立体几何中的探究性问题

合集下载

立体几何题中的探索性问题(公开课教案)

立体几何题中的探索性问题(公开课教案)

A1
D A B X
C
Y
+ 2)如在A 1C1 存在这样的点Q,设Q(x,1-x,1)
D1Q = ( x,1 − x,0)
的射影垂直于AP,等价于D 1 Q ⊥ AP + 所以 AP ⋅ D1Q = 0 + 所以-X+(1+X)=0 1 解得X= 2 即Q为A1 C1 中点时,满足题设条件
+ 依题意,对任意的m要使D 1Q在平面APD1上
+ [规律小结 规律小结] 规律小结 + 探究性问题一般具有一定的深度,需要深入
分析题目的条件和所问,根据题目的特征, 选用适当的解题方法.必要时,进行假设推 理,或者反证推理,往往也是进行图形推理 与代数推理的典型问题
课后练习,已知四棱锥S-ABCD的底面是边长为 4的正方形,S在底面上的射影O 落在正方形 ABCD内,且O 到AB、AD的距离分别为2,1 (1)求证:AB·SC是定值 (2)已知P是SC的中点,且 SO=3,问在棱SA上是否存在 一点Q,使异面直线OP与BQ所 成角为900?若不存在,说明 A 理由,若存在,求出AQ的长。
• 向量法: • 以DA,DC,DD1 分别为X,Y,Z轴建立空间直角坐标
系,设正四棱柱底面边长为a,侧棱长为b • 所以D(0,0,0),B(a,a,o) Z • P(a,o,z),C(0,a,0) 所以 D1
pc = (−a, a,− z )
DB = (a, a, o)
C1 B1
A1 P
DB ⋅ PC = 0
Q D O B S P C
主讲人:刘 冬 主讲人:
+ 引言:立体几何中的探究性问题既能够考
查我们的空间想象能力,又可以考查我们 的意志力及探究的能力.探究是一种科学 的精神,因此,也是命题的热点.一般此 类立体几何问题描述的是动态的过程,结 果具有不唯一性或者隐藏性,往往需要耐 心尝试及等价转化,因此,对于常见的探 究方法的总结和探究能力的锻炼是必不可 少的.

