直线与圆的位置关系与性质知识点总结
直线与圆的位置关系—知识讲解

直线与圆的位置关系—知识讲解责编:常春芳【学习目标】1.理解并掌握直线与圆的三种位置关系;2.理解切线的判定定理和性质定理.【要点梳理】要点一、直线与圆的位置关系1.直线和圆的三种位置关系:(1) 相交:当直线与圆有两个公共点时,叫做直线与圆相交.(2) 相切:当直线与圆有唯一公共点时,叫做直线与圆相切.这条直线叫做圆的切线,公共点叫做切点.(3) 相离:当直线与圆没有公共点时,叫做直线与圆相离.2.直线与圆的位置关系的判定和性质.直线与圆的位置关系能否像点与圆的位置关系一样通过一些条件来进行分析判断呢?由于圆心确定圆的位置,半径确定圆的大小,因此研究直线和圆的位置关系,就可以转化为直线和点(圆心)的位置关系.下面图(1)中直线与圆心的距离小于半径;图(2)中直线与圆心的距离等于半径;图(3)中直线与圆心的距离大于半径.一般地,直线与圆的位置关系有以下定理:如果⊙O的半径为r,圆心O到直线l的距离为d,那么,(1)d<r直线l与⊙O相交;(2)d=r直线l与⊙O相切;(3)d>r直线l与⊙O相离.要点诠释:这三个命题从左边到右边反映了直线与圆的位置关系所具有的性质;从右边到左边则是直线与圆的位置关系的判定.要点二、切线的判定定理和性质定理1.切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.要点诠释:切线的判定定理中强调两点:一是直线与圆有一个交点,二是直线与过交点的半径垂直,缺一不可. 2.切线的性质定理:经过切点的半径垂直于圆的切线.【典型例题】类型一、直线与圆的位置关系【高清ID号:356966 关联的位置名称(播放点名称):经典例题1-2】1.在Rt△ABC中,∠C=90°,AC=3厘米,BC=4厘米,以C为圆心,r为半径的圆与AB有怎样的位置关系?为什么?(1)r=2厘米; (2)r=2.4厘米; (3)r=3厘米【答案与解析】解:过点C作CD⊥AB于D,在Rt△ABC中,∠C=90°, AC=3,BC=4,得AB=5,,∴AB·CD=AC·BC,∴AC BC34CD===2.4AB5∙⨯(cm),(1)当r=2cm时,CD>r,∴圆C与AB相离;(2)当r=2.4cm时,CD=r,∴圆C与AB相切;(3)当r=3cm时,CD<r,∴圆C与AB相交.【总结升华】欲判定⊙C与直线AB的关系,只需先求出圆心C到直线AB的距离CD的长,然后再与r比较即可.举一反三:【变式】已知⊙O的半径为10cm,如果一条直线和圆心O的距离为10cm,那么这条直线和这个圆的位置关系为()A. 相离B. 相切C. 相交D. 相交或相离【答案】B.类型二、切线的判定与性质2.如图所示,在Rt△ABC中,∠B=90°,∠A的平分线交BC于D,以D为圆心,DB长为半径作⊙D.求证:AC是⊙D的切线.【思路点拨】作垂直,证半径.【答案与解析】证明:过D作DF⊥AC于F.∵∠B=90°,∴DB⊥AB.又AD平分∠BAC,∴ DF=BD=半径.∴ AC与⊙D相切.【总结升华】如果已知条件中不知道直线与圆有公共点,其证法是过圆心作直线的垂线段,再证明垂线段的长等于半径的长即可.3.(2016•三明)如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若AC=6,BC=8,OA=2,求线段DE的长.【思路点拨】(1)直线DE与圆O相切,理由如下:连接OD,由OD=OA,利用等边对等角得到一对角相等,等量代换得到∠ODE为直角,即可得证;(2)连接OE,设DE=x,则EB=ED=x,CE=8﹣x,在直角三角形OCE中,利用勾股定理列出关于x 的方程,求出方程的得到x的值,即可确定出DE的长.