二次方程根的分布情况归纳(完整版)
高中高考数学:二次函数根的分布

2
分析:①由 f (−3) ⋅ f (0) < 0 ,即 (14m + 15)( m + 3) < 0 ,得出 −3 < m < − 15 ;
14
②由 ∆ = 0 即16m
2
− 4 ( 2m + 6 ) = 0 得出 m = −1 或 m =
3 , 2
当 m = −1 时,根 x = −2 ∈ ( −3, 0 ) ,即 m = −1 满足题意; 当 m = 3 时,根 x = 3 ∉ ( −3, 0 ) ,故 m = 3 不满足题意;
2
所以 mx − ( m + 2 ) x + 2 = ( x − 1)( mx − 2 ) ,另一根为 2 ,由1 < 2 < 3 得 2 < m < 2 即为所求; m m 3
2
方程有且只有一根,且这个根在区间 (m, n ) 内,即 ∆ = 0 ,此时由 ∆ = 0 可以求出参数的值,然后再将参数的 值带入方程,求出相应的根,检验根是否在给定的区间内,如若不在,舍去相应的参数. 如:已知方程 x − 4mx + 2m + 6 = 0 有且一根在区间 ( −3, 0 ) 内,求 m 的取值范围.
两根都在 (m, n ) 内
两根有且仅有一根在 (m, n ) 一根在 (m, n ) 内,另一根在 内,另一根在 [m, n] 之外
m n x
( p, q ) 内, m < n < p < q
n
p q
m
x
m
n
x
得出的结论
∆>0 f (m) > 0 f (n) > 0 b m < − <n 2a
二次方程根的分布情况归纳精品2

各位教师,同学,我精心汇总,好好利用二次方程根的分布与二次函数在闭区间上的最值归纳1、一元二次方程02=++c bx ax 根的分布情况设方程()200ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为()20f x ax bx c =++=,方程的根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件)表一:(两根与0的大小比较即根的正负情况)k k k根在区间上的分布还有一种情况:两根分别在区间()n m ,外,即在区间两侧12,x m x n <>,(图形分别如下)需满足的条件是(1)0a >时,()()00f m fn <⎧⎪⎨<⎪⎩; (2)0a <时,()()00f m fn >⎧⎪⎨>⎪⎩对以上的根的分布表中一些特殊情况作说明: (1)两根有且仅有一根在()n m ,内有以下特殊情况:1︒ 若()0fm =或()0f n =,则此时()()0f m f n < 不成立,但对于这种情况是知道了方程有一根为m 或n ,可以求出另外一根,然后可以根据另一根在区间()n m ,内,从而可以求出参数的值。
如方程()2220m x m x -++=在区间()1,3上有一根,因为()10f =,所以()()()22212m x m x x m x -++=--,另一根为2m,由213m<<得223m <<即为所求;2︒ 方程有且只有一根,且这个根在区间()n m ,内,即0∆=,此时由0∆=可以求出参数的值,然后再将参数的值带入方程,求出相应的根,检验根是否在给定的区间内,如若不在,舍去相应的参数。
如方程24260x m x m -++=有且一根在区间()3,0-内,求m 的取值范围。
分析:①由()()300ff -<即()()141530m m ++<得出15314m -<<-;②由0∆=即()2164260m m -+=得出1m =-或32m =,当1m =-时,根()23,0x =-∈-,即1m =-满足题意;当32m =时,根()33,0x =∉-,故32m =不满足题意;综上分析,得出15314m -<<-或1m =-根的分布练习题例1、已知二次方程()()221210m x m x m +-+-=有一正根和一负根,求实数m 的取值范围。
二次方程根的分布

二次方程ax2+bx+c=0根的分布归纳设方程ax2+bx+c=0(a≠0)的不等两根为x1,x2且x1<x2,f(x)=ax2+bx+c=0的根即为二次函数图象与x轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件)。
k k k况f(m)>0根在区间上的分布还有一种情况:两根分别在区间(m,n )外,即在区间两侧x 1<m,x 2>n ,(图形分别如下)需满足的条件是(1)a >0时,{f (m )<0f (n )<0; (2)a <0时,{f (m )>0f (n )>0两根有且仅有一根在(m,n )内有以下特殊情况:1°若f (m )=0或f (n )=0,则此时f (m )f (n )<0不成立,但对于这种情况是知道了方程有一根为m 或n ,可以求出另外一根,然后可以根据另一根在区间(m,n )内,从而可以求出参数的值。
如方程mx 2−(m +2)x +2=0在区间(1,3)上有一根,因为f (1)=0,所以mx 2−(m +2)x +2=(x −1)(mx −2),另一根为2m ,由1<2m <3得23<m <2即为所求;2°方程有且只有一根,且这个根在区间(m,n )内,即Δ=0,此时由Δ=0可以求出参数的值,然后再将参数的值带入方程,求出相应的根,检验根是否在给定的区间内,如若不在,舍去相应的参数。
如方程x 2−4mx +2m +6=0有且一根在区间(−3,0)内,求m 的取值范围。
分析:①由f (−3)f (0)<0即(14m +15)(m +3)<0得出−3<m <−1514;②由Δ=0即16m 2−4(2m +6)=0得出m =−1或m =32,当m =−1时,根x =−2∈(−3,0),即m =−1满足题意;当m =32时,根x =3∉(−3,0),故m =32不满足题意;综上分析,得出−3<m <−1514或m =−1根的分布练习题例1、已知二次方程(3m+1)x2−2mx+(m−1)=0有一正根和一负根,求实数m的取值范围.例2、已知二次方程(2m+1)x2−5mx+(3m+1)=0有两个正根,求实数m的取值范围.例3、已知二次方程(3m+2)x2−mx+(m−1)=0有两个负根,求实数m的取值范围.例4、已知二次方程2x2−(m+1)x+m=0有两个不等正实根,求实数m的取值范围.例5、已知二次方程(m+2)x2−(2m+4)x+(3m+3)=0有两个根分别分布在(0,1)和(2,3)范围内,求实数m的取值范围.例6、已知二次方程2mx2+(2m−3)x+4m=0只有一个正根且这个根小于1,求实数m的取值范围.例7、求实数m范围,使得关于x的方程mx2+2(m−1)x+2m+6=0.(1)有两个实数根,且一个比2大,一个比2小.(2)有两个实数根α,β,5且满足0<α<1<β<4.(3)至少有一个正根.例8、已知方程m·22x+(2m−1)·2x+m=0在(−∞,1)上有两个根,求m的取值范围.。
二次函数根的分布

二次方程根的分布与二次函数在闭区间上的最值归纳1、一元二次方程02=++c bx ax 根的分布情况 设方程()200ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为()20f x ax bx c =++=,方程的根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件)分布情况两个负根即两根都小于0 ()120,0x x << 两个正根即两根都大于0 ()120,0x x >>一正根一负根即一个根小于0,一个大于0()120x x <<大致图象(>a )得出的结论 ()00200b a f ∆>⎧⎪⎪-<⎨⎪>⎪⎩ ()00200b a f ∆>⎧⎪⎪->⎨⎪>⎪⎩ ()00<f大致图象(<a )得出的结论()00200b a f ∆>⎧⎪⎪-<⎨⎪<⎪⎩ ()00200b a f ∆>⎧⎪⎪->⎨⎪<⎪⎩ ()00>f综合结论(不讨论a )()00200b a a f ∆>⎧⎪⎪-<⎨⎪⋅>⎪⎩ ()00200b a a f ∆>⎧⎪⎪->⎨⎪⋅>⎪⎩ ()00<⋅f a分布情况两根都小于k 即 k x k x <<21,两根都大于k 即 k x k x >>21,一个根小于k ,一个大于k 即21x k x <<大致图象(0>a )得出的结论()020b k a f k ∆>⎧⎪⎪-<⎨⎪>⎪⎩ ()020b k a f k ∆>⎧⎪⎪->⎨⎪>⎪⎩ ()0<k f大致图象(0<a )得出的结论()020b k a f k ∆>⎧⎪⎪-<⎨⎪<⎪⎩ ()020b k a f k ∆>⎧⎪⎪->⎨⎪<⎪⎩ ()0>k f综合结论(不讨论a ) ()020b k a a f k ∆>⎧⎪⎪-<⎨⎪⋅>⎪⎩ ()020b k a