信息论与编码第二章
信息论与编码理论习题答案

信息论与编码理论习题答案LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】第二章 信息量和熵八元编码系统,码长为3,第一个符号用于同步,每秒1000个码字,求它的信息速率。
解:同步信息均相同,不含信息,因此 每个码字的信息量为 2⨯8log =2⨯3=6 bit因此,信息速率为 6⨯1000=6000 bit/s掷一对无偏骰子,告诉你得到的总的点数为:(a) 7; (b) 12。
问各得到多少信息量。
解:(1) 可能的组合为 {1,6},{2,5},{3,4},{4,3},{5,2},{6,1})(a p =366=61得到的信息量 =)(1loga p =6log = bit (2) 可能的唯一,为 {6,6})(b p =361得到的信息量=)(1logb p =36log = bit 经过充分洗牌后的一副扑克(52张),问:(a) 任何一种特定的排列所给出的信息量是多少?(b) 若从中抽取13张牌,所给出的点数都不相同时得到多少信息量?解:(a) )(a p =!521信息量=)(1loga p =!52log = bit (b) ⎩⎨⎧⋯⋯⋯⋯花色任选种点数任意排列13413!13)(b p =1352134!13A ⨯=1352134C 信息量=1313524log log -C = bit 随机掷3颗骰子,X 表示第一颗骰子的结果,Y 表示第一和第二颗骰子的点数之和,Z 表示3颗骰子的点数之和,试求)|(Y Z H 、)|(Y X H 、),|(Y X Z H 、)|,(Y Z X H 、)|(X Z H 。
解:令第一第二第三颗骰子的结果分别为321,,x x x ,1x ,2x ,3x 相互独立,则1x X =,21x x Y +=,321x x x Z ++=)|(Y Z H =)(3x H =log 6= bit )|(X Z H =)(32x x H +=)(Y H=2⨯(361log 36+362log 18+363log 12+364log 9+365log 536)+366log 6= bit )|(Y X H =)(X H -);(Y X I =)(X H -[)(Y H -)|(X Y H ]而)|(X Y H =)(X H ,所以)|(Y X H = 2)(X H -)(Y H = bit或)|(Y X H =)(XY H -)(Y H =)(X H +)|(X Y H -)(Y H 而)|(X Y H =)(X H ,所以)|(Y X H =2)(X H -)(Y H = bit),|(Y X Z H =)|(Y Z H =)(X H = bit )|,(Y Z X H =)|(Y X H +)|(XY Z H =+= bit设一个系统传送10个数字,0,1,…,9。
信息论与编码-第2讲-信源及信息度量1

自信息含义
当事件xi发生以前:表示事件xi发生的不确定性。 当事件xi发生以后:表示事件xi所含有(或所提供)的信
息量。在无噪信道中,事件xi发生后,能正确无误地传输到 收信者,所以I(xi)可代表接收到消息xi后所获得的信息量。 这是因为消除了I(xi)大小的不确定性,才获得这么大小的信 息量。
2.1.1 单符号离散信源的数学模型
(1) 信源的描述方法 (2) 单符号离散信源数学模型
(1) 信源的描述方法
在通信系统中收信者在未收到消息以前,对信源发出 什么消息是不确定的。
① 离散信源:输出的消息常常是以一个个符号形式出现,
这些符号的取值是有限的或可数的。 单符号离散信源:只涉及一个随机事件,可用随机变量描述。 多符号离散信源:每次输出是一个符号序列,序列中每一位出现
② 联合自信息量
信源模型为
x2 y1 ,, x2 ym ,, xn y1 ,, xn y m XY x1 y1 ,, x1 ym , P( XY ) p( x y ),, p( x y ), p( x y ),, p( x y ),, p( x y ),, p( x y ) 1 m 2 1 2 m n 1 n m 1 1
