中考复习_直线与圆的位置关系
《复习直线和圆的位置关系》说课稿

《复习直线和圆的位置关系》说课稿《复习直线和圆的位置关系》说课稿范文《复习直线和圆的位置关系》说课稿1今天我的说课内容是人教版九年级上册第二十四章第二节第二课时的直线与圆的位置关系。
下面我将以教什么、怎么样教、为什么这样教为思路从教材分析、学情分析、教学目标、学法教法、教学过程和板书设计六个方面对本课进行说明。
一、教材分析教材的地位和作用。
圆在平面几何中占有重要地位,它被安排在初中数学第二十四章,属于一个提高阶段。
而直线和圆的位置关系又是本章的一个中心内容。
从知识体系上看:它有着承上启下的作用,既是对点与圆的位置关系的延续与提高,又是后面学习切线的性质和判定、圆和圆的位置关系及高中继续学习几何知识的基础。
从数学思想方法层面上看:它运用运动变化的观点揭示了知识的发生过程以及相关知识间的内在联系,渗透了数形结合、分类讨论、类比等数学思想方法,有助于提高学生的数学思维品质。
二、学情分析在此之前学生已经学习了点和圆的位置关系,对圆有了一定的感性和理性认识,但在某种程度上特别是平面几何问题上,学生还是依靠事物的具体直观形象。
加之九年级学生好奇心强,活泼好动,注意力易分散,认知水平大都停留在表面现象,对亲身体验的事物容易激发求知的渴望,因此要想方设法,引导学生深入思考、主动探究、主动获取新知识。
三、教学目标:根据学生已有的认知基础及本课的教材的地位、作用,结合数学课程标准我将确定如下的教学目标:(1)掌握直线和圆的三种位置关系性质及判定。
(2)通过观察、实验、合作交流等数学活动使学生了解探索问题的一般方法;(3)通过直线和圆的位置关系的探究,向学生渗透分类讨论、数形结合、类比的数学思想,陪养学生观察、分析和概括的能力;(4)体会事物间的相互渗透,感受数学思维的严谨性,并在合作学习中体验成功的喜悦。
教学的重难点:重点:直线和圆的三种位置关系的性质与判定。
难点:用数量法刻画直线与圆的三种位置关系。
突破难点的策略:引导学生动手动脑、操作实践,类比点和圆的位置关系的判定方法,配合几何画板直观演示来加深学生对知识的理解。
初中数学直线和圆的位置关系知识点总结

初中数学直线和圆的位置关系知识点总结直线和圆的位置关系是初中数学中的一个重要知识点,它涉及到点、线、圆之间的相对位置关系。
我们可以通过以下几个方面来总结这一知识点:1.判定圆和直线的位置关系:a.直线包含于圆内:当直线上的所有点都在圆内时,称直线包含于圆内。
此时,直线与圆的交点为无穷个(无限多个)。
b.直线与圆相交:当直线和圆有一个或两个交点时,称直线与圆相交。
相交的情况还可以细分为相离相交、相切相交和截割相交。
-相离相交:直线和圆相切于两个点,相交与标准的两个正数圆相交;-相切相交:直线和圆相交于一个点,直线切圆;-截割相交:直线和圆相交于两个点,直线截割圆;c.直线与圆相离:当直线上的所有点都不在圆内时,称直线与圆相离。
此时,直线与圆的交点为零个。
d.直线与圆重合:当直线上的所有点都在圆上时,称直线与圆重合。
2.圆心与直线间的距离:a.圆心到直线的距离:圆心到直线的距离等于圆心到直线的垂直距离,垂直距离是圆心到直线的最短距离。
b.两圆心间的距离:两个圆心之间的直线距离等于两个圆相切时的直线距离。
3.判断点与直线的位置关系:a.点在直线上:当一个点恰好在直线上时,称这个点在直线上。
b.点在直线上方:当一个点位于直线的上方时,称这个点在直线上方。
c.点在直线下方:当一个点位于直线的下方时,称这个点在直线下方。
4.判断点与圆的位置关系:a.点在圆内:当一个点位于圆内时,称这个点在圆内。
b.点在圆上:当一个点正好位于圆上时,称这个点在圆上。
c.点在圆外:当一个点位于圆外时,称这个点在圆外。
5.判断直线与圆相交的条件:a.直线与圆有交点的条件:直线和圆有交点当且仅当直线的距离小于圆的半径。
b.直线与圆相切的条件:直线和圆相切当且仅当直线的距离等于圆的半径。
6.判断两圆的位置关系:a.内离:两圆的圆心之间的距离大于两个圆的半径之和,此时两个圆的内部没有共同点。
b.相离:两圆的圆心之间的距离等于两个圆的半径之和,此时两个圆相切于外公切点。
直线和圆的位置关系(初三复习)

∴∠ODA=∠A=30°(等边对等角)
∴∠BOD=∠A+∠ODA=60° 又∵∠B+∠BOD+∠BDO = 180° A
●
D
O
C
B
∴∠BDO=180°-∠B-∠BOD=90°
∴ 直线BD⊥OD 又∵直线BD 经过⊙O上的D点 ∴直线BD是⊙O的切线
例3:如图,在 ABC中,AB=AC,O是BC的中点,以O为圆心的 0切AB于D。
分析:⊙D与BC交点的个数,决定于点D到BC的距离,作DE⊥BC于E, 计算DE的长度,即可作出判断。