高考数学立体几何空间几何中的探索性问题

高考数学立体几何空间几何中的探索性问题

立体几何空间几何中的探索性问题大题拆解技巧【母题】(2021年全国甲卷)已知直三棱柱ABC-A1B1C1中,侧面AA1B1B为正方形,AB=BC=2,E,F分别为AC和CC1的中点,D为棱A1B1上的点,BF⊥A1B1.(1)证明:BF⊥DE.(2)当B1D为何值时,平面BB1C1C与平面DFE所成的二面角的正弦值最小?【拆解1】已知直三棱柱ABC-A1B1C1中,侧面AA1B1B为正方形,AB=BC=2,E,F分别为AC 和CC1的中点,D为棱A1B1上的点,BF⊥A1B1,证明:BA⊥BC.【解析】连接AF,∵E,F分别为直三棱柱ABC-A1B1C1的棱AC和CC1的中点,且AB=BC=2,∴CF=1,BF=√BC2+CF2=√22+12=√5,∵BF⊥A1B1,AB∥A1B1,∴BF⊥AB,∴AF=√AB2+BF2=√22+(√5)2=3,AC=√AF2-CF2=√32-12=2√2,∴AC2=AB2+BC2,即BA⊥BC.【拆解2】本例条件不变,证明:BF⊥DE.【解析】由拆解1可知BA⊥BC,故以B为原点,BA,BC,BB1所在的直线分别为x,y,z轴建立如图所示的空间直角坐标系,则A(2,0,0),B(0,0,0),C(0,2,0),E(1,1,0),F(0,2,1),设B 1D=m(0≤m≤2),则D(m,0,2), ∴BF ⃗⃗⃗⃗ =(0,2,1),DE ⃗⃗⃗⃗⃗ =(1-m,1,-2), ∴BF ⃗⃗⃗⃗ ·DE⃗⃗⃗⃗⃗ =0,即BF ⊥DE. 【拆解3】本例条件不变,问当B 1D 为何值时,平面BB 1C 1C 与平面DFE 所成的二面角的正弦值最小?【解析】∵AB ⊥平面BB 1C 1C,∴平面BB 1C 1C 的一个法向量为m=(1,0,0), 由(1)知,DE ⃗⃗⃗⃗⃗ =(1-m,1,-2),EF ⃗⃗⃗⃗ =(-1,1,1), 设平面DFE 的法向量为n=(x,y,z),则{n ·DE⃗⃗⃗⃗⃗ =0,n ·EF ⃗⃗⃗⃗ =0,即{(1-m )x +y -2z =0,-x +y +z =0, 令x=3,则y=m+1,z=2-m,∴n=(3,m+1,2-m), ∴cos m,n =m ·n |m |·|n |=1×√9+(m+1)+(2-m )=√2m 2-2m+14=√2(m -12) 2+272,∴当m=12时,平面BB 1C 1C 与平面DFE 所成的二面角的余弦值最大,为√63,此时正弦值最小,为√33. 小做 变式训练《九章算术》是我国古代的数学著作,是“算经十书”中最重要的一部,它对几何学的研究比西方要早1000多年.在《九章算术》中,将底面为直角三角形,且侧棱垂直于底面的三棱柱称为堑堵.如图,在堑堵ABC -A 1B 1C 1中,AB ⊥AC,AA 1=AB=AC=1,M,N 分别是CC 1,BC 的中点,点P 在线段A 1B 1上.(1)若P 为A 1B 1的中点,求证:PN ∥平面AA 1C 1C.(2)是否存在点P,使得平面PMN 与平面ABC 所成的二面角为45°?若存在,试确定点P 的位置;若不存在,请说明理由.【拆解1】《九章算术》是我国古代的数学著作,是“算经十书”中最重要的一部,它对几何学的研究比西方要早1000多年.在《九章算术》中,将底面为直角三角形,且侧棱垂直于底面的三棱柱称为堑堵.如图,在堑堵ABC -A 1B 1C 1中,AB ⊥AC,AA 1=AB=AC=1,M,N 分别是CC 1,BC 的中点,点P 在线段A 1B 1上.若P 为A 1B 1的中点,求证:PN ∥平面AA 1C 1C. 【解析】取A 1C 1的中点H,连接PH,HC,如图所示.在堑堵ABC -A 1B 1C 1中,四边形BCC 1B 1为平行四边形, 所以B 1C 1∥BC 且B 1C 1=BC.在△A 1B 1C 1中,P,H 分别为A 1B 1,A 1C 1的中点, 所以PH ∥B 1C 1且PH=12B 1C 1. 因为N 为BC 的中点,所以NC=12BC,从而NC=PH 且NC ∥PH,所以四边形PHCN 为平行四边形,于是PN ∥CH.因为CH ⊂平面A 1C 1CA,PN ⊄平面A 1C 1CA,所以PN ∥平面AA 1C 1C. 【拆解2】本例条件不变,求平面PMN 的法向量.【解析】以A 为原点,AB,AC,AA 1所在的直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则A 1(0,0,1),B 1(1,0,1),N(12,12,0),M(0,1,12).假设满足条件的点P 存在,令P(λ,0,1)(0≤λ≤1),则NM ⃗⃗⃗⃗⃗⃗ =(-12,12,12),PN⃗⃗⃗⃗⃗ =(12-λ,12,-1,). 设平面PMN 的法向量为n=(x,y,z), 则{n ·NM⃗⃗⃗⃗⃗⃗ =0,n ·PN ⃗⃗⃗⃗⃗ =0,即{-12x +12y +12z =0,(12-λ)x +12y -z =0.令x=3,得y=1+2λ,z=2-2λ, 所以n=(3,1+2λ,2-2λ).【拆解3】本例条件不变,问是否存在点P,使得平面PMN 与平面ABC 所成的二面角为45°?若存在,试确定点P 的位置;若不存在,请说明理由.【解析】由拆解2知,平面PMN 的一个法向量为n=(3,1+2λ,2-2λ), 且易知平面ABC 的一个法向量为m=(0,0,1). 由题意得|cos <m,n>|=√9+(1+2λ)+(2-2λ)=√8λ2-4λ+14=√22,解得λ=-12,故点P 不在线段A 1B 1上.所以不存在.通法 技巧归纳解决立体几何中探索性问题的基本方法(1)通常假设题中的数学对象存在(或结论成立),然后在这个前提下进行逻辑推理.(2)探索性问题的关键是设点:①空间中的点可设为(x,y,z);②坐标平面内的点其中一个坐标为0,如平面xOy 上的点为(x,y,0);③坐标轴上的点两个坐标为0,如z 轴上的点为(0,0,z);④直线(线段)AB 上的点P,可设为AP⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ ,表示出点P 的坐标,或直接利用向量运算. 突破 实战训练 <基础过关>1.如图,在三棱锥P -ABC 中,△ABC 为直角三角形,∠ACB=90°,△PAC 是边长为4的等边三角形,BC=2√3,二面角P -AC -B 的大小为60°,点M 为PA 的中点.(1)请你判断平面PAB 垂直于平面ABC 吗?若垂直,请证明;若不垂直,请说明理由. (2)求CM 与平面PBC 所成的角的正弦值.【解析】(1)平面PAB ⊥平面ABC,理由如下:如图,分别取AC,AB 的中点D,E,连接PD,DE,PE, 则DE ∥BC.因为∠ACB=90°,BC=2√3. 所以DE ⊥AC,DE=√3.因为△PAC 是边长为4的等边三角形,所以PD ⊥AC,PD=2√3.所以∠PDE 为二面角P -AC -B 的平面角,则∠PDE=60°, 在△PDE 中,由余弦定理,得PE=√PD 2+DE 2-2PD ·DEcos 60°=3, 所以PD 2=PE 2+ED 2, 所以PE ⊥ED.因为ED ⊥AC,PD ⊥AC,ED∩PD=D,ED,PD ⊂平面PDE, 所以AC ⊥平面PED, 所以AC ⊥PE.又AC∩ED=D,DE,AC ⊂平面ABC,所以PE ⊥平面ABC, 因为PE ⊂平面ABC, 所以平面PAB ⊥平面ABC.(2)以点C 为原点,CA,CB 所在的直线分别为x,y 轴,过点C 且与PE 平行的直线为z 轴,建立空间直角坐标系,如图所示,则B(0,2√3,0),A(4,0,0),E(2,√3,0),P(2,√3,3),M(3,√32,32),CM ⃗⃗⃗⃗⃗⃗ =(3,√32,32),CB⃗⃗⃗⃗⃗ =(0,2√3,0),CP ⃗⃗⃗⃗ =(2,√3,3). 设平面PBC 的法向量为n=(x 1,y 1,z 1), 则{n ·CB⃗⃗⃗⃗⃗ =0,n ·CP ⃗⃗⃗⃗ =0,即{2√3y 1=0,2x 1+√3y 1+3z 1=0,取x 1=3,则n=(3,0,-2).所以CM 与平面PBC 所成的角的正弦值为sin θ=|cos<CM⃗⃗⃗⃗⃗⃗ ,n>|=2√3×√13=√3913.2.如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E,F 分别是B 1B,BC 的中点. (1)求证:A 1E,AB,DF 三线共点.(2)线段CD 上是否存在一点G,使得直线FG 与平面A 1EC 1所成的角的正弦值为√33?若存在,请指出点G 的位置,并求二面角E -A 1C 1-G 的平面角的余弦值大小;若不存在,请说明理由.【解析】(1)连接EF,AD,∵EF ∥A 1D 且EF≠A 1D,∴A 1E,DF 共面,设A 1E∩DF=P,则点P ∈A 1E,而A 1E ⊂平面AA 1B 1B, ∴点P ∈平面AA 1B 1B. 同理可得点P ∈平面ABCD,∴点P 在平面ABCD 与平面AA 1B 1B 的公共直线AB 上, 即A 1E,AB,DF 三线共点.(2)根据题意可知,AA 1,AB,AD 两两垂直,以A 为原点,AB,AD,AA 1所在的直线分别为x,y,z 轴建立如图所示的空间直角坐标系,由图可得A 1(0,0,2),E(2,0,1),C 1(2,2,2),F(2,1,0), 故A 1E ⃗⃗⃗⃗⃗⃗⃗ =(2,0,-1),A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(2,2,0), 假设满足条件的点G 存在, 设G(a,2,0),a ∈[0,2],则FG ⃗⃗⃗⃗ =(a -2,1,0), 设平面A 1EC 1的法向量为m=(x,y,z), 则由{m ·A 1E ⃗⃗⃗⃗⃗⃗⃗ =0m ·A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,得{2x -z =0,2x +2y =0,不妨取z=2,则x=1,y=-1,所以平面A 1EC 1的一个法向量为m=(1,-1,2), 设直线FG 与平面A 1EC 1的平面角为θ,则sin θ=|cos<m,FG ⃗⃗⃗⃗ >|=|m ·FG⃗⃗⃗⃗⃗|m ||FG ⃗⃗⃗⃗⃗ ||=|√(a -2)+12+02×√12+(-1)+22|=√33,解得a=1,故G 为CD 的中点. 则GC 1⃗⃗⃗⃗⃗⃗⃗ =(1,0,2),设平面A 1GC 1的法向量为n=(x,y,z),由{n ·GC 1⃗⃗⃗⃗⃗⃗⃗ =0,n ·A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,得{x +2z =0,2x +2y =0,取x=-2,则z=1,y=2,则平面A 1GC 1的一个法向量为n=(-2,2,1), |cos<m,n>|=|m ·n|m ||n ||=|√6×3|=√69, 所以二面角E -A 1C 1-G 的平面角的余弦值为√69.3.如图,C 是以AB 为直径的圆O 上异于A,B 的点,平面PAC ⊥平面ABC,PA=PC=AC=2,BC=4,E,F 分别是PC,PB 的中点,记平面AEF 与平面ABC 的交线为直线l.(1)求证:直线l ⊥平面PAC.(2)直线l 上是否存在点Q,使直线PQ 分别与平面AEF 、直线EF 所成的角互余?若存在,求出|AQ|的长;若不存在,请说明理由.【解析】(1)∵E,F 分别是PC,PB 的中点,∴BC ∥EF,又EF ⊂平面EFA,BC ⊄平面EFA,∴BC ∥平面EFA,又BC ⊂平面ABC,平面EFA∩平面ABC=l,∴BC ∥l,又BC ⊥AC,平面PAC∩平面ABC=AC,平面PAC ⊥平面ABC,∴BC ⊥平面PAC,∴l ⊥平面PAC.(2)以C 为坐标原点,CA,CB 所在的直线分别为x,y 轴,过点C 垂直于平面ABC 的直线为z 轴,建立空间直角坐标系,可得A(2,0,0),B(0,4,0),P(1,0,√3),E(12,0,√32),F(12,2,√32),AE ⃗⃗⃗⃗⃗ =(-32,0,√32),EF ⃗⃗⃗⃗ =(0,2,0), 设Q(2,y,0),平面AEF 的法向量为m=(x,y,z),则{AE⃗⃗⃗⃗⃗ ·m =-32x +√32z =0,EF⃗⃗⃗⃗ ·m =2y =0,取z=√3,得m=(1,0,√3),PQ ⃗⃗⃗⃗⃗ =(1,y,-√3), |cos<PQ⃗⃗⃗⃗⃗ ,EF ⃗⃗⃗⃗ >|=|2√4+y 2|=√4+y 2,|cos PQ⃗⃗⃗⃗⃗ ,m |=|2√4+y 2|=√4+y 2,依题意得|cos PQ ⃗⃗⃗⃗⃗ ,EF ⃗⃗⃗⃗ |=|cos PQ ⃗⃗⃗⃗⃗ ,m |, ∴y=±1,∴直线l 上存在点Q,使直线PQ 分别与平面AEF 、直线EF 所成的角互余,此时|AQ|=1. 