一元二次方程100道计算题练习(附答案)+一元二次方程经典练习题(6套)附带详细答案
一元二次方程经典练习题(6套)附带详细答案

练习一一、选择题:(每小题3分,共24分)1.下列方程中,常数项为零的是( )A.x2+x=1B.2x2-x-12=12;C.2(x2-1)=3(x-1)D.2(x2+1)=x+22.下列方程:①x2=0,② -2=0,③2+3x=(1+2x)(2+x),④3-=0,⑤-8x+ 1=0中,一元二次方程的个数是( )A.1个 B2个 C.3个 D.4个3.把方程(x-)(x+)+(2x-1)2=0化为一元二次方程的一般形式是( )A.5x2-4x-4=0B.x2-5=.5x2-2x+1=0 D.5x2-4x+6=04.方程x2=6x的根是( )A.x1=0,x2=-6B.x1=0,x2=.x=6 D.x=05.方2x2-3x+1=0经为(x+a)2=b的形式,正确的是( )A. ;B.;C. ;D.以上都不对6.若两个连续整数的积是56,则它们的和是( )A.11B.-15 D.±157.不解方程判断下列方程中无实数根的是( )A.-x2=2x-1B.4x2+4x+=0;C.D.(x+2)(x-3)==-58.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元, 如果平均每月增长率为x,则由题意列方程应为( )A.200(1+x)2=1000B.200+200×2x=1000C.200+200×3x=1000D.200[1+(1+x)+(1+x)2]=1000二、填空题:(每小题3分,共24分)9.方程化为一元二次方程的一般形式是________,它的一次项系数是______.10.关于x的一元二次方程x2+bx+c=0有实数解的条件是__________.11.用______法解方程3(x-2)2=2x-4比较简便.12.如果2x2+1与4x2-2x-5互为相反数,则x的值为________.13.如果关于x的一元二次方程2x(kx-4)-x2+6=0没有实数根,那么k 的最小整数值是__________.14.如果关于x的方程4mx2-mx+1=0有两个相等实数根,那么它的根是_______.15.若一元二次方程(k-1)x2-4x-5=0 有两个不相等实数根, 则k 的取值范围是_______.16.某种型号的微机,原售价7200元/台,经连续两次降价后,现售价为3528元/台,则平均每次降价的百分率为______________.三、解答题(2分)17.用适当的方法解下列一元二次方程.(每小题5分,共15分)(1)5x(x-3)=6-2x; (2)3y2+1=;(3)(x-a)2=1+a2(a是常数)18.(7分)已知关于x的一元二次方程x2+mx+n=0的一个解是2,另一个解是正数, 而且也是方程(x+4)2-52=3x的解,你能求出m和n 的值吗?19.(10分)已知关于x的一元二次方程x2-2kx+k2-2=0.(1)求证:不论k为何值,方程总有两不相等实数根.(2)设x1,x2是方程的根,且 x12-2kx1+2x1x2=5,求k的值.四、列方程解应用题(每题10分,共20分)20.某电视机厂计划用两年的时间把某种型号的电视机的成本降低36%, 若每年下降的百分数相同,求这个百分数.21.某商场今年1月份销售额为100万元,2月份销售额下降了10%, 该商场马上采取措施,改进经营管理,使月销售额大幅上升,4月份的销售额达到129.6万元,求3, 4月份平均每月销售额增长的百分率.答案一、DAABC,DBD二、9.x2+4x-4=0,410.11.因式分解法12.1或13.214.15.16.30%三、17.(1)3,;(2);(3)1,-118.m=-6,n=819.(1)Δ=2k2+8>0, ∴不论k为何值,方程总有两不相等实数根.(2)四、20.20%21.20%练习二一、选择题 (共8题,每题有四个选项,其中只有一项符合题意。
一元二次方程经典练习题(6套)附带详细答案

练习四◆基础知识作业1.利用求根公式解一元二次方程时,首先要把方程化为____________,确定__________的值,当__________时,把a ,b ,c 的值代入公式,x 1,2=_________________求得方程的解. 2、把方程4 —x 2 = 3x 化为ax 2 + bx + c = 0(a ≠0)形式为 ,则该方程的二次项系数、一次项系数和常数项分别为 。
3.方程3x 2-8=7x 化为一般形式是________,a =__________,b =__________,c =_________,方程的根x 1=_____,x 2=______.4、已知y=x 2-2x-3,当x= 时,y 的值是-3。