解:作DE⊥BC于E ∵AD∥BC ∴∠ADC+∠C=180° 又∠ADC=135°,∴∠C=45° ∴△DEC为等腰直角三角形 2 ∵CD=8 ∴DE=8,即点D到BC的距离是8个单位, 因此⊙D与BC只有一个交点。
解析:利用d和r的大小关系判断直线与圆的位置 关系时,关键是准确确定d和r,利用面积法求斜边 上的高是一种常用方法. A D
B
解:过点c作CD AB于D,入图,在Rt ABC中,BC 根据三角形的面积公式,有CD AB AC BC , CD 当r 2cm时,CD>r,圆与AB相离; 当r 4cm时,CD〈r,圆与AB相交: 当r CD 3 3 cm时,圆与AB相切; 2 AC BC 3 3 3 3 3 cm AB 6 2
解:(1)设Rt△ABC的内切圆与三边相
切于D、E、F,连结OD、OE、OF则 OA⊥AC,OE⊥BC,OF⊥AB。 在Rt△ABC中,BC=3,AC=4, ∴AB=5 ∵ ⊙O与Rt△ABC的三边都相切 ∴AD=AF,BE=BF,CE=CD
A F D O
·
B
C E 由已知可得四边形ODCE为正方形,∴CD=CE=OD
九年级数学直线和圆的位置关系

高档题型解析及思路拓展
例题3
解析
思路拓展
已知直线$l_{1}$和圆$O_{1}$相切于点 $P$,直线$l_{2}$过点$P$且与圆 $O_{1}$相交于另一点$Q$,求直线 $l_{2}$的方程。
由于直线$l_{1}$和圆$O_{1}$相切于点 $P$,因此点$P$是切点,且直线 $l_{1}$在点$P$处的切线斜率与直线 $l_{2}$的斜率相等。我们可以通过求 出点$P$的坐标和切线斜率,再利用点 斜式求出直线$l_{2}$的方程。
若直线与圆相切,则直线到圆心的距 离等于半径,由此可求出切线方程。
直线与圆的交点坐标
联立直线方程和圆方程求解,可得交 点坐标。若有两个交点,则它们关于 圆心对称。
02
直线与圆的位置关系分类
相离关系
定义
直线与圆没有公共点,称为相离。
判定方法
通过比较圆心到直线的距离与圆的 半径大小来判断。若圆心到直线的 距离大于圆的半径,则直线与圆相 离。
直线与圆的交点个数
通过观察图形或计算,确定直线与圆的交点个数。若有两个交点,则直线与圆 相交;若有一个交点,则直线与圆相切;若没有交点,则直线与圆相离。
综合应用举例
解法一
联立直线l和圆C的方程,消去一 个未知数得到一个一元二次方程 。根据判别式的值判断位置关系 。
解法二
计算圆心(a,b)到直线l的距离d,根 据d与半径r的大小关系判断位置关 系。
圆的性质
圆上任意一点到圆心的距 离等于半径;圆的任意弦 所对的圆周角等于弦所对 圆心角的一半。
圆的切线
与圆有且仅有一个交点的 直线称为圆的切线,切线 与半径垂直。
直线与圆的交点问题
直线与圆的位置关系
直线与圆的切线问题
初三数学直线与圆的位置关系知识精讲

初三数学直线与圆的位置关系知识精讲一. 本周教学内容:直线与圆的位置关系二. 重点、难点:重点:直线与圆的三种位置关系以及圆的切线的判定难点:圆的切线的判定三. 知识回顾1. 直线与圆的位置关系是指:相离,相切与相交三者之一设⊙O的半径为r,圆心O到直线l的距离为d。
则(1)若 d>r 直线l与⊙O相离(2)若d=r 直线l与⊙O相切(3)若d<r 直线l与⊙O相交其中:重点是直线与圆的相切关系。
2. 圆的切线的判定与性质主要涉及到①切线,②切点,③圆心,④垂直这四个知识点,其中已知三个,就可以推出第四个3. 切线的判定(1)与圆只有唯一公共点的直线(2)与圆心的距离等于半径的直线(3)过半径外端且垂直于该半径的直线4. 切线的性质(1)过圆心且垂直于切线的直线过切点(2)切线垂直于过切点的半径(3)过切点且垂直于切线的直线过圆心【典型例题】例1. 一个圆的周长和面积值相等。
若一条直线到圆心距离为Π,则判断这条直线与这个圆的位置关系。
解:∵C⊙O =S⊙O∴2RΠ=R2Π,∴R=2,又d=Π>2∴d>R∴直线与圆相离例2. AB为⊙O的直径,AB=12,点P在BA的延长线上,C在⊙O上,CE⊥AB于E。
若∠POC=∠PCE,PA=4,求PC的长解析:∵∠PCE=∠POC 且CE⊥AB∴∠PCE+∠ECO=∠POC+∠ECO=90∴OC⊥PC于C∴PC切⊙O又AB=12,PA=4∴OC=6,PO=PA+OA=10∴PC=822=-OC PO例3. 如图CD 为⊙O 的弦,延长CD 到A ,过A 作直线AB 交⊙O 于B ,使AB AC AD •=2求证:AB 是⊙O 的切线解析:① 欲证AB 切⊙O ,只需证OB ⊥AB 。
即证明∠ABD+∠DBO=90∴延长BO 交⊙O 于E ,证明∠ABD=∠E 使∠DBE+∠ABD=90 即可延长BO 交⊙O 于E ,连BD ,DE ,BC则∠BDE=90º 又AB AC AD AB =, ∠A 为公共角。
初三数学直线和圆的位置关系