【答案与解析】解:(1)直线DE与⊙O相切,理由如下:连接OD,∵OD=OA,∴∠A=∠ODA,∵EF是BD的垂直平分线,∴EB=ED,∴∠B=∠EDB,∵∠C=90°,∴∠A+∠B=90°,∴∠ODA+∠EDB=90°,∴∠ODE=180°﹣90°=90°,∴直线DE与⊙O相切;(2)连接OE,设DE=x,则EB=ED=x,CE=8﹣x,∵∠C=∠ODE=90°,∴OC2+CE2=OE2=OD2+DE2,∴42+(8﹣x)2=22+x2,解得:x=4.75,则DE=4.75.【总结升华】此题考查了直线与圆的位置关系,以及线段垂直平分线定理,熟练掌握直线与圆相切的性质是解本题的关键.4.如图,AB为⊙O的直径,AC为⊙O的弦,AD平分∠BAC,交⊙O于点D,DE⊥AC,交AC的延长线于点E.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若AE=8,⊙O的半径为5,求DE的长.【思路点拨】(1)连接OD,证明OD∥AD即可;(2)作DF⊥AB于F,证明△EAD≌△FAD,将DE转化成DF来求.【答案与解析】解:(1)直线DE与⊙O相切.理由如下:连接OD.∵AD平分∠BAC,∴∠EAD=∠OAD.∵OA=OD,∴∠ODA=∠OAD.∴∠ODA=EAD.∴EA∥OD.∵DE⊥EA,∴DE⊥OD.又∵点D在⊙O上,∴直线DE与⊙O相切.(2)如上图,作DF⊥AB,垂足为F.∴∠DFA=∠DEA=90°.∵∠EAD=∠FAD,AD=AD,∴△EAD≌△FAD.∴AF=AE=8,DF=DE.∵OA=OD=5,∴OF=3.。
《直线与圆的位置关系》

2023-11-10
目 录
• 引言 • 直线与圆的位置关系概述 • 判断直线与圆的位置关系的方法 • 直线 复习与思考
01
CATALOGUE
引言
课程背景介绍
平面解析几何是数学的基础知识,而直线与圆的位置关系是解析几何中的重要内 容之一。
在物理学中,圆和直线是非常重要的概 念,它们被广泛应用于各种现象和实验
中。
例如,在力学中,圆被用来描述物体的 运动轨迹,而直线则被用来描述物体的 运动速度和方向。此外,在电磁学中, 圆和直线也被广泛应用于描述电磁波的
传播和电场线的分布。
另外,在光学中,直线则被用来描述光 的传播路径和光的干涉现象,而圆则被 用来描述光的衍射现象。因此,掌握直 线与圆的位置关系对于理解物理现象和
解决物理问题非常重要。
直线与圆在经济学中的应用
在经济学中,直线与圆的位置关系也 被广泛应用于各种经济理论和模型中 。
VS
例如,在供需模型中,直线被用来表 示供给曲线和需求曲线,而圆则被用 来表示市场均衡点。此外,在货币供 应和货币政策中,直线则被用来表示 货币供应量和利率之间的关系,而圆 则被用来表示通货膨胀率和失业率之 间的权衡关系。
对于练习题,需要仔细计算公共弦的长度,避免出错。
对于思考题,可以通过几何方法证明两点之间线段最短 ,也可以用解析几何的方法证明。
通过本章的学习,可以进一步加深对平面几何的认识和 理解,同时为后续学习空间几何打下基础。
THANKS
感谢观看
相交直线的性质
01
02
03
相交直线的夹角
两条相交直线之间的夹角 是锐角或直角,且夹角的 大小取决于两条直线的倾 斜程度。
数学选修1知识点总结