5.把方程(+(2x-1)2=0化为一元二次方程的一般形式是( ) A.5x 2-4x-4=0 B.x 2-5=0 C.5x 2-2x+1=0 D.5x 2-4x+6=06.用公式法解方程3x 2+4=12x ,下列代入公式正确的是( )A.x 1、2=24312122⨯-±B.x 1、2=24312122⨯-±-C.x 1、2=24312122⨯+± D.x 1、2=32434)12()12(2⨯⨯⨯---±--7.方程21x x =+的根是( )A .x =B . 12x =C .x =D .12x -±= 8.方程x 2+(23+)x +6=0的解是( )A.x 1=1,x 2=6B.x 1=-1,x 2=-6C.x 1=2,x 2=3D.x 1=-2,x 2=-3 9.下列各数中,是方程x 2-(1+5)x +5=0的解的有( )①1+5 ②1-5 ③1 ④-5 A.0个 B.1个 C.2个D.3个10. 运用公式法解下列方程:(1)5x 2+2x -1=0 (2)x 2+6x +9=7◆能力方法作业11.方程2430x x ++=的根是 12.方程20(0)ax bx a +=≠的根是13.2x 2-2x -5=0的二根为x 1=_________,x 2=_________. 14.关于x 的一元二次方程x 2+bx+c=0有实数解的条件是__________.15.如果关于x 的方程4mx 2-mx+1=0有两个相等实数根,那么它的根是_______. 16.下列说法正确的是( )A .一元二次方程的一般形式是20ax bx c ++=B .一元二次方程20ax bx c ++=的根是2b x a-±=C .方程2x x =的解是x =1D .方程(3)(2)0x x x +-=的根有三个 17.方程42560x x -+=的根是( )A .6,1B .2,3C .D .1± 18.不解方程判断下列方程中无实数根的是( )A.-x 2=2x-1B.4x 2+4x+54=0; C. 20x -= D.(x+2)(x-3)==-519、已知m是方程x2-x-1=0的一个根,则代数m2-m的值等于 ( ) A 、1B 、-1C 、0D 、220.若代数式x 2+5x +6与-x +1的值相等,则x 的值为( ) A.x 1=-1,x 2=-5 B.x 1=-6,x 2=1 C.x 1=-2,x 2=-3D.x =-121.解下列关于x 的方程:(1)x 2+2x -2=0 (2).3x 2+4x -7=0(3)(x +3)(x -1)=5 (4)(x -2)2+42x =022.解关于x 的方程2222x ax b a -=-23.若方程(m -2)x m2-5m+8+(m+3)x+5=0是一元二次方程,求m 的值24.已知关于x 的一元二次方程x 2-2kx+12k 2-2=0. 求证:不论k 为何值,方程总有两不相等实数根.◆能力拓展与探究25.下列方程中有实数根的是( )(A)x 2+2x +3=0. (B)x 2+1=0. (C)x 2+3x +1=0. (D)111x x x =--. 26.已知m ,n 是关于x 的方程(k +1)x 2-x +1=0的两个实数根,且满足k +1=(m +1)(n +1),则实数k 的值是 .27. 已知关于x 的一元二次方程01)12()2(22=+++-x m x m 有两个不相等的实数根,则m 的取值范围是( )A. 43>mB. 43≥mC. 43>m 且2≠mD. 43≥m 且2≠m答案1.一般形式 二次项系数、一次项系数、常数项 b 2-4ac ≥0 aacb b 242-±-2、x 2 + 3x —4=0, 1、3、—4; 3.3x 2-7x -8=0 3 -7 -84、0、2 5.A 6.D 7.B 8.D 9.B 10. (1)解:a =5,b =2,c =-1∴Δ=b 2-4ac =4+4×5×1=24>0 ∴x 1·2=56110242±-=±- ∴x 1=561,5612--=+-x (2).解:整理,得:x 2+6x +2=0 ∴a =1,b =6,c =2∴Δ=b 2-4ac =36-4×1×2=28>0 ∴x 1·2=2286±-=-3±7 ∴x 1=-3+7,x 2=-3-7 11.x 1=-1,x 2=-3 12.x 1=0,x 2=-b 13.4422+ 4422- 14. 240b c -≥ 15.1816.D 17.C . 18.B 19、A 20.A21. (1)x =-1±3; (2)x 1=1,x 2=-37(3)x 1=2,x 2=-4; (4)25.x 1=x 2=-2 22.X=a+1b1 23.m=324.(1)Δ=2k 2+8>0, ∴不论k 为何值,方程总有两不相等实数根. 25. C 26. -2 27. C练习五第1题. (2005 南京课改)写出两个一元二次方程,使每个方程都有一个根为0,并且二次项系数都为1: .答案:答案不惟一,例如:20x =,20x x -=等第2题. (2005 江西课改)方程220x x -=的解是 . 答案:1220x x ==,第3题. (2005 成都课改)方程290x -=的解是 .答案:3x =±第4题. (2005 广东课改)方程2x =的解是 .答案:120x x ==,第5题. (2005 深圳课改)方程22x x =的解是( )A.2x =B.1x =,20x =C.12x =,20x =D.0x =答案:C第6题. (2005 安徽课改)方程(3)3x x x +=+的解是( )A.1x = B.1203x x ==-, C.1213x x ==, D.1213x x ==-, 答案:D第7题. (2005 漳州大纲)方程22x x =的解是1x = 、2x = . 