a f k ∆>⎧⎪⎪->⎨⎪⋅>⎪⎩ ()0<⋅k f akkk分布情况两根都在()n m ,内两根有且仅有一根在()n m ,内(图象有两种情况,只画了一种) 一根在()n m ,内,另一根在()q p ,内,q p n m <<<大致图象(>a )得出的结论()()0002f m f n b m na ∆>⎧⎪>⎪⎪>⎨⎪⎪<-<⎪⎩()()0<⋅n f m f()()()()0000f m f n f p f q ⎧>⎪<⎪⎨<⎪⎪>⎩或()()()()00f m f n f p f q <⎧⎪⎨<⎪⎩ 大致图象(0<a )得出的结论()()0002f m f n b m na ∆>⎧⎪<⎪⎪<⎨⎪⎪<-<⎪⎩()()0<⋅n f m f()()()()0000fm f n f p f q ⎧<⎪>⎪⎨>⎪⎪<⎩或()()()()0f m f n f p f q <⎧⎪⎨<⎪⎩综合结论(不讨论a ) ——————()()0<⋅n f m f()()()()⎪⎩⎪⎨⎧<<00q f p f n f m f ()n m ,12,(图形分别如下)需满足的条件是(1)0a >时,()()00f m f n <⎧⎪⎨<⎪⎩; (2)0a <时,()()0f m f n >⎧⎪⎨>⎪⎩对以上的根的分布表中一些特殊情况作说明:(1)两根有且仅有一根在()n m ,内有以下特殊情况:1︒ 若()0f m =或()0f n =,则此时()()0f m f n <g 不成立,但对于这种情况是知道了方程有一根为m 或n ,可以求出另外一根,然后可以根据另一根在区间()n m ,内,从而可以求出参数的值。
二次函数根的分布

二次函数根的分布二次函数是二次多项式的函数,其一般形式为y=ax^2+bx+c(其中a≠0)。
首先,我们需要了解二次函数的图像特点。
对于二次函数y=ax^2+bx+c,a决定了二次函数的开口方向和开口大小,a>0时开口向上,a<0时开口向下;b决定了二次函数的对称轴位置,对称轴的方程为x=-b/2a;c决定了二次函数与y轴的交点。
其次,我们来探讨二次函数的根的分布。
二次函数的根即方程的解,即使二次方程的解的个数以及位置。
对于一元二次方程ax^2+bx+c=0,我们可以利用判别式来判断解的情况:判别式Δ=b^2-4ac。
1.当Δ>0时,方程有两个不相等的实根。
实根的个数与开口方向无关,只与判别式Δ有关。
-当Δ>0时,方程有两个不相等的实根。
-当Δ=0时,方程有一个实根,这个实根称为方程的重根。
-当Δ<0时,方程无实根,但可以有两个共轭虚根。
值得注意的是,只有在a≠0时,方程为一元二次方程,才能求解二次函数的根。
接下来,我们来分析二次函数根的分布。
1.当Δ>0时,方程有两个不相等的实根。
此时,二次函数与x轴交于两个不同的点,也就是有两个实根。
这两个实根的位置由二次函数的对称轴决定,对称轴的方程为x=-b/2a。
假设根的位置为x1和x2,那么有以下三种情况:-当x1和x2均小于对称轴的x坐标时,二次函数开口向上,根的位置为x1>x2-当x1和x2均大于对称轴的x坐标时,二次函数开口向下,根的位置为x1<x2-当x1小于对称轴的x坐标,x2大于对称轴的x坐标时,一个根位于对称轴的左侧,一个根位于对称轴的右侧。
2.当Δ=0时,方程有一个实根,这个实根称为方程的重根。
此时,二次函数与x轴有且仅有一个交点,也就是有一个实根。
这个实根的位置正好位于二次函数的对称轴上,对称轴的方程为x=-b/2a。
3. 当Δ<0时,方程无实根,但可以有两个共轭虚根。
此时,二次函数与x轴没有交点,也就是无实根。
微专题11 二次函数根的分布问题(解析版)

微专题11 二次函数根的分布问题【方法技巧与总结】1、实系数一元二次方程20(0)ax bx c a ++=≠的实根符号与系数之间的关系 (1)方程有两个不等正根12,x x ⇔212124000b ac b x x a c x x a ⎧⎪∆=->⎪⎪+=->⎨⎪⎪=>⎪⎩(2)方程有两个不等负根12,x x ⇔212124000b ac b x x a c x x a ⎧⎪∆=->⎪⎪+=-<⎨⎪⎪=>⎪⎩(3)方程有一正根和一负根,设两根为12,x x ⇔120cx x a=< 2、一元二次方程20(0)ax bx c a ++=≠的根的分布问题 一般情况下需要从以下4个方面考虑: (1)开口方向;(2)判别式;(3)对称轴2bx a=-与区间端点的关系;(4)区间端点函数值的正负. 设12,x x 为实系数方程20(0)ax bx c a ++=>的两根,则一元二次20(0)ax bx c a ++=>的根的分布与其限定条件如表所示. 根的分布图像限定条件12m x x <<2()0b m a f m ∆>⎧⎪⎪->⎨⎪⎪>⎩ 12x m x <<()0f m <12x x m <<02()0b m a f m ∆>⎧⎪⎪-<⎨⎪⎪>⎩ 在区间(,)m n 内 没有实根0∆<12120x x m x x m∆==≤=≥或02()0b m a f m ∆>⎧⎪⎪-<⎨⎪⎪≥⎩02()0b n a f n ∆>⎧⎪⎪->⎨⎪⎪≥⎩()0()0f m f n ≤⎧⎨≤⎩ Onm yxOnmyxOnm yxOnm yxOnm yx在区间(,)m n 内 有且只有一个实根()0()0f m f n >⎧⎨<⎩()0()0f m f n <⎧⎨>⎩在区间(,)m n 内 有两个不等实根02()0()0b m n a f m f n ∆>⎧⎪⎪<-<⎪⎨⎪>⎪>⎪⎩【题型归纳目录】 题型一:正负根问题 题型二:根在区间的分布问题 题型三:整数根问题 题型四:范围问题【典型例题】 题型一:正负根问题例1.(2022·河南·郑州市回民高级中学高一阶段练习)已知m 为实数,命题甲:关于x 的不等式240mx mx +-<的解集为R ;命题乙:关于x 的方程22200x mx m -++=有两个不相等的负实数根.若甲、乙至少有一个为真命题,求实数m 的取值范围为_______. 【答案】(20,0]-【解析】由命题甲:关于x 的不等式240mx mx +-<的解集为R , 当0m =时,不等式40-<恒成立;OnmyxOn m yxOn myx当0m ≠时,则满足2160m m m <⎧⎨∆=+<⎩,解得160m -<<, 综上可得160m -<≤.由命题乙:关于x 的方程22200x mx m -++=有两个不相等的负实数根, 则满足2121244(20)020200m m x x m x x m ⎧∆=-+>⎪+=<⎨⎪=+>⎩,整理得2200020m m m m ⎧-->⎪<⎨⎪>-⎩,所以45020m m m m <->⎧⎪<⎨⎪>-⎩或,解得204m -<<-.所以甲、乙至少有一个为真命题时,有160m -<≤或204m -<<-, 可得200m -<≤,即实数m 的取值范围为(20,0]-. 故答案为:(20,0]-.例2.(2022·全国·高一单元测试)关于x 的方程2210ax x ++=的实数根中有且只有一个负实数根的充要条件为____________. 【答案】0a ≤或1a =【解析】若方程2210ax x ++=有且仅有一个负实数根,则当0a =时,12x =-,符合题意. 当0a ≠时,方程2210ax x ++=有实数根,则440a ∆=-≥,解得1a ≤, 当1a =时,方程有且仅有一个负实数根1x =-, 当1a <且0a ≠时,若方程有且仅有一个负实数根,则10a<,即0a <. 所以当0a ≤或1a =时,关于x 的方程2210ax x ++=的实数根中有且仅有一个负实数根.综上,“关于x 的方程2210ax x ++=的实数根中有且仅有一个负实数根”的充要条件为“0a ≤或1a =”. 故答案为:0a ≤或1a =.例3.(2022·甘肃·兰化一中高一阶段练习)若一元二次方程2330kx kx k ++-=的两根都是负数,求k 的取值范围为___________. 【答案】125k ≤-或3k > 【解析】首先0k ≠,设方程2330kx kx k ++-=的两根为12,x x ,则1212120,00x x x x x x +<⎧<<⇔⎨>⎩,所以2Δ94(3)03030k k k k kk k⎧⎪=--≥⎪⎪-<⎨⎪-⎪>⎪⎩,又0k ≠,解得125k ≤-或3k >.故答案为:125k ≤-或3k >. 例4.(2022·全国·高一专题练习)已知关于x 的二次方程2(21)210m x mx m +-+-=有一正数根和一负数根,则实数m 的取值范围是_____. 【答案】112m -<<【解析】由题意知,二次方程有一正根和一负根, 得2101021m m m +≠⎧⎪-⎨<⎪+⎩,解得112m -<<.故答案为:112m -<<例5.