-4i);(3)计算:i+i2+i3+ (i2019)【答案】(1) -i,1;(2) 18+i;(3)-1.【分析】(1)把i2=-1代入求出即可;(2)根据多项式乘以多项式的计算法则进行计算,再把i2=-1代入求出即可;(3)先根据复数的定义计算,再合并即可求解.【详解】解:(1)由题意可知,i3=i2×i=-1×i=-i,i4=(i2)2=(-1)2=1,故答案为-i,1;(2)(2+3i)×(3-4i)=6-8i+9 i -12i2=6+i-12×(-1)=18+i;(3)由i=i,i2=-1,i3=-i,i4=1,i5=i4•i=i,i6=i4×i2=1×(-1)=-1,i7=i4×i3=1×(-i)=-i,i8=i4×i4=1×1=1…且i+i2+i3+i4=i+(-1)+(-i)+1=0,同理:i5+i6+i7+i8=0,可以看出每隔4位相加都等于0,且第五项第于第一项,第六项等于第二项…∴i+i2+i3+…+i2019=504×0+i2017+i2018+ i2019 =i-1- i=-1.【点睛】本题考查了整式的混合运算,复数的定义,能读懂题意是解此题的关键.【题型10整式乘法中的规律探究】【例10】(2023春·广东梅州·七年级统考期末)若正整数a,b的和为10,则称a,b“互补”,如果两个两位数的十位数字相同,个位数字“互补”(如24与26,52与58,简称它们“首同尾补”);那么这两个数的积是三位数或四位数,其末尾的两位数等于两数的个位数字之积,其起始的一位或两位数等于两数的十位数字与比这个十位数字大1的数之积.例如:24×26=624(积中的6=2×(2+1),24=4×6)52×58=3016(积中的30=5×(5+1),16=2×8)(1)直接写出下列各式运算结果:95×95=______,81×89=______;(2)用ab和ac分别表示两个两位数,其中a表示十位数字,b和c表示它们的个位数字,且b+c=10,①依据题意,两位数ab表示为______,两位数ac表示为______;。

整式的除法练习题(含答案)

整式的除法练习题(含答案)

整式的除法练习题(含答案)B、a+a4=a5,故本选项错误;C、(ab3)2=a2b6,正确;D、a-(3b-a)=-2b,故本选项错误。

选C。

2.答案:D解析:【解答】(-3b3)2=9b6,9b6÷b2=9b4,选D。

3.答案:A解析:【解答】(ab)2=a2b2,选A。

4.答案:C解析:【解答】(x3y2)•(xy2)=x4y4,选C。

5.答案:B解析:【解答】(a3b6)÷(a2b2)=ab4,ab4=3,a2b8=a2b2•ab6=ab7=9,选B。

6.答案:A解析:【解答】(3a2+a)÷a=3a,选A。

二、填空题7.答案:b.解析:【解答】(a2b3-a2b2)÷(ab)2=ab-a,选b。

8.答案:2b-a.解析:【解答】设该长方形的另一边长为b,则ab=6a2-9ab+3a,化简得ab=3a-3ab,即ab=3a-3(2b-a),解得b=2b-a,选2b-a。

9.答案:x2+x-1.解析:【解答】x3+3x2-1=(x2+x-1)•x+(-1),除式为x2+x-1,选x2+x-1.10.答案:-2y.解析:【解答】(6x5y-3x2)÷(-3x2)=-2y,选-2y。

三、解答题11.答案:200年.解析:【解答】三峡工程当年发电量为5.5×109度,该市居民平均每户用电2.75×103度,因此该市居民当年用电量为2.75×103×10万=2.75×108度。

三峡工程该年所发的电能供该市居民使用的年数为5.5×109÷2.75×108=20年,即三峡工程该年所发的电能供该市居民使用20年。

12.答案:1) 答案:3x3-2x2+1.解析:【解答】(30x4-20x3+10x)÷10x=3x3-2x2+1,选3x3-2x2+1.2) 答案:4yz+2y-1/2.解析:【解答】(32x3y3z+)÷=4yz+2y-1/2,选4yz+2y-1/2.3) 答案:-1/3.解析:【解答】(6an+1-9an+1+3an-1)÷3an-1=-1/3,选-1/3.13.答案:-16.解析:【解答】(xm÷x2n)3÷x2m-n=(x-m+2n)3÷x2m-n=x3-3(m-2n)x+m-6n,与2x3是同类项,即m-6n=3,又m+5n=13,解得m=2,n=1,代入m2-25n得-16,选-16.14.答案:1/4.解析:【解答】(3a3n)2÷(27a4n)=(a3n)2÷(9a4n)=a6n÷9a4n=1/9a2n,又a2n=3,代入得1/4,选1/4.15.答案:20.解析:【解答】人造地球卫星的速度是2.6×107m/h,一架飞机的速度是1.3×106m/h,人造地球卫星的速度飞机速度的倍数为2.6×107÷1.3×106=20,选20.2.解析:根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;积的乘方,把每一个因式分别乘方,再把所得的幂相乘,对于各选项进行计算后,利用排除法得出答案为D。

