绝对值不等式的性质及其解法
不等式的性质及解法

不等式的性质及解法不等式是数学中的一种重要的数值关系表示形式,与等式相比,不等式更能反映数值大小之间的差异。
在实际问题中,我们经常会遇到需要确定数值范围的情况,而不等式的性质和解法则帮助我们进行准确的数值分析和解决问题。
一、不等式的基本性质1. 传递性:如果 a<b,b<c,则有 a<c。
这一性质表明不等式的关系可以在数轴上进行传递,简化了分析比较的步骤。
2. 加减性:如果 a<b,则有 a±c<b±c。
对于不等式两边同时加减同一个数,不等式的关系保持不变。
3. 乘除性:如果 a<b 并且 c>0,则有 ac<bc;如果 a<b 并且 c<0,则有ac>bc。
这一性质需要注意,当乘以负数时,不等式的关系需要取反。
4. 对称性:如果a<b,则有b>a。
不等式两边的大小关系可以互换。
二、一元不等式的解法1. 加减法解法:通过加减法将不等式转化为更简单的形式。
例如:对于不等式 2x+3>7,我们可以先减去3,得到 2x>4,再除以2,得到x>2,即解集为 x>2。
2. 乘除法解法:通过乘除法将不等式转化为更简单的形式。
同样以不等式 2x+3>7 为例,我们可以先减去3,得到 2x>4,再除以2,得到x>2,即解集为 x>2。
3. 移项解法:利用不等式的基本性质,将所有项移到同一边,得到一个结果。
例如:对于不等式 3(x-2)>4x-7,我们可以先将右边的项移动到左边,得到 3x-6>4x-7,然后将 x 的系数移到一侧,得到 3x-4x>-7+6,化简得到 -x>-1,再乘以 -1,注意需要反转不等式的关系,得到x<1,即解集为 x<1。
4. 系数法解法:当不等式中存在系数时,我们可以通过判断系数的正负来确定解的范围。
例如:对于不等式 2x-3>0,我们观察到系数2>0,说明 x 的取值范围为正数,即解集为 x>3/2。
绝对值不等式的解法

高考必考!绝对值不等式的解法1.绝对值的定义(1)几何意义实数a 在数轴上所对应的点A 到原点O 的距离叫做数a 的绝对值,记作“|a|”。
(2)代数意义⎪⎩⎪⎨⎧<-=>=0,0,00,a a a a a a 2.不等式的基本性质(1)对称性:如果b a >,那么a b <.(2)传递性:如果b a >且c b >,那么c a >.(3)同向可加性:如果b a >,那么c b c a +>+.(4)乘法单调性:如果b a >且0>c ,那么bc ac >;如果b a >且0<c ,那么bc ac <.3.绝对值三角不等式(1)如果b a ,是实数,那么||b a +≤||||b a +(当且仅当ab ≥0时,“=”成立).(2)如果b a ,是实数,那么||||b a -≤||b a -≤||||b a +.(当且仅当左侧不等式中ab ≤0时,“=”成立;当且仅当右侧不等式中ab ≥0时,“=”成立).(3)如果c b a ,,是实数,那么||c a -≤||||c b b a -+-(当且仅当))((c b b a --≥0时,“=”成立).4.绝对值不等式的解法(1)a x ≤和a x ≥型该型不等式是解决其他绝对值不等式的基础,其他绝对值不等式的求解最终转化为该型不等式得解。
a x a a x <<-⇔≤a x a x ≥⇔≥或a x ≤(2)c b ax ≤+和c b ax ≥+型把b ax +看成一个整体X ,转化为a x ≤和a x ≥型去解。
【例】 解不等式312≤-x . 解:由312≤-x 得:3123≤-≤-x ,解得 21≤≤-x .所以原不等式的解集为}21|{≤≤-x x .(3)c b x a x ≤-+-和c b x a x ≥-+-型(★考点)该型绝对值不等式的解法概括为以下三种:①数形结合思想;②零点分段讨论法;③函数与方程思想。
绝对值不等式

绝对值不等式1、平均值不等式定理1:如果a,b∈R,那么a²+b²≥= 当且仅当当时,等号成立定理2:(基本不等式)如果a,b>0,那么2ba+≥,当且仅当当时,等号成立,即两个正数的算术平方根不小于(即大于或等于)它们的几何平均数。
定理3:如果a,b,c大于0,那么3cba++≥,当且仅当当时,等号成立,2、绝对值三角不等式:定理1:如果a,b是实数,则|a+b|≤ ,当且仅当当时,等号成立定理2:如果a,b,c是实数,那么 ,当且仅当当时,等号成立3.绝对值不等式的解法(2)|ax+b|≤c、|ax+b|≥c(c>0)型不等式的解法:①|ax+b|≤c⇔②|ax+b|≥c⇔(3)|x-a|+|x-b|≥c、|x-a|+|x-b|≤c(c>0)型不等式的解法:三种解法:思考感悟:1.|a-b|与|a|-|b|及|a|+|b|分别具有什么关系?【提示】||a|-|b||≤|a-b|≤|a|+|b|.2.|x-a|±|x-b|表示的几何意义是什么?【提示】|x-a|±|x-b|表示数轴上的点x到点a、b的距离之和(差).学情自测:1.(教材改编题)设ab>0,下面四个不等式中,正确的是()C①|a+b|>|a|;②|a+b|<|b|;③|a+b|<|a-b|;④|a+b|>|a|-|b|.A.①和②B.①和③C.①和④D.②和④∵ab>0,即a,b同号,则|a+b|=|a|+|b|,∴①④正确,②③错误.2.(2012·韶关质检)不等式|x-2|>x-2的解集是()AA.(-∞,2) B.(-∞,+∞) C.(2,+∞) D.(-∞,2)∪(2,+∞)【解析】|x-2|>x-2同解于x-2<0,∴x<2.3.