计算y1与各种天气之间的互信息量 对天气x1,不必再考虑 对天气x2, I ( x2 ; y1 ) log2 p( x2 / y1 ) log2 1/ 2 1(比特) p( x ) 1/ 4
i i
验概率的函数。
函数f [p(xi)]应满足以下4个条件 根据上述条件可以从数学上证明这种函数形式是对 数形式。
《信息论与编码》课件1第2章

如果消息ai已发生,则该消息发生所含有的自信息定 义为
1
1
I (ai ) log P(ai ) log pi
(2.4)
第2章 离散无记忆信源与信息熵
可以很容易地证明, 自信息的定义满足上面提出的四个
(1) 此自信息的定义是根据消息发生的概率建立的一个 工程定义,而不是根据这个消息对人的实际意义而建立的 定义。这一纯粹技术性的定义仅仅抓住了“信息”一词在
(2) 自信息I(ai) 在消息ai发生之前,自信息I(ai)表示ai发生的不确定性; 在消息ai发生以后,自信息I(ai)表示ai所含有的(或提
第2章 离散无记忆信源与信息熵
(3) 在式(2.4)中关于对数的底未作明确规定。这是 因为对数的底仅仅影响到度量的单位,实际中可根据
如果取对数的底为2,则所得信息量的单位为比特 (bit, binary unit),此时logx用lbx
第2章 离散无记忆信源与信息熵
第2章 离散无记忆信源与信息熵
2.1 离散无记忆信源 2.2 自信息和熵 2.3 熵函数的性质 2.4 联合事件的熵及其关系 2.5 连续信源的信息测度 习题2
第2章 离散无记忆信源与信息熵
信息理论的研究对象是以各类信息的获取、表示、 传输和处理为目的的信息系统。图2-1给出了一个典型 的通信系统物理模型。在这样的通信系统中,一个贯 穿始终的、最基本的问题便是信息,即信源输出的是 信息,在系统中传输的是信息,接收者获得的也是信 息。可见,在信息理论的学习和研究中,首先需要对
(完整版)信息论与编码-曹雪虹-课后习题答案

《信息论与编码》-曹雪虹-课后习题答案 第二章2.1一个马尔可夫信源有3个符号{}1,23,u u u ,转移概率为:()11|1/2p u u =,()21|1/2p uu =,()31|0p u u =,()12|1/3p u u =,()22|0p u u =,()32|2/3p u u =,()13|1/3p u u =,()23|2/3p u u =,()33|0p u u =,画出状态图并求出各符号稳态概率。
解:状态图如下状态转移矩阵为:1/21/201/302/31/32/30p ⎛⎫ ⎪= ⎪ ⎪⎝⎭设状态u 1,u 2,u 3稳定后的概率分别为W 1,W 2、W 3由1231WP W W W W =⎧⎨++=⎩得1231132231231112331223231W W W W W W W W W W W W ⎧++=⎪⎪⎪+=⎪⎨⎪=⎪⎪⎪++=⎩计算可得1231025925625W W W ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩2.2 由符号集{0,1}组成的二阶马尔可夫链,其转移概率为:(0|00)p =0.8,(0|11)p =0.2,(1|00)p =0.2,(1|11)p =0.8,(0|01)p =0.5,(0|10)p =0.5,(1|01)p =0.5,(1|10)p =0.5。
画出状态图,并计算各状态的稳态概率。