初三数学直线和圆的位置关系一.直线和圆的位置关系:①相交:直线和圆有两个公共点,这时说这条直线和圆相交;这条直线叫做圆的割线;②相切:直线和圆有唯一公共点,这时说这条直线和圆相切;这条直线叫做圆的切线,这个点叫做切点.③相离:直线和圆没有公共点,这时说这条直线和圆相离.二.直线和圆的位置关系的判定:(1)定理:若⊙O的半径为R,圆心到直线l 的距离为d. 则直线l与⊙O相交d﹤R;直线l与⊙O相切 d =R;直线l与⊙O相离d﹥R;(2)“圆心到直线的距离d和半径R的数量关系”与“直线和圆的位置关系”之间的对应与等价关系列表如下:例1、1.在Rt△ABC中,∠C=,AC=3cm,AB=6cm,以点C为圆心,与AB边相切的圆的半径为_________cm.2.如图,⊙O的半径OD为5cm,直线l⊥OD,垂足为O,则直线l沿射线OD方向平移_________cm时与⊙O相切.3.已知⊙O的直径为6cm,如果直线l上的一点C到圆心的距离为3cm,则直线l与⊙O的位置关系是_________.4.⊙O的半径为R,圆心O到直线l的距离d与R是方程x2-6x+9=0的两个实数根,则直线l和⊙O的位置关系是_________.三.切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线;2.切线的性质:①切线垂直于过切点的半径;②切线和圆心的距离等于半径;③经过圆心且垂直于切线的直线必过切点;④经过切点垂直于切线的直线必过圆心.综上所述,在解决有关圆的切线的问题,连接圆心和切点的线段是最常见的辅助线.四、切线长的定义及切线长定理过圆外一点作圆的切线,这点和切点之间的线段长叫做这点到圆的切线长,如图所示,PA,PB 是⊙O的两条切线,A,B为切点,线段PA,PB的长即为点P到⊙O的切线长.切线长定理:过圆外一点所画的圆的两条切线长相等.例2、如图,AB是⊙O的直径,BC切⊙O于点B,AD∥CO.求证:CD是⊙O的切线.1、⊙O的半径为R,直线l和⊙O有公共点,若圆心到直线l的距离是d,则d与R的大小关系是()A.d>RB.d<RC.d≤RD.d≥R2、点A为直线l上任一点,过A点与直线l相切的圆有()个.A.1 B.2C.不存在 D.无数个3、在Rt△ABC中,∠A=,BA=12,CA=5,若以A为圆心,5为半径作圆,则斜边BC与⊙A的位置关系是()A.相交 B.相离C.相切 D.不确定4、等边△ABC的边长为6,点O为△ABC的外心,以O为圆心,为半径的圆与△ABC的三边()A.都相交B.都相离C.都相切D.不确定5、两个同心圆的半径分别为3cm和5cm,作大圆的弦MN=8cm,则MN与小圆的位置关系是()A.相交 B.相切C.相离D.无法判断6、如图,在直角坐标系中,⊙O的半径为1,则直线与⊙O的位置关系是()A.相离 B.相交C.相切 D.以上三种情形都有可能7、下列说法正确的是()A.垂直于切线的直线必过切点B.垂直于半径的直线是圆的切线C.圆的切线垂直于经过切点的半径D.垂直于切线的直线必经过圆心8、已知Rt△ABC的直角边AC=BC=4cm,若以C为圆心,以3cm的长为半径作圆,则这个圆与斜边所在的直线的位置关系是()A.相交 B.相切C.相离 D.不能确定9、如右上图,在△ABC中,AB=2,AC=1,以AB为直径的圆与AC相切,与边BC交于点D,则AD的长为()10、如下图,AB是⊙O的直径,点D在AB的延长线上,过点D作⊙O的切线,切点为C,若∠A=25°,∠D=__________.11、如图,⊙O的半径为1,圆心O在正三角形的边AB上沿图示方向移动,当⊙O移动到与AC相切时,OA=__________.12、设⊙O的半径为R,⊙O的圆心到直线的距离为d,若d、R是方程x2-6x+m=0的两根,则直线l 与⊙O相切时,m的值为__________.13、已知∠ABC=60°,点O在∠ABC的平分线上,OB=5cm,以O为圆心,2cm为半径作⊙O,则⊙O与BC的位置关系是__________.14、如图,Rt△ABC中,∠B=90°,∠A的平分线交BC于D,E为AB上一点,DE=DC,以D为圆心,DB的长为半径作⊙D.求证:(1)AC是⊙D的切线;(2)AB+EB=AC.15、如图,以边长为4的正△ABC的BC边为直径作⊙O与AB相交于点D,⊙O的切线DE交AC于E,EF⊥BC,点F是垂足,求EF的长.16、如图,PA是⊙O的切线,切点是A,过点A作AH⊥OP于点H,交⊙O于点B.求证:PB是⊙O的切线.17、如图,已知AB是⊙O的直径,AB=2,∠BAC=30°,点C在⊙O上,过点C与⊙O相切的直线交AB 的延长线于点D,求线段BD的长.1.弧长公式:n°的圆心角所对的弧长l公式不要死记硬背,可依比例关系很快地随手推得:2.扇形面积公式:(1)和含n°圆心角的扇形的面积公式同样不要死记硬背,可依比例关系很快地随手推得:.(2)将弧长公式代入扇形面积公式中,立即得到用弧长和半径表示的扇形面积公式:。