(2022·河南·高一阶段练习)(1)若不等式210ax bx +-<的解集是113xx ⎧⎫-<<⎨⎬⎩⎭∣,求,a b 的值; (2)若31b a =--,且关于x 的方程210+-=ax bx 有两个不同的负根,求a 的取值范围. 【解析】(1)由题意可得1-和13是方程210+-=ax bx 的两个实根,则11,3111,3b a a ⎧-+=-⎪⎪⎨-⎪-⨯=⎪⎩解得3,2a b ==.(2)因为31b a =--,所以()23110ax a x -+-=,由题可知Δ0>,则1a <-或19a >-,由题意,方程有两个负根,即310,10,a a a +⎧<⎪⎪⎨-⎪>⎪⎩解得103-<<a .综上,实数a 的取值范围是109aa ⎧⎫-<<⎨⎬⎩⎭∣. 例6.(2022·辽宁·沈阳市第八十三中学高一阶段练习)已知1x 、2x 是一元二次方程24410kx kx k -++=的两个实数根.(1)若1x 、2x 均为正根,求实数k 的取值范围;(2)是否存在实数k ,使得()()12123222x x x x --=-成立?若存在,求出k 的值;若不能存在,请说明理由.【解析】(1)由题意,一元二次方程有两个正根1x 、2x 故20,(4)16(+1)0k k k k ≠∆=-≥,即0k ≤,且121210104x x k x x k +=>⎧⎪+⎨=>⎪⎩,解得:1k <-. (2)由题意,当0∆≥,即0k ≤时,有121211,4k x x x x k ++==()()2221212121212129(1)93222+252()92442k k x x x x x x x x x x x x k k ++--=-=+-=-=-=-解得:95k =,与0k ≤矛盾.故不存在实数k ,使得()()12123222x x x x --=-成立题型二:根在区间的分布问题例7.(2022·全国·高一专题练习)已知一元二次方程x 2+ax +1=0的一个根在(0,1)内,另一个根在(1,2)内,则实数a 的取值范围为________. 【答案】5(,2)2--【解析】设f (x )=x 2+ax +1,由题意知(0)10(1)20(2)520f f a f a =>⎧⎪=+<⎨⎪=+>⎩,解得-52<a <-2.故答案为:5(,2)2--.例8.(2022·全国·高一课时练习)已知关于x 的方程220x x a -+=. (1)当a 为何值时,方程的一个根大于1,另一个根小于1?(2)当a 为何值时,方程的一个根大于1-且小于1,另一个根大于2且小于3? (3)当a 为何值时,方程的两个根都大于0?【解析】(1)二次函数22y x x a =-+的图象是开口向上的抛物线,故方程220x x a -+=的一个根大于1,另一个根小于1, 则2120a -+<,解得1a <,所以a 的取值范围是{}1a a <.(2)方程220x x a -+=的一个根大于1-且小于1,另一个根大于2且小于3,作满足题意的二次函数22y x x a =-+的大致图象,由图知,120120440960a a a a ++>⎧⎪-+<⎪⎨-+<⎪⎪-+>⎩ , 解得30a -<<.所以a 的取值范围是{}30a a -<<.(3)方程220x x a -+=的两个根都大于0,则Δ4400a a =-≥⎧⎨>⎩,解得01a <≤,所以a 的取值范围是{}01a a <≤. 例9.(2022·全国·高一专题练习)已知关于x 的一元二次方程2220x ax a -++=,当a 为何值时,该方程:有不同的两根且两根在(1,3)内. 【解析】令2()22f x x ax a =-++,因为方程2220x ax a -++=有不同的两根且两根在(1,3)内, 所以213Δ44(2)0(1)30(3)1150a a a f a f a <<⎧⎪=-+>⎪⎨=->⎪⎪=->⎩ , 解得1125<<a , 故答案为:112,5⎛⎫⎪⎝⎭例10.(2022·江苏·高一专题练习)已知二次函数()2221R y x tx t t =-+-∈.(1)若该二次函数有两个互为相反数的零点,解不等式22210x tx t -+-≥;(2)若关于x 的方程22210x tx t -+-=的两个实根均大于2-且小于4,求实数t 的取值范围. 【解析】(1)设二次函数()2221y x tx t t =-+-∈R 的两个零点分别为1x ,2x ,由已知得120x x +=,而122x x t +=,所以20t =,故0=t ,不等式22210x tx t -+-≥即210x -≥,解得1≥x 或1x ≤-,故不等式的解集为{1x x ≥或}1≤-x .(2)因为方程22210x tx t -+-=的两个实根均大于2-且小于4,所以()()()()222222Δ2t 4t 102t 422t 2t 1042t 4t 10⎧=---≥⎪⎪-<<⎨⎪--⨯-+->⎪-⨯+->⎩,即2240244308150t t t t t ≥⎧⎪-<<⎪⎨++>⎪⎪-+>⎩,解得:13t -<<,即实数t 的取值范围为{}13t t -<<.例11.(2022·全国·高一单元测试)求实数m 的范围,使关于x 的方程()221?260.x m x m +-++= (1)有两个实根,且一个比2大,一个比2小; (2)有两个实根 αβ,,且满足014αβ<<<<; (3)至少有一个正根. 【答案】(1)1m <- (2)7554m -<<- (3)1m ≤- 【分析】设()()22126y f x x m x m ==+-++,一元二次方程根的分布主要从对称轴、判别式、端点值、开口方向这几个方面来确定. (1)设()()22126y f x x m x m ==+-++.依题意有()20f <,即()441260m m +-++<,得1m <-. (2)设()()22126y f x x m x m ==+-++.依题意有()()()02601450410140f m f m f m ⎧=+>⎪=+<⎨⎪=+>⎩,解得7554m -<<-.(3)设()()22126y f x x m x m ==+-++.方程至少有一个正根,则有三种可能:①有两个正根,此时可得()()Δ0002102f m ⎧⎪≥⎪⎪>⎨⎪-⎪>⎪-⎩,即153.311m m m m m ≤-≥⎧⎪>-∴-<≤-⎨⎪<⎩或.②有一个正根,一个负根,此时可得()00f <,得3m <-. ③有一个正根,另一根为0,此时可得()6203210m m m +=⎧∴=-⎨-<⎩,.综上所述,得1m ≤-.例12.(2022·上海市七宝中学高一阶段练习)方程()2271320x a x a a -++--=的一个根在区间()0,1上,另一个根在区间()1,2上,则实数a 的取值范围为___________. 【答案】()()2,13,4--【解析】令()()227132f x x a x a a =-++--,因为程()2271320x a x a a -++--=的一个根在区间()0,1上,另一个根在区间()1,2上,所以()()()001020f f f ⎧>⎪<⎨⎪>⎩,即()22220713202821320a a a a a a a a ⎧-->⎪--+--<⎨⎪-++-->⎩,解得21a -<<-或34a <<,所以实数a 的取值范围为()()2,13,4--. 故答案为:()()2,13,4--.例13.(2022·全国·高一专题练习)关于x 的方程()2140x a x --+=在区间[]1,3内有两个不等实根,则实数a 的取值范围是_____.【答案】16(5,]3【解析】关于x 的方程()2140x a x --+=在区间[]1,3内有两个不等实根,令()()214f x x a x =--+,则有()()()2Δ1160113216031630a a f a f a ⎧=-->⎪-⎪<<⎪⎨⎪=-≥⎪=-≥⎪⎩,解得1653a <≤, 所以实数a 的取值范围是16(5,]3. 故答案为:16(5,]3例14.(2022·全国·高一单元测试)方程()2250x a x a --+-=的两根都大于2,则实数a 的取值范围是_____. 【答案】54a -<≤-【解析】由题意,方程()2250x a x a +=---的两根都大于2,令()()225f x x a x a =+---,可得()020222f a⎧⎪≥⎪>⎨⎪-⎪>⎩,即2165024a a a ⎧≥⎪+>⎨⎪->⎩,解得54a <≤--.故答案为:54a -<≤-.例15.(2022·全国·高一专题练习)已知关于x 的方程220ax x ++=的两个实根一个小于0,另一个大于1,则实数a 的取值范围是_____. 