解:(0|00)(00|00)0.8p p == (0|01)(10|01)0.5p p ==(0|11)(10|11)0.2p p == (0|10)(00|10)0.5p p == (1|00)(01|00)0.2p p == (1|01)(11|01)0.5p p == (1|11)(11|11)0.8p p == (1|10)(01|10)0.5p p ==于是可以列出转移概率矩阵:0.80.200000.50.50.50.500000.20.8p ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭状态图为:设各状态00,01,10,11的稳态分布概率为W 1,W 2,W 3,W 4 有411i i WP W W ==⎧⎪⎨=⎪⎩∑ 得 13113224324412340.80.50.20.50.50.20.50.81W W W W W W W W W W W W W W W W +=⎧⎪+=⎪⎪+=⎨⎪+=⎪+++=⎪⎩ 计算得到12345141717514W W W W ⎧=⎪⎪⎪=⎪⎨⎪=⎪⎪⎪=⎩2.3 同时掷出两个正常的骰子,也就是各面呈现的概率都为1/6,求:(1) “3和5同时出现”这事件的自信息; (2) “两个1同时出现”这事件的自信息; (3) 两个点数的各种组合(无序)对的熵和平均信息量;(4) 两个点数之和(即2, 3, … , 12构成的子集)的熵;(5) 两个点数中至少有一个是1的自信息量。
信息论与编码_第2章

2.1信源描述与分类
马尔可夫信源 更一般,经过n-m步后转移至sj的概率
pij (m, n) = P{S n = s j / S m = si } = P{s j / si } pij (m, n) ≥ 0 ∑ pij (m, n) = 1 j
15
2.1信源描述与分类
i
33
2.2离散信源熵与互信息
单符号离散信源熵 定义:对于给定离散概率空间表示的信源所定 义的随机变量I的数学期望为信源的信息熵, 单位为比特/符号
H ( X ) = E[ I ( x)] = −∑ p ( xi ) log p ( xi )
X = x1 x 2 0 . 8 0 . 2 P
32
2.2离散信源熵与互信息
I ( x1 ) = − log 2 p ( x1 ) = − log 2 0.8bit I ( x 2 ) = − log 2 p( x 2 ) = − log 2 0.2bit N次后所获得的信息量为 I = Np ( x1 ) I ( x1 ) + Np ( x 2 ) I ( x 2 ) = (−0.8 log 2 0.8 − 0.2 log 2 0.2) N 平均每次所获得的信息量为 I = p ( x1 ) I ( x1 ) + p ( x 2 ) I ( x 2 ) = ∑ p ( xi ) log p ( xi )
第2章 信源与信息熵
信源描述与分类 离散信源的信息熵和互信息 离散序列信源的熵 连续信源的熵与互信息 冗余度
1
2.1信源的描述与分类
信源是产生消息(符号)、消息序列和连续消 息的来源。从数学上,由于消息的不确定性, 因此,信源是产生随机变量、随机序列和随机 过程的源 信源的基本特性是具有随机不确定性
信息论与编码(曹雪虹第三版)第一、二章

根据传输介质的不同,信道可分为有线信道和无线信道两大类。有线信道包括 双绞线、同轴电缆、光纤等;无线信道包括微波、卫星、移动通信等。
信道容量的定义与计算
信道容量的定义
信道容量是指在给定条件下,信道能 够传输的最大信息量,通常用比特率 (bit rate)来衡量。
信道容量的计算
信道容量的计算涉及到信道的带宽、 信噪比、调制方式等多个因素。在加 性高斯白噪声(AWGN)信道下,香农 公式给出了信道容量的理论上限。
信道编码分类
根据编码方式的不同,信道编码可分为线性分组码和卷积码 两大类。
线性分组码
线性分组码定义
线性分组码是一种将信息 序列划分为等长的组,然 后对每个组独立进行编码 的信道编码方式。
线性分组码特点
编码和解码过程相对简单 ,适用于各种信道条件, 且易于实现硬件化。
常见的线性分组码
汉明码、BCH码、RS码等 。
将信源消息通过某种数学变换转换到另一个域中,然后对变换 系数进行编码。
将连续的信源消息映射为离散的数字值,然后对数字值进行编 码。这种方法会导致量化噪声,是一种有损的编码方式。
信道编码的定义与分类
信道编码定义
信道编码是为了提高信息传输的可靠性、增加通信系统的抗 干扰能力而在发送端对原始信息进行的一种变换。