数学选修1知识点总结一、直线与圆1. 直线与圆的位置关系(1)直线与圆相离;(2)直线与圆相切;(3)直线与圆相交;2. 切线的性质(1)切线的斜率与半径垂直;(2)相切圆的切线垂直于半径;3. 直线与圆的方程(1)直线的一般方程;(2)直线的标准方程;(3)圆的标准方程。
二、平面向量1. 平面向量的基本概念(1)平面向量的定义;(2)平面向量的模;(3)平面向量的方向角;2. 平面向量的运算(1)平面向量的加法;(2)平面向量的数量积;(3)平面向量的夹角;3. 平面向量的应用(1)平面向量与平行四边形;(2)平面向量的共线;(3)平面向量的坐标表示。
三、立体几何1. 空间直线与平面(1)空间直线的方程;(2)空间直线的位置关系;(3)空间直线与平面的位置关系;2. 空间中的夹角(1)直线与直线的夹角;(2)直线与平面的夹角;(3)平面与平面的夹角;3. 空间中的距离(1)点到直线的距离;(2)点到平面的距离;(3)直线与直线的距离。
四、三角函数1. 角度和弧度(1)角度与弧度的换算;(2)弧度的性质;(3)弧度与圆周角;2. 三角函数的定义(1)正弦函数;(2)余弦函数;(3)正切函数;3. 三角函数的性质(1)周期性;(2)奇偶性;(3)函数值的范围;4. 三角函数的图像和性质(1)正弦函数的图像和性质;(2)余弦函数的图像和性质;(3)正切函数的图像和性质。
五、导数与微分1. 导数的概念(1)导数的定义;(2)导数的几何意义;(3)导数的物理意义;2. 导数的计算(1)导数的基本公式;(2)导数的四则运算;(3)高阶导数的计算;3. 导数的应用(1)切线方程与法线方程;(2)凹凸性与拐点;(3)运动学问题中的应用。
六、不定积分1. 不定积分的概念(1)不定积分的定义;(2)不定积分的性质;(3)不定积分的基本公式;2. 不定积分的计算(1)一类基本的积分;(2)有理函数的积分;(3)分部积分和换元积分;3. 不定积分的应用(1)定积分的计算;(2)曲线长度的计算;(3)曲线与坐标轴所围成的面积。
直线与圆知识点总结

直线与圆知识点总结1. 直线与圆的位置关系:- 直线与圆可能相交于两个点,这种情况称为相交。
- 直线与圆可能与圆外部割线相切于一点,这种情况称为相切。
- 直线可能与圆没有交点,这种情况称为相离。
2. 判断直线与圆的位置关系:- 使用勾股定理可以判断直线与圆是否相交。
设直线的方程为ax + by + c = 0,圆的方程为(x - h)² + (y - k)² = r²,其中(h, k)为圆心的坐标,r为半径。
将直线的方程代入圆的方程,计算方程的解。
若方程的解为实数,且解满足直线的方程,则直线与圆相交;若方程的解为实数,但解不满足直线的方程,则直线与圆相离;若方程的解为复数,则直线与圆相切。
- 使用两点式可以判断直线与圆的位置关系。
设直线上两点为(x₁, y₁)和(x₂, y₂),圆的方程为(x - h)² + (y - k)² = r²,其中(h, k)为圆心的坐标,r为半径。
计算直线的斜率m = (y₂ - y₁) / (x₂ - x₁),若直线的斜率存在且非零,则直线与圆相交或相离;若直线的斜率不存在或为0,则直线可能与圆相切或相离。
将直线的方程代入圆的方程,计算方程的解。
若方程的解为实数,且解满足直线的方程,则直线与圆相交;若方程的解为实数,但解不满足直线的方程,则直线与圆相离;若方程的解为复数,则直线与圆相切。
3. 求直线与圆的交点:- 设直线的方程为ax + by + c = 0,圆的方程为(x - h)² + (y - k)²= r²,其中(h, k)为圆心的坐标,r为半径。
将直线的方程代入圆的方程,得到一个关于x的二次方程。