4.在图1所示的平面图形ABCD 中,△ABD 是边长为4的等边三角形,BD 是∠ADC 的平分线,且BD ⊥BC,M 为AD 的中点,以BM 为折痕将△ABM 折起得到四棱锥A -BCDM(如图②所示).(1)设平面ABC 和平面ADM 的交线为l,在四棱锥A -BCDM 的棱AC 上求一点N,使直线BN ∥l;(2)若二面角A -BM -D 的大小为60°,求平面ABD 和平面ACD 所成的锐二面角的余弦值. 【解析】(1)延长CB,DM,设其交点为E,如图所示,因为点A,E 既在平面ABC 内,又在平面AMD 内, 所以直线AE 为平面ABC 与平面AMD 的交线l,因为BD 为∠MDC 的平分线,且BD ⊥BC,所以B 为EC 的中点, 取AC 的中点N,连接BN,则BN 为△AEC 的中位线, 所以直线BN ∥AE,即BN ∥l, 故N 为棱AC 的中点.(2)因为BM ⊥AM,BM ⊥MD,所以∠AMD=60°, 又因为AM=MD,所以△AMD 为等边三角形,取MD 的中点O 为坐标原点,以OM 所在的直线为x 轴,在平面BCDM 内过点O 且和MD 垂直的直线为y 轴,以OA 所在的直线为z 轴,建立如图所示的空间直角坐标系,所以D(-1,0,0),A(0,0,√3),C(-5,4√3,0),B(1,2√3,0), 所以DA ⃗⃗⃗⃗⃗ =(1,0,√3),DC ⃗⃗⃗⃗⃗ =(-4,4√3,0),DB ⃗⃗⃗⃗⃗ =(2,2√3,0), 设平面ACD 的法向量为m=(x,y,z),则{m ·DA ⃗⃗⃗⃗⃗ =0,m ·DC ⃗⃗⃗⃗⃗ =0,即{x +√3z =0,-4x +4√3y =0,令z=-√3,则x=3,y=√3, 所以m=(3,√3,-√3),设平面ABD 的法向量为n=(a,b,c),则{n ·DA⃗⃗⃗⃗⃗ =0,n ·DB ⃗⃗⃗⃗⃗ =0,即{a +√3c =0,2a +2√3b =0,令c=-√3,则a=3,b=-√3, 所以n=(3,-√3,-√3),设平面ABD 和平面ACD 所成的锐二面角的大小为θ, 所以cos θ=|m ·n ||m ||n |=√3×√3)√3)√3)|√32+(√3)+(-√3)·√32+(-√3)+(-√3)=35,所以平面ABD 和平面ACD 所成的锐二面角的余弦值为35.<能力拔高>5.已知四棱柱ABCD -A 1B 1C 1D 1的底面是边长为2的菱形,且BC=BD,DD 1⊥平面ABCD,AA 1=1,BE ⊥CD 于点E.(1)试问在线段A 1B 1上是否存在一点F,使得AF ∥平面BEC 1?若存在,求出点F 的位置;若不存在,请说明理由.(2)在(1)的条件下,求平面ADF 和平面BEC 1所成的锐二面角的余弦值.【解析】(1)当F 为线段A 1B 1的中点时,AF ∥平面BEC 1. 下面给出证明:取AB 的中点G,连接EG,B 1G,则FB 1∥AG,且FB 1=AG, 所以四边形AGB 1F 为平行四边形,所以AF ∥B 1G.因为BC=BD,BE ⊥CD,所以E 为CD 的中点,又G 为AB 的中点,AB ∥CD,AB=CD,所以BG ∥CE,且BG=CE,所以四边形BCEG 为平行四边形,所以EG ∥BC,且EG=BC,又BC ∥B 1C 1,BC=B 1C 1, 所以EG ∥B 1C 1,且EG=B 1C 1,所以四边形EGB 1C 1为平行四边形, 所以B 1G ∥C 1E,所以AF ∥C 1E,又AF ⊄平面BEC 1,C 1E ⊂平面BEC 1,所以当F 为线段A 1B 1的中点时,AF ∥平面BEC 1. (2)连接DG,因为BD=BC=AD,G 为AB 的中点,所以DG ⊥AB,又AB ∥CD,所以DG ⊥CD, 因为DD 1⊥平面ABCD,DC,DG ⊂平面ABCD,所以DD 1⊥DC,DD 1⊥DG,所以DG,DC,DD 1两两垂直,以D 为原点,DG,DC,DD 1所在的直线分别为x,y,z 轴建立如图所示的空间直角坐标系D -xyz,由题意知BD=BC=CD=AB=AD=2,所以∠DAB=∠BDC=60°,又AA 1=1,所以D(0,0,0),A(√3,-1,0),D 1(0,0,1),E(0,1,0),C 1(0,2,1),B(√3,1,0),F(√3,0,1), 所以EB ⃗⃗⃗⃗⃗ =(√3,0,0),EC 1⃗⃗⃗⃗⃗⃗⃗ =(0,1,1),DA ⃗⃗⃗⃗⃗ =(√3,-1,0),DF ⃗⃗⃗⃗⃗ =(√3,0,1).设平面BEC 1的法向量为n=(x,y,z),则{EB ⃗⃗⃗⃗⃗ ·n =0,EC 1⃗⃗⃗⃗⃗⃗⃗ ·n =0,即{√3x =0,y +z =0,令z=1,得平面BEC 1的一个法向量为n=(0,-1,1).设平面ADF 的法向量为m=(a,b,c),则{DA ⃗⃗⃗⃗⃗ ·m =0,DF ⃗⃗⃗⃗⃗ ·m =0,即{√3a -b =0,√3a +c =0,令a=1,得b=√3,c=-√3,平面ADF 的一个法向量m=(1,√3,-√3).设平面ADF 和平面BEC 1所成的锐二面角的大小为θ, 则cos θ=|m ·n ||m |·|n |=√3√7×√2=√427.所以平面ADF 和平面BEC 1所成的锐二面角的余弦值为√427. 6.在正三棱柱ABC -A 1B 1C 1中,已知AB=2,AA 1=3,M,N 分别为AB,BC 的中点,P 为线段CC 1上一点.平面ABC 1与平面ANP 的交线为l.(1)是否存在点P 使得C 1M ∥平面ANP?若存在,请指出点P 的位置并证明;若不存在,请说明理由.(2)若CP=1,求二面角B -l -N 的余弦值.【解析】(1)当CP=2时,C 1M ∥平面ANP. 证明如下:连接CM 交AN 于点G,连接GP,因为CG GM =CPPC 1=2,所以C 1M ∥GP,又GP ⊂平面ANP,C 1M ⊄平面ANP, 所以C 1M ∥平面ANP.(2)取AC 的中点O,连接BO,易证OB ⊥平面ACC 1A 1,如图,分别以OB,OC 所在的直线为x,y 轴,以过点O且平行于AA 1的直线为z轴建立空间直角坐标系,A(0,-1,0),B(√3,0,0),C 1(0,1,3),N (√32,12,0),P(0,1,1),则AB ⃗⃗⃗⃗⃗ =(√3,1,0),AC 1⃗⃗⃗⃗⃗⃗⃗ =(0,2,3),AN ⃗⃗⃗⃗⃗ =(√32,32,0),AP ⃗⃗⃗⃗⃗ =(0,2,1). 设平面ABC 1的法向量为n 1=(x 1,y 1,z 1),平面APN 的法向量为n 2=(x 2,y 2,z 2), 由{n 1·AB ⃗⃗⃗⃗⃗ =0,n 1·AC 1⃗⃗⃗⃗⃗⃗⃗ =0得{√3x 1+y 1=0,2y 1+3z 1=0,令x 1=√3得n 1=(√3,-3,2),由{n 2·AP ⃗⃗⃗⃗⃗ =0,n 2·AN ⃗⃗⃗⃗⃗ =0得{2y 2+z 2=0,√32x 2+32y 2=0,令x 2=√3得n 2=(√3,-1,2), 设二面角B -l -N 的平面角为θ,则cos θ=|n 1·n 2|n 1||n 2||=4×√8=5√28. <拓展延伸>7.如图,在△ABC 中,AB=BC=2,∠ABC=90°,E,F 分别为AB,AC 边的中点,以EF 为折痕把△AEF 折起,使点A 到达点P 的位置,且PB=BE.(1)证明:EF ⊥平面PBE.(2)设N 为线段PF 上的动点,求直线BN 与平面PCF 所成角的正弦值的最大值.【解析】(1)因为E,F 分别为AB,AC 边的中点,所以EF ∥BC. 又因为∠ABC=90°,所以EF ⊥BE,EF ⊥PE. 又因为BE∩PE=E,所以EF ⊥平面PBE. (2)取BE 的中点O,连接PO,由(1)知EF ⊥平面PBE,EF ⊂平面BCFE, 所以平面PBE ⊥平面BCFE. 因为PB=BE=PE,所以PO ⊥BE.又因为PO ⊂平面PBE,平面PBE∩平面BCFE=BE, 所以PO ⊥平面BCFE .过点O 作OM ∥BC 交CF 于点M,分别以OB,OM,OP 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示.则P (0,0,√32),C (12,2,0),F (-12,1,0),B(12,0,0),PC ⃗⃗⃗⃗ =(12,2,-√32),PF ⃗⃗⃗⃗ =(-12,1,-√32),N 为线段PF 上一动点,设PN ⃗⃗⃗⃗⃗ =λPF ⃗⃗⃗⃗ (0≤λ≤1), 则N (-λ2,λ,√32(1-λ)),BN⃗⃗⃗⃗⃗ =(-λ+12,λ,√32(1-λ)), 设平面PCF 的法向量为m=(x,y,z),则{PC ⃗⃗⃗⃗ ·m =0,PF ⃗⃗⃗⃗ ·m =0,即{12x +2y -√32z =0,-12x +y -√32z =0,取m=(-1,1,√3).设直线BN 与平面PCF 所成的角为θ, 则sin θ=|cos<BN ⃗⃗⃗⃗⃗ ,m>|=|BN ⃗⃗⃗⃗⃗⃗·m ||BN ⃗⃗⃗⃗⃗⃗||m |=√5×√2λ2-λ+1=√5×√2(λ-14)2+78≤√5×√78=4√7035,当且仅当λ=14时取等号.故直线BN 与平面PCF 所成角的正弦值的最大值为4√7035.8.如图,矩形ABCD中,AB=3,BC=1,E、F是边DC的三等分点.现将△DAE,△CBF分别沿AE,BF 折起,使得平面DAE、平面CBF均与平面ABFE垂直.(1)若G为线段AB上一点,且AG=1,求证:DG∥平面CBF.(2)求二面角A-CF-B的正弦值.【解析】(1)(法一)如图,分别取AE,BF的中点M,N,连接DM,CN,MG,MN..因为AD=DE=1,所以DM⊥AE,且DM=√22.因为BC=CF=1,所以CN⊥BF,且CN=√22因为平面DAE⊥平面ABFE,平面DAE∩平面ABFE=AE,DM⊥AE,DM⊂平面DAE,所以DM ⊥平面ABFE.同理可得CN⊥平面ABFE,所以DM∥CN,且CN=DM.又DM⊄平面CBF,CN⊂平面CBF,所以DM∥平面CBF,在矩形ABCD中,∠DAE=45°,故∠EAB=45°,同理可得∠FBA=45°,,所以MG2+AM2=AG2,所以在几何体ABFEDC中,因为MG=√AM2+AG2-2AM·AGcos45°=√22∠AMG=90°,所以△AMG是以AG为斜边的等腰直角三角形,故∠MGA=45°.而∠FBA=45°,且MG与FB共面于平面EFBA,故MG∥FB.又MG⊄平面CBF,FB⊂平面CBF,所以MG∥平面CBF.又MG∩DM=M,MG,DM⊂平面DMG,所以平面DMG∥平面CBF.因为DG⊂平面DMG,所以DG∥平面CBF.(法二)如图,分别取AE,BF 的中点M,N,连接DM,CN,MG,MN. 因为AD=DE=1,∠ADE=90°,所以DM ⊥AE,且DM=√22. 因为BC=CF=1,∠BCF=90°,所以CN ⊥BF,且CN=√22.因为平面DAE ⊥平面ABFE,平面DAE∩平面ABFE=AE,DM ⊥AE,DM ⊂平面DAE,所以DM ⊥平面ABFE.同理可得CN ⊥平面ABFE,所以DM ∥CN,且CN=DM, 所以四边形CDMN 是矩形,所以CD MN. 又MN 是等腰梯形ABFE 的中位线,所以CD=MN=1+32=2.又GB=2,所以CD ∥GB,CD=GB,所以四边形CDGB 是平行四边形,所以CB ∥DG. 又CB ⊂平面CBF,DG ⊄平面CBF,所以DG ∥平面CBF.(2)如图,以G 为坐标原点,分别以AB,GE 所在直线为x 轴,y 轴,以过点G 并垂直于平面ABFE 的直线为z 轴建立空间直角坐标系, 则A(-1,0,0),B(2,0,0),E(0,1,0),F(1,1,0),C (32,12,√22), 则AF ⃗⃗⃗⃗⃗ =(2,1,0),FC ⃗⃗⃗⃗ =(12,-12,√22),BF ⃗⃗⃗⃗ =(-1,1,0),GF ⃗⃗⃗⃗ =(1,1,0), 所以GF ⃗⃗⃗⃗ ·BF ⃗⃗⃗⃗ =(1,1,0)·(-1,1,0)=0,所以GF ⊥BF. 由(1)得CN ⊥平面ABFE,所以GF ⊥CN.而BF,CN ⊂平面CBF,BF∩CN=N,故GF ⊥平面CBF, 从而GF ⃗⃗⃗⃗ =(1,1,0)是平面CBF 的一个法向量. 设n=(x,y,z)为平面AFC 的法向量, 则{n ·AF⃗⃗⃗⃗⃗ =0,n ·FC⃗⃗⃗⃗ =0,即{2x +y =0,x -y +√2z =0,解得{y =-2x ,z =-3√22x , 取x=-2,则y=4,z=3√2,即n=(-2,4,3√2),所以cos<GF ⃗⃗⃗⃗ ,n>=√2)√2×√38=√1919,故所求二面角的正弦值为√1-119=3√3819。