答案:1202x x ==,第8题. (2005江西大纲)若方程20x m -=有整数根,则m 的值可以是 (只填一个).答案:如0149m =,,,,第9题. (2005济南大纲)若关于x 的方程210x kx ++=的一根为2,则另一根为 ,k 的值为 .答案:1522-,第10题. (2005 上海大纲)已知一元二次方程有一个根为1,那么这个方程可以是______________(只需写出一个方程).答案:20x x -=第11题. (2005 海南课改)方程042=-x 的根是( )A. 1222x x ==-,B. 4=xC. 2=xD. 2-=x 答案:A第12题. (2005 江西淮安大纲)方程24x x =的解是 .答案:0或4第13题. (2005 兰州大纲)已知m 是方程210x x --=的一个根,则代数2m m -的值等于( )A.-1 B.0 C.1 D.2答案:C练习六第1题. (2007甘肃兰州课改,4分)下列方程中是一元二次方程的是( ) A.210x +=B.21y x +=C.210x +=D.211x x+= 答案:C第2题. (2007甘肃白银3市非课改,4分)已知x =-1是方程012=++mx x 的一个根,则m = .答案:2第3题. (2007海南课改,3分)已知关于x 的方程0322=++m mx x 的一个根是1=x ,那么=m .答案:253±-第4题. (2007黑龙江哈尔滨课改,3分)下列说法中,正确的说法有( ) ①对角线互相平分且相等的四边形是菱形;②一元二次方程2340x x --=的根是14x =,21x =-;③依次连接任意一个四边形各边中点所得的四边形是平行四边形; ④一元一次不等式2511x +<的正整数解有3个; ⑤在数据1,3,3,0,2中,众数是3,中位数是3. A .1个 B .2个 C .3个 D .4个答案:B第5题. (2007湖北武汉课改,3分)如果2是一元二次方程2x c =的一个根,那么常数c 是( )A.2 B.2-C.4D.4-答案:C第6题. (2007湖北襄樊非课改,3分)已知关于x 的方程322x a +=的解是1a -,则a 的值为( ) A .1 B .35C .15D .1-答案:A第7题. (2007湖南株洲课改,6分)已知1x =是一元二次方程2400ax bx +-=的一个解,且a b ≠,求2222a b a b--的值.答案:由1x =是一元二次方程2400ax bx +-=的一个解,得:40a b +=3分又a b ≠,得:22()()20222()2a b a b a b a ba b a b -+-+===-- 6分第8题. (2007山西课改,2分)若关于x 的方程220x x k ++=的一个根是0,则另一个根是.答案:2-。
专题1.13解一元二次方程(精选100题)(全章专项练习)2「含答案」

专题1.13 解一元二次方程(精选100题)(全章专项练习)21.解方程:(1)()()2232x x -=-;(2)22610x x ++=.2.(1)213102x x --=(2)228=0x x --.3.选用适当的方法解下列方程.(1)260x x --=;(2)230x x +=.4.解方程:(1)()()2232x x -=-(2)2240x x --=5.用适当方法解方程:(1)()44x x +=;(2)22310x x -+=.6.(1)解方程31144xx x ++=--;(2)232(2)x x +=+.7.解方程:(1)22x x=(2)22610x x -+=8.解方程(1)()4416x x x -=-;(2)22830x x -+=9.解方程:(1)()219x -=;(2)()211x x x -=-.10.解方程:(1)2(2)4(2)x x +=+;(2)22310x x --=.11.解方程:(1)()()2311x x x -=-;(2)2251x x -=-.12.解方程:(1)2215x x -=.(2)()()()1525x x x -+=-+;13.解下列方程:(1)()234x x x -=-.(2)()22239x x -=-.14.解下列方程:(1)23(1)27x -=;(2)241x =.15.解下列方程.(1)()()22321y y -=-.(2)213120x x -+=.16.解方程:(1)26925x x ++=(2)()25160x x +-=17.用适当的方法解下列方程:(1)2230x x --=;(2)()2(1)21x x x +=+;(3)220y -=;(4)2(2)120y --=.18.选择合适的方法解下列方程:(1)228=0x x --.(2)()()3121x x x -=-.19.解下列方程:(1)33222x x x-+=--;(2)230x x --=.20.解方程:(1)214210x x -+=.(2)()23642x x x -=-.21.用合适的方法解方程:(1)2961-=-x x ;(2)()()32510--=x x .22.解下列方程:(1)()22240x x -+-=;(2)1211x x x -=--.23.解方程:(1)217x x +=;(2)2450x x +-=.24.