中考数学复习之与圆有关的位置关系,考点过关与基础练习题

34.与圆有关的位置关系➢知识过关1.点和圆的位置关系2.直线与圆的位置关系3.切线的判定与性质切线的定义:直线与圆有_____公共点时,这条直线是圆的切线.切线的性质:圆的切线垂直于过切点的______切线的判定:经过半径的外端并且______这条半径的直线是圆的切线.到圆心距离等于______的直线是圆的切线.➢考点分类考点1直线与圆的位置关系的判定例1如图所示,在Rt△ABC中,△C=90°,AC=3cm,BC=3cm,若OA=x cm,△O的半径为1cm,请问当x在什么范围内取值时,AC与△O相交、相切、相离?D考点2切线的判定例2 如图所示,AB是△O的直径,C是O上一点,直线MN经过点C,过点A作直线MN 的垂线,垂足为点D,且△BAC=△CAD.(1)求证:直线MN是△O的切线;(2)若CD=3,△CAD=30°,求△O的半径.考点3 切线的性质 例3 如图所示,在△O 中,点C 是直径AB 延长线上一点,过点C 作△O 的切线,切点为D ,连接BD.(1)求证:△A=△BDC(2)若CM 平分△ACD ,且分别交AD 、BD 于点M 、N ,当DM=1时,求MN 的长.➢ 真题演练1.如图,A 、P 、B 、C 是⊙O 上的四点,∠APC =∠BPC =60°,P A =2,PC =4,则△ABC 的面积为( )A .43√3B .32√3C .2√3D .3√32.如图,四边形ABCD 是⊙O 的内接四边形,∠B =90°,∠BCD =120°,AB =4,BC =2,则AD 的长为( )A .2√3B .4−√3C .√3+1D .2+√33.如图,P A 、PB 、CE 分别与⊙O 相切于点A 、B 、D 点,若圆O 的半径为6,OP =10,则△PCE 的周长为( )A .10B .12C .16D .204.如图所示,点P 是⊙O 的半径OC 延长线上的一点,过点P 作⊙O 的切线,切点为A ,AB 是⊙O 的弦,连接AC ,BC ,若∠P AB =70°,则∠ACB 的大小为( )A .70°B .110°C .120°D .140°5.如图,在△ABC 中,∠A =60°,BC =12,若⊙O 与△ABC 的三边分别相切于点D ,E ,F ,且△ABC 的周长为32,则DF 的长为( )A .2B .3C .4D .66.如图,已知DC 是⊙O 的直径,点B 为CD 延长线上一点,AB 是⊙O 的切线,点A 为切点,且∠BAD =35°,则∠ADC =( )A .75°B .65°C .55°D .50°7.如图,PC 、PB 是⊙O 的切线,AB 是⊙O 的直径,延长PC ,与BA 的延长线交于点E ,过C 点作弦CD ,且CD ∥AB ,连接DO 并延长与圆交于点F ,连接CF ,若AE =2,CE =4,则CD 的长度为( )A .3B .4C .185D .2458.如图,四边形ABCD 内接于⊙O ,AE ⊥CB ,交CB 的延长线于点E .若BA 平分∠DBE ,AD =7,CE =√13,则AE 的长度为 .9.如图,四边形ABCD 内接于⊙O ,AB 为直径,AD =CD ,过点D 作DE ⊥AB 于点E ,连接AC 交DE 于点F .若sin ∠CAB =35,DF =5,则AB 的长为 .10.如图,P A、PB分别与⊙O相切于A、B两点,C为⊙O上一点连接AC、BC,若∠C=55°,则∠P的度数是°.11.如图,AB为圆O直径,∠DAB=∠ABC=90°,CD与圆O相切于点E,EF⊥AB于点F,EF交BD于点G,若AD=2,BC=6.(1)求CD的长度.(2)求EG的长度.(3)求FB的长度.12.如图,P A、PB、CD是⊙O的切线,点A、B、E为切点.(1)如果△PCD的周长为10,求P A的长;(2)如果∠P=40°,①求∠COD;②连AE,BE,求∠AEB.13.如图,P A、PB分别与⊙O相切于点A、B,PO的延长线交⊙O于点C,连接BC,OA.(1)求证:∠POA=2∠PCB;(2)若OA=3,P A=4,求tan∠PCB的值.➢ 课后练习1.如图,P A ,PB 是⊙O 的两条切线,A ,B 是切点,过半径OB 的中点C 作CD ⊥OB 交P A 于点D ,若PD =3,AD =5,则⊙O 的半径长为( )A .2√7B .4√2C .3√3D .2√52.如图,等边三角形ABC 的边长为4,⊙C 的半径为√3,P 为AB 边上一动点,过点P 作⊙C 的切线PQ ,切点为Q ,则PQ 的最小值为( )A .12B .√3C .2√3D .33.