解这个方程即可得到直线与圆的交点的x坐标。
将得到的x坐标代入直线的方程,可以求得对应的y坐标。
4. 求直线与圆的切点:- 设直线的方程为ax + by + c = 0,圆的方程为(x - h)² + (y - k)²= r²,其中(h, k)为圆心的坐标,r为半径。
直线与圆的位置关系知识点总结

直线与圆的位置关系知识点总结在平面几何中,直线与圆的位置关系是一个重要且基础的知识点。
理解和掌握它们之间的关系,对于解决许多几何问题具有关键作用。
接下来,咱们就详细聊聊直线与圆的位置关系。
一、直线与圆的位置关系的定义直线与圆有三种位置关系:相交、相切、相离。
当直线与圆有两个公共点时,我们称直线与圆相交。
想象一下,就好像直线穿过了圆,与圆有两个交点。
当直线与圆只有一个公共点时,称直线与圆相切。
这时候,直线就像是轻轻触碰了一下圆,只有那一个瞬间的接触点。
当直线与圆没有公共点时,就是直线与圆相离。
直线和圆仿佛处在两个完全不同的世界,没有任何交集。
二、判断直线与圆位置关系的方法1、几何法通过比较圆心到直线的距离 d 与圆的半径 r 的大小来判断。
若 d < r,则直线与圆相交。
比如,圆的半径是 5,圆心到某条直线的距离是 3,因为 3 < 5,所以直线与圆相交。
若 d = r,则直线与圆相切。
比如半径为 6 的圆,圆心到某直线距离恰好为 6,那这条直线就与圆相切。
若 d > r,则直线与圆相离。
比如圆半径 4,圆心到某直线距离 7,因为 7 > 4,所以直线与圆相离。
2、代数法将直线方程与圆的方程联立,消去其中一个变量(比如 y),得到一个关于另一个变量(比如 x)的一元二次方程。
通过判断这个一元二次方程的根的判别式Δ 的值来确定位置关系。
若Δ > 0,则直线与圆相交,意味着有两个不同的交点。
若Δ = 0,则直线与圆相切,只有一个交点。
若Δ < 0,则直线与圆相离,没有交点。
三、直线与圆相交1、弦长公式当直线与圆相交时,所形成的线段称为弦。
弦长的计算可以通过勾股定理来推导。
设直线方程为 Ax + By + C = 0,圆的方程为(x a)²+(y b)²= r²,直线与圆的交点为 P(x₁, y₁),Q(x₂, y₂)。
首先求出圆心(a, b) 到直线的距离 d =|Aa + Bb + C| /√(A²+ B²) 。
直线圆的知识点总结

直线圆的知识点总结直线圆是指平面上一条直线和一个圆相交的情况。
在几何学中,直线和圆是两种基本的几何图形,它们的相交情况具有一定的规律和特点。
本文将从直线圆的性质、定理和应用等方面进行总结。
一、直线圆的性质1. 相交情况直线和圆有三种相交的情况:相离、相切和相交。
相离是指直线和圆没有公共点;相切是指直线和圆有且只有一个公共点;相交是指直线和圆有两个不同的公共点。
2. 相交点的位置关系当直线和圆相交时,直线上的两个交点分布在圆的两侧。
如果直线与圆的圆心相交,那么直线必定是圆的直径;如果直线与圆的中点相交,那么直线必定是圆的切线。
3. 直线圆的夹角直线圆的夹角是指直线和圆的切点之间的夹角。
根据几何知识,直线与切线的夹角等于切点到圆心的距离与切线长度的比值。
这一性质在数学教学中有很多应用。
4. 直线圆的长度关系直线和圆的长度关系也是研究的重点之一。
例如,如果一条直线与一个圆相交,那么这条直线的长度可以通过圆的半径和直线与圆心的距离来表示。
5. 直线圆的对称性直线圆具有一定的对称性。
当直线与圆相交时,直线和圆的交点具有对称性。
通过对称性,可以研究出一些相交点的性质和定理。
二、直线圆的定理1. 切线定理切线定理是研究直线与圆相切的性质和定理。