(2011·陕西高考)若关于x的不等式|a|≥|x+1|+|x-2|存在实数解,则实数a的取值范围是________.【解析】因为|x+1|+|x-2|≥|x+1-x+2|=3,∴|x+1|+|x-2|的最小值为3,因此要使原不等式存在实数解,只需|a|≥3,∴a≥3或a≤-3.【答案】(-∞,-3]∪[3,+∞)4、(2012广州调研)不等式:|2||1|++x x ≥1的实数解为 |2||1|++x x ≥1⇔|x+1|≥|x+2|且x+2≠0,∴x ≤-23且x ≠-2 绝对值不等式性质的应用 :例题1:(2011·江西高考)对于实数x ,y ,若|x -1|≤1,|y -2|≤1,则|x -2y +1|的最大值为.【思路点拨】思路一: 将|x -2y +1|变形,设法用x -1与y -2表示,利用绝对值不等式的性质求最值; 思路二: 由|x -1|≤1,|y -2|≤1分别求x 、y 的范围,然后运用不等式的性质和绝对值的意义求解.【尝试解答】法一 |x -2y +1|=|(x -1)-2(y -2)-2|≤|x -1|+2|y -2|+2≤1+2+2=5,当且仅当x =0,y =3时,|x -2y +1|取最大值5.法二 ∵|x -1|≤1,∴-1≤x -1≤1,∴0≤x ≤2.又∵|y -2|≤1,∴-1≤y -2≤1,∴1≤y ≤3,从而-6≤-2y ≤-2. 由同向不等式的可加性可得-6≤x -2y ≤0,∴-5≤x -2y +1≤1,∴|x -2y +1|的最大值为5.规律与方法:1.(1)法一的关键是把|x -2y +1|变形为|(x -1)-2(y -2)-2|,进而利用绝对值不等式性质;(2)法二把求|x -2y +1|的最大值问题,转化为求x -2y +1的取值范围问题.2.(1)利用绝对值不等式性质定理求最值时,要指明取到等号的条件.(2)注意绝对值不等式性质在不等式证明中的放缩应用.变式训练:若f (x )=x 2-x +c (c 为常数),|x -a |<1,求证:|f (x )-f (a )|<2(1+|a |).【证明】 |f (x )-f (a )|=|(x 2-x +c )-(a 2-a +c )|=|x 2-x -a 2+a |=|(x -a )(x +a -1)|=|x -a ||x +a -1|=|x -a ||(x -a )+(2a -1)|,∵|x -a |<1.∴|x -a ||(x -a )+(2a -1)|<|(x -a )+(2a -1)|≤|x -a |+|2a -1|<1+|2a |+1=2(1+|a |). ∴不等式|f (x )-f (a )|<2(1+|a |)成立含绝对值不等式的解法 :例题2:(1)(2011·江苏高考)解不等式:x +|2x -1|<3.(2)不等式|x +3|-|x -2|≥3的解集为________.【思路点拨】 (1)将不等式x +|2x -1|<3化成|2x -1|<3-x 的形式,然后用公式求解.(2)去|x +3|与|x -2|的绝对值,按零点分区间讨论.【尝试解答】1) 由x+|2x-1|<3,得|2x-1|<3-x,∴原不等式化为:⎩⎨⎧-<-≥-x x x 312012或⎩⎨⎧-<-<-x x x 321012, 解得:21≤x<34或-2<x<21,∴原不等式的解集是:{x|-2<x<34} 2) ①当x ≥2时,原不等式化为:x+3-(x-2)≥3,此时恒成立,∴x ≥2,②当x ≤-3时,原不等式化为-x-3-(2-x)≥3,无解,③当-3<x<2时,原不等式化为x+3-(2-x)≥3,解得:x ≥1,因此1≤x<2综合①②③可知,原不等式的解集为:{x|x ≥1}1.第(1)问利用绝对值定义,将其转化为与之等价的不等式组是求解的关键;也可利用|f (x )|<g (x )⇔-g (x )<f (x )<g (x )进行转化;第(2)问易错点:(1)分区间去绝对值时忽视零点的值;(2)误求不等式的解集为交集.2.含有两个或两个以上绝对值号的不等式,常用零点分段法脱去绝对值号,将其转化为与之等价的不含绝对值符号的不等式(组).但一定注意,最终的不等式的解集是各类情形的并集.其操作程序是:找零点、分区间、分段讨论.变式训练:(2011·山东高考)求不等式|x -5|+|x +3|≥10的解集.【解】法一:当x ≥5时,原不等式为x -5+x +3≥10,∴x ≥6.不等式的解集为{x |x ≥6}. 当-3<x <5时,原不等式化为-x +5+x +3≥10,8≥10,此时原不等式无解;当x ≤-3时,原不等式化为-x +5-x -3≥10,x ≤-4.∴原不等式的解集为{x |x ≤-4}. 综上所述,原不等式的解集为(-∞,-4]∪[6,+∞).法二 由绝对值的几何意义,|x -5|+|x +3|≥10表示数轴上的点到两点-3,5的距离之和大于等于10的所有的点集.易知点-4和6到两点-3,5的距离之和都等于10,结合数轴知原不等式的解集为{x |x ≥6或x ≤-4}.利用平均值不等式求最值 :1)若x>0,求函数f(x)=x+24x的最小值; 2)已知x>0,y>0,且x+y=1,求x 4+y 9的最小值 【思路点拨】:1)将f(x)变形为2x +2x +24x,然后用定理3求解 2)注意x+y=1的应用,运用a+b ≥2ab 求最小值【尝试解答】1)∵x>0,∴f(x)= x+24x =2x +2x +24x ≥332422x x x ∙∙=3,当且仅当2x =24x ,即x=2时取等号,∴x=2时,f(x)min =32)∵x>0,y>0,x+y=1,∴x 4+y 9= (x+y)( x 4+y 9)=13+x y 4+y x 9≥13+2yx x y 94∙=25 当且仅当x y 4=yx 9时等号成立 由⎪⎩⎪⎨⎧==+y x x y y x 941且x>0,y>0,得⎪⎩⎪⎨⎧==5352y x ∴当x=52,y=53时取等号,所以x 4+y 9的最小值为25.1.