整式的除法专题训练50题(有答案)

整式的除法专题训练50题(有答案)

整式的除法专题训练50题(有答案)1、计算:x・x3+(-2x2)2+24x6÷(-4x2).2、先化简,再求值:其中3、计算:4、计算5、计算(-1)2009+(3.14)0++6、计算题:7、计算.[(x+y)2-y(2x+y)-8x]÷2x;8、先化简,再求值.(-2a4x2+4a3x3-a2x4)÷(-a2x2),其中a=,x=-4.9、28x4y2÷7x3y10、化简求值:已知|a+|+(b-3)2=0,求代数式[(2a+b)2+(2a+b)(b-2a)-6b]÷2b的值.11、先化简再求值:[(x+2y)(x-2y)-(x+4y)2]÷(4y),其中x=5,y=2.12、计算:13、计算:.14、计算:15、化简求值:[(x-y)2+y(4x-y)-8x]÷2x,其中x=8,y=2009.16、计算:(-3x2n+2y n)3÷[(-x3y)2] n17、计算:[(2x-y)(2x+y)+y(y-6x)]÷2x;18、先化简,再求值:,其中.19、计算:.20、先化简,再求值:,其中21、化简:[(+1)(+2)一2]÷22、先化简,再求值:,其中23、先化简,再求值:(2a+b)(2a-b)+b(2a+b)-4a2b÷b,其中a=-,b=2.24、计算:=___________.25、计算:(-2xy2)2・3x2y÷(-x3y4) =____________。

26、计算:3x6y4÷(xy3)=_____________; (am-bm)÷m =________________27、已知,那么、的值为()A、,B、,C、,D、,28、把下式化成(a-b)p的形式:15(a-b)3[-6(a-b)p+5](b-a)2÷45(b-a)529、一个长方形的面积是平方米,其长为米,用含有的整式表示它的宽为________米.30、已知一个单项式除以另一个单项式后,得到一个5次单项式,试写出另一个单项式________________(只写出一个正确的答案即可)31、化简= .32、四条线段A.B.C.d成比例,其中b=3cm,c=2cm,d=6cm,则a=_____cm。

整式的除法练习题(含答案)

整式的除法练习题(含答案)