根据切线的定义和性质,可以得出一些切线定理,如切线与半径的垂直关系、一条直线同时是两个圆的切线等。
2. 弦定理弦定理是研究直线与圆相交的性质和定理。
根据弦的定义和性质,可以得出一些弦定理,如弦的长度与角度的关系、弦的对称性等。
3. 直径定理直径定理是研究直线与圆直径的性质和定理。
根据直径的定义和性质,可以得出一些直径定理,如直径的长度关系、直径的对称性等。
4. 圆心角定理圆心角定理是研究直线与圆心角的性质和定理。
根据圆心角的定义和性质,可以得出一些圆心角定理,如圆心角与弦的关系、圆心角的对称性等。
5. 切割定理切割定理是研究直线如何切割圆的性质和定理。
根据切割的定义和性质,可以得出一些切割定理,如切线如何切割圆、切线截线定理等。
直线与圆知识点归纳高三

直线与圆知识点归纳高三直线与圆知识点归纳直线和圆是解析几何中常见的两种几何图形,它们有着丰富的性质和联系。
本文将对直线和圆的相关知识点进行归纳总结,帮助高三学生复习和掌握这一部分内容。
一、直线的定义和性质1. 直线的定义:直线是由无数个点连成的路径,它没有宽度和长度,可以无限延伸。
2. 直线的性质:(1) 直线上的任意两点可以确定一条直线;(2) 任意一条直线可以通过两个点确定;(3) 直线可以延伸到无穷远,也可以延伸到无穷近。
二、圆的定义和性质1. 圆的定义:圆是由平面上距离某一点固定距离的所有点构成的图形。
2. 圆的性质:(1) 圆上任意两点都在圆周上;(2) 圆心到圆周上的任一点的距离都相等,称为半径;(3) 圆的直径是通过圆心,并且两端点都在圆上的线段,长度为半径的两倍;(4) 圆的周长是圆周的长度,记作C,公式为C = 2πr,其中r 为半径;(5) 圆的面积是圆内部的所有点构成的区域,记作S,公式为S = πr²。
三、直线与圆的关系1. 直线与圆的位置关系:(1) 直线可与圆相交,相切或不相交;(2) 如果直线与圆相交,可能有两个交点,一个交点或没有交点;(3) 如果直线与圆相切,有且只有一个切点;(4) 如果直线不与圆相交或切,那么直线与圆之间的距离等于直线到圆心的距离。
2. 判断直线与圆的位置关系的方法:(1) 利用勾股定理:如果直线与圆的距离小于半径,那么直线与圆相交;如果直线与圆的距离等于半径,那么直线与圆相切;如果直线与圆的距离大于半径,那么直线与圆不相交也不相切。
(2) 利用方程求解:已知直线和圆的方程,将直线方程代入圆的方程中,求解得到交点或切点。
四、直线和圆的相关定理1. 直径定理:如果一条直线通过圆的圆心,并且两个端点都在圆上,那么这条直线的长度等于圆的直径。
2. 切线定理:过圆外一点引一条直线与圆相交,那么这条直线与圆的切点到圆心的线段垂直于直线。
3. 弦切角定理:相交弦所夹的圆心角等于它们所对的弧所夹的圆心角的一半。
直线和圆的位置关系知识梳理大全

圆的有关性质与直线和圆的位置关系知识梳理一、重点内容梳理.1、点与圆,直线与圆的位置关系.①设点P到⊙o的圆心的距离为OP,圆半径为R点P在圆内⇔OP﹤R;点P在圆上⇔' P=R;点P在圆外⇔OP﹥R②设圆心到直线的距离为d,圆半径为R.d﹥R⇔直线与圆相离;d=R⇔直线与圆相切;d﹤R⇔直线与圆相交2、与圆有关的角圆心角:顶点在圆心,两边和圆相交的角;圆周角:顶点在圆上,两边和圆相交的角;弦切角:顶点在圆上,一边和圆相切,另一边和圆相交的角.3、体现圆中相等关系的定理.