信息熵总是非负的,因 为自信息量总是非负的 。
当随机变量为确定值时 ,其信息熵为0。
对于独立随机变量,其 联合信息熵等于各自信 息熵之和。
当随机变量服从均匀分 布时,其信息熵达到最 大值。
03
信道与信道容量
信道的定义与分类
信道的定义
信道是信息传输的媒介,它提供了信号传输的通路,是通信系统中的重要组成 部分。
信息论与编码2
根据概率互换公式
p(xi yj) = p(yj︱xi)q(xi)=φ(xi︱yj)ω (yj)
互信息量I(xi ;yj )有多种表达形式:
I ( xi ; y j ) log
p( xi y j ) q( xi ) ( y j )
I ( xi ) I ( y j ) I ( xi y j )
第2章 信息的度量
第2章 信息的度量
内容提要:
根据香农对于信息的定义,信息是一个系 统不确定性的度量,尤其在通信系统中, 研究的是信息的处理、传输和存储,所以 对于信息的定量计算是非常重要的。本章 主要从通信系统模型入手,研究离散情况 下各种信息的描述方法及定量计算,讨论 它们的性质和相互关系。
2.1 自信息量和互信息量
(2-13)
【例2.8】信源包含8个消息x0,x1,x2,x3,x4,x5,x6,x7 ,信源编码器将 其对应编成8个三位二进制数000,001,…,111。各消息的先验概率 已知,在接收过程中,每收到一个数字,各消息的后验概率都相应 地发生变化。考虑在接受100三个数字的过程中,各后验概率的变 化,计算信息量I(x4;100)。
1/8
1/8 1/4 1/4
1/6
1/6 1/3 1/3
1/2
1/2 0 0
1
0 0 0
根据给定的先验概率,可算出:
1 12 1 23 1 p ( x4 ) p( x4 1) p( x4 10) P (x4︱100) = 1 8 1 2 1 8 1 8 6 2 3 1 6 2
可以看出, 1比特信息量就是两个互不相容 的等可能事件之一发生时所提供的信息量。
二维联合集X Y上元素xi yj的联合自信息量I(xi yj)定义为:
信息论与编码第2章习题解答
信息论与编码第2章习题解答2.1设有12枚同值硬币,其中⼀枚为假币。
只知道假币的重量与真币的重量不同,但不知究竟是重还是轻。
现⽤⽐较天平左右两边轻重的⽅法来测量(因⽆砝码)。
为了在天平上称出哪⼀枚是假币,试问⾄少必须称多少次?解:分三组,每组4个,任意取两组称。
会有两种情况,平衡,或不平衡。
(1) 平衡:明确假币在其余的4个⾥⾯。
从这4个⾥⾯任意取3个,并从其余8个好的⾥⾯也取3个称。
⼜有两种情况:平衡或不平衡。
a )平衡:称⼀下那个剩下的就⾏了。
b )不平衡:我们⾄少知道那组假币是轻还是重。
从这三个有假币的组⾥任意选两个称⼀下,⼜有两种情况:平衡与不平衡,不过我们已经知道假币的轻重情况了,⾃然的,不平衡直接就知道谁是假币;平衡的话,剩下的呢个⾃然是假币,并且我们也知道他是轻还是重。
(2) 不平衡:假定已经确定该组⾥有假币时候:推论1:在知道该组是轻还是重的时候,只称⼀次,能找出假币的话,那么这组的个数不超过3。
我们知道,只要我们知道了该组(3个)有假币,并且知道轻重,只要称⼀次就可以找出来假币了。
从不平衡的两组中,⽐如轻的⼀组⾥分为3和1表⽰为“轻(3)”和“轻(1)”,同样重的⼀组也是分成3和1标⽰为“重(3)”和“重(1)”。
在从另外4个剩下的,也就是好的⼀组⾥取3个表⽰为“准(3)”。
交叉组合为:轻(3) + 重(1)?=======?轻(1) + 准(3)来称⼀下。
⼜会有3种情况:(1)左⾯轻:这说明假币⼀定在第⼀次称的时候的轻的⼀组,因为“重(1)”也出现在现在轻的⼀边,我们已经知道,假币是轻的。
那么假币在轻(3)⾥⾯,根据推论1,再称⼀次就可以了。
(2)右⾯轻:这⾥有两种可能:“重(1)”是假币,它是重的,或者“轻(1)”是假币,它是轻的。
这两种情况,任意取这两个中的⼀个和⼀个真币称⼀下即可。
(3)平衡:假币在“重(3)”⾥⾯,⽽且是重的。