浅析立体几何中的探索性问题

浅析立体几何中的探索性问题

浅析立体几何中的探索性问题江苏省泗阳中学 张 涛 (223700)立体几何的探索性问题在近几年高考中经常出现,这种题型有利于考查学生的归纳、判断等各方面的能力,也有利于创新意识的培养,因此应注意高考中立几探索性命题的考查趋势。

立体几何探索性命题的类型主要有:一、探索条件,即探索能使结论成立的条件是什么;二、探索结论,即在给定的条件下命题的结论是什么。

一、对命题条件的探索对命题条件的探索常采用以下三种方法:1、先猜后证,即先观察与尝试给出条件再给出证明。

2、先通过命题成立的必要条件探索出命题成立的条件,再证明充分性。

3、把几何问题转化为代数问题,探索出命题成立的条件。

例1:四棱锥P-ABCD 的底面是矩形,侧面PAD 是正三角形,且侧面PAD ⊥底面ABCD ,当ABAD的值等于多少时,能使PB ⊥AC ?并给出证明。

解法一:取AD 中点F∵PF ⊥AD ,面PAD ⊥面ABCD∴PF ⊥面ABCD 连结BF 则若PB ⊥AC ,则AC ⊥BF 设AD=x, AB=y ∵∠FOA=90° ∴在ΔAOF 中,AF=2x AO=2231y x +,FO=22)2(31y x + 根据题意AF 2=AO 2+FO 2 代入可得2=yx,若AB AD =2容易证得FB ⊥AC由三垂线定理可证得PB ⊥AC.解法二:如图,建立坐标系,设AD=2,PF=3,AB=x ,A 点坐标为(0,―1, 0),C 点坐标为(x,1,0),P 点坐标(0, 0,3),B 点坐标为(x,―1, 0),=(x,―1,―3),=(x, 2, 0)CBD APFy∵PB ⊥AC ∴·=0 即x 2―2=0 ∴x=2 ∴ABAD=2 解题回顾:这类题通常是找命题成立的一个充分条件,所以解这类题采用下列二种方法:⑴通过各种探索尝试给出条件。

⑵找出命题成立的必要条件,也证明充分性。

例2:在三棱锥A-BCD 中,AB ,BC ,CD 两两垂直,若AD 与平面BCD 所成的角为α,AD 与平面ABC 所成角为β,且AD=6,则当α=30°,β为何值时,三棱锥A-BCD 的体积最大,最大值是多少?解:∵V A-BCD =31AB ·S ΔBCDAB ⊥面BCD ∴∠ADB=30° 又∵DC ⊥面ABC∴∠=DAC=β,则AB=3,CD=ADsin β=6sin β AC=ADcos β=6cos β ∴BC=223)cos 6(-β∴V A-BCD =31×3×21×6sin β=)1cos 4(sin 42922-⋅ββ≤42721cos 4sin 42922=-+⋅ββ当4sin 2β=4cos 2β―1 即β=arcsin46时,三棱锥A-BCD 体积取得最大值827.解题回顾:在探索几何极值问题中,常把要求的几何量当成自变量,然后列出目标函数,再求出要求的几何量。

热点难点突破-不拉分系列之(十四)解答立体几何中探索性问题

热点难点突破-不拉分系列之(十四)解答立体几何中探索性问题

立体几何中的探索性问题主要是对平行、垂直关系的探究,对条件和结论不完备的开放性问题的探究,解决这类问题一般根据探索性问题的设问,假设其存在并探索出结论,然后在这个假设下进行推理论证,若得到合乎情理的结论就肯定假设,若得到矛盾就否定假设.[典例](理)(2012·福建高考改编)如图,在长方体ABCD-A1B1C1D1中,AA1=AD=1,E为CD中点.(1)求证:B1E⊥AD1;(2)在棱AA1上是否存在一点P,使得DP∥平面B1AE?若存在,求AP的长;若不存在,说明理由.[解]如图,在四面体P ABC中,PC⊥AB,P A⊥BC,点D,E,F,G分别是棱AP,AC,BC,PB的中点.(1)求证:DE∥平面BCP;(2)求证:四边形DEFG为矩形;(3)是否存在点Q,到四面体P ABC六条棱的中点的距离相等?说明理由.[解](1)证明:因为D,E分别为AP,AC的中点,所以DE∥PC.又因为DE⊄平面BCP,所以DE∥平面BCP.(2)证明:因为D,E,F,G分别为AP,AC,BC,PB的中点,所以DE∥PC∥FG,DG∥AB∥EF.所以四边形DEFG为平行四边形.又因为PC ⊥AB ,所以DE ⊥DG .所以四边形DEFG 为矩形.(3)存在点Q 满足条件,理由如下:连接DF ,EG ,设Q 为EG 的中点.由(2)知,DF ∩EG =Q ,且QD =QE =QF =QG =12EG . 分别取PC ,AB 的中点M ,N ,连接ME ,EN ,NG ,MG ,MN . 与(2)同理,可证四边形MENG 为矩形,其对角线交点为EG的中点Q ,且QM =QN =12EG , 所以Q 为满足条件的点.[题后悟道] 此类问题一般是先探求点的位置,多为线段的中点或某个三等分点,一般点的情形很少,然后给出符合要求的证明,注意书写格式要规范,一般有两种格式:第一种书写格式:探求出点的位置→证明→符合要求→写出明确答案;第二种书写格式:从结论出发“要使什么成立”,“只需使什么成立”,寻求使结论成立的充分条件,类似于分析法.针对训练(2012·黄山模拟)如图,在底面是菱形的四棱锥P -ABCD 中,∠ABC =60°,P A =AC =a ,PB =PD =2a ,点E 在PD 上,且PE ∶ED =2∶1,在棱PC 上是否存在一点F ,使BF ∥平面AEC ?证明你的结论.证明:存在.证明如下:取棱PC 的中点F ,线段PE 的中点M ,连接BD .设BD ∩AC =O .连接BF ,MF ,BM ,OE .∵PE ∶ED =2∶1,F 为PC 的中点,M 是PE 的中点,E 是MD 的中点,∴MF ∥EC ,BM ∥OE .∵MF ⊄平面AEC ,CE ⊂平面AEC ,BM ⊄平面AEC ,OE ⊂平面AEC ,∴MF ∥平面AEC ,BM ∥平面AEC .∵MF ∩BM =M ,∴平面BMF∥平面AEC. 又BF⊂平面BMF,∴BF∥平面AEC.。

专题12 立体几何中探索性问题(解析版)

专题12 立体几何中探索性问题(解析版)