如图,点O 是矩形ABCD 对角线BD 上的一点,⊙O 经过点C ,且与AB 边相切于点E ,若AB =4,BC =5,则⊙O 的半径长为( )A .165B .258C .5√419D .44.如图,在△ABC 中,∠ACB =90°,AC =BC =√2,点D 是AB 边上一个动点,以点D 为圆心r 为半径作⊙D ,直线BC 与⊙D 切于点E ,若点E 关于CD 的对称点F 恰好落在AB 边上,则r 的值是( )A .√2−1B .1C .√2D .√2+15.如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,如果∠D=30°,AB=4,那么线段CD的长是.6.如图,△ABD内接于⊙O,AD为直径,CD为⊙O的切线,连接BC,若CD=AD,AB =2,BC=2√13,则BD=.7.已知菱形ABCD的边长为4,∠BAD=60°,M是线段AD的中点,点P是对角线AC 上的动点,连接PM,以P为圆心,PM长为半径作⊙P,当⊙P与菱形ABCD的边相切时,AP的长为.8.如图,已知△ABC,以AB为直径的⊙O交AC于点E,交BC于点D,且BD=CD,DF ⊥AC于点F.给出以下四个结论:̂=DÊ;④∠A=2∠FDC.①DF是⊙O的切线;②CF=EF;③AE其中正确结论的序号是.9.如图,在Rt△ABC中,AC=BC=6,点O为边BC上一动点,连接OA.以O为圆心,OB为半径作圆,交OA于D,过D作⊙O的切线,交AC于点E.当⊙O与边AC相切时,CE的长为.10.如图,在Rt△ABC中,∠C=90°,以AC为直径的⊙O交AB于点D,点Q为CA延长线上一点,延长QD交BC于点P,连接OD,∠ADQ=12∠DOQ.若AQ=AC,AD=4时,写出BP的长为.11.如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆交于点D.(1)如图1,连接DB,求证:DB=DE;(2)如图2,若∠BAC=60°,求证:AB+AC=√3AD.12.如图,△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F.(1)若∠ABC=50°,∠ACB=75°,求∠BOC的度数;(2)若AB=13,BC=11,AC=10,求AF的长.➢冲击A+。
九年级数学第三章直线与圆的位置关系

直线与圆的位置关系【学习目标】1.理解并掌握直线与圆的三种位置关系;2.理解切线的判定定理和性质定理.【要点梳理】要点一、直线与圆的位置关系1.切线的定义:直线与圆有唯一的公共点时,这条直线叫做圆的切线,这个唯一的公共点叫做切点.此时直线与圆的位置关系称为相切.2.直线和圆的三种位置关系:(1) 相交:当直线与圆有两个公共点时,叫做直线与圆相交.(2) 相切:当直线与圆有唯一公共点时,叫做直线与圆相切.这条直线叫做圆的切线,公共点叫做切点.(3) 相离:当直线与圆没有公共点时,叫做直线与圆相离.3.直线与圆的位置关系的判定和性质.直线与圆的位置关系能否像点与圆的位置关系一样通过一些条件来进行分析判断呢?由于圆心确定圆的位置,半径确定圆的大小,因此研究直线和圆的位置关系,就可以转化为直线和点(圆心)的位置关系.下面图(1)中直线与圆心的距离小于半径;图(2)中直线与圆心的距离等于半径;图(3)中直线与圆心的距离大于半径.一般地,直线与圆的位置关系有以下定理:如果⊙O的半径为r,圆心O到直线l的距离为d,那么,(1)d<r直线l与⊙O相交;(2)d=r直线l与⊙O相切;(3)d>r直线l与⊙O相离.要点进阶:这三个命题从左边到右边反映了直线与圆的位置关系所具有的性质;从右边到左边则是直线与圆的位置关系的判定.要点二、切线的性质定理和判定定理1.切线的性质定理:圆的切线垂直于过切点的半径.要点进阶:切线的性质定理中要注意:圆的切线是与过切点的半径垂直,不是与任意半径都垂直.2.切线的判定定理:过半径外端且垂直于半径的直线是圆的切线.要点进阶:切线的判定定理中强调两点:一是直线与圆有一个交点,二是直线与过交点的半径垂直,缺一不可. 要点三、三角形的内切圆1.三角形的内切圆:与三角形各边都相切的圆叫做三角形的内切圆.2.三角形的内心:三角形内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心. 三角形的内心到三边的距离都相等.要点进阶:(1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径).【典型例题】类型一、直线与圆的位置关系例1.在Rt△ABC中,∠C=90°,AC=3厘米,BC=4厘米,以C为圆心,r为半径的圆与AB有怎样的位置关系?为什么?