利用平均值不等式求最值,应明确基本不等式成立的条件,“一正、二定、三相等”缺一不可.2.利用不等式求最值时,常利用添项、拆项、配系数,并注意“1”的代换,创造使用均值不等式的条件.变式训练:若0<x <1,则函数f (x )=x 2(1-x )的最大值是________.【解】∵0<x<1,∴0<1-x<1,f(x)=x ²(1-x)=4•2x •2x •(1-x)≤4•[3)1(22x x x -++]³=274 当且仅当2x =1-x,即x=32时,等号成立,因此f(x)的最大值f(x)max = 274绝对值不等式的综合问题 :例题4:(2012·佛山质检)已知函数f (x )=|x -a |.(1)若不等式f (x )≤3的解集为{x |-1≤x ≤5},求实数a 的值;(2)在(1)的条件下,若f (x )+f (x +5)≥m 对一切实数x 恒成立,求实数m 的取值范围.【思路点拨】 (1)由|x -a |≤3求不等式的解集,与已知比较,求参数a 的值;(2)利用绝对值不等式的性质或函数的单调性,求y =f (x )+f (x +5)的最小值,得参数不等式求解.1)由f(x)≤3,得|x-a|≤3,解得a-3≤x ≤a+3,又已知不等式f(x)≤3的解集为{x|-1≤x ≤5} 所以5313=+-=-⎩⎨⎧a a 解得a=2.2)法一:由1)知a=2,此时f(x)=|x-2|,设g(x)=f(x)+f(x+5)=|x-2|+|x+3|,于是g(x)=⎪⎩⎪⎨⎧>+≤≤--<-2,1223,53,12-x x x x x 利用g (x )的单调性,易知g (x )的最小值为5.因此g (x )=f (x )+f (x +5)≥m 对x ∈R 恒成立, 知实数m 的取值范围是(-∞,5].法二 当a =2时,f (x )=|x -2|. 设g (x )=f (x )+f (x +5)=|x -2|+|x +3|.由|x -2|+|x +3|≥|(x -2)-(x +3)|=5(当且仅当-3≤x ≤2时等号成立)得,g (x )的最小值为5. 因此,若g (x )=f (x )+f (x +5)≥m 恒成立, 应有实数m 的取值范围是(-∞,5]., 规律方法4:1.第(2)问求解的关键是转化为求f (x )+f (x +5)的最小值,法1是运用分类讨论思想,利用函数的单调性;法2是利用绝对值不等式的性质(应注意等号成立的条件).2.将绝对值不等式与函数以及不等式恒成立交汇、渗透,这是命题的新动向,解题时强化函数、数形结合与转化化归思想方法的灵活应用.变式训练:已知函数f (x )=|x -3|-2,g (x )=-|x +1|+4.(1)若函数f (x )的值不大于1,求x 的取值范围;(2)若不等式f (x )-g (x )≥m +1的解集为R ,求m 的取值范围.【解】 (1)依题意,f (x )≤1,即|x -3|≤3.∴-3≤x -3≤3,∴0≤x ≤6,因此实数x 的取值范围是[0,6].(2)f (x )-g (x )=|x -3|+|x +1|-6≥|(x -3)-(x +1)|-6=-2,∴f (x )-g (x )的最小值为-2, 要使f (x )-g (x )≥m +1的解集为R. 应有m +1≤-2,∴m ≤-3,故实数m 的取值范围是(-∞,-3].命题透视:从近两年新课标命题看,含绝对值不等式的解法是选考内容4-5考查的热点,难度为中等,2011年高考命题的突出特点是以函数为载体考查绝对值不等式的解法与证明,预计2013年高考将延续这一命题方向.规范解答之二十二 绝对值不等式中逆向问题的正向求解策略例题:(10分)(2011·新课标卷)设函数f (x )=|x -a |+3x ,其中a >0.(1)当a =1时,求不等式f (x )≥3x +2的解集.(2)若不等式f (x )≤0的解集为{x |x ≤-1},求a 的值.规范解答:1) 当a=1时,f(x)≥3x+2,可化为|x-1|≥2,由此可得x ≥3或x ≤-1,故不等式f(x)≥3x+2的解集为{x|x ≥3或x ≤-1}因为a>0,所以不等式组的解集为{x|x ≤-2a },由题设可得-2a =-1,故a=2 【解题程序】 第一步:代入a ,求绝对值不等式|x -1|≥2的解集;第二步:化|x -a |+3x ≤0为不含绝对值的不等式组,并求解集;第三步:与题设比较,得含a 的方程,求出a 值;第四步:检验,查易错点,规范结论.阅卷心悟:易错提示:(1)不知逆向问题求解方法是思维受阻的主要原因.(2)未注意条件a >0,造成两解.防范措施:(1)逆向问题可正向求解,以本题为例,求出不等式的解集后.与已知不等式的解集作比较,便可建立关于a 的方程;(2)本题不等式f (x )≤0解集的端点-1是方程f (x )=0的解,利用这一点可得一种巧妙解法. 自主体验:1.(2011·广东高考)不等式|x +1|-|x -3|≥0的解集是________.【解析】 由|x +1|-|x -3|≥0,得|x +1|≥|x -3|,平方得(x +1)2≥(x -3)2,解之得x ≥1, ∴不等式的解集为{x |x ≥1}.2.(2011·辽宁高考)已知函数f (x )=|x -2|-|x -5|.(1)证明:-3≤f (x )≤3;(2)求不等式f (x )≥x 2-8x +15的解集.1)证明:f(x)=|x-2|-|x-5|=⎪⎩⎪⎨⎧≥<<-≤5352722,3-x x x x ,当2<x<5时,-3<2x-7<3,所以-3≤f(x)≤3 2)由1)可知:当x ≤2时,f(x)≥x ²-8x+15的解集为空集;当2<x<5时,f(x)≥x ²-8x+15的解集为{x|5-3≤x<5}当X ≥5时,f(x)≥x ²-8x+15的解集为{x|5≤x ≤6}综上所述:不等式f(x)≥x ²-8x+15的解集为{x|5-3≤x ≤6}。