专题12 立体几何中探索性问题专题概述立体几何中的探索性问题立意新颖,形式多样,近年来在高考中频频出现,而空间向量在解决立体几何的探索性问题中扮演着举足轻重的角色,它是研究立体几何中的探索性问题的一个有力工具,应用空间向量这一工具,为分析和解决立体几何中的探索性问题提供了新的视角、新的方法.典型例题【例1】(2018•全国三模)如图,在三棱柱111ABC A B C -中,侧面11ABB A 是矩形,90BAC ∠=︒,1AA BC ⊥,124AA AC AB ===,且11BC AC ⊥. (1)求证:平面1ABC ⊥平面11A ACC ;(2)设D 是11AC 的中点,判断并证明在线段1BB 上是否存在点E ,使得//DE 平面1ABC .若存在,求二面角1E AC B --的余弦值.【分析】(1)推导出1AA AB ⊥,1A A AC ⊥,从而1AC ⊥平面1ABC ,由此能证明平面1ABC ⊥平面11A ACC . (2)当E 为1B B 的中点时,连接AE ,1EC ,DE ,取1A A 的中点F ,连接EF ,FD ,设点E 到平面1ABC的距离为d ,由11E ABC C ABE V V --=,求出d A 为原点,AB 为x 轴,AC 为y 轴,1AA 为z 轴,建立空间直角坐标系,利用向量法能求出二面角1E AC B --的余弦值.【解答】证明:(1)在三棱柱111ABC A B C -中,侧面11ABB A 是矩形,1AA AB ∴⊥, 又1AA BC ⊥,ABBC B =,1AA ∴⊥平面ABC ,1A A AC ∴⊥.又1A A AC =,11AC AC ∴⊥.又11BC AC ⊥,111BC A C C =,1AC ∴⊥平面1ABC , 又1AC ⊂平面11A ACC , ∴平面1ABC ⊥平面11A ACC .解:(2)当E 为1B B 的中点时,连接AE ,1EC ,DE ,如图,取1A A 的中点F ,连接EF ,FD ,//EF AB ,1//DF AC ,又EFDF F =,1ABA C A =,∴平面//EFD 平面1ABC ,则有//DE 平面1ABC .设点E 到平面1ABC 的距离为d ,AB AC ⊥,且1AA AB ⊥,AB ∴⊥平面11A ACC ,1AB AC ∴⊥,∴1122BAC S=⨯= 1A A AC ⊥,AB AC ⊥,AC ∴⊥平面11A ABB ,11//AC AC ,11AC ∴⊥平面11ABB ,∴11111182243323C ABE ABE V S AC -∆=⨯⨯=⨯⨯⨯⨯=, 由1183E ABC C ABE V V --==,解得188333ABC d S=⨯==以A 为原点,AB 为x 轴,AC 为y 轴,1AA 为z 轴,建立空间直角坐标系, (0A ,0,0),(2B ,0,0),1(0C ,4,4),(2E ,0,2),1(0AC =,4,4),(2AB =,0,0),(2AE =,0,2), 设平面1AC E 的法向量(n x =,y ,)z ,则1440220n AC y z n AE x z ⎧=+=⎪⎨=+=⎪⎩,取1x =,得(1n =,1,1)-, 设平面1AC B 的法向量(m x =,y ,)z ,则144020m AC y z m AB x ⎧=+=⎪⎨==⎪⎩,取1y =,得(0m =,1,1)-, 设二面角的平面角为θ, 则6cos ||||32m n m n θ===.∴二面角1E AC B --【例2】在四棱柱1111ABCD A B C D -中,底面ABCD 是正方形,且1BC BB =1160A AB A AD ∠=∠=︒. (1)求证:1BD CC ⊥;(2)若动点E 在棱11C D 上,试确定点E 的位置,使得直线DE 与平面1BDB .【分析】(1)连接1A B ,1A D ,AC ,则△1A AB 和△1A AD 均为正三角形,设AC 与BD 的交点为O ,连接1A O ,则1AO BD ⊥,由四边形ABCD 是正方形,得AC BD ⊥,从而BD ⊥平面1A AC .进而1BD AA ⊥,由此能证明1BD CC ⊥.(2)推导出11A B A D ⊥,1AO AO ⊥,1AO BD ⊥,从而1AO ⊥底面ABCD ,以点O 为坐标原点,OA 的方向为x 轴的正方向,建立空间直角坐标系O xyz -,利用向量法能求出当E 为11D C 的中点时,直线DE 与平面1BDB . 【解答】解:(1)连接1A B ,1A D ,AC , 因为1AB AA AD ==,1160A AB A AD ∠=∠=︒, 所以△1A AB 和△1A AD 均为正三角形, 于是11A B A D =.设AC 与BD 的交点为O ,连接1A O ,则1AO BD ⊥, 又四边形ABCD 是正方形,所以AC BD ⊥, 而1AO A C O =,所以BD ⊥平面1A AC .又1AA ⊂平面1A AC ,所以1BD AA ⊥,又11//CC AA ,所以1BD CC ⊥.(2)由11A B A D ==2BD ==,知11A B A D ⊥,于是1112AO A O BD AA ===,从而1AO AO ⊥, 结合1AO BD ⊥,1A A C O =,得1AO ⊥底面ABCD , 所以OA 、OB 、1OA 两两垂直.如图,以点O 为坐标原点,OA 的方向为x 轴的正方向,建立空间直角坐标系O xyz -, 则(1A ,0,0),(0B ,1,0),(0D ,1-,0),1(0A ,0,1),(1C -,0,0),(0,2,0)DB =,11(1,0,1)BB AA ==-,11(1,1,0)D C DC ==-, 由11(1,0,1)DD AA ==-,得1(1D -,1-,1).设111([0,1])D E D C λλ=∈,则(1E x +,1E y +,1)(1E z λ-=-,1,0),即(1E λ--,1λ-,1), 所以(1,,1)DE λλ=--.设平面1B BD 的一个法向量为(,,)n x y z =, 由100n DB n BB ⎧=⎪⎨=⎪⎩得00y x z =⎧⎨-+=⎩令1x =,得(1,0,1)n =,设直线DE 与平面1BDB 所成角为θ,则sin |cos ,|2DE n θ=<>=⨯, 解得12λ=或13λ=-(舍去), 所以当E 为11D C 的中点时,直线DE 与平面1BDB .【变式训练】(2018•全国三模)如图,在三棱柱111ABC A B C -中,侧面11ABB A 是矩形,90BAC ∠=︒,1AA BC ⊥,124AA AC AB ===,且11BC AC ⊥ (1)求证:平面1ABC ⊥平面11A ACC(2)设D 是11AC 的中点,判断并证明在线段1BB 上是否存在点E ,使//DE 平面1ABC ,若存在,求点E 到平面1ABC 的距离.【分析】(1)在三棱柱111ABC A B C -中,由侧面11ABB A 是矩形,可得1AA AB ⊥,又1AA BC ⊥,可得1AA ⊥平面ABC ,得到1AA AC ⊥,进一步有11AC AC ⊥,结合11BC AC ⊥,可得1AC ⊥平面1ABC ,由面面垂直的判定得平面1ABC ⊥平面11A ACC ;(2)当E 为1BB 的中点时,连接AE ,1EC ,DE ,取1AA 的中点F ,连接EF ,FD ,由面面平行的判定和性质可得//DE 平面1ABC ,咋爱优等体积法可求点E 到平面1ABC 的距离为. 【解答】(1)证明:在三棱柱111ABC A B C -中,侧面11ABB A 是矩形, 1AA AB ∴⊥,又1AA BC ⊥,AB BC B =,1AA ∴⊥平面ABC ,1AA AC ∴⊥,又1AA AC =,11AC AC ∴⊥, 又11BC AC ⊥,111BC A C C =,1AC ∴⊥平面1ABC ,又1AC ⊂平面11A ACC , ∴平面1ABC ⊥平面11A ACC ;(2)解:当E 为1BB 的中点时,连接AE ,1EC ,DE , 如图,取1AA 的中点F ,连接EF ,FD ,//EF AB ,1//DF AC ,又EF DF F =,1ABA C A =,∴平面//EFD 平面1ABC ,又DE ⊂平面EFD ,//DE ∴平面1ABC ,又11E ABC C ABE V V --=,11C A ⊥平面ABE ,设点E 到平面1ABC 的距离为d ,∴111122243232d ⨯⨯⨯=⨯⨯⨯⨯,得d =∴点E 到平面1ABC专题强化1.(2020•3月份模拟)如图.在正三棱柱111ABC A B C -(侧棱垂直于底面,且底面三角形ABC 是等边三角形)中,1BC CC =,M 、N 、P 分别是1CC ,AB ,1BB 的中点. (1)求证:平面//NPC 平面1AB M ;(2)在线段1BB 上是否存在一点Q 使1AB ⊥平面1A MQ ?若存在,确定点Q 的位置;若不存在,也请说明理由.【分析】(1)由M 、N 、P 分别是1CC ,AB ,1BB 的中点.利用平行四边形、三角形中位线定理即可得出1//NP AB ,1//CP MB ,再利用线面面面平行的判定定理即可得出结论.(2)假设在线段1BB 上存在一点Q 使1AB ⊥平面1A MQ .四边形11ABB A 是正方形,因此点Q 为B 点.不妨取2BC =.判断10AB MQ =是否成立即可得出结论.【解答】(1)证明:M 、N 、P 分别是1CC ,AB ,1BB 的中点. 1//NP AB ∴,四边形1MCPB 为平行四边形,可得1//CP MB ,NP ⊂/平面1AB M ;1AB ⊂平面1AB M ;//NP ∴平面1AB M ;同理可得//CP 平面1AB M ;又CP NP P =,∴平面//NPC 平面1AB M .(2)假设在线段1BB 上存在一点Q 使1AB ⊥平面1A MQ . 四边形11ABB A 是正方形,因此点Q 为线段1BB 的中点. 不妨取2BC =.(0M ,1-,1),(0Q ,1,0),A 0,0),1(0B ,1,2),1(AB =-1,2),(0MQ =,2,1)-, 10AB MQ =.∴在线段1BB 上存在一点Q ,使1AB ⊥平面1A MQ ,其中点Q 为线段1BB 的中点2.(2020•湖南模拟)如图,AB 为圆O 的直径,点E 、F 在圆O 上,//AB EF ,矩形ABCD 所在的平面与圆O 所在的平面互相垂直.已知2AB =,1EF =. (Ⅰ)求证:平面DAF ⊥平面CBF ; (Ⅰ)求直线AB 与平面CBF 所成角的大小;(Ⅰ)当AD 的长为何值时,平面DFC 与平面FCB 所成的锐二面角的大小为60︒?【分析】()I 利用面面垂直的性质,可得CB ⊥平面ABEF ,再利用线面垂直的判定,证明AF ⊥平面CBF ,从而利用面面垂直的判定可得平面DAF⊥平面CBF;()II确定ABF∠为直线AB与平面CBF所成的角,过点F作FH AB⊥,交AB于H,计算出AF,即可求得直线AB与平面CBF所成角的大小;(Ⅰ)建立空间直角坐标系,求出平面DCF的法向量1(0,2n t=,平面CBF的一个法向量21(,0)2n AF==-,利用向量的夹角公式,即可求得AD的长.【解答】()I证明:平面ABCD⊥平面ABEF,CB AB⊥,平面ABCD⋂平面ABEF AB=,CB∴⊥平面ABEF.AF ⊂平面ABEF,AF CB∴⊥,⋯(2分)又AB为圆O的直径,AF BF∴⊥,AF∴⊥平面CBF.⋯(3分)AF ⊂平面ADF,∴平面DAF⊥平面CBF.⋯(4分)()II解:根据(Ⅰ)的证明,有AF⊥平面CBF,FB∴为AB在平面CBF内的射影,因此,ABF∠为直线AB与平面CBF所成的角⋯(6分)//AB EF,∴四边形ABEF为等腰梯形,过点F作FH AB⊥,交AB于H.2AB=,1EF=,则122AB EFAH-==.在Rt AFB∆中,根据射影定理2AF AH AB=,得1AF=.⋯(8分)∴1sin2AFABFAB∠==,30ABF∴∠=︒.∴直线AB与平面CBF所成角的大小为30︒.⋯(9分)(Ⅰ)解:设EF中点为G,以O为坐标原点,OA、OG、AD方向分别为x轴、y轴、z轴方向建立空间直角坐标系(如图).设(0)AD t t=>,则点D的坐标为(1,0,)t,则(1C-,0,)t,1(1,0,0),(1,0,0),(2A B F-∴1(2,0,0),(,)2CD FD t==⋯(10分)设平面DCF的法向量为1(,,)n x y z=,则1n CD =,1n FD =,即200.xy tz=⎧⎪⎨+=⎪⎩令z=,解得0x=,2y t=,∴1(0,2n t=⋯(12分)由()I 可知AF ⊥平面CFB ,取平面CBF 的一个法向量为21(,0)2n AF ==-,依题意1n 与2n 的夹角为60︒,∴1212cos60||||n n n n ︒=,即12=,解得t =因此,当AD DFC 平面FCB 所成的锐二面角的大小为60︒.