《整式的除法》习题之阳早格格创做一、采用题1.下列估计精确的是()A.a6÷a2=a3B.a+a4=a5C.(ab3)2=a2b6D.a-(3b-a)=-3b2.估计:(-3b3)2÷b2的截止是()b4b4C.9b3b43.“小马虎”正在底下的估计中只干对付一讲题,您认为他干对付的题目是()A.(ab)2=ab2B.(a3)2=a6C.a6÷a3=a2D.a3•a4=a124.下列估计截止为x3y4的式子是()A.(x3y4)÷(xy)B.(x2y3)•(xy)C.(x3y2)•(xy2)D.(-x3y3)÷(x3y2)5.已知(a3b6)÷(a2b2)=3,则a2b8的值等于().9C6.下列等式创制的是()A.(3a2+a)÷a=3aB.(2ax2+a2x)÷4ax=2x+4aC.(15a2-10a)÷(-5)=3a+2D.(a3+a2)÷a=a2+a两、挖空题7.估计:(a2b3-a2b2)÷(ab)2=_____.8.七年级两班课堂后墙上的“教习园天”是一个少圆形,它的里积为6a2-9ab+3a,其中一边少为3a,则那个“教习园天”的另一边少为_____.9.已知被除式为x3+3x2-1,商式是x,余式是-1,则除式是_____.10.估计:(6x5y-3x2)÷(-3x2)=_____.三、解问题11.三峡一期工程中断后的当年收电量为5.5×109度,某市有10万户住户,若仄衡每户用电2.75×103度.那么三峡工程该年所收的电能供该市住户使用几年?(截止用科教记数法表示)12.估计.(1)(30x4-20x3+10x)÷10x(2)(32x3y3z+16x2y3z-8xyz)÷8xyz(3)(6a n+1-9a n+1+3a n-1)÷3a n-1.13.若(x m÷x2n)3÷x2m-n取2x3是共类项,且m+5n=13,供m2-25n的值.14.若n为正整数,且a2n=3,估计(3a3n)2÷(27a4n)的值.15.一颗人制天球卫星的速度是2.6×107m/h,一架飞机的速度是1.3×106m/h,人制天球卫星的速度飞机速度的几倍?参照问案一、采用题1.问案:C剖析:【解问】A、a6÷a2=a4,故本选项过失;B、a+a4=a5,没有是共类项没有克没有及合并,故本选项过失;C、(ab3)2=a2b6,故本选项精确;D、a-(3b-a)=a-3b+a=2a-3b,故本选项过失.故选C.【分解】根据共底数幂的除法,底数没有变指数相减;合并共类项,系数相加字母战字母的指数没有变;积的乘圆,把每一个果式分别乘圆,再把所得的幂相乘,对付各选项估计后利用排除法供解.2.问案:D剖析:【解问】(-3b3)2÷b2=9b6÷b2=9b4.故选D.【分解】根据积的乘圆,等于把积中的每一个果式分别乘圆,再把所得的幂相乘;单项式相除,把系数取共底数幂分别相除动做商的果式,对付于只正在被除式里含有的字母,则连共它的指数动做商的一个果式,估计即可.3.问案:B剖析:【解问】A、应为(ab)2=a2b2,故本选项过失;B、(a3)2=a6,精确;C、应为a6÷a3=a3,故本选项过失;D、应为a3•a4=a7,故本选项过失.故选B.【分解】根据积的乘圆,等于把积的每一个果式分别乘圆,再把所得的幂相乘;幂的乘圆,底数没有变指数相乘;共底数幂相除,底数没有变指数相减;共底数幂相乘,底数没有变指数相加;对付各选项分解推断后利用排除法供解.4.问案:B剖析:【解问】A、(x3y4)÷(xy)=x2y3,本选项分歧题意;B、(x2y3)•(xy)=x3y4,本选项切合题意;C、(x3y2)•(xy2)=x4y4,本选项分歧题意;D、(-x3y3)÷(x3y2)=-y,本选项分歧题意,故选B【分解】利用单项式除单项式规则,以及单项式乘单项式规则估计得到截止,即可干出推断.5.问案:B剖析:【解问】∵(a3b6)÷(a2b2)=3,即ab4=3,∴a2b8=ab4•ab4=32=9.故选B.【分解】单项式相除,把系数战共底数幂分别相除,动做商的果式,对付于只正在被除式里含有的字母,则连共它的指数所有动做商的一个果式,利用那个规则先算出ab4的值,再仄圆.6.问案:D剖析:【解问】A、(3a2+a)÷a=3a+1,本选项过失;B、(2ax2+a2x)÷4ax=x+a,本选项过失;C、(15a2-10a)÷(-5)=-3a2+2a,本选项过失;D、(a3+a2)÷a=a2+a,本选项精确,故选D【分解】A、利用多项式除以单项式规则估计得到截止,即可干出推断;B、利用多项式除以单项式规则估计得到截止,即可干出推断;C、利用多项式除以单项式规则估计得到截止,即可干出推断;D、利用多项式除以单项式规则估计得到截止,即可干出推断.两、挖空题7.问案:b-1剖析:【解问】(a2b3-a2b2)÷(ab)2=a2b3÷a2b2-a2b2÷a2b2=b-1.【分解】本题是整式的除法,相除时不妨根据系数取系数相除,相共的字母相除的准则举止,对付于多项式除以单项式不妨是将多项式中的每一个项分别除以单项式.8.问案:2a-3b+1剖析:【解问】∵少圆形里积是6a2-9ab+3a,一边少为3a,∴它的另一边少是:(6a2-9ab+3a)÷3a=2a-3b+1.故问案为:2a-3b+1.【分解】由少圆形的里积供法可知由一边乘以另一边而得,则本题由里积除以边少可供得另一边.9.问案:x2+3x剖析:【解问】[x3+3x2-1-(-1)]÷x=(x3+3x2)÷x=x2+3x.【分解】有被除式,商及余数,被除式减来余数再除以商即可得到除式.10.问案:-2x3y+1剖析:【解问】(6x5y-3x2)÷(-3x2)=6x5y÷(-3x2)+(-3x2)÷(-3x2)=-2x3y+1.【分解】利用多项式除以单项式的规则,先用多项式的每一项除以单项式,再把所得的商相加估计即可.三、解问题11.问案:2×10年剖析:【解问】该市用电量为2.75×103×105=2.75×108(5.5×109)÷(2.75×108)=(5.5÷2.75)×109-8=2×10年.问:三峡工程该年所收的电能供该市住户使用2×10年.【分解】先供出该市总用电量,再用当年总收电量除以用电量;而后根据共底数幂相乘,底数没有变指数相加战共底数幂相除,底数没有变指数相减估计.12.问案:(1)3x3-2x2+1;(2)4x2y2+16xy2-1;(3)(-3a n+1+3a n-1)÷3a n-1=-3a2+1.剖析:【解问】(1)(30x4-20x3+10x)÷10x=3x3-2x2+1;(2)(32x3y3z+16x2y3z-8xyz)÷8xyz=4x2y2+16xy2-1;(3)(6a n+1-9a n+1+3a n-1)÷3a n-1=(-3a n+1+3a n-1)÷3a n-1=-3a2+1.【分解】(1)根据多项式除以单项式的规则估计即可;(2)根据多项式除以单项式的规则估计即可;(3)先合并括号内的共类项,再根据多项式除以单项式的规则估计即可.13.问案:39.剖析:【解问】(x m÷x2n)3÷x2m-n=(x m-2n)3÷x2m-n=x3m-6n÷x2m-n=x m-5n果它取2x3为共类项,所以m-5n=3,又m+5n=13,∴m=8,n=1,所以m2-25n=82-25×12=39.【分解】根据共底数幂相除,底数没有变指数相减,对付(x m÷x2n)3÷x2m-n化简,由共类项的定义可得m-5n=2,分离m+5n=13,可得问案.14.问案:1剖析:【解问】本式=9a6n÷(27a4n)=a2n,∵a2n=3,∴本式=×3=1.【分解】先举止幂的乘圆运算,而后举止单项式的除法,末尾将a2n=3完全代进即可得出问案.15.问案:20.剖析:【解问】根据题意得:(2.6×107)÷(1.3×106)=2×10=20,则人制天球卫星的速度飞机速度的20倍.【分解】根据题意列出算式,估计即可得到截止.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整式的除法
整式的除法是每年中考的必考内容,整式的除法主要包括单项式除以单项
式、多项式除以单项式,本文就其常见题型归纳如下,供同学们学习时参考。
一、单项式除以单项式
运算法则:单项式相除,把系数与同底数幂分别相除作为商的一个因式,对
于只在被除式中含有的字母,则连同它的指数作为商的一个因式.
例1 计算:35)()(xyyx
分析 对于本题我们可以将底数多项式看作整体,先将底数调整为相同的,
进行同底数幂的除法(同底数幂的除法可看作单项式相除中最简单的形式),并
将结果化到最后.
解:35)()(xyyx
35
)()(xyxy