(1)r=2厘米; (2)r=2.4厘米; (3)r=3厘米举一反三:【变式】已知⊙O的半径为10cm,如果一条直线和圆心O的距离为10cm,那么这条直线和这个圆的位置关系为()A. 相离B. 相切C. 相交D. 相交或相离类型二、切线的判定与性质例2.如图所示,在Rt△ABC中,∠B=90°,∠A的平分线交BC于D,以D为圆心,DB长为半径作⊙D.求证:AC是⊙D的切线.例3.如图,⊙O的直径AB=4,∠ABC=30°,BC交⊙O于D,D是BC的中点.(1)求BC的长;(2)过点D作DE⊥AC,垂足为E,求证:直线DE是⊙O的切线.例4.如图,AB为⊙O的直径,AC为⊙O的弦,AD平分∠BAC,交⊙O于点D,DE⊥AC,交AC的延长线于点E.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若AE=8,⊙O的半径为5,求DE的长.O C B A举一反三:【变式1】如图,在△ABC 中,∠CAB=90°,∠CBA=50°,以AB 为直径作⊙O 交BC 于点D ,点E 在边AC 上,且满足ED=EA . (1)求∠DOA 的度数;(2)求证:直线ED 与⊙O 相切.举一反三:【变式2】如图所示,在△ABC 中,AB =BC =2,以AB 为直径的⊙O 与BC 相切于点B ,则AC 等于( )A .2B .3C .22D .23类型三、三角形的内切圆例5.如图,已知O 是△ABC 的内心,∠A=50°,求∠BOC 的度数.O C BA【变式】如图,△ABC 中,∠C=90°,BC=4,AC=3,⊙O 内切与△ABC ,则△ABC 去除⊙O 剩余阴影部分的面积为( )A.12-πB. 12-2πC. 14-4πD. 6-π【巩固练习】一、选择题1.已知:如图,PA ,PB 分别与⊙O 相切于A ,B 点,C 为⊙O 上一点,∠ACB=65°,则∠APB 等于( ) A .65° B .50° C .45° D .40°2.如图,AB 是⊙O 的直径,直线EC 切⊙O 于B 点,若∠DBC=α,则( ) A .∠A=α B .∠A=90°-α C .∠ABD=α D .∠α2190o-=ABD第1题图 第2题图3.设⊙O 的半径为3,点O 到直线l 的距离为d ,若直线l 与⊙O 至少有一个公共点,则d 应满足的条件是( )A.d=3B. d <3C. d≤3D.d>34.如图,在⊙O 的内接四边形ABCD 中,AB 是直径,∠BCD=120°,过D 点的切线PD 与直线AB 交于点P ,则∠ADP 的度数为( )A .40°B . 35°C . 30°D . 45°5.如图,AB 为⊙O 的直径,PD 切⊙O 于点C ,交AB 的延长线于D ,且CO =CD ,则∠PCA=( ) A.30° B.45° C.60° D.67.5°6.已知AB是⊙O的直径,点P是AB延长线上的一个动点,过P作⊙O的切线,切点为C,∠APC的平分线交AC于点D,则∠CDP等于()A.30°B.60°C.45°D.50°二、填空题7.如图,AB是⊙O的直径,BC切⊙O于点B,AC交⊙O于点D.若AC=5,BC=3,则⊙O的半径为_______.8.如图,⊙O的切线PC交直径AB的延长线于点P,C为切点.若∠P=30°,⊙O的半径为1,则PB的长为______________.9.在△ABO中,OA=OB=2cm,⊙O的半径为1cm,当∠ABO=时,直线AB与⊙O相切.10.如图所示,已知直线AB是⊙O的切线,A为切点,OB交⊙O于点C,点D在⊙O上,且∠OBA=40°,则∠ADC=________.OCB A 11.如图所示,已知△ABC ,AC =BC =6,∠C =90°,O 是AB 的中点,⊙O 与AC 、BC 分别相切于点D 与点E .点F 是⊙O 与AB 的一个交点,连DF 并延长交CB 的延长线于点G ,则CG =________.12.木工师傅可以用角尺测量并计算出圆的半径r .用角尺的较短边紧靠O ,并使较长边与O 相切于点C .假设角尺的较长边足够长,角尺的顶点为B ,较短边8cm AB .若读得BC 长为cm a ,则用含a 的代数式表示r 为 .三、解答题13. 如图,已知⊙O 是边长为2的等边△ABC 的内切圆,求⊙O 的面积.14. AB 是⊙O 的直径,BC 切⊙O 于B ,AC 交⊙O 于D 点,过D 作⊙O 的切线DE 交BC 于E.求证:CE=BE.15.如图,AB是⊙O的弦,OC⊥OA,交AB与点P,且PC=BC,求证:BC是⊙O的切线.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直线与圆的位置关系一、选择题1.(2011浙江杭州3分)在平面直角坐标系x Oy 中,以点(-3,4)为圆心,4为半径的圆 A. 与x 轴相交,与y 轴相切 B. 与x 轴相离,与y 轴相交C. 与x 轴相切,与y 轴相交D. 与x 轴相切,与y 轴相离【答案】 C 。