⋯(14分)3.(2019•全国二模)如图,直三棱柱111ABC A B C -中,点D 是棱11B C 的中点. (Ⅰ)求证:1//AC 平面1A BD ;(Ⅰ)若AB AC ==12BC BB ==,在棱AC 上是否存在点M ,使二面角1B A D M --的大小为45︒,若存在,求出AMAC的值;若不存在,说明理由.【分析】(Ⅰ)先连接1AB ,交1A B 于点O ,再由线面平行的判定定理,即可证明1//AC 平面1A BD ; (Ⅰ)先由题意得AB ,AC ,1AA 两两垂直,以A 为原点,建立空间直角坐标系A xyz -,设(0M ,a ,0),(02)a ,求出两平面的法向量,根据法向量夹角余弦值以及二面角的大小列出等式,即可求出a ,进而可得出结果.【解答】证明:(Ⅰ)连接1AB ,交1A B 于点O ,则O 为1AB 中点, 连接OD ,又D 是棱11B C 的中点,1//OD AC ∴,OD ⊂平面1A BD ,1AC ⊂/平面1A BD ,1//AC ∴平面1A BD .解:(Ⅰ)由已知AB AC ⊥,则AB ,AC ,1AA 两两垂直, 以A 为原点,如图建立空间直角坐标系A xyz -,则B ,1(0A ,0,2),D ,2),(0C0), 设(0M ,a ,0),(02)a,则1(BA =-,12(A D =0),1(0A M =,a ,2)-, 设平面1BA D 的法向量为(n x =,y ,)z ,则11220202n BA z n A D x y ⎧=-+=⎪⎨==⎪⎩,取1z =,得(2,n =-1). 设平面1A DM 的法向量为(m x =,y ,)z ,则1120202m A M ay z m A D y ⎧=-=⎪⎨=+=⎪⎩,2x =-,得(2m =-,2,)a . 二面角1BA D M --的大小为45︒, 2|||2222cos 45|cos ,|||||58m na m n m n a --+∴︒=<>===+,23240a ∴+-=,解得a =-a =, 02a a ∴=, ∴存在点M ,此时23AM AC =,使二面角1B A D M --的大小为45︒.4.(2019•3月份模拟)如图,在三棱柱111ABC A B C -中,1AA ⊥平面ABC ,D 为BC 边上一点,BD =122AA AB AD ===.(1)证明:平面1ADB ⊥平面11BB C C .(2)若BD CD =,试问:1A C 是否与平面1ADB 平行?若平行,求三棱锥11A A B D -的体积;若不平行,请说明理由.【分析】(1)先证AD 与BC ,1BB 垂直,进而得线面垂直,面面垂直;(2)连接1A B 得中点E ,利用中位线得线线平行,进而得线面平行,再利用等分三棱柱的方法求得三棱锥的体积.【解答】解:(1)证明:2AB =,1AD =,BD =AD BD ∴⊥,1AA ⊥平面ABC ,1BB ∴⊥平面ABC , 1BB AD ∴⊥,AD ∴⊥平面11BB C C ,∴平面1ADB ⊥平面11BB C C ;(2)1A C 与平面1ADB 平行,证明如下:连接1A B 交1AB 于E ,连接DE ,则E 为1AB 中点,BD CD =,1//AC DE ∴, 又1AC ⊂/平面1ADB ,DE ⊂平面1ADB , 1//AC ∴平面1ADB , 利用三等分三棱柱的知识可知, 1111116A A B D A B C ABC V V --=116ABC S AA ∆=⨯ 11162BC AD AA =⨯⨯⨯ 111262=⨯⨯⨯=故三棱锥11A A B D - 5.(2018秋•全国期末)如图,在四棱台1111ABCD A B C D -中,底面ABCD 是菱形,111112AA A B AB ===,60ABC ∠=︒,1AA ⊥平面ABCD .(1)若点M 是AD 的中点,求证:1//C M 平面11AA B B ;(2)棱BC 上是否存在一点E ,使得二面角1E AD D --的余弦值为13?若存在,求线段CE 的长;若不存在,请说明理由.【分析】(1)连接1B A ,推导出四边形11AB C M 是平行四边形,从而11//C M B A ,由此能证明1//C M 平面11AA B B .(2)取BC 中点Q ,连接AQ ,推导出AQ BC ⊥,AQ AD ⊥,分别以AQ ,AD ,1AA 为x 轴,y 轴,z 轴,建立空间直角坐标系,利用向量法能求出结果.【解答】证明:(1)连接1B A ,由已知得,11////B C BC AD ,且1112B C AM BC ==所以四边形11AB C M 是平行四边形,即11//C M B A ⋯(2分)又1C M ⊂/平面11AA B B ,1B A ⊂平面11AA B B , 所以1//C M 平面11AA B B ⋯(4分)解:(2)取BC 中点Q ,连接AQ ,因为ABCD 是菱形,且60ABC ∠=︒, 所以ABC ∆是正三角形,所以AQ BC ⊥,即AQ AD ⊥, 由于1AA ⊥平面ABCD ⋯(6分)所以,分别以AQ ,AD ,1AA 为x 轴,y 轴,z 轴,建立空间直角坐标系, 如图(0A ,0,0),1(0A ,0,1),1(0D ,1,1),Q 假设点E 存在,设点E的坐标为,0)λ,11λ-,(3,0)AE λ=,1(0,1,1)AD =⋯(7分) 设平面1AD E 的法向量(,,)n x y z =则100n AE n AD ⎧=⎪⎨=⎪⎩,即00y y z λ+=+=⎪⎩,可取(,3,n λ=-⋯(9分)平面1ADD 的法向量为(3,0,0)AQ =⋯(10分) 所以,31|cos ,|33AQ n λ<>==,解得:λ=(11分) 又由于二面角1E AD D --大小为锐角,由图可知,点E 在线段QC 上, 所以λ=,即1CE =(12分)6.(2019•山东模拟)如图所示的矩形ABCD 中,122AB AD ==,点E 为AD 边上异于A ,D 两点的动点,且//EF AB ,G为线段ED 的中点,现沿EF 将四边形CDEF 折起,使得AE 与CF 的夹角为60︒,连接BD ,FD .(1)探究:在线段EF 上是否存在一点M ,使得//GM 平面BDF ,若存在,说明点M 的位置,若不存在,请说明理由;(2)求三棱锥G BDF -的体积的最大值,并计算此时DE 的长度.【分析】(1)取线段EF 的中点M ,由G 为线段ED 的中点,M 为线段EF 的中点,可得//GM DF ,再由线面平行的判定可得//GM 平面BDF ;(2)由//CF DE ,且AE 与CF 的夹角为60︒,可得AE 与DE 的夹角为60︒,过D 作DP 垂直于AE 交AE 于P ,由已知可得DP 为点D 到平面ABFE 的距离,设DE x =,则4AE BF x ==-,然后利用等积法写出三棱锥G BDF -的体积,再由基本不等式求最值,并求出DE 的长度. 【解答】(1)解:取线段EF 的中点M ,有//GM 平面BDF . 证明如下:如图所示,取线段EF 的中点M ,G 为线段ED 的中点,M 为线段EF 的中点, GM ∴为EDF ∆的中位线,故//GM DF ,又GM ⊂/平面BDF ,DF ⊂平面BDF ,故//GM 平面BDF ; (2)解://CF DE ,且AE 与CF 的夹角为60︒, 故AE 与DE 的夹角为60︒, 过D 作DP 垂直于AE 交AE 于P ,由已知得DE EF ⊥,AE EF ⊥,EF ∴⊥平面AED , 则DP 为点D 到平面ABFE 的距离, 设DE x =,则4AE BF x ==-, 由(1)知//GM DF , 故111333[1(4)](4)332G BDF M BDF D MBF MBF V V V S DP x x x x ---∆====⨯⨯⨯-⨯=-, 当且仅当4x x -=时等号成立,此时2x DE ==.故三棱锥G BDF-,此时DE的长度为2.7.(2018•全国模拟)如图,在四棱锥P ABCD-中,90ABC BAD∠=∠=︒,112AD AB BC===,PD⊥平面ABCD,PD=M为PC上的动点.(Ⅰ)当M为PC的中点时,在棱PB上是否存在点N,使得//MN平面PDA?说明理由;(Ⅰ)BDM∆的面积最小时,求三棱锥M BCD-的体积.【分析】(Ⅰ)当N为PB中点时,//MN平面PDA.取PB的中点N,连接MN,由M,N分别为PC,PB中点,可得//MN BC,又//BC AD,得//MN AD,再由直线与平面平行的判定对立即可证明//MN平面PDA;(Ⅰ)由PD⊥平面ABCD,DB⊂平面ABCD,知PD BD⊥,又BD CD⊥,CD PD D=,得BD⊥平面PCD,又M D⊂平面PDC,可得BD M D⊥,进一步得到DBM∆为直角三角形,当MD PC⊥时BDM∆的面积最小,然后利用等积法即可求出三棱锥M BCD-的体积.【解答】解:(Ⅰ)当N为PB中点时,//MN平面PDA.证明如下:取PB的中点N,连接MN,M,N分别为PC,PB中点,//MN BC∴,又//BC AD,//MN AD∴,又DA⊂平面PDA,MN⊂/平面PDA,//MN∴平面PDA;(Ⅰ)由PD ⊥平面ABCD ,DB ⊂平面ABCD ,知PD BD ⊥, 又BD CD ⊥,CDPD D =,BD ∴⊥平面PCD ,又M D ⊂平面PDC ,BD M D ∴⊥,DBM ∴∆为直角三角形.当MD PC ⊥时BDM ∆的面积最小. 在底面直角梯形ABCD 中,由90ABC BAD ∠=∠=︒,112AD AB BC ===,得CD =BD ∴=在Rt PDC ∆中,由PD =CD =可得PC =MD =则CM =12MCD S ∆∴==.∴1133M BCD B MCD MCD V V S BD --∆===⨯8.(2018•全国二模)直三棱柱111ABC A B C -中,14AC AA ==,AC BC ⊥. (Ⅰ)证明:11AC A B ⊥;(Ⅰ)当BC 的长为多少时,直线1A B 与平面1ABC 所成角的正弦值为13.【分析】(Ⅰ)由BC AC ⊥,1BC AA ⊥,得BC ⊥平面11AA C C ,从而1AC BC ⊥,连结1A C ,四边形11AA C C 是正方形,则11AC AC ⊥,由此能证明1AC ⊥平面1A BC ,从而11AC A B ⊥. (Ⅰ)以C 为原点,CA 、CB 、1CC 所在直线为x ,y ,z 轴,建立空间直角坐标系C xyz -,利用向量法能求出a . 【解答】证明:(Ⅰ)BC AC ⊥,1BC AA ⊥,1ACAA A =,BC ∴⊥平面11AA C C ,又1AC ⊂平面11AA C C ,1AC BC ∴⊥,连结1A C ,四边形11AA C C 是正方形,11AC AC ∴⊥, 且1BCAC C =, 1AC ∴⊥平面1A BC ,又1A B ⊂平面1A BC ,11AC A B ∴⊥.解:(Ⅰ)以C 为原点,CA 、CB 、1CC 所在直线为x ,y ,z 轴,建立空间直角坐标系C xyz -, 设BC a =,则(0C ,0,0),(4A ,0,0),(0B ,a ,0),1(0C ,0,4),1(4A ,0,4),1(4A B =-,a ,4)-,(4AB =-,a ,0),1(4AC =-,0,4), 设平面1ABC 的法向量为(n x =,y ,)z ,则140440AB n x ay AC n x z ⎧=-+=⎪⎨=-+=⎪⎩,取x a =,得(n a =,4,)a ,直线1A B 与平面1ABC 所成角的正弦值为13.1|cos A B ∴<,221|||332216n a ==++. 解得4a =.9.(2018•新课标Ⅰ)如图,矩形ABCD所在平面与半圆弧CD所在平面垂直,M是CD上异于C,D的点.(1)证明:平面AMD⊥平面BMC;(2)在线段AM上是否存在点P,使得//MC平面PBD?说明理由.【分析】(1)通过证明CD AD⊥,证明CM⊥平面AMD,然后证明平面AMD⊥平面BMC;⊥,CD DM(2)存在P是AM的中点,利用直线与平面平行的判断定理说明即可.【解答】(1)证明:矩形ABCD所在平面与半圆弦CD所在平面垂直,所以AD⊥半圆弦CD所在平面,CM⊂半圆弦CD所在平面,∴⊥,CM ADM是CD上异于C,D的点.CM DM∴⊥,DM AD D∴⊥平面AMD,CM⊂平面CMB,=,CM∴平面AMD⊥平面BMC;(2)解:存在P是AM的中点,理由:连接BD交AC于O,取AM的中点P,连接OP,可得//MC OP,MC⊂/平面BDP,OP⊂平面BDP,所以//MC平面PBD.。