根据推论也只要称⼀次即可。
2.2 同时扔⼀对骰⼦,当得知“两骰⼦⾯朝上点数之和为2”或“⾯朝上点数之和为8”或“骰⼦⾯朝上之和是3和4”时,试问这三种情况分别获得多少信息量?解:设“两骰⼦⾯朝上点数之和为2”为事件A ,则在可能出现的36种可能中,只能个骰⼦都为1,这⼀种结果。
信息论与编码课件第二章
条件互信息量与联合互信息量
条件互信息量定义
I( x; y | z) loga
p( x | yz) p( x | z)
联合互信息量定义
I( x; yz)
log a
p( x | yz) p( x)
自信息量与互信息量的区分 (表达方式和含义上)
信息量 I( x) I( x | y) I( xy)
I(x)
联合自信息量与联合熵
联合自信息量定义
I ( xy ) = log 1 = - log p(xy) p( xy)
联合熵定义(联合自信息量的统计平均)
H(XY )
=
EXY I( xy)
=
xX yY
p( xy)I( xy)
= p( xy)log p( xy)
xX yY
自信息量、条件信息量、联合信息量 三者之间的关系
3 4
1 8
log2
1 4
0.406(bit)
H (Y | Z ) H ( X | Z ) 0.862(bit)
H (Z | X ) H (Z | Y ) 0.406(bit)
H ( X | YZ) H (Y | XZ ) 0.406(bit)
H (Z | XY ) 0
• (3)
I( X;Y ) H ( X ) H ( X | Y ) 1 0.811 0.189(bit) I( X; Z ) H ( X ) H ( X | Z ) 1 0.862 0.138(bit) I(Y ; Z ) I( X; Z ) 0.138(bit) I( X;Y | Z ) H( X | Z ) H( X |YZ)
8888
(2)根据(1)得到的联合概率分布和边沿概率分布
信息论与编码第二章答案
第二章信息的度量2.1信源在何种分布时,熵值最大?又在何种分布时,熵值最小?答:信源在等概率分布时熵值最大;信源有一个为1,其余为0时熵值最小。
2.2平均互信息量I(X;Y)与信源概率分布q(x)有何关系?与p(y|x)又是什么关系?答:若信道给定,I(X;Y)是q(x)的上凸形函数;若信源给定,I(X;Y)是q(y|x)的下凸形函数。
2.3熵是对信源什么物理量的度量?答:平均信息量2.4设信道输入符号集为{x1,x2,……xk},则平均每个信道输入符号所能携带的最大信息量是多少?答:kk k xi q xi q X H i log 1log 1)(log )()(2.5根据平均互信息量的链规则,写出I(X;YZ)的表达式。
答:)|;();();(Y Z X I Y X I YZ X I 2.6互信息量I(x;y)有时候取负值,是由于信道存在干扰或噪声的原因,这种说法对吗?答:互信息量)()|(log );(xi q yj xi Q y x I ,若互信息量取负值,即Q(xi|yj)<q(xi),说明事件yi 的出现告知的是xi 出现的可能性更小了。
从通信角度看,视xi 为发送符号,yi 为接收符号,Q(xi|yj)<q(xi),说明收到yi 后使发送是否为xi 的不确定性更大,这是由于信道干扰所引起的。
2.7一个马尔可夫信源如图所示,求稳态下各状态的概率分布和信源熵。
答:由图示可知:43)|(41)|(32)|(31)|(41)|(43)|(222111110201s x p s x p s x p s x p s x p s x p 即:43)|(0)|(41)|(31)|(32)|(0)|(0)|(41)|(43)|(222120121110020100s s p s s p s s p s s p s s p s s p s s p s s p s s p 可得:1)()()()(43)(31)()(31)(41)()(41)(43)(210212101200s p s p s p s p s p s p s