①垂径定理:垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧推论1:平分弦(不是直径)的直线垂直于弦,并且平分弦所对的两条弧;弦的垂直平分线经过圆心,并且平分弦所对的两条弧;平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.推论2:圆的两条平行弦所夹的弧相等.②圆心角、弧、弦心距的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对弦的弦心距相等.推论:在同圆或等圆中,如果两个圆心角,两条弧,两条弦或两条弦的弦心距中有一组量相等,那么其余各组量都分别相等.③圆周角的定理:一条弧所对的圆周角等于它所对的圆心角的一半.推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等.推论2:半圆(或直径)所对的圆周角等于90°(直角);90°的圆周角所对的弦为直径.推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形为直角三角形.④弦切角定理:弦切角等于它所夹的弧所对的圆周角.推论:如果两个弦切角所夹的弧相等,那么这两个弦切角也相等.⑤切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.⑥圆内接四边形性质:圆内接四边形对角互补,一个外角等于它的内对角.注意:<1>证明圆中的等量常用“等对等”的方法,即“等角(圆心角、圆周角或弦切角)⇔等弧⇔等弦⇔等弦心距.”<2>圆周角的推论3是判定一个三角形为直角三角形的又一种方法.4、和圆有关的比例线段.①相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等.推论:如果弦和直径垂直相交,那么弦的一半是它分直径所成的两条经段的比例中项.②切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等.注意:利用相交弦定理的推论可求作已知两线段比例中项.PA CB ⌒ 5、三角形的外接圆与内切圆①经过三角形三个顶点的圆叫做三角形的外接圆.外接圆的圆心叫三角形的外心,外心是三角形三边的垂直平分线的交点.②和三角形各边都相切的圆叫做三角形的内切圆.内切圆的圆心叫三角形的内心,内心是三角形各个内角的平分线的交点.6、圆的切线.①判定:经过半径的外端并且垂直于这条半径的直线是圆的切线.②性质:切线垂直于过切点的半径.推论1:经过圆心且垂直于切线的直线必经过切点.推论2:经过切点且垂直于切线的直线必经过圆心.7、一种间接证明几何命题的方法——反证法.步骤为:①反设(假设命题的结论不成立)②反推(从这个假设出发,经过推理论证,得出矛盾).③由矛盾判定假设不正确,从而肯定命题的结论正确.8、点的五种基本轨迹.二、思维方法小结.1、在圆中,解有关弦的问题时,常常需要作垂直于弦的直径作为辅助线;在解决与直径有关的问题时,常常添作辅助线,构成直径上的圆周角.以便利用直径上的圆周角是直角的性质;而在解有关圆的切线问题时,常常需要作出过切点的半径,以便利用切线垂直于过切点的半径这一性质.2、相交弦定理和推论,切割线定理和推论是解决与圆有关比例线段问题的四个主要定理.解题时,要准确找出线段,结合图形来理解.当直接应用定理不能证明出结论时,通常用“三点定形”法来寻找和构造相似三角形,其思路一般是“等积式→比例式→中间比→相似三角形”.3、与圆有关的开放探索问题主要有探索条件、探索结论,探索问题的存在性三类.