不等式的基本性质与解法

不等式的基本性质与解法不等式是数学中常见的一种数学关系,它描述了两个数之间的大小关系。
在解决实际问题中,经常需要研究不等式的基本性质和解法。
本文将介绍不等式的基本性质以及解决不等式的方法,并且给出一些例子来说明。
一、不等式的基本性质1. 加减性性质:对于两个不等式,如果它们的左右两边分别相加或相减,那么它们的不等关系不变。
例如:对于不等式 2x < 6 和 3x > 9,我们可以将两个不等式的左右两边分别相加得到 2x + 3x < 6 + 9,即 5x < 15。
不等式的不等关系保持不变。
2. 乘除性性质:对于不等式,如果两边都乘以一个正数,则不等关系保持不变;如果两边都乘以一个负数,则不等关系发生改变。
例如:对于不等式 2x < 6,如果两边同时乘以一个正数 3,我们得到 3 * 2x < 3 * 6,即 6x < 18,不等关系保持不变。
但如果两边同时乘以一个负数 -3,我们得到 -3 * 2x > -3 * 6,即 -6x > -18,不等关系发生改变。
3. 反号性质:对于不等式,如果两边同时取负号,不等关系发生改变。
例如:对于不等式 2x < 6,如果两边同时取负号,我们得到 -2x > -6,不等关系发生改变。
4. 绝对值性质:对于不等式,如果绝对值符号"|" 出现在不等式中,我们需要分别讨论绝对值大于零和绝对值小于零的情况。
例如:对于不等式|2x - 4| < 6,我们可以将其分为两个部分来讨论。
当 2x - 4 > 0 时,不等式简化为 2x - 4 < 6,解得 x < 5;当 2x - 4 < 0 时,不等式简化为 -(2x - 4) < 6,解得 x > -1。
二、不等式的解法1. 图像法:对于一些简单的一元不等式,我们可以使用图像法来解决。
将不等式转化为图像表示,通过观察图像来确定不等式的解集。
12.绝对值不等式的解法

绝对值不等式的解法
1.绝对值不等式的概念
2.绝对值不等式的性质
例1:
例2:
练习:
课堂教学安排
教学过程
主要教学内容及步骤
一,复习引入
二,新授
三,典型例题及同步练习
不等式的解法
1.区间
2.不等式解法
3.一元二次函数的图象
1.概念
含有绝对值记号的不等式叫做绝对值不等式
我们知道,在实数集R中:
2.根据实数的绝对值的定义,我们有
例1:在实数范围内化简:
解:根据算术根的定义:
原式=
=
如果a是一个Βιβλιοθήκη 数,那么例2:解不等式教学过程
主要教学内容及步骤
学生练习自测
四,课堂小结
五,课外作业
解:这不等式等价于
即
练习:(1)求
(2)求
14页练习4
绝对值不等式的解法及性质
15页A组5 B组3
课题序号
29-31
授课班级
授课课时
3
授课形式
新授课
授课章节
名称
绝对值不等式的解法
使用教具
教学目的
认知目标:绝对值不等式的解法
能力目标:掌握其性质和重点
教学重点
重点:绝对值不等式的解法
教学难点
难点:大于0和小于0情况的区分
更新、补
充、删节
内容
课外作业
第15页A组5 B组3
教学后记
利用绝对值不等式的几何解释,更能解决相关的绝对值不等式问题,大大降低了学生的学习难度
带有绝对值的不等式解法

带有绝对值的不等式解法
带有绝对值的不等式通常需要根据绝对值的性质进行分类讨论,然后根据不同情况分别解出不等式。
以下是带有绝对值的不等式的一般解法步骤:
1. 首先,需要确定绝对值内的表达式的符号。
2. 根据表达式的符号,将不等式分成两种情况进行讨论。
3. 对于每种情况,将绝对值符号去掉,并解出不等式。
4. 最后,将两种情况下的解集合并起来,得到最终的解集。
以下是一些常见的带有绝对值的不等式的解法示例:
1. 绝对值不等式:|x|<a(其中a为正数)
当x\ge0时,|x|=x,则原不等式可化为x<a。
当x<0时,|x|=-x,则原不等式可化为-x<a,即x>-a。
因此,不等式的解集为-a<x<a。
2. 绝对值不等式:|x|>a(其中a为正数)
当x\ge0时,|x|=x,则原不等式可化为x>a。
当x<0时,|x|=-x,则原不等式可化为-x>a,即x<-a。
因此,不等式的解集为x<-a或x>a。
3. 绝对值不等式:|x-a|<b(其中a、b为常数)
当x\ge a时,|x-a|=x-a,则原不等式可化为x-a<b,即x<a+b。
当x<a时,|x-a|=a-x,则原不等式可化为a-x<b,即x>a-b。
因此,不等式的解集为a-b<x<a+b。
需要注意的是,对于带有绝对值的不等式,解集可能包含零值,也可能不包含零值,具体情况需要根据不等式的具体形式进行讨论。
1。
绝对值不等式的解法

课后作业:
(一)1、课本P16习题1.4 1~4 2、练习册: P10 ~ P11
(二)1.预习内容:课本P17~P20 2.预习提纲:
(1)“三个一次”,即一元一次方程,一元
一次不等式,一次函数及其相互关系.