【答案】3,0【解析】显然0a ≠,关于x 的方程220ax x ++=对应的二次函数()22f x ax x =++ 当0a >时,二次函数()22f x ax x =++的图象开口向上,因为220ax x ++=的两个实根一个小于0,另一个大于1等价于二次函()22f x ax x =++的图象与x 轴的两个零点一个小于0,另一个大于1,所以()()0010f f ⎧<⎪⎨<⎪⎩,即2030a <⎧⎨+<⎩,解得a ∈∅;②当0a <时,二次函数()22f x ax x =++的图象开口向下,因为220ax x ++=的两个实根一个小于0,另一个大于1等价于二次函()22f x ax x =++的图象与x 轴的两个零点一个小于0,另一个大于1,所以()()0010f f ⎧>⎪⎨>⎪⎩,即2030a >⎧⎨+>⎩,解得30a -<<.;综上所述,实数a 的范围是3,0.故答案为:3,0.例16.(2022·全国·高一专题练习)已知方程()()22110x a x a a -+++=的两根分别在区间()0,1,()1,3之内,则实数a 的取值范围为______. 【答案】()0,1.【解析】方程()()()()2211010x a x a a x a x a ⎡⎤+++=⇒--+=⎣⎦-∴方程两根为12,1x a x a ==+,若要满足题意,则01113a a <<⎧⎨<+<⎩,解得01a <<,故答案为:()0,1.例17.(2022·上海·高一专题练习)方程2240x ax -+=的两根均大于1,则实数a 的取值范围是_______【答案】5[2,)2【解析】2240x ax -+=的两个根都大于121520Δ4160a a a >⎧⎪∴->⎨⎪=-≥⎩,解得522a ≤<可求得实数a 的取值范围为5[2,)2故答案为:5[2,)2例18.(2022·湖北·华中师大一附中高一开学考试)关于x 的方程()2290ax a x a +++=有两个不相等的实数根12,x x ,且121x x ,那么a 的取值范围是( ) A .2275a -<<B .25a > C .27a <-D .2011a -<< 【答案】D【解析】当0a =时,()2290ax a x a +++=即为20x =,不符合题意;故0a ≠,()2290ax a x a +++=即为22190x x a ⎛⎫+++= ⎪⎝⎭,令2219y x x a ⎛⎫=+++ ⎪⎝⎭,由于关于x 的方程()2290ax a x a +++=有两个不相等的实数根12,x x ,且121x x , 则()229y ax a x a =+++与x 轴有两个交点,且分布在1的两侧,故1x =时,0y <,即211190a ⎛⎫++⨯+< ⎪⎝⎭,解得211a <-,故2011a -<<,故选:D例19.(2022·全国·高一课时练习)关于x 的方程()22210x m x m +-+-=恰有一根在区间()0,1内,则实数m 的取值范围是( ) A .13,22⎡⎤⎢⎥⎣⎦B .12,23⎛⎤ ⎥⎝⎦C .1,22⎡⎫⎪⎢⎣⎭D .{}12,6723⎛⎤⋃- ⎥⎝⎦【答案】D【解析】方程2(2)210x m x m +-+-=对应的二次函数设为:()2(2)21f x x m x m =+-+-因为方程2(2)210x m x m +-+-=恰有一根属于(0,1),则需要满足: ①()()010f f ⋅<,()()21320m m --<,解得:1223m <<;②函数()f x 刚好经过点()0,0或者()1,0,另一个零点属于(0,1),把点()0,0代入()2(2)21f x x m x m =+-+-,解得:12m =, 此时方程为2302x x -=,两根为0,32,而()30,12∉,不合题意,舍去把点()1,0代入()2(2)21f x x m x m =+-+-,解得:23m =, 此时方程为23410x x -+=,两根为1,13,而()10,13∈,故符合题意;③函数与x 轴只有一个交点,横坐标属于(0,1), ()2(2)4210m m ∆=---=,解得67m =±当67m =+2(2)210x m x m +-+-=的根为27-- 若627m =-2(2)210x m x m +-+-=72,符合题意综上:实数m 的取值范围为{}12,6723⎛⎤⋃- ⎥⎝⎦故选:D题型三:整数根问题例20.(2022·上海市实验学校高一开学考试)已知12,x x 是一元二次方程24410kx kx k -++=的两个实数根.(1)是否存在实数k ,使得()()12123222x x x x --=-成立?若存在,求出k 的值;若不存在,请说明理由;(2)求使12212x x x x +-的值为整数的实数k 的整数值. 【解析】(1)假设存在实数k ,使得()()12123222x x x x --=-成立,一元二次方程24410kx kx k -++=的两个实数根,()2400Δ(4)441160k k k k k k ≠⎧∴⇒<⎨=--⋅+=-⎩,(不要忽略判别式的要求), 由韦达定理得1212114x x k x x k +=⎧⎪+⎨=⎪⎩,()()()()2221212121212129322252942k x x x x x x x x x x x x k +∴--=+-=+-=-=-, 95k ⇒=但0k <,∴不存在实数k ,使得()()12123222x x x x --=-成立.(2)()22212121221121244224411x x x x x x k x x x x x x k k +++-=-=-=-=-++,∴要使其值是整数,只需要1k +能被4整除,故1124k +=±±±,,,即021335k =---,,,,,, 0k <,235k ∴=---,,.例21.(2022·上海·高三专题练习)已知,a Z ∈关于x 的一元二次不等式260x x a -+≤的解集中有且仅有3个整数,则所有符合条件的a 的值之和是( ) A .13 B .18C .21D .26【答案】C【解析】设2()6f x x x a =-+,其图象为开口向上,对称轴为3x =的抛物线, 根据题意可得,3640a ∆=->,解得9a <,因为()0f x ≤解集中有且仅有3个整数,结合二次函数的对称性可得(2)0(1)0f f ≤⎧⎨>⎩,即4120160a a -+≤⎧⎨-+>⎩, 解得58a <≤,又,a Z ∈所以a =6,7,8,所以符合题意的a 的值之和6+7+8=21. 故选:C例22.(多选题)(2022·全国·高一课时练习)已知a ∈Z ,关于x 的一元二次不等式x 2-6x +a ≤0的解集中有且仅有3个整数,则a 的值可以是( ) A .5 B .6 C .7 D .9【答案】BC【解析】设()26f x x x a =-+,函数图象开口向上,且对称轴为3x =,因此关于x 的一元二次不等式x 2-6x +a ≤0的解集中有且仅有3个整数时,需满足()()2010f f ⎧≤⎪⎨>⎪⎩,即2226201610a a ⎧-⨯+≤⎨-⨯+>⎩,解得58a <≤,又因为a ∈Z ,所以6a =或7或8,故选:BC.例23.(2022·全国·高一专题练习)若方程()22460x kx x --+=有两个不相等的实根,则k 可取的最大整数值是______. 【答案】1【解析】方程化为()221860k x x --+=,由()Δ6424210k =-->,12k ≠解得116k <, 所以k 最大整数值是1. 故答案为:1. 题型四:范围问题例24.(2022·上海·高一专题练习)已知t 是实数,若a ,b 是关于x 的一元二次方程2210x x t -+-=的两个非负实根,则()()2211a b --的最小值是___________.【答案】3-【解析】a ,b 是关于x 的一元二次方程2210x x t -+-=的两个非负实根, ∴可得2a b +=,10ab t =-≥,1t ∴≥,又()4410t ∆=--≥ ,可得2t ≤,12t ∴≤≤,又()()()()()()222222211121a b ab a b ab a b ab --=-++=-+++()()()()2221114211a b t t ∴--=--+-+,24t =- ,又12t ≤≤, 2340t ∴-≤-≤,故答案为:3-.例25.(2022·吉林省实验中学高一阶段练习)设方程240x mx m -+=的两实根分别为12,x x . (1)当1m =时,求1211+x x 的值; (2)若120,0x x >>,求实数m 的取值范围及124x x +的最小值.【解析】(1)当1m =时,方程为2410x x -+=,2(4)4120∆=--=>,所以12124,1x x x x +=⋅=,122112114x x x x x x ∴+⋅+==. (2)因为240x mx m -+=两根120,0x x >>,所以21212Δ1640400m m x x m x x m ⎧=-≥⎪+=>⎨⎪⋅=>⎩,解得14m ≥.