立体几何中的探索性问题

立体几何中的探索性问题

立体几何中的探索性问题小伙伴们!今天咱们要来聊聊立体几何里那让人又爱又恨的探索性问题。

啥是探索性问题呢?简单来说,就是不像常规题目那样,把条件和结论都明明白白地摆在你面前,而是让你自己去摸索、去发现,有点像探险家在未知的领域里寻找宝藏,充满了挑战和乐趣。

想象一下,立体几何的世界就像是一个超级复杂的迷宫,各种点、线、面在里面交织缠绕。

探索性问题呢,就是给你一把钥匙,让你自己去打开那些隐藏着的门,看看后面到底藏着什么奇妙的东西。

比如说,经常会碰到这样的问题:“是否存在某个点,使得某个条件成立?”这就好比在迷宫里问你,有没有一个特别的地方,能让你找到传说中的宝藏地图。

你得在这个立体的迷宫里,运用你所学的知识,去推测、去验证。

也许你一开始会毫无头绪,就像在迷宫里转了好几圈,还是找不到出口。

但是别着急,咱们有方法。

得把已知条件都梳理清楚。

这就像是在迷宫里标记出你已经走过的安全道路,知道哪些地方是确定的,哪些是还需要探索的。

然后呢,根据问题的类型,去假设存在这样的点或者条件。

就好比你先假设宝藏就在某个地方,然后顺着这个假设去推理。

在推理的过程中,要充分利用立体几何的各种定理和性质。

这些定理就像是迷宫里的指南针,能帮你指引方向。

比如说线面平行、面面垂直的判定定理等等,它们都是你探索的有力工具。

有时候,你可能会发现,顺着假设推理下去,会出现矛盾。

这就好比你按照假设的方向走,结果走到了死胡同。

那就说明这个假设不成立,得换个方向重新探索了。

而如果推理过程很顺利,没有出现矛盾,而且能满足题目中的所有条件,那恭喜你,你找到了宝藏!也就是找到了问题的答案。

探索性问题还能锻炼咱们的空间想象力和逻辑思维能力。

就像在搭建乐高积木一样,你得在脑海里把那些点、线、面按照一定的规则组合起来,看看能不能搭出符合要求的形状。

而且在推理的过程中,每一步都得有根有据,不能凭空想象。

比如说有一个经典的探索性问题:在一个三棱柱中,是否存在一条侧棱,使得它与底面的某个角所成的角为特定的度数。

立体几何探究性问题透析

ʏ王 飞 刘大鸣(特级教师)立体几何中的探究性问题立意新颖,形式多样㊂这类问题,既能够考查同学们的空间想象力,又可以考查同学们的意志力和创新意识,逐步成为近几年高考命题的热点和今后命题的趋势之一㊂立体几何探究性问题主要有两类:一是推理型,即探究空间中的平行与垂直关系,可以利用空间线面关系的判定与性质定理进行推理论证;二是计算型,即对几何体中的空间角与距离㊁几何体的体积等计算型问题的有关探究,此类问题通过求角㊁求距离㊁求体积等的基本方法把这些探究性问题转化为关于某个参数的方程,根据方程解的存在性来解决㊂题型1: 几何法 探究以 平行 为背景的探究性问题例1 如图1,在四棱锥E -A B C D 中,A E ʅD E ,C D ʅ平面A D E ,AB ʅ平面A D E ,CD =3A B ㊂图1(1)求证:平面A C E ʅ平面C D E ㊂(2)在线段D E 上是否存在一点F ,使A F ʊ平面B C E 若存在,求出E FE D 的值;若不存在,请说明理由㊂(1)面面垂直的证明,可寻求一个平面内的直线A E 和另一个平面C D E 垂直㊂因为C D ʅ平面A D E ,A E ⊂平面A D E ,所以C D ʅA E ㊂因为A E ʅD E ,所以A E ʅ平面C D E ㊂又因为A E ⊂平面A C E ,所以平面A C E ʅ平面C D E ㊂(2)由C D =3A B ,C D ʅ平面A D E ,A B ʅ平面A D E ,取E D 上的一个三分之一点F ,构造特殊的平行四边形,利用平行关系,得到A F ʊ平面B C E ㊂在线段D E 上存在一点F ,且E F D E =13,使A F ʊ平面B C E ㊂过点F 作F M ʊC D 交C E 于M (作法略),则F M =13C D ㊂因为C D ʅ平面A D E ,A B ʅ平面A D E ,所以C D ʊA B ㊂因为F M ʊC D ,所以F M ʊA B ㊂因为C D =3A B ,所以F M =A B ,所以四边形A B M F 为平行四边形,所以A F ʊB M ㊂又因为A F ⊄平面B C E ,B M ⊂平面BC E ,所以A F ʊ平面B C E ㊂透析:直线和平面平行的探究性问题,在利用传统的几何方法证明时,一定要灵活运用空间几何体的结构特征,要注意寻找平行㊁垂直与长度之间的关系,其中依据性质定理作辅助线和辅助面是求解的关键㊂本题取E D 上的三分之一点F ,构造平行四边形,凸显空间问题平面化的特点㊂题型2: 几何法 探究以 垂直 为背景的探究性问题例2 在长方体A B C D -A 1B 1C 1D 1中,E ,F 分别是A D ,D D 1的中点,A B =B C =2,过A 1,C 1,B 三点的平面截去长方体的一个角后,得到如图2所示的几何体A B C D -A 1C 1D 1,且这个几何体的体积为403㊂图273创新题追根溯源高一数学 2023年6月Copyright ©博看网. All Rights Reserved.(1)求证:E Fʊ平面A1B C1㊂(2)求A1A的长㊂(3)在线段B C1上是否存在点P,使直线A1P与C1D垂直如果存在,求线段A1P的长;如果不存在,请说明理由㊂(1)利用几何特征和平行线的传递性证明E Fʊ平面A1B C1㊂在长方体A B C D-A1B1C1D1中,可知A BʊD1C1,A B=D1C1,所以四边形A B C1D1是平行四边形,所以A D1 B C1㊂因为E,F分别是A D,D D1的中点,所以A D1ʊE F,所以E FʊB C1㊂又E F⊄平面A1B C1,B C1⊂平面A1B C1,所以E Fʊ平面A1B C1㊂(2)利用等积法求A1A的长㊂由题意可得V A B C D-A1C1D1=V A B C D-A1B1C1D1 -V B-A1B1C1=2ˑ2ˑA A1-13ˑ12ˑ2ˑ2ˑA A1=103A A1=403,所以A A1=4㊂(3)线线垂直合理转化为线面垂直,构造与C1D垂直的辅助面为直角梯形A1P Q D1即可㊂在平面C C1D1D中,作D1QʅC1D交C C1于Q,过Q作Q PʊC B交B C1于点P,可得A1PʅC1D,即存在点P满足题意㊂因为A1D1ʅ平面C C1D1D,C1D⊂平面C C1D1D,所以C1DʅA1D1㊂又因为C1DʅD1Q,且A1D1ɘD1Q=D1,所以C1Dʅ平面A1P Q D1㊂又A1P⊂平面A1P Q D1,所以A1PʅC1D㊂下面求线段A1P的长㊂因为R tәD1C1QʐR tәC1C D,所以C1QC D= D1C1C1C,所以C1Q=1㊂因为P QʊB C,所以P Q=14B C=12㊂又四边形A1P Q D1为直角梯形,且高D1Q=5,所以A1P= 2-122+5=292㊂透析:以特殊几何体为背景的垂直关系的探究性问题,依据几何体的特殊性质,合理构造线线垂直关系是解题的关键㊂本题选择C1D和经过点A1且与B C1相交于点P的平面A1P Q D1,通过作D1QʅC1D交C C1于点Q,过点Q作Q PʊC B交B C1于点P,构造直角梯形得到满足条件的A1P的长㊂1.如图3,已知四棱锥S-A B C D中,底面A B C D是菱形,点E是棱A D的中点,点F 在棱S C上,且S FS C=λ,S Aʊ平面B E F㊂图3求实数λ的值㊂提示:利用相似三角形,建立等式求解㊂设A CɘB E=G,则平面S A Cɘ平面E F B= F G㊂因为S Aʊ平面E F B,所以S AʊF G㊂因为әG E AʐәG B C,所以A G G C=A E B C=12,所以S FF C=A GG C=12,所以S F=13S C,所以λ=13㊂2.已知直线m,n,l和平面α,β,下列四个命题中正确的是()㊂A.若mʊα,nʊα,则mʊnB.若lʊα,mʊβ,αʊβ,则lʊmC.若αʅβ,m⊂α,则mʅβD.若αʅβ,mʅβ,m⊄α,则mʊα提示:对于A,若mʊα,nʊα,则m与n 相交㊁平行或异面,A错误㊂对于B,若lʊα, mʊβ,αʊβ,l与m不一定平行,也可能相交, B错误㊂对于C,若αʅβ,m⊂α,则mʅβ或mʊβ或m与β相交,C错误㊂对于D,若αʅβ,mʅβ,m⊄α,则由线面垂直的性质与判定定理得mʊα,D正确㊂应选D㊂作者单位:陕西省洋县中学(责任编辑郭正华)8 3创新题追根溯源高一数学2023年6月Copyright©博看网. All Rights Reserved.。