(2)“三个二次”,即一元二次方程,一元
二次不等式,二次函数及其相互关系.
(3)一元二次不等式解法依据及步骤.试举一
{x|-a<x<a}
不等式|x|>a (a>0)的解集是
{x|x>0或x<-a}
[例3]解不等式:|x+1|+|x-1|≤1 [例4]解不等式 |x-5|-|2x+3|<1
课时小结
1.含绝对值不等式解法关键是去掉绝对 值符号
2.注意在解决问题过程中绝对值不等式 的几何意义 3.其他形式的含有绝对值不等式解法要 知道其依据
不等式的性质及,不等号方 向不变;
②不等式两边都乘以(或除以)同一 个正数,不等号方向不变;
③不等式两边都乘以(或除以)同 一个负数,不等号的方向改变.
问题:按商品质量规定,商店出售的标 明500g的袋装食盐,其实际数与所标 数相差不能超过5g,设实际数是xg, 那么x应满足 什么条件?
x 500 5 500 x 5
⇒|x-500|≤5
a
(a0)
a a (a0)
|a|表示a在数轴上相应点与原点距 离.
含绝对值的方程|x|=2的解是什么?
|x|=2的解是x=2或x=-2在数轴上
表示如下:
x
解不等式|x|<2与|x|>2
|x|<a,|x|>a (a>0)的解集:
一般地, 不等式|x|<a (a>0)的解集是
专题05 绝对值与绝对值不等式 讲义-2022年暑假数学初升高衔接

2022年暑假 数学 初升高衔接 专题资料05 绝对值与绝对值不等式◇◇ 知知 识识 链链 接接 ◇◇知识链接01 绝对值的定义在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值.知识链接02 绝对值的代数意义正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即: ,0,||0,0,,0.a a a a a a >⎧⎪==⎨⎪-<⎩知识链接03 绝对值的几何意义一个数的绝对值就是表示这个数的点到原点的距离. 离原点的距离越远,绝对值越大; 离原点的距离越近,绝对值越小.知识链接04 绝对值的性质(1)除0外,绝对值为一正数的数有两个,它们互为相反数. (2)互为相反数的两个数(0除外)的绝对值相等.(3)绝对值具有非负性,即任何一个数的绝对值总是正数或0.知识链接05 两个数的差的绝对值的几何意义b a -表示:在数轴上,数a 和数b 之间的距离.知识链接06 绝对值不等式的解法(1)绝对值不等式解法的基本思路是:去掉绝对值符号,把它转化为一般的不等式求解. (2)绝对值不等式的常见类型及其解法:①||x a <(0a >)的解集为:a x a -<<; (绝对值定义法)||x a >(0a >)的解集为:x a <-或x a >;②||||x a <⇔22x a <⇔; (平方法或零点讨论法)③||||ax b cx d e +++< (零点讨论法)◇◇ 典典 例例 剖剖 析析 ◇◇典例剖析01 (1)若42a b -=-+,则_______a b +=.(2)若()2120a b ++-=,则a =________;b =__________. (3)若7322102m n p ++-+-=,则23_______p n m +=+.典例剖析02 (1)已知|x |=5,|y |=2,且xy >0,则x -y = .(2)已知:abc ≠0,且M =a b ca b c++,当a ,b ,c 取不同值时,M = .(3)已知a b c ,,是非零整数,且0a b c ++=,则a b c abca b c abc+++= .典例剖析03 (1)解不等式:(ⅰ)3x <; (ⅱ)3x >; (ⅲ)2x ≤.(2)解不等式:(ⅰ)103x -<;(ⅱ)252x ->;(ⅲ)325x -≤.(3)(ⅰ)解不等式组2405132x x ⎧--≤⎪⎨-+>⎪⎩;(ⅱ)解不等式1215x ≤-<.典例剖析04 (1)解不等式:4321x x ->+.(2)解不等式:215x x ++-<.典例剖析05 画出下列函数的图像:(1)1y x =-; (2)122y x x =-+-;(3)223y x x =-++; (4)232y x x =-+.◇◇ 小小 试试 牛牛 刀刀 ◇◇小试牛刀01 (1)已知2(2)210x y -+-=,则2x y +=_______.(2)如图,化简22a b b c a c +------=_____________.(3)若0a a +=,那么a 一定是( )A .正数B .负数C .非正数D .非负数 (4)若x x >,那么x 是____ ____数. (5)已知6a <-,化简26a ( )A. 6a -B. 6a --C. 6a +D. 6a -小试牛刀02 (1)不等式23x +<的解是________ ______;(2)不等式1211<-x 的解是______________;(3)不等式830x -≤的解是______________.小试牛刀03 解下列不等式:(1)1235x ≤-<;(2)3412x x ->+;(3)122x x x -+-<+.小试牛刀04 化简12x x +++,并画出12y x x =+++的图象.小试牛刀05 (1)画出23y x =+的图像; (2)画出223y x x =-++的图像.小试牛刀06 若对于某一范围内的x 的任意值,|1﹣2x |+|1﹣3x |+…+|1﹣10x |的值为定值,则这个定值为 .小试牛刀06 已知实数a ,b ,c 满足:a +b +c =﹣2,abc =﹣4.(1)求a ,b ,c 中的最小者的最大值; (2)求|a |+|b |+|c |的最小值.2022年暑假 数学 初升高衔接 专题资料05 绝对值与绝对值不等式◇◇ 知知 识识 链链 接接 ◇◇知识链接01 绝对值的定义在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值.