因为12124x x x x +=,120,0x x >>,所以12114x x +=,所以21211212121212441111194(4)()(5)524444x x x x x x x x x x x x x x ⎛+=++=++≥+⨯= ⎝, 当且仅当21124x x x x =,即1233,48x x ==时等号成立,此时91324m =>符合题意, 124x x ∴+的最小值为94. 例26.(2022·北京海淀·高一期末)已知函数()22f x x bx c =++(b ,c 为实数),()()1012f f -=.若方程()0f x =有两个正实数根1x ,2x ,则1211+x x 的最小值是( ) A .4 B .2C .1D .12【答案】B【解析】因为函数()22f x x bx c =++(b ,c 为实数),()()1012f f -=,所以1012200288b c b c +=++-, 解得4b =-,所以()224f x x x c -+=,因为方程()0f x =有两个正实数根1x ,2x ,所以()Δ168000c f c =-≥⎧⎨=>⎩,解得02c <≤,所以121212112422x x c x x x x c =++==≥, 当c =2时,等号成立,所以其最小值是2, 故选:B例27.(2022·江苏·高一)已知关于x 的方程230x kx k -++=有两个正根,那么两个根的倒数和最小值是( ) A .-2B .23C .89D .1【答案】B【解析】由题意可得∆2()4(3)0k k =--+, 解得6k 或2k ≤-,设两个为1x ,2x ,由两根为正根可得12120·30x x k x x k +=>⎧⎨=+>⎩,解得0k >, 综上知,6k . 故两个根的倒数和为12121211x x x x x x ++= 1331k k k==++,6k ,∴1106k <,3102k <, 故33112k <+, ∴12331k+,故两个根的倒数和的最小值是23. 故选:B例28.(2022·上海·华师大二附中高一期中)已知实数a b <,关于x 的不等式()210x a b x ab -+++<的解集为()12,x x ,则实数a 、b 、1x 、2x 从小到大的排列是( ) A .12a x x b <<< B .12x a b x <<< C .12a x b x <<< D .12x a x b <<<【答案】A【解析】由题可得:12x x a b +=+,121x x ab =+.由a b <,12x x <,设1x a m =+,则2x b m =-.所以212()()()1a m b m ab m b a m ab x x =+-=+--=+,所以2()1m b a m --=,21m m b a+=-.又a b <,所以0b a ->,所以0m >.故1x a >,2x b <.又12x x <,故12a x x b <<<. 故选:A.例29.(2022·福建厦门·高一期末)已知函数()()11f x x x a =-⋅--,a R ∈. (1)若0a =,解不等式()1f x <;(2)若函数()f x 恰有三个零点1x ,2x ,3x ,求123111x x x ++的取值范围.【解析】(1)当0a =时,原不等式可化为()120x x -⋅-<…①.(ⅰ)当0x ≥时,①式化为220x x --<,解得12x -<<,所以02x ≤<; (ⅰ)当0x <时,①式化为220x x -+>,解得x ∈R ,所以0x <. 综上,原不等式的解集为(),2-∞.(2)依题意,()()()2211,11,x a x a x af x x a x a x a ⎧-++--<⎪=⎨-++-≥⎪⎩.因为()10f a =-<,且二次函数()211y x a x a =-++-开口向上,所以当x a ≥时,函数()f x 有且仅有一个零点. 所以x a <时,函数()f x 恰有两个零点.所以()()()21,21410,10.a a a a f a +⎧<⎪⎪⎪=+-+>⎨⎪=-<⎪⎪⎩解得3a >.不妨设123x x x <<,所以1x ,2x 是方程()2110x a x a -++--=的两相异实根,则12121,1x x a x x a +=+⎧⎨=+⎩,所以121212111x x x x x x ++==.因为3x 是方程()2110x a x a -++-=的根,且312a x +>, 由求根公式得()23114a a x ++-+=因为函数()()2114a a g a ++-+在()3,+∞上单调递增,所以()3322x g >=31201x <<123111x x x ++.所以a 的取值范围是21,2⎛ ⎝⎭.【过关测试】一、单选题1.(2022·江苏·高一专题练习)已知p :a m <(其中R a ∈,m ∈Z ),q :关于x 的一元二次方程2210ax x ++=有一正一负两个根.若p 是q 的充分不必要条件,则m 的最大值为( ) A .1 B .0C .1-D .2【答案】C【解析】因为2210ax x ++=有一正一负两个根,所以224010a a ⎧∆=->⎪⎨<⎪⎩,解得0a <. 因为p 是q 的充分不必要条件,所以0m <,且m ∈Z ,则m 的最大值为1-. 故选:C2.(2022·江苏·高一专题练习)已知方程2(2)50x m x m +-+-=有两个不相等的实数根,且两个实数根都大于2,则实数m 的取值范围是( ) A .(5,4)(4,)--+∞ B .(5,)-+∞ C .(5,4)-- D .(4,2)(4,)--+∞【答案】C【解析】令()2(2)5m f x m x x =+-+-由题可知:()()()()2Δ02450442222242250520m m m m m m m m m m f >⎧⎧--⨯->><-⎧⎪⎪-⎪⎪>⇒<-⇒<-⎨⎨⎨⎪⎪⎪+-⨯+->>-⎩>⎩⎪⎩或 则54m -<<-,即(5,4)m ∈-- 故选:C3.(2021·北京·北师大实验中学高一期中)设方程2610x x -+=的两个不等实根分别为12,x x ,则12||x x -=( ) A .3 B .6C .22D .42【答案】D【解析】2610x x -+=,364320∆=-=>,故121261x x x x +=⎧⎨=⎩,()()2212121212||43642x x x x x x x x --=+--=故选:D.4.(2021·江苏·高一课时练习)设a 为实数,若方程220x ax a -+=在区间(1,1)-上有两个不相等的实数解,则a 的取值范围是( ). A .(,0)(1,)-∞⋃+∞ B .(1,0)-C .1,03⎛⎫- ⎪⎝⎭D .1,0(1,)3⎛⎫-+∞ ⎪⎝⎭【答案】C【解析】令2()2g x x ax a =-+,由方程220x ax a -+=在区间(1,1)-上有两个不相等的实数解可得244011(1)0(1)0a a a g g ⎧∆=->⎪-<<⎪⎨->⎪⎪>⎩,即011131a a a a <⎧⎪-<<⎪⎪⎨>-⎪⎪<⎪⎩或111131a a a a >⎧⎪-<<⎪⎪⎨>-⎪⎪<⎪⎩, 解得103-<<a , 故选:C5.(2022·全国·高一课时练习)一元二次方程()22100ax x a ++=≠有一个正实数根和一个负实数根的一个充分不必要条件是( ) A .0a < B .0a > C .1a <- D .2a <【答案】C【解析】由题意,不妨设2()21f x ax x =++,因为(0)10=>f ,且()22100ax x a ++=≠有一个正实数根和一个负实数根,所以2()21f x ax x =++的图像开口向下,即0a <, 故对于选项ABCD ,只有C 选项:1a <-是0a <的充分不必要条件. 故选:C.6.(2021·四川·树德中学高一阶段练习)设集合{}2320A x x x =-+<,集合{}2210B x ax x =--=,若A B ⋂≠∅,则实数a 的取值范围是( ) A .34,43⎡⎫⎪⎢⎣⎭B .5,34⎛⎫ ⎪⎝⎭C .3,4⎡⎫+∞⎪⎢⎣⎭D .(1,)+∞【答案】B【解析】由题意,{}2320{|12}A x x x x x =-+<=<<若A B ⋂≠∅,即方程2210ax x --=存在根在区间(1,2)(1)若102102a x x =∴--=∴=-,不成立;(2)若0a ≠,由于0x =不为方程的根,故0x ≠,则222221211210(1)1x ax x a x x x x+--=⇔==+=+- 由于21115(1,2)(,1)(1)1(,3)24x x x ∈∴∈∴+-∈综上,实数a 的取值范围是5,34⎛⎫⎪⎝⎭故选:B7.(2022·全国·高一课时练习)要使关于x 的方程()22120x a x a +-+-=的一根比1大且另一根比1小,则实数a 的取值范围是( ) A .