【考点】直线与圆的位置关系,坐标与图形性质。
【分析】首先画出图形,根据点的坐标得到圆心O 到x 轴的距离是4,到y轴的距离是3,根据直线与圆的位置关系即可求出答案:∵4=4,3<4,∴圆O 与x 轴相切,与y 轴相交。
故选C 。
2.(2011浙江湖州3分)如图,AB 是⊙O 的直径,C 是AB 延长线上一点,且BC =OB , CE 是⊙O 的切线,D 为切点,过点A 作AE⊥CE,垂足为E .则CD∶DE 的值是A . 1 2B .1C .2D .3 【答案】C 。
【考点】切线的性质,相似三角形的判定和性质,等量代换。
【分析】连接OD ,由CE 是⊙O 的切线,得OD⊥CE, 又∵AE⊥CE,∴OD∥AE。
∴△COD∽△CAE。
∴OC OD CD AC AE CE ==。
又∵BC=OB ,OB=OA=OD ,∴OC OD CD 2 AC AE CE 3===。
∴CD 22DE 1==。
故选C 。
5.(2011广西贺州3分)已知⊙O1和⊙O2的半径分别为2和5,如果两圆的位置关系为外离,那么圆心距O1O2的取值范围在数轴上表示正确的是【答案】C 。
【考点】两圆的位置关系,在数轴上表示不等式组的解集。
【分析】根据两圆的位置关系的判定:相切(两圆圆心距离等于两圆半径之和),相离(两圆圆心距离大于两圆半径之和),相交(两圆圆心距离小于两圆半径之和),由已知圆心距O1O2的取值范围为大于2+5=7。
从而根据在数轴上表示不等式组的解集的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示。
故选C 。
6.(2011山东日照4分)已知AC⊥BC 于C ,BC =a ,CA =b ,AB =c ,下列选项中⊙O 的半径为aba b +的是【答案】D 。
【考点】三角形的内切圆与内心,切线的性质,正方形的判定和性质,解一元一次方程,相似三角形的判定和性质。
【分析】设圆的半径是r 。
A 、设圆切BC 于D ,切AC 于E ,切AB 于F ,连接OD ,OE ,OF ,如图,根据切线的性质可得到正方形OECD ,AE =AF ,BD =BF ,则a -r +b -r =c ,∴r=2a b c+-,故本选项错误;B 、设圆切AB 于F ,连接OF ,如图,则OF =r ,AO =b -r ,△BCA∽△OFA,∴OF AO CB AB =,即r r b ac -=,∴r=ab a c +,故本选项错误;C 、连接OE 、OD ,根据AC 、BC 分别切圆O 于E 、D ,如图,根据切线的性质可得到正方形OECD ,则OE =r ,AE =b -r ,△BCA∽△OEA,∴OE AE BC AC =,即r r b ab -=,∴r=ab a b +,故本选项正确;D 、设圆切BC 于D ,连接OD ,OA ,则BD =a +r ,由BA =BD 得c =a +r ,即r =c -a ,故本选项错误。
故选C 。
7.(2011山东烟台4分)如图是油路管道的一部分,延伸外围的支路恰好构成一个直角三角形,两直角边分别为6m 和8m.按照输油中心O 到三条支路的距离相等来连接管道,则O 到三条支路的管道总长(计算时视管道为线,中心O 为点)是A2m B.3m C.6m D.9m【答案】C 。
【考点】三角形内切圆的性质,勾股定理。
【分析】此题实质是求三角形内切圆的半径。
由勾股定理可得斜边为10,设内切圆半径为r ,则利用面积法可得:12r(6+8+10)=12³6³8,解得r=2。
因此管道为2³3=6(m )。
故选C 。
8.(2011山东枣庄3分)如图,PA是⊙O的切线,切点为A,则⊙O的半径为A.1 D.4【答案】C。
【考点】圆的切线性质,锐角三角函数。
【分析】连接OA,则在Rt△AOP=2。
故选C。
9. (2011湖北武汉3分)如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上A处距离O点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN上沿ON方向以72千米/时的速度行驶时,A处受噪音影响的时间为A.12秒.B.16秒.C.20秒.D.24秒.【答案】B。
【考点】点与圆的位置关系,含30度角直角三角形的性质,勾股定理,等腰三角形的性质。
【分析】要求A处受噪音影响的时间,即要求出火车在铁路MN上对A处噪音影响的范围,因此,如图:过点A作AC⊥ON,设MN上点B、D距点A的距离为200米,即AB=AD=200米,火车在B点至D点之间对学校产生噪音影响。
∵∠QON=30°,OA=240米,∴AC=120米(直角三角形中,30度角所对的直角边是斜边的一半)。