立体几何中的探索性问题


平面B1BC1的法向量n2=(x2,y2,z2).
y
∴AA→→11CB1·n·n11==00,⇒43xy11-=40z,1=0,
x
∴取向量n1=(0,4,3).
直击高考
(2016·北京卷改编)如图,在三棱柱 ABC-A1B1C1 中,AA1C1C 是边 长为 4 的正方形.平面 ABC⊥平面 AA1C1C,AB=3,BC=5. (1)求证:AA1⊥平面 ABC;(2)求二面角 A1-BC1-B1 的余弦值;
为 36?若存在,求出QPQD的值;若不存在,请说明理由.
解 (1)在△PAD中,PA=PD,O为AD中点, 所以PO⊥AD, 又侧面PAD⊥底面ABCD, 平面PAD∩平面ABCD=AD,PO⊂平面PAD, 所以PO⊥平面ABCD. 又在直角梯形ABCD中,连接OC, 易得OC⊥AD,
(2017·衡水二模)如图,在四棱锥 P-ABCD 中,侧面 PAD⊥底面 ABCD,侧棱 PA=PD= 2,PA⊥PD,底面 ABCD 为直角梯形, 其中 BC∥AD,AB⊥AD,AB=BC=1,O 为 AD 中点. (1)求直线 PB 与平面 POC 所成角的余弦值; (2)求 B 点到平面 PCD 的距离; (3)线段 PD 上是否存在一点 Q,使得二面角 Q-AC-D 的余弦值
为 36?若存在,求出QPQD的值;若不存在,请说明理由.
cos〈P→B,O→A〉=|PP→→BB|·|OO→→AA|= 33. ∴直线 PB 与平面 POC 所成角的余弦值为 36.
z y
x
(2017·衡水二模)如图,在四棱锥 P-ABCD 中,侧面 PAD⊥底面
ABCD,侧棱 PA=PD= 2,PA⊥PD,底面 ABCD 为直角梯形, 其中 BC∥AD,AB⊥AD,AB=BC=1,O 为 AD 中点. (1)求直线 PB 与平面 POC 所成角的余弦值; (2)求 B 点到平面 PCD 的距离; (3)线段 PD 上是否存在一点 Q,使得二面角 Q-AC-D 的余弦值

立体几何探究性问题


2、几何-----代数
利用空间向量来解决立体几何中的探 究性问题是一个有效的解题途径.
例题讲解
例3、四棱锥S-A BCD的底面是正方形,每条侧 棱的长都是底面边长 2倍,P 为侧棱SD上的点. (1)若SD ^ 面PA C ,求二面角 P - A C - D的大小; (2)在(1)的条件下,侧棱 SC 上是否存在一点E ,使 得BE / / 面PA C .若存在, 求SE : EC , 若不存在,试说明理由.
(1)观察 - - - 猜想 - - - 证明
(2)执果-----索因 (3)几何-----代数
拓展练习
在三棱锥A - BCD中,侧面ABD、ACD是全 等的直角三角形,AD是公共的斜边,且AD 3, BD CD 1,另一个侧面是正三角形,在线段AC 上是否存在一点E,使ED 与面BCD成30角,若存在, A 确定E的位置,若不存在, 请说明理由.
T
例题讲解
例2、在正方体A BCD - A1B 1C 1D1中,E 是棱 DD1的中点.在棱C 1D1上是否存在一点F , 使得 B 1F / / 面A1B E ?证明你的结论. A1 D1 F B1 C1
M
E
A B C
D
方法点击
1、执果-----索因
假设求解的结果存在,寻找使这个结 论成立的充分条件.
高三复习
立体几何中的探究性问题
湖南师大附中 张 宇
课题引入
立体几何中的探究性问题,既能够考察 学生的空间想象能力,又可以考察学生的 意志力及探究能力;
探究是一种科学的精神; 探究是高考命题的热点;
课题引入
探究问题的基本特征: 条件不完备或结论不确定.
例题讲解
例1、在正方体A BCD - A1B 1C 1D1中,E 是棱 DD1的中点.在棱C C 1上是否存在一点F , 使得 B 1F / / 面A1B E ?证明你的结论. A1

立体几何中探究性问题

立体几何中探究性问题作者:谢炳剑来源:《新课程·中学》2017年第12期立体几何的探究、存在性问题是一类很好的问题,通过解决这类问题,学生能很快地深入理解立体几何中平行垂直的判定定理和性质定理,对培养学生的空间想象能力、逻辑推理能力有很大的帮助.解决立体几何中的开放探索性问题,常常借助空间概念转化为平面几何问题的探究,或将运动观念化归为特殊位置确定解决,或将几何中的位置关系转化为函数与方程问题,其关键还是化归思想的渗透.一、利用平行的判定定理和性质定理进行转化例1 如图,在三棱柱ABC-A1B1C1中,M是A1C1的中点,在棱AC上找点N使平面AB1M∥平面BC1N.解:∵平面AB1M∥平面BC1N,平面ACC1A1∩平面AB1M=AM,平面BC1N∩平面ACC1A1=C1N,∴C1N∥AM,又AC∥A1C1,∴四边形ANC1M为平行四边形,∴AN=C1M= A1C1= AC,∴N为AC的中点.反思感悟:对于探索性问题,一是可直接运用题中的条件,结合所学过的知识探求;二是可先猜想,然后证明猜想的正确性.二、利用线面垂直的判定定理进行转化例2 如图所示,在直三棱柱ABC-A1B1C1中,底面是∠ABC为直角的等腰直角三角形,AC=2a,BB1=3a,D是A1C1的中点,点F在线段AA1上,当AF= 时,CF⊥平面B1DF.解:由已知得B1D⊥平面AC1,又∵CF?奂平面AC1,∴B1D⊥CF,故若CF⊥平面B1DF,则必有CF⊥DF.设AF=x(0又∵CD2=a2+9a2=10a2,∴10a2=x2+4a2+a2+(3a-x)2,解得x=a或2a.故答案为a或2a.反思感悟:线面垂直化归为平面几何中的两直线垂直的探究,及从结论出发的逆向推理是关键.三、利用线面角的概念进行转化例3 如图,在△ABC中,O是BC的中点,AB=AC,AO=2OC=2.将△BAO沿AO折起,使B点与图中B′点重合.当三棱锥B′-AOC的体积取最大时,试问在线段B′A是否存在一点P,使CP与平面B′OA所成的角的正弦值为?证明你的结论,并求AP的长.解:在平面B′OC内,作B′D⊥OC于点D,因为B′D⊥OA,又∵OC∩OA=O,∴B′D⊥平面OAC,即B′D是三棱锥B′-AOC的高,又∵B′D≤B′O,∴当D与O重合时,三棱锥B′-AOC的体积最大,连接OP,在(1)的条件下,易证OC⊥平面B′OA,∴CP与平面B′OA所成的角为∠CPO,∴sin∠CPO= = ,∴CP= .又∵在△ACB′中,sin∠AB′C= = ,∴CP⊥AB′,∴B′P= = ,∴AP= .反思感悟:本题主要考查空间点、线、面位置关系,线面角等基础知识.四、利用二面角的平面角的概念进行转化例4 如图,在几何体SABCD中,AD⊥平面SCD,BC∥AD,AD=DC=2,BC=1,又∵SD=2,∠SDC=120°.试确定SC上是否存在一点E,使二面角S-AB-E的平面角的大小为30°?解:如图,过点D作DC的垂线交SC于F,以D为原点,分别以DC,DF,DA为x,y,z轴建立空间直角坐标系.∵∠SDC=120°,∴∠SDF=30°,又∵SD=2,则点S到y轴的距离为1,到x轴的距离为 .则有D(0,0,0),S(-1,,0),A(0,0,2),C(2,0,0),B(2,0,1).设=λ ,所以 - =λ( - ),∴ = ( -λ )E ,,0,∴ = ,,-2,∵ =(2,0,-1)设平面EAB的法向量为 =(x,y,1),则· =2x-1=0 · = x+ y-2=0?圯x= y=∴ = ,,1= (,5-2λ,2 ),取 =(,5-2λ,2 )因为平面SAB的法向量为 =(,5,2 )∴cos< , >= = = ,化简得λ2+10λ-20=0,解得λ=-5±3 ,经检验,当λ=-5-3反思感悟:本题主要考查空间点、线、面位置关系,线面角等基础知识.同时考查空间向量的应用,考查空间想象能力和运算求解能力.立体几何中的探索性问题有利于考查学生的归纳、推理、论证等各方面的能力,也有利于创新意识的培养。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

立体几何中的探究性问题
1、在正方体中,E 是棱BC 的中点,试在棱1CC 上求一点P ,使得平面
111C DE A B P 平面。

A
1P
2如图1-9(1),在Rt △ABC 中,∠C =90°,BC =3,AC =6,D ,E 分别是AC ,AB 上的点,且DE ∥BC ,DE =2,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1C ⊥CD ,如图1-8(2).
(1)求证:A 1C ⊥平面BCDE ;
(2)若M 是A 1D 的中点,求CM 与平面A 1BE 所成角的大小;
(3)线段BC 上是否存在点
与平面A 1BE 垂直?说明理由.
3如图,在三棱锥P ABC -中,AB AC =,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上,已知BC=8,PO=4,AO=3,OD=2 (Ⅰ)证明:AP ⊥BC ;
(Ⅱ)在线段AP 上是否存在点M ,使得二面角A-MC-B 为直二面角?若存在,求出AM 的长;若不存在,请说明理由。

4如图1-3,在长方体ABCD -A 1B 1C 1D 1中,AA 1=AD =1,E 为CD 中点. (1)求证:B 1E ⊥AD 1;
(2)在棱AA 1上是否存在一点P ,使得DP ∥平面B 1AE ?若存在,求AP 的长;若不存在,说明理由;
(3)若二面角A -B 1E -A 1的大小为30°,求AB 的长.
5如图所示,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,AC ⊥AD ,AB ⊥BC ,∠BAC =45°,P A =AD =2,AC =1.
(1)证明PC ⊥AD ;
(2)求二面角A -PC -D 的正弦值;
(3)设E 与棱P A 上的点,满足异面直线BE 与CD 所成的角为
6如图, 在四面体ABOC 中, ,,120OC OA OC OB AOB ⊥⊥∠=。

, 且1OA OB OC ===
(Ⅰ)设为P 为AC 的中点, 证明: 在AB 上存在一点Q ,
使PQ OA ⊥,并计算
AB
AQ
的值; (Ⅱ)求二面角O AC B --的平面角的余弦值。

相关文档
最新文档