解题的基本思路是:探索条件类的解法类似分析法,先假设结论成立,逐步探索其成立的条件;探索结论类的解法是根据条件,运用数学思想,结合已有知识,合理推理,大胆猜想,分析归纳得出结论;探索问题的存在性,常采用“假设检验法”.先假设存在,再检验是否矛盾,从而确定问题的存在性.三、中考试题特点及命题趋势.1、各省市试题主要考查的知识点有:圆的概念,点与圆、直线与圆的位置关系,正确区别和应用圆心角,圆周角、弦切角的定义和性质,去论证或计算角,线段相等的几何问题,运用垂径定理、切线长定理、相交弦定理、切割线定理及推论证明几何题,应用圆内接四边形的性质进行计算,判定圆的切线或运用切线性质来解决与切线有关的问题.2、本章试题形式多种多样,有考查基本知识的填空,选择题,也有考查计算、论证的中档题,还有考查数学能力的应用、创新、开放、探究型题目.本章是初中数学的核心内容,试题分值占18%~22%左右.四、典型中考试题介绍.例1(2005年天津)如图,已知圆心角∠AOB 的度数为100°,则圆周角∠ACB 等于 . 解:在优弧AB 上任取一点P (与A 、B 不重合). 则∠APB=21∠AOB=50° 在圆内接四边形ACBP 中∠P+∠ACB=180°∴∠ACB=180°-50°=130°OC A BD ⌒ ⌒ ⌒ ⌒ ⌒ ⌒ ⌒ ⌒ ⌒ ⌒ 例2(2005年重庆)在⊙o 中,P 是弦AB 的中点,C 、D 是过点P 的直径,则下列结论中不正确的是( )(A )AB ⊥CD (B )∠AOB=4∠ACD (C )AD=BD (D )PO=PD解:CD 为直径,P 是AB 的中点,由垂径定理的推论可得AB ⊥CD ∴AD=BD ∴∠AOD=∠BOD由圆周的定理可得∠ACD=21∠AOD ∴∠ACD=41∠AOB ∴不正确的是(D ).评注:垂径定理是圆的重要性质,各省市试题几乎都有,同学们务必掌握. 例3(2005年四川绵阳)已知BC 是⊙o 的直径,AH ⊥BC ,垂足为D ,点A 为BF 的中点,BF 交AD 于点E ,且BE ·EF=32,AD=6.(1)求证:AE=BE (2)求DE 的长(3)求BD 的长(1)证明:连结AB ∵BC 为直径,AH ⊥BC ∴AB=BH ∵A 为BF 的中点 ∴AB =AF ∴BH=AF∴∠EAB=EBA ∴AE=BE(2)由相交弦定理得AE ·EH=BE ·EF∴(AD-DE )(DH+DE )=32∴(6-DE )(6+DE )=32∴DE=2(3)∵BE=AE=AD-DE=6-2=4在RT △BDE 中,由勾股定理可得BD=32416242222=-=-=-DE BE评析:相交弦定理经常和垂径定理交织在一起,使题中有较多的相等关系,解题时要注意寻找到相等关系.例4(2005年四川自贡)如图,P 是⊙o 的弦CB 延长线上一点,点A 在⊙o 上,且∠PCA=∠BAP(1)求证:PA 是⊙o 的切线,(2)若PB :BC=2:3,且PC=10,求PA 的长(1)证明:连结AO ,并延长交⊙o 于点D ,连结CD ,则∠ACD 为直径AD 所对的圆周角. ∠ACD=90°∴∠PCA+∠BCD=90°∵∠PCA =∠BAP∠BCD=∠BAD∴∠BAP+∠BAD=∠PCA+∠BCD=90°即∠PAD=90°∴PA 为⊙o 的切线H P O AC ED B O FAA (2)∵PB:BC=2:3 ∴PB=52PC=52×10=4 由切割线定理得PA 2=PB ·PC∴PA 2=4×10=40 ∴PA=210 评析:连结过切点的半径或直径构造直径所对圆周的是解本题的关键.例5(2005年辽宁十一市)如左图,AB 是⊙o 的直径,AC 是弦,直线EF 和⊙o 相切于点C ,AD ⊥EF ,垂足为D.