=米,∴BD=320米。
在Rt△ABC中,由勾股定理得:160∵72千米/小时=20米/秒,∴影响时间应是:320÷20=16秒。
故选B。
10.(2011湖北黄冈、鄂州3分)如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于D,且CO=CD,则∠PCA=A、30°B、45°C、60°D、67.5°【答案】D。
【考点】圆的切线性质,等腰三角形的性质,三角形内角和定理和外角定理。
【分析】根据图形由切线的性质、等腰三角形的性质和三角形内角和定理,得到∠COD=∠D=45°;由同弧所对的圆周角是圆心角一半的性质,得到∠ACO=22.5°,所以由三角形内外角定理∠PCA=∠ACO +∠D =22.5°+45°=67.5°。
故选D。
11.(2011湖北恩施3分)如图,直线AB、AD与⊙O相切于点B、D,C为⊙O上一点,且∠BCD=140°,则∠A的度数是A、70°B、105°C、100°D、110°【答案】C。
【考点】圆内接四边形的性质,圆周角定理,切线的性质,多边形内角和定理。
【分析】如图,过点B作直径BE,连接OD、DE。
∵B、C、D、E共圆,∠BCD=140°,∴∠E=180°﹣140°=40°。
∴∠BOD=80°。
∵AB、AD与⊙O相切于点B、D,∴∠OBA=∠ODA=90°。
∴∠A=360°﹣90°﹣90°﹣80°=100°。
故选C。
12.(2011内蒙古包头3分)已知AB是⊙O的直径,点P是AB延长线上的一个动点,过P作⊙O的切线,切点为C,∠APC的平分线交AC于点D,则∠CDP等于A、30°B、60°C、45°D、50°【答案】C。
【考点】角平分线的定义,切线的性质,直角三角形两锐角的关系,三角形外角定理。
【分析】连接OC,∵OC=OA,,PD平分∠APC,∴∠CPD=∠DPA,∠CAP=∠ACO。
∵PC为⊙O的切线,∴OC⊥PC。
∵∠CPD+∠DPA+∠CAP +∠ACO=90°,∴∠DPA+∠CAP =45°,即∠CDP=45°。
故选C。
13.(2011四川成都3分)已知⊙O的面积为9πcm2,若点O到直线l的距离为πcm,则直线l与⊙O的位置关系是A、相交B、相切C、相离D、无法确定【答案】C。
【考点】直线与圆的位置关系。
【分析】设圆O的半径是r,根据圆的面积公式求出半径,再和点O到直线l的距离π比较即可:∵⊙O的面积为9π,∴πr2=9π, r=3。
∵点O到直线l的距离为π, 3<π,即:r<d。
∴直线l与⊙O的位置关系是相离。
故选C。
14.(2011四川眉山3分)如图,PA、PB是⊙O的切线,AC是⊙O的直径,∠P=50°,则∠BOC 的度数为A.50° B.25° C.40° D.60°【答案】A。
【考点】切线的性质,多边形内角和定理。
【分析】∵PA、PB是⊙O的切线,∴∠OAP=∠OBP=90°,而∠P=50°,∴∠AOB=360°-90°-90°-50°=130°。
又∵AC是⊙O的直径,∴∠BOC=180°-130°=50°。
故选A。
15.(2011甘肃兰州4分)如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=25°,则∠D等于A、20°B、30°C、40°D、50°【答案】C。
【考点】等腰三角形的性质,三角形的外角定理,切线的性质,三角形内角和定理。
【分析】连接OC,∵OA=OC,∴∠OCA=∠A=25°(等边对等角)。
∴∠DOC=50°(三角形的外角等于和它不相邻的两内角之和)。
又∵DC切⊙O于点C,∴OC⊥DC(切线的性质),即∠OCD=90°。
∴∠DOC=180°―90°―50°=40°(三角形内角和定理)。
故选C。
16.(2011辽宁营口3分)如图,在Rt△ABC 中,∠C=90°,∠B=30°,BC =4cm ,以点C 为圆心,以2 cm 的长为半径作圆,则⊙C 与AB 的位置关系是A. 相交B. 相切C. 相离D. 相切或相离【答案】B 。
【考点】圆与直线的关系,含30度角直角三角形的性质。
【分析】要确定⊙C 与AB 的位置关系,就要看圆心C 到AB 的距离与圆半径的关系,距离大于半径,二者相离;距离等于半径,二者相切;距离小于半径,二者相交。
因此作辅助线:作CD⊥AB,垂足为点D 。
由∠B=30°,BC=4cm ,根据直角三角形中,30度角所对的直角边是斜边的一半的性质,得CD =2cm ,它等于圆的半径。
因此⊙C 与AB 的位置关系是相切。
故选B 。
17.(2011贵州遵义3分)如图,AB 是⊙O 的直径,BC 交⊙O 于点D ,DE⊥AC于点E ,要使DE 是⊙的切线,还需补充一个条件,则补充的条件不正确的是A.DE=DOB. AB=ACC. CD=DBD. AC∥OD【答案】A 。