{}12a a -<< B .{}21a a -<< C .{}2a a <- D .{}1a a >【答案】B【解析】由题意可得()2211220a a a a +-+-=+-<,解得21a -<<.故选:B.8.(2021·甘肃·天水市第一中学高一阶段练习)已知一元二次方程2(1)10()x m x m Z +++=∈有两个实数根1x ,2x ,且12013x x <<<<,则m 的值为( )A .4-B .5-C .6-D .7-【答案】A【解析】因为元二次方程2(1)10()x m x m Z +++=∈有两个实数根1x ,2x ,且12013x x <<<<,令2()(1)1f x x m x =+++,则由题意可得(0)0(1)0(3)0f f f >⎧⎪<⎨⎪>⎩,即10,30,1330,m m >⎧⎪+<⎨⎪+>⎩解得1333m -<<-,又m Z ∈,可得4m =-. 故选:A 二、多选题9.(2022·江苏南通·高一开学考试)已知不等式20(0)x ax b a ++>>的解集是{}|x x d ≠,则下列四个结论中正确的是( ). A .24a b =B .若不等式2+x ax b c +<的解集为(3,1)-,则7a b c ++=C .若不等式20x ax b +-<的解集为12(,)x x ,则120x x >D .若不等式2x ax b c 的解集为12(,)x x ,且12||4x x -=,则4c = 【答案】ABD【解析】由题意,不等式20(0)x ax b a ++>>的解集是{}|x x d ≠, 所以240a b ∆=-=,24a b ∴=,所以A 正确;对于B :2+x ax b c +<变形为2+0x ax b c +-<,其解集为(3,1)-,所以231? 314? a b c a b -+=-⎧⎪-⨯=-⎨⎪=⎩,得214a b c =⎧⎪=⎨⎪=⎩,故7a b c ++=成立,所以B 正确;对于C :若不等式20x ax b +-<的解集为12(,)x x ,由韦达定理知:21204a x xb =-=-<,所以C 错误; 对于D :若不等式2x ax bc 的解集为12(,)x x ,即20x ax b c 的解集为12(,)x x ,由韦达定理知:21212,4a x x a x x b c c +=-=-=-, 则222121212||()44()244a x x x x x x a c c -+---=,解得4c =, 所以D 正确.故选:D.10.(2021·江苏·海安高级中学高一阶段练习)一元二次方程240x x m -+=有正数根的充分不必要条件是( ) A .4m =B .5m =C .1m =D .12=-m【答案】ACD【解析】设()24f x x x m =-+,则二次函数()f x 的图象的对称轴为2x =. 当4m =时,方程即()224420x x x -+=-=,求得2x =,满足方程有正根,但由方程240x x m -+=有正数根,可得()240f m =-≤,即4m ≤,故4m =是方程240x x m -+=有正数根的充分不必要条件,故A 满足条件;当5m =时,方程即()224521x x x -+=-=-,求得x ∈∅,不满足方程有正实数根,故5m =不是方程240x x m -+=有正数根的充分条件,故排除B .当1m =时,方程即()224123x x x -+=-=,求得23=x但由方程240x x m -+=有正数根,可得()240f m =-≤,即4m ≤,故1m =方程240x x m -+=有正数根的充分不必要条件,故C 满足条件;当12=-m 时,方程即24120x x --=,求得2x =-,或6x =,满足方程有正根,但由方程240x x m -+=有正数根,可得()240f m =-≤,即4m ≤,故12=-m 方程240x x m -+=有正数根的充分不必要条件,故D 满足条件,故选:ACD .11.(2022·湖南湖南·高一期末)若方程220x x λ++=在区间()1,0-上有实数根,则实数λ的取值可以是( ) A .3- B .18 C .14 D .1【答案】BC【解析】由题意22x x λ=--在(1,0)-上有解.∵(1,0)x ∈-,∴222(1)1(0,1)x x x λ=--=-++∈,故选:BC .12.(2021·全国·高一专题练习)已知关于x 的方程()230x m x m +-+=,则下列结论中正确的是( )A .方程()230x m x m +-+=有一个正根一个负根的充要条件是{}0m m m ∈<B .方程()230x m x m +-+=有两个正实数根的充要条件是{}01m m m ∈<≤C .方程()230x m x m +-+=无实数根的充要条件是{}1m m m ∈>D .当m =3时,方程()230x m x m +-+=的两个实数根之和为0【答案】AB【解析】对A ,当0x =时,函数2(3)y x m x m =+-+的值为m ,由二次函数的图象知,方程有一正一负根的充要条件是{}|0m m m ∈<,故A 正确;对B ,若方程()230x m x m +-+=有两个正实数根1x ,2x ,即()2121234030,0,m m x x m x x m ⎧∆=--≥⎪+=->⎨⎪=>⎩解得:01m <≤,故B 正确;对C ,方程()230x m x m +-+=无实数根,即()2340m m ∆=--<,解得:19m <<,方程()230x m x m +-+=无实数根的充要条件是{}19m m m ∈<<,故C 错误; 对D ,当3m =时,方程为230x +=,无实数根,故D 错误.故答案为:AB.13.(2021·江苏·高一专题练习)已知一元二次方程()()21102x m x m Z +++=∈有两个实数根12,x x ,且12013x x <<<<,则m 的值为( )A .-2B .-3C .-4D .-5【答案】BC 【解析】设()()2112f x x m x =+++, 由12013x x <<<<,可得()()()()10200110110230193102f fm f m ⎧>⎪⎧>⎪⎪⎪<⇒+++<⎨⎨⎪⎪>⎩⎪+++>⎪⎩, 解得:25562m -<<-, 又因为m Z ∈,得3m =-或4m =-,故选:BC.三、填空题14.(2022·安徽省蚌埠第三中学高一开学考试)关于x 的方程210x ax ++=的一根大于1,一根小于1,则a 的取值范围是:__________________.【答案】a <-2【解析】∵关于x 的方程 210x ax ++=的一根大于1,另一根小于1,令2()1=++f x x ax ,则(1)20f a =+<,求得2a <- ,故答案为:2a <-15.(2021·北京师大附中高一期中)若关于x 的一元二次方程2240x ax -+=有两个实根,且一个实根小于1,另一个实根大于2,则实数a 的取值范围是________.【答案】(52,+∞) 【解析】设2()24f x x ax =-+,由题意2Δ4160(1)1240(2)4440a f a f a ⎧=->⎪=-+<⎨⎪=-+<⎩,解得52a >, 故答案为:5(,)2+∞. 16.(2021·上海·复旦附中高一期中)若关于x 的方程220x kx -+=的一根大于-1,另一根小于-1,则实数k 的取值范围为______.【答案】(),3-∞-【解析】由题意,关于x 的方程220x kx -+=的一根大于-1,另一根小于-1,设()22f x x kx =-+,根据二次函数的性质,可得()130f k -=+<,解得3k <-, 所以实数k 的取值范围为(),3-∞-.故答案为:(),3-∞-.17.(2020·上海·高一专题练习)已知集合()(){}2|320,A x x x x x R =-+-≤∈,{}2|120,B x x ax x R =--≤∈,若A B ⊆,则实数a 的取值范围是______________.【答案】[]1,1- 【解析】由()()2320x x x -+-≤,得 23020x x x ⎧-≥⎪⎨+-≤⎪⎩或 23020x x x ⎧-≤⎪⎨+-≥⎪⎩,解得 13x ≤≤,所以集合{|31A x x =-≤≤- 或}13x ≤≤,因为A B ⊆,令()212f x x ax =--,则 ()()3030f f ⎧-≤⎪⎨≤⎪⎩,即 9312093120a a +-≤⎧⎨--≤⎩,解得 11a -≤≤,所以实数a 的取值范围是[]1,1-故答案为:[]1,1-四、解答题18.(2022·全国·高一期中)命题:p 关于x 的方程20x x m ++=有两个相异负根;命题():0,q x ∃∈+∞,2390x mx -+<.