知识链接02 绝对值的代数意义正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即: ,0,||0,0,,0.a a a a a a >⎧⎪==⎨⎪-<⎩知识链接03 绝对值的几何意义一个数的绝对值就是表示这个数的点到原点的距离. 离原点的距离越远,绝对值越大; 离原点的距离越近,绝对值越小.知识链接04 绝对值的性质(1)除0外,绝对值为一正数的数有两个,它们互为相反数. (2)互为相反数的两个数(0除外)的绝对值相等.(3)绝对值具有非负性,即任何一个数的绝对值总是正数或0.知识链接05 两个数的差的绝对值的几何意义b a -表示:在数轴上,数a 和数b 之间的距离.知识链接06 绝对值不等式的解法(1)绝对值不等式解法的基本思路是:去掉绝对值符号,把它转化为一般的不等式求解. (2)绝对值不等式的常见类型及其解法:①||x a <(0a >)的解集为:a x a -<<; (绝对值定义法)||x a >(0a >)的解集为:x a <-或x a >;②||||x a <⇔22x a <⇔; (平方法或零点讨论法)③||||ax b cx d e +++< (零点讨论法)◇◇ 典典 例例 剖剖 析析 ◇◇典例剖析01 (1)若42a b -=-+,则_______a b +=.(2)若()2120a b ++-=,则a =________;b =__________. (3)若7322102m n p ++-+-=,则23_______p n m +=+.【解析】(1)424204,2a b a b a b -=-+⇒-++=⇒==-,所以2a b +=.(2)1,2a b =-=.(3)由题意,713,,22m n p =-==,所以13237922p n m m +==+-=-+.典例剖析02 (1)已知|x |=5,|y |=2,且xy >0,则x -y = .(2)已知:abc ≠0,且M =a b ca b c++,当a ,b ,c 取不同值时,M = . (3)已知a b c ,,是非零整数,且0a b c ++=,则a b c abca b c abc+++= .【解析】(1)3或-3.(2)当a 、b 、c 都是正数时,M = 3;当a 、b 、c 中有一个负数时,则M =1; 当a 、b 、c 中有2个负数时,则M = -1; 当a 、b 、c 都是负数时,M = -3. 综上:M =1±或3±.(3)由于0a b c ++=,且a b c ,,是非零整数,则a b c ,,一正二负或一负二正,当a b c ,,一正二负时,不妨设000a b c ><<,,,原式11110=--+=; 当a b c ,,一负二正时,不妨设000a b c <>>,,,原式11110=-++-=. 综上:a b c abca b c abc+++0=.典例剖析03 (1)解不等式:(ⅰ)3x <; (ⅱ)3x >; (ⅲ)2x ≤.(2)解不等式:(ⅰ)103x -<;(ⅱ)252x ->;(ⅲ)325x -≤.(3)(ⅰ)解不等式组2405132x x ⎧--≤⎪⎨-+>⎪⎩;(ⅱ)解不等式1215x ≤-<.【解析】(1)(ⅰ)33x -<<; (ⅱ)33x x <->或; (ⅲ)22x -≤≤.(2)(ⅰ)由题意,3103x -<-<,解得713x <<.(ⅱ)由题意,252x ->或252x -<-,解得72x >或32x <. (ⅲ)由题意,5325x -<-≤,解得14x -≤<.(3)(ⅰ)由240x --≤,得424x -≤-≤,解得26x -≤≤①,由5132x -+>,得133x +<,即3133x -<+<,解得4233x -<<②, 由①②得原不等式的解集为:4233x -<<. (ⅱ)方法一:由215x -<,解得23x -<<①,由121x ≤-得,0x ≤或1x ≥②,由①②得原不等式的解集为:2013x x -<<≤<或.方法二:12151215x x ≤-<⇔≤-<或5211x -<-≤-,解得2013x x -<<≤<或.典例剖析04 (1)解不等式:4321x x ->+.(2)解不等式:215x x ++-<.【解析】(1)法一:(零点讨论法)(ⅰ)当34x ≤时,原不等式变为:(43)21x x -->+,解得13x <,所以13x <; (ⅱ)当34x >时,原不等式变为:4321x x ->+,解得2x >,所以2x >;综上所述,原不等式的解集为123x x <>或.法二:43214321x x x x ->+⇔->+或43(21)x x -<-+,解得13x <或2x >.(2)(ⅰ)当2x <-时,得2(1)(2)5x x x <-⎧⎨---+<⎩,解得:23-<<-x ;(ⅱ)当12≤≤-x 时,得21(1)(2)5x x x -≤≤⎧⎨--++<⎩,解得:12≤≤-x ;(ⅲ)当1x >时,得1(1)(2)5x x x >⎧⎨-++<⎩,解得:21<<x .综上,原不等式的解集为32x -<<.典例剖析05 画出下列函数的图像:(1)1y x =-; (2)122y x x =-+-; (3)223y x x =-++; (4)232y x x =-+.【解析】(1)①关键点是1x =,此点又称为界点;②接着是要去绝对值:当1x ≤时,1y x =-;当1x >时,1y x =-. ③图象如右图所示. (2)①关键点是1x =和2x =;②接着是要去绝对值: 当1x ≤时,53y x =-; 当12x <<时,3y x =-; 当2x ≥时,35y x =-. ③图象如右图所示. (3)①关键点是0x =;②接着是要去绝对值:当0x ≥时,223y x x =-++; 当0x <时,223y x x =--+. ③图象如右图所示. (4)①关键点是1x =和2x =;②接着是要去绝对值:当1x ≤或2x ≥时,232y x x =-+; 当12x <<时,232y x x =-+- ③图象如右图所示.