(1)求证:∠DAC=∠BAC(2)若将直线EF 向上平行移动,如右图,EF 与⊙o 交于G ,C 两点,若题中心的其他条件不变,这时与∠DAC 相等的角是哪一个?为什么?(1) 证明:连结BC∵EF 切⊙o 于C∴∠B=∠ACD∵AB 为直径∴∠B +∠BAC=90°∵△ACD 为Rt △∴∠ACD +∠DAC=90°∴BAC=∠DAC(2)∠BAG 与∠DAC 相等证明: 连结BG ,则四边形ABGC 为⊙o 的内接四边形.∴∠ACD=∠B∵AB 为直径∴∠B +∠BAG=90°∵△ACD 为Rt △∴∠ACD +∠DAC=90°∴∠BAG=∠DAC评析:本题考查切线的性质、弦切角定理、直径所对圆周角为直角、圆内接四边形一个外角等于它的内对角等与圆有关的内容;覆盖面较广,综合性较强,这要求同学们要全面掌握圆的有关性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直线与圆的位置关系与性质知识点总结
直线与圆是几何中常见的两种基本图形,它们的位置关系与性质对于解决几何问题非常重要。
在这篇文章中,我们将总结直线与圆的常见位置关系,并讨论它们的性质。
一、直线与圆的位置关系
1. 直线与圆的相交关系
当直线与圆有交点时,我们可以得出以下几种情况:
- 直线与圆相交于两点:直线穿过圆的中心,此时直径是直线的特例。
- 直线与圆相交于一个点:直线与圆相切,切点称为切点。
- 直线位于圆的内部,没有交点。
- 直线位于圆的外部,也没有交点。
2. 直线与圆的位置关系特例
- 切线:直线与圆相切的情况,称为切线。
与圆相切的直线垂直于半径,切点在直线上的法线与从切点到圆心的半径垂直。
- 弦:直线穿过圆,但不过圆心的情况,称为弦。
通过圆心的弦称为直径,且直径是弦中最长的一条线段。
二、直线与圆的性质
1. 切线定理
定理一:若一条直线与圆相切于切点A,则以切点A为顶点的两条
锐角与此直线所夹的圆弧相等。
定理二:若从圆外一点作直线与圆相切于切点A,则此直线与以此
点为端点的弦相交处的两个锐角是一对互补角。
2. 弦长定理
定理三:若两条弦相交于切点A,则两条弦分割的圆周上的弧长乘
积相等。
3. 直径定理
定理四:直径是穿过圆心的弦,正好是弦分割的两条弧的半径之和。
4. 割线定理
定理五:若两条割线相交于切点A,则此割线与此切点所在的直线
上的弦分割的互补角是一对互补角。
三、直线与圆的应用
1. 问题一:判断直线是否与圆相交或相切
当我们需要解决直线与圆的位置关系问题时,可以利用以下方法:- 使用坐标系和方程:设定坐标系,写出直线和圆的方程并求解交点。
- 使用定理:利用判断圆内点的方法,或使用切线定理判断直线与
圆是否相切。
2. 问题二:求解直线与圆的交点坐标
当直线与圆相交于两点时,我们可以利用以下方法求解交点坐标:- 使用坐标系和方程:设定坐标系,写出直线和圆的方程,联立方
程并求解交点坐标。
3. 问题三:判断两条直线是否为切线或相交于切点
当我们需要判断两条直线是否为切线或相交于切点时,可以利用以
下方法:
- 使用切线定理:若两条直线与圆相切于同一切点,则可判断它们
为切线或相交于切点。
总结:
直线与圆的位置关系与性质在几何中具有重要的意义。
通过对直线
与圆的相交关系的了解,我们可以判断它们的位置关系,并应用相关
的定理解决几何问题。
熟练掌握直线与圆的性质,能够帮助我们更好
地理解几何的形状和特点,提高解决几何问题的能力。
在实际应用中,直线与圆的知识也常用于建筑、工程、地理等领域,帮助我们解决实
际问题,更好地理解和应用几何知识。