(1)若命题q 为假命题,求实数m 的取值范围;(2)若这两个命题有且仅有一个为真命题,求实数m 的取值范围.【解析】(1)若命题q 为假命题,则对()0,x ∀∈+∞,2390x mx -+≥为真命题; 239mx x ∴≤+,即93m x x ≤+; 9926x x x x +≥⋅=(当且仅当9x x =,即3x =时取等号),36m ∴≤,解得:2m ≤,∴实数m 的取值范围为(],2-∞.(2)由(1)知:若命题q 为真命题,则2m >;若命题p 为真命题,则Δ1400m m =->⎧⎨>⎩,解得:104m <<;若p 真q 假,则104m <<;若p 假q 真,则2m >;综上所述:实数m 的取值范围为()10,2,4⎛⎫+∞ ⎪⎝⎭.19.(2022·湖南·高一课时练习)若一元二次方程2570x x a --=的一个根在区间()1,0-内,另一个根在区间()1,2内,求实数a 的取值范围.【解析】令2()57f x x x a =--, 则根据题意得(1)057012(0)000(1)0202(2)0201406f a a f a a f a a f a a ->⇒+->⇒<⎧⎪<⇒-⇒⎪⎨<⇒--⇒-⎪⎪>⇒-->⇒<⎩, ∴06a <<.故实数a 的取值范围(0,6).20.(2021·辽宁·昌图县第一高级中学高一期中)1.已知()()2213f x x a x =+-+.(1)如果方程()0f x =在()0,3有两个根,求实数a 的取值范围;(2)如果[]1,2x ∃∈,()0f x >成立,求实数a 的取值范围.【解析】(1)()()2213f x x a x =+-+的对称轴为1x a =-要想方程()0f x =在()0,3有两个根,需要满足()()()100001330f a f a f ⎧-<⎪>⎪⎨<-<⎪⎪>⎩解得:(1,13a ∈-(2)[]1,2x ∃∈,()22130x a x +-+>成立, 即3122x a x ⎛⎫->-+ ⎪⎝⎭在[]1,2x ∈上有解,只需1a -大于()322x g x x ⎛⎫=-+ ⎪⎝⎭的最小值,其中()322x g x x ⎛⎫=-+ ⎪⎝⎭为对勾函数,在3x ⎡∈⎣上单调递增,在)3,2x ∈上单调递减,又()131222g ⎛⎫=-+=- ⎪⎝⎭,()2372244g ⎛⎫=-+=- ⎪⎝⎭,所以最小值为()12g =- 故12a ->-,解得:1a >-,实数a 的取值范围为()1,-+∞21.(2021·上海市七宝中学高一阶段练习)设二次函数()2f x ax bx c =++,其中R a b c ∈、、.(1)若()21,94b a c a =+=+,且关于x 的不等式()28200-+<x x f x 的解集为R ,求a 的取值范围; (2)若Z a b c ∈、、,且()()01f f 、均为奇数,求证:方程()0f x =无整数根;(3)若21,21,a b k c k ==-=,当方程()0f x =有两个大于1的不等根时求k 的取值范围.【解析】(1)∵()22820440x x x -+=-+>∴()()221940f x ax a x a =++++<在R 上恒成立∵0a ≠,则()()20Δ414940a a a a <⎧⎪⎨=+-+<⎪⎩,解得12a <-综上所述:a 的取值范围为1,2⎛⎫-∞- ⎪⎝⎭.(2)∵()()0,1f c f a b c ==++,则c 为奇数,a b +为偶数 当Z x ∈时,则有:1.若a b 、均为偶数时,则2ax bx +为偶数∴()20f x ax bx c =++≠,即方程()0f x =无整数根2.若a b 、均为奇数时,则有①若x 为偶数时,则2ax bx +为偶数∴()20f x ax bx c =++≠,即方程()0f x =无整数根②若x 为奇数时,则()2ax bx x ax b +=+为偶数∴()20f x ax bx c =++≠,即方程()0f x =无整数根综上所述:方程()0f x =无整数根(3)()()2221f x x k x k =+-+由题意可得()()222Δ21402112120k k k f k k ⎧=-->⎪-⎪->⎨⎪=+>⎪⎩,解得2k<-则k 的取值范围为(),2∞--.。
二次函数实根分布总结

m 6或m 2 m6 解不等式组,得 m 2 m 2 4m 12 m 2 4m 4
例2: (1)关于x的方程2kx 2 2 x 3k 2 0有两实根, 一个根小于1,另一个根大于1,求实数k的范围.
解:( 1) 令f (x)= 2kx 2 x 3k 2, k 0
解: 寻求等价条件
(1) m 4(3 m) 0 , m 4m 12 0
2 2
得: m 6或m 2.
m 6或m 2 0 (2) x1 x2 0 得 m 0 得:m 6 x x 0 m 3 0 1 2
(1)方程两根都小于k (k为常数)
0 b k 2a f (k ) 0
(2)方程两根都大于k (k为常数)
0 b k 2a f (k ) 0
(3) x1 k x2 (k为常数)
f (k ) 0
(4)k1 x1 x2 k2 (k1 , k2为常数)
(8)方程有两个不相等的正根
0 可用韦达定理表达式来书写条件 x x 0 1 2 x x 0 1 2
也可
0 b 0 2a f (0) 0
f ( x)
0
x1
x2
x
(9)方程有两个不相等的负根
可用韦达定理表达式来书写条件
也可
二次方程根分布问题总结
一.函数零点
一般地,对于函数y=f(x),我们把使f(x)=0 的实数x就做函数y=f(x)的零点. 由此得出以下三个结论等价:
方程f(x)=0有实根 函数y=f(x)的图象与x轴有交点 函数y=f(x)有零点
最新一元二次方程根的分布情况归纳总结(.07.22)

一元二次方程02=++c bx ax 根的分布情况设方程()200ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为()20f x ax bx c =++=,方程的根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件)表一:(两根与0的大小比较即根的正负情况)k k k根在区间上的分布还有一种情况:两根分别在区间()n m ,外,即在区间两侧12,x m x n <>,(图形分别如下)需满足的条件是(1)0a >时,()()00f m f n <⎧⎪⎨<⎪⎩; (2)0a <时,()()0f m f n >⎧⎪⎨>⎪⎩对以上的根的分布表中一些特殊情况作说明: (1)两根有且仅有一根在()n m ,内有以下特殊情况:1︒ 若()0f m =或()0f n =,则此时()()0f m f n <不成立,但对于这种情况是知道了方程有一根为m 或n ,可以求出另外一根,然后可以根据另一根在区间()n m ,内,从而可以求出参数的值。
如方程()2220mx m x -++=在区间()1,3上有一根,因为()10f =,所以()()()22212mx m x x mx -++=--,另一根为2m ,由213m<<得223m <<即为所求; 2︒ 方程有且只有一根,且这个根在区间()n m ,内,即0∆=,此时由0∆=可以求出参数的值,然后再将参数的值带入方程,求出相应的根,检验根是否在给定的区间内,如若不在,舍去相应的参数。
如方程24260x mx m -++=有且一根在区间()3,0-内,求m 的取值范围。
分析:①由()()300f f -<即()()141530m m ++<得出15314m -<<-;②由0∆=即()2164260m m -+=得出1m =-或32m =,当1m =-时,根()23,0x =-∈-,即1m =-满足题意;当32m =时,根()33,0x =∉-,故32m =不满足题意;综上分析,得出15314m -<<-或1m =-函数与方程思想:若y =()f x 与x 轴有交点0x ⇔f (0x )=0 若y =f (x )与y =g (x )有交点(0x ,0y )⇔()f x =()g x 有解0x 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次方程根的分布与二次函数在闭区间上的最值归纳1、一元二次方程02=++c bx ax 根的分布情况 设方程()200ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为()20f x ax bx c =++=,方程的根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件)表一:(两根与0的大小比较即根的正负情况)k k k根在区间上的分布还有一种情况:两根分别在区间()n m ,外,即在区间两侧12,x m x n <>,(图形分别如下)需满足的条件是(1)0a >时,()()00f m f n <⎧⎪⎨<⎪⎩; (2)0a <时,()()0f m f n >⎧⎪⎨>⎪⎩对以上的根的分布表中一些特殊情况作说明: (1)两根有且仅有一根在()n m ,内有以下特殊情况:1︒ 若()0f m =或()0f n =,则此时()()0f m f n <不成立,但对于这种情况是知道了方程有一根为m 或n ,可以求出另外一根,然后可以根据另一根在区间()n m ,内,从而可以求出参数的值。