◇◇ 小小 试试 牛牛 刀刀 ◇◇小试牛刀01 (1)已知2(2)210x y -+-=,则2x y +=___3____.(2)如图,化简22a b b c a c +------=______-4_______.(3)若0a a +=,那么a 一定是( C )A .正数B .负数C .非正数D .非负数(4)若x x >,那么x 是____负____数. (5)已知6a <-,化简26a -得( B )A. 6a -B. 6a --C. 6a +D. 6a -小试牛刀02 (1)不等式23x +<的解是________ ______; 51x -<<(2)不等式1211<-x 的解是______________; 04x << (3)不等式830x -≤的解是______________.38小试牛刀03 解下列不等式:(1)1235x ≤-<; 1124x x -<≤≤<或(2)3412x x ->+; 355x x <>或(3)122x x x -+-<+.153x <<小试牛刀04 化简12x x +++,并画出12y x x =+++的图象. 【解析】23,21,2123,1x x y x x x --≤-⎧⎪=-<<-⎨⎪+≥-⎩,图象如右.小试牛刀05 (1)画出23y x =+的图像; (2)画出223y x x =-++的图像.【解析】 (1)如图所示: (2)如图所示:小试牛刀06 若对于某一范围内的x 的任意值,|1﹣2x |+|1﹣3x |+…+|1﹣10x |的值为定值,则这个定值为 .【解析】∵P 为定值,∴P 的表达式化简后x 的系数和为0;由于2+3+4+5+6+7=8+9+10;∴x 的取值范围是:1﹣7x ≥0且1﹣8x ≤0,即1187x ≤≤, 所以P =(1﹣2x )+(1﹣3x )+…+(1﹣7x )﹣(1﹣8x )﹣(1﹣9x )﹣(1﹣10x )=6﹣3=3.小试牛刀06 已知实数a ,b ,c 满足:a +b +c =﹣2,abc =﹣4.(1)求a ,b ,c 中的最小者的最大值;(2)求|a |+|b |+|c |的最小值.【解析】(1)不妨设a 是a ,b ,c 中的最小者,即a ≤b ,a ≤c ,由题设知a <0,且b +c =﹣2﹣a ,4bc a=-, 于是b ,c 是一元二次方程24(2)0x a x a----=的两实根, 即24(2)40a a∆=++⋅≥,a 3+4a 2+4a +16≤0,(a 2+4)(a +4)≤0, 所以a ≤﹣4;又当a =﹣4,b =c =1时,满足题意.故a ,b ,c 中最小者的最大值﹣4.(2)因为abc <0,所以a ,b ,c 为全小于0或二正一负.①当a ,b ,c 为全小于0,则由(1)知,a ,b ,c 中的最小者不大于﹣4,这与a +b +c =﹣2矛盾.②若a ,b ,c 为二正一负,设a <0,b >0,c >0,则|a |+|b |+|c |=﹣a +b +c =﹣2a ﹣2≥8﹣2=6,当a =﹣4,b =c =1时,满足题设条件且使得不等式等号成立.故|a |+|b |+|c |的最小值为6.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例2 两个施工队分别被安排在公路沿线的两个 地点施工,这两个地点分别位于公路路碑的第 10km和第20km处。现要在公路沿线建两个施 工队的共同临时生活区,每个施工队每天在生 活区和施工地点之间往返一次。要使两个施工 队每天往返的路程之和最小,生活区应该建于 何处?
分析:假设生活区建在公路路碑的第xkm处,两个施 工队每天往返的路程之和为S(x)km,则有
2.如果实数x , y满足 cos x cos y cos x cos y , 且x ( , ), 2 则 (cos x cos y )2 可写成( D ) A.cosx - cosy C . cos y cos x B. cosx cos y D. cos y cos x
8.解不等式:
( 2) x 2 x 3 4 解 : 当x 3时, 原不等式可化为 ( x 2) ( x 3) 4, x 3 5 解得x , 即不等式组 2 x2 x3 4 的解集是( ,3]. 当 3 x 2时, 原不等式可化为 ( x 2) ( x 3) 4, 3 x 2 即5 4显然成立, 所以不等式组 x2 x3 4 的解集为( 3,2). 当x 2时, 原不等式可化为 x 2) ( x 3) 4, ( x 2 3 即x , 不等式组 的解集是[ 2,). 2 x2 x3 4 综上所述, 原不等式的解集是 . R
y
ab
a
O
b
当向量a, b共线时, 有怎样的结论?
x
定理1的代数证明:
证明:当ab 0时,ab | ab |,| a b | (a b)2 a 2 2ab b2 | a |2 2 | ab | | b |2 (| a | | b |) 2 | a | | b |
3.若r1 , r2是方程x px 8 0的两个不等实根, 则
2
(4 2, ) r1 r2 的取值范围________
4.若关于x的不等式 x 2 x 1 a的解集为则a
a3 的取值范围是_________
5.若不等式 x 4 x 3 a的解集为非空集合, 则实数a的取值范围是( A.a 7
例3 解不等式|3x-1|≤2
例4 解不等式|2-3x|≥7 补充例题:解不等式
1 1 (1) (3 | x | 1) | x | 3 4 2 2 (2) x 3 4 | x | .