p s p s p s p s p s p得:114)(113)(114)(210s p s p s p )]|(log )|()|(log )|()[()]|(log )|()|(log )|()[()]|(log )|()|(log )|()[(222220202121211111010100000s s p s s p s s p s s p s p s s p s s p s s p s s p s p s s p s s p s s p s s p s p H 0.25(bit/符号)2.8一个马尔可夫信源,已知:0)2|2(,1)2|1(,31)1|2(,32)1|1(x x p x x p x x p x x p 试画出它的香农线图,并求出信源熵。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章
1对于离散无记忆信源DMS=,试证明:
HX=H2p=-p log p-1-plog1-p
当p=1/2时,HX达到最大值;
2对1中的DMS,考虑它的二次扩展信源X2=,证明:HX2=2HX;
解:
(1)函数HX=-plogp-1-plog1-p中的变量p在0到1中取值,从函数的结构上可以知道该函数在区间0,1上是关于p=1/2对称的函数;
(2)H X==-logp-1-pp1-pp1ln2+
(3)+1ln21-p-1ln2+log1-p-pln21-p
=log1-pln21-p
=log1-pp>0
在区间0,上1-p>p,则1-p/p>1,所以log,在此区间上Hx>0,Hx 单调递增;又该函数是在区间0,1上是关于p=1/2对称的函数,那么在区间,1上单调递减;
所以,HX=H2p=-plogp-1-plog1-p在p=1/2时,HX达到最大值;
2二次扩展后的矩阵:
=
HX2=-p2logp2-p1-plog2p1-p-2p1-plogp1-p
=2-plogp1-p-1-plog1-pp-21-plog1-pp-1-plog1-p=2HX
1一个无偏骰子,掷骰子的熵为多少
2 如果骰子的被改造使得某点出现的概率与其点数成正比,那么熵为多少
3一对无偏骰子,各掷一次,得到总点数为7,问得到多少信息量
解:
1 Hx= -log1/6=log6=bit/符号
2由qx i=kx i得21k=1 即 k=1/21
Hx=-1/21log1/21-2/21log2/21-3/21log3/21-4/21log4/21-5/21l og5/21-6/21log6/21=bit/符号
3IA+B=7=-log1/6=log6=bit
一个盒子中放有100个球,其中60个球是黑色的,40个球是白色的; 1随机摸取一个球,求获得的自信息量;
2进行放回摸取n次,求这n次所得到的平均自信息量;
解:
1Ix i=-log1/100=log100bit
2总信息量为:nIx1Px1+nIx2Px2
平均:1/n nIx1Px1+nIx2Px2=bit
给定信源=,
1 该信源是平稳信源吗计算信源熵;
2计算Hx3,并列出信源;
3 计算Hx3|x1x2及N维扩展信源在N趋于无穷时的熵.
解:
1 Hx= bit/符号
Hx<=NHx 是平稳信源
2Hx3==3Hx= bit/符号
X=x3={x1x1x1,x1x1x2,x2x1x1,x1x2x1,x1x2x2,x2x1x2,x2x2x1,x2x2x2} 记x i x j x t=b k,k=0 (7)
则=
3 Hx3|x1x2=-
N维扩展信源在N趋于无穷时,qx i j几乎相等;
所以,-=-=0
所以,N维扩展信源在N趋于无穷时的熵0;
证明几何分布=的熵为HX=;
证明:由题意可得,x的二维扩展概率分布为:
=
Hx=-plogp-p1-plogp1-p…-p1-p i-1logp1-p i-1
H2p=-p2logp2-p21-plogp21-p…-p21-p2i-2logp21-p2i-2
将H2p进行化简,可得:H2p=Hxp
所以,Hx=。