2
)(xy

)2(22xxyy
22
2xxyy

评注 在计算幂的乘除法中,遇到底数不相同时,可先转化成同底数幂然
后进行计算.

例2 计算:)41()52(243abcba
分析 单项式除以单项式将系数、同底数的幂分别结合成一组相除,单独在
被除式中出现的字母作为商的一个因式.

cba2413)41(52:原式解
.5822cba
评注 单项式除以单项式,解题的依据是单项式除法法则,计算时,要弄清两个
单项式的系数,哪些是同底数幂,哪些是只在被除式里出现的字母,此外还要特
别注意系数的符号。
二、多项式除以单项式
运算法则:多项式除以单项式,先把这个多项式中的每一项除以这个单项式,
再把所得的商相加.

例3 计算: 236274319132)()(abbaba。
分析 这是多项式除以单项式的运算,在运算中要把多项式除以单项式“转
化”为单项式除以单项式,再根据单项式除以单项式的法则进行计算.

解:原式

。)(1691919132919132262626274626274ba
babababa
bababa

评注 在进行多项式除以单项式的计算时不要漏项,所得结果的项数应与
被除式中的项数相同,另外要明确除式与被除式中各项的符号,相除时要带着符
号进行。
总之,通过以上例题的分析,我们应注意以下问题:
(1)单项式除以单项式主要是通过转化为同底数幂的除法解决的.
(2)我们只研究结果为整式的单项式除法,所以单项式相除的结果中的字
母少于或等于被除式的字母,而结果的次数为被除式、除式的次数之差.
(3)多项式(没有同类项)除以单项式,结果的项数与多项式的项数相同,
不要漏项.

相关文档
最新文档