如方程()2220mx m x -++=在区间()1,3上有一根,因为()10f =,所以()()()22212mx m x x mx -++=--,另一根为2m,由213m <<得223m <<即为所求;2︒ 方程有且只有一根,且这个根在区间()n m ,内,即0∆=,此时由0∆=可以求出参数的值,然后再将参数的值带入方程,求出相应的根,检验根是否在给定的区间内,如若不在,舍去相应的参数。
如方程24260x mx m -++=有且一根在区间()3,0-内,求m 的取值范围。
分析:①由()()300f f -<即()()141530m m ++<得出15314m -<<-;②由0∆=即()2164260m m -+=得出1m =-或32m =,当1m =-时,根()23,0x =-∈-,即1m =-满足题意;当32m =时,根()33,0x =∉-,故32m =不满足题意;综上分析,得出15314m -<<-或1m =-根的分布练习题例1、已知二次方程()()221210m x mx m +-+-=有一正根和一负根,求实数m 的取值范围。
解:由 ()()2100m f +< 即 ()()2110m m +-<,从而得112m -<<即为所求的范围。
例2、已知方程()2210x m x m -++=有两个不等正实根,求实数m 的取值范围。
解:由()()0102200m f ∆>⎧⎪-+⎪->⎨⎪>⎪⎩⇒ ()218010m m m m ⎧+->⎪>-⎨⎪>⎩ ⇒330m m m ⎧<->+⎪⎨>⎪⎩⇒03m <<-3m >+例3、已知二次函数()()()222433y m x m x m =+-+++与x 轴有两个交点,一个大于1,一个小于1,求实数m的取值范围。
解:由 ()()210m f +< 即 ()()2210m m ++< ⇒ 122m -<<即为所求的范围。
例4、已知二次方程()22340mx m x +-+=只有一个正根且这个根小于1,求实数m 的取值范围。
解:由题意有方程在区间()0,1上只有一个正根,则()()010f f < ⇒ ()4310m +< ⇒ 13m <-即为所求范围。
(注:本题对于可能出现的特殊情况方程有且只有一根且这个根在()0,1内,由0∆=计算检验,均不复合题意,计算量稍大)例1、当关于x 的方程的根满足下列条件时,求实数a 的取值范围:(1)方程2270x ax a -+-=的两个根一个大于2,另一个小于2;(2)方程227(13)20x a x a a -++--=的一个根在区间(0,1)上,另一根在区间(1,2)上;(3)方程022=++ax x 的两根都小于0;变题:方程022=++ax x 的两根都小于-1.(4)方程22(4)2530x a x a a -+-++=的两根都在区间[1,3]-上;(5)方程042=+-ax x 在区间(-1,1)上有且只有一解;例2、已知方程042=+-mx x 在区间[-1,1]上有解,求实数m 的取值范围.例3、已知函数f (x )1)3(2+-+=x m mx 的图像与x 轴的交点至少有一个在原点右侧,求实数m 的取值范围.检测反馈:1.若二次函数2()(1)5f x x a x =--+在区间1(,1)2上是增函数,则(2)f 的取值范围是___________. 2.若α、β是关于x 的方程06k kx 2x 2=++-的两个实根, 则22)1()1(-β+-α的最小值为 .3.若关于x 的方程2(2)210x m x m +-+-=只有一根在(0,1)内,则m ∈_ _. 4.对于关于x 的方程x 2+(2m -1)x+4 -2m=0 求满足下列条件的m 的取值范围:(1)有两个负根 (2) 两个根都小于-1 (3)一个根大于2,一个根小于2 (4) 两个根都在(0 ,2)内 (5)一个根在(-2,0)内,另一个根在(1,3)内 (6)一个根小于2,一个根大于4 (7) 在(0, 2)内 有根 (8) 一个正根,一个负根且正根绝对值较大5.已知函数1)(2-+=x mx x f 的图像与x 轴的交点至少有一个在原点的右侧,求实数m 的取值范围。
2、二次函数在闭区间[]n m ,上的最大、最小值问题探讨设()()002>=++=a c bx ax x f ,则二次函数在闭区间[]n m ,上的最大、最小值有如下的分布情况:对于开口向下的情况,讨论类似。
其实无论开口向上还是向下,都只有以下两种结论:(1)若[]n m a b,2∈-,则()()()⎭⎬⎫⎩⎨⎧⎪⎭⎫⎝⎛-=n f a b f m f x f ,2,max max ,()()()⎭⎬⎫⎩⎨⎧⎪⎭⎫⎝⎛-=n f a b f m f x f ,2,min min ; (2)若[]n m ab,2∉-,则()()(){}n f m f x f ,max max =,()()(){}n f m f x f ,min min = 另外,当二次函数开口向上时,自变量的取值离开x 轴越远,则对应的函数值越大;反过来,当二次函数开口向下时,自变量的取值离开x 轴越远,则对应的函数值越小。
二次函数在闭区间上的最值练习二次函数在闭区间上求最值,讨论的情况无非就是从三个方面入手:开口方向、对称轴以及闭区间,以下三个例题各代表一种情况。
例1、函数()()2220f x ax ax b a =-++≠在[]2,3上有最大值5和最小值2,求,a b 的值。
解:对称轴[]012,3x =∉,故函数()f x 在区间[]2,3上单调。
(1)当0a >时,函数()f x 在区间[]2,3上是增函数,故()()()()max min32f x f f x f ⎧=⎪⎨=⎪⎩ ⇒ 32522a b b ++=⎧⎨+=⎩ ⇒ 10a b =⎧⎨=⎩; (2)当0a <时,函数()f x 在区间[]2,3上是减函数,故()()()()max min 23f x f f x f ⎧=⎪⎨=⎪⎩ ⇒ 25322b a b +=⎧⎨++=⎩⇒ 13a b =-⎧⎨=⎩ 例2、求函数()[]221,1,3f x x ax x =-+∈的最小值。
解:对称轴0x a =(1)当1a <时,()min 122y f a ==-(2)当13a ≤≤时,()2min 1y f a a ==-;(3)当3a >时,()min 3106y f a ==-改:1.本题若修改为求函数的最大值,过程又如何?解:(1)当2a <时,()()max 3106f x f a ==-; (2)当2a ≥时,()()max 122f x f a ==-。
2.本题若修改为求函数的最值,讨论又该怎样进行?解:(1)当1a <时,()()max 3106f x f a ==-,()()min 122f x f a ==-;(2)当12a ≤<时, ()()max 3106f x f a ==-,()()2min 1f x f a a ==-;(3)当23a ≤<时,()()max 122f x f a ==-,()()2min 1f x f a a ==-;(4)当3a ≥时, ()()max 122f x f a ==-,()()min 3106f x f a ==-。
例3、求函数243y x x =-+在区间[],1t t +上的最小值。
解:对称轴02x =(1)当2t <即2t >时,()2min 43y f t t t ==-+;(2)当21t t ≤≤+即12t ≤≤时,()min 21y f ==-; (3)当21t >+即1t <时,()2min 12y f t t t =+=-例4、讨论函数()21f x x x a =+-+的最小值。
解:()2221,11,x ax x a f x x x a x ax x a ≥⎧+-+=+-+=⎨<-++⎩,这个函数是一个分段函数,由于上下两段上的对称轴分别为直线12x =-,12x =,当12a <-,1122a -≤<,12a ≥时原函数的图象分别如下(1),(2),(3)因此,(1)当12a <-时,()min 1324f x f a ⎛⎫=-=- ⎪⎝⎭; (2)当1122a -≤<时,()()2min 1f x f a a ==+; (3)当12a ≥时,()min 1324f x f a ⎛⎫==+ ⎪⎝⎭ 以上内容是自己研究整理,有什么错误的地方,欢迎各位指正,不胜感激!。