|ax+b|<c和|ax+b|>c(c>0)型不等式比较:
类型 化去绝对值后 集合上解的意义区别
{x|ax+b>-c} ∩ {x|ax+b<c}, 交 {x|ax+b<-c}∪ |ax+b|>c ax+b<-c或ax+b>c {x|ax+b>c},
C
)
B.1 a 7 C.a 1 D.a 1 6.设m , 0, x a , y b , a m , y m , 2 2 求 证 xy ab m
小结:理解和掌握绝对值不等式的两个定理:
|a+b|≤|a|+|b|(a,b∈R,ab≥0时等号成 立) |a-c|≤|a-b|+|b-c|(a,b,c∈R,
y
O -2
2 x
由 图 象 可 知 原 不 等 式 解 集 为 ,3 2, 的
(2) a x b c和 x a x b c x 型不等式的解法
①利用绝对值不等式的几何意义
②零点分区间法
③构造函数法
练习:P20第8题(2)
8.(2)解不等式x 2 x 3 4
3x 4 1 解 : 原不等式等价于下列不 等式组 3x 4 6 5 x 1或x 3 3 x 4 1或 3 x 4 1 即 6 3 x 4 6 10 x 2 3 3 10 5 2 解得 x 或1 x 3 3 3 2 10 5 故原不等式的解集为 , 1, . 3 3 3
式 的 解 集 是 , 3 2,
例5
解不等式 1 x 2 5 x
解 法2: 当x 2,时, 原 不 等 式 可 以 化 为 ( x 1) ( x 2) 5,
解 得x 3, 此 时 不 等 式 的 解 集 为 ,3
|ax+b|<c
-c<ax+b<c
并
课堂练习:P20第6题
(2) a x b c和 x a x b c x 型不等式的解法
例5
解不等式 1 x 2 5 x
A1 -3 A -2 B 1 B1 2 x
解 法1: 设 数 轴 上 与 2, 对 应 的 点 分 别 是,,B 1 A
S(x)=2(|x-10|+|x-20|),要求问题化归为求该函数的 最小值,可用绝对值三角不等式求解。
练习:课本P20第1、2、3、4、5题
补充练习: ab ab 1.已知 a b , m ,n , 则m , n之间的 ab ab 大小关系是( D ) A.m n B.m n C.m n D.m n
x
A(a)
B(b)
问题1:从“运算”的角度|a|,|b|,|a+b|具 有怎样的关系?
分ab>0、ab<0和ab=0三种情形讨论: (1)当ab>0时,如下图可得|a+b|=|a|+|b| x
O
a
b
a+b
a+b
b
a
O
x
(2)当ab<0时,也分为两种情况:如果a>0,b<0, 如下图可得:|a+b|<|a|+|b|
|2x+3y-2a-3b|<5ε.
证明: |2x+3y-2a-3b|=|(2x-2a)+(3y-3b)| =|2(x-a)+3(y-b)|≤|2(x-a)|+|3(y-b)| =2|x-a|+3|y-b|<2ε +3ε=5ε. 所以 |2x+3y-2a-3b|<5ε.
定理2
如果a, b, c是实数,那么
(3)了解证明不等式的基本方法:比较法、综合法、分析法. 反证法,放缩法
二、绝对值不等式
1、绝对值三角不等式
实数a的绝对值|a|的几何意义是表示数轴 上坐标为a的点A到原点的距离: |a|=-a(a<0) |a|=a(a>0) x A(a) A(a) O
任意两个实数a,b在数轴上的对应点分别为A、B, 那么|a-b|的几何意义是A、B两点间的距离。 |a-b|
作业:P20第7题、第8题(1)(3)
补充练习:解不等式:
(1)1<|2x+1|≤3.
(2)||x-1|-4|<2.
(3)|3x-1|>x+3. 答案:(1){x|0<x≤1或-2≤x<-1} (2){x|-5<x<-1或3<x<7}
1 (3) {x | x 或x 2} 2
1 作业 P20第7题第(1)解不等式 3 x 4 6
|a-c|≤|a-b|+|b-c|
当且仅当(a-b)(b-c)≥0时,等号成立。 证明:根据绝对值三角不等式有 |a-c|=|(a-b)+(b-c)|≤|a-b|+|b-c| 当且仅当(a-b)(b-c)≥0时,等号成立。
例 : 若 x m , y m , 下列不等式中一定成立 的是( B ) A. x - y C . x y 2 B . x y 2 D. x y
即3 5, 矛 盾, 此 时 不 等 式 的 解 集 为
当 2 x 1时, 原 不 等 式 可 以 化 为 ( x 1) ( x 2) 5, 当x 1时, 原 不 等 式 可 以 化 为 x 1) ( x 2) 5, ( 综 上 所 述 可 知 原 不 等 的 解 集 为 , 3 2, 式 解 得x 2, 此 时 不 等 式 的 解 集 为2,
例5
解不等式 1 x 2 5 x
解 法3: 将 原 不 等 式 转 化 为 1 x 2 5 0 x 构 造 函 数 x 1 x 2 5, 即 y 2 x 6, x -2 y - 2, -2 x1 2x - 4 , -3 x1 作出函数图象 ,
1 那 么A,, 两 点 的 距 离 是, 因 此 区 间 2, 上 的 3
数 都 不 是 原 不 等 式 的 。 将 点A向 左 移 动 个 单 位 解 1 到 点A1, 这 时 有A1 A A1 B 5; 同 理, 将 点B向 右 移 动 一 个 单 位 到 点, 这 时 也 有B1 A B1 B 5, B1 从 数 轴 上 可 以 看 到 点与B1之 间 的 任 何 点 到 点, A1 A B的 距 离 之 和 都 小 于 点A1的 左 边 或 点 1的 右 边 5; B 的 任 何 点 到 点 ,, 的 距 离 之 和 都 大 于 故 原 不 等 A 。
当ab 0时,ab ab,| a b | (a b) 2 a 2 2ab b 2 | a |2 2 | ab | | b |2 | a | 2 | ab | | b | (| a | | b |) | a | | b |,
2 2 2
所以 | a b || a | | b |, 当且仅当ab 0时,等号成立。