解方程:(1)用配方法:23410x x --=;(2)用公式法:()22541x x -=+.25.解方程:(1)()2263x x -=-(2)2470x x --=26.(1)解方程 2450x x --=.(2)方程 ()()220244202450x x ----=的解为 .27.解方程:(1)2560x x +-=(用配方法解);(2)223203x x +-=(用公式法解).28.解方程:(1)2480x x --=;(2)()3260y y y -+-=.29.按要求解一元二次方程:(1)22530x x --= (配方法)(2)()()()112313x x x +-++=(因式分解法)30.用适当的方法解方程(1)()281216x -=(2)2660y y --=(3)2481x x --=-(4)()()4131x x x -=-31.用适当的方法解下列方程:(1)21690x -=(2)2120x x --=32.解方程.(1)1221x x =-+(2)220x x --=33.解方程(1)2430x x -+=.(2)2810x x --=.34.解下列方程(1)()25160+-=x (2)22630x x --=35.解方程:(1)2270x x --=;(2)()()2565x x +=+.36.解方程(1)2420x x --=(2)2620x x -=37.解方程:(1)()()32332x x x -=-;(2)2142x x +=.38.(1)23610x x -+=(用配方法)(2)()1x x x-=39.用适当的方法解下列方程:(1)()2214x -=;(2)()()()23213x x x +=-+.40.求下列方程中x 的值:(1)210009x -=;(2)()2149x -=.41.解方程:(1)()()2454x x +=+(2)()()134x x +-=-42.解方程(1)()()4540x x x -+-=;(2)2410x x -=+.43.解方程:(1)()()21210x x ---=(2)22310x x +-=44.解方程:(1)2430x x -+=;(2)22310x x --=.45.(1)用配方法解方程:221x x =-;(2)用适当的方法解方程:()2142x x x -=-.46.解方程:(1)22310x x +-=;(配方法)(2)221(3)x x x -=+.47.解下列方程:(1)351122x x x -=---;(2)2430x x -+=.48.解下列方程:(1)22150x x +-=;(2)()()22121y y +=-.49.解下列一元二次方程:(1)2(1)4x +=;(2)22730x x -+=.50.解方程:(1)210x x --=(2)()22x x x +=+1.(1)1225x x ==,(2)12x x ==【分析】本题考查了一元二次方程的求解,熟练掌握一元二次方程的求解方法是解题关键.(1)利用因式分解法进行求解即可;(2)利用公式法求解方程即可.【详解】(1)解:()()2232x x -=-,()()22320x x ---=,()()2230x x ---=,()()250x x --=,1225x ,x \==;(2)22610x x ++=,261a b c ===,,,22\D >,x \==1x \2.(1)13x =,23x =(2)12x =-,24x =【分析】本题考查解一元二次方程,涉及公式法解一元二次方程、因式分解法解一元二次方程等知识,熟练掌握一元二次方程的解法是解决问题的关键(1)由公式法解一元二次方程即可得到答案;(2)由十字相乘法解一元二次方程即可得到答案.【详解】解:(1)213102x x --=,1312a b c ==-=-Q ,,21(3)4(1)112\=--´´-=V ,3x \==解得13x =+,23x =(2)228=0x x --,\()()240x x +-=,20x +=或40x -=,解得12x =-,24x =.3.(1)13x =,22x =-(2)10x =,23x =-【分析】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.(1)利用十字相乘法分解因式,得到30x +=或20x +=,再解一元一次方程即可;(2)提取公因式分解因式,得到0x =或30x +=,再解一元一次方程即可;【详解】(1)解:260x x --=,()()320x x -+=,30x \+=或20x +=,\13x =,22x =-;(2)解:230.x x +=,()30x x +=,0x \=或30x +=,\10x =,23x =-.4.(1)12x =,25x =(2)11x =21x =【分析】此题考查了一元二次方程的解法,熟练掌握一元二次方程的解法并灵活选择是解题的关键.(1)变形后利用因式分解法解方程即可;(2)利用配方法解方程即可.【详解】(1)()()2232x x -=-∴()()22320x x ---=因式分解为()()250x x --=∴20x -=或50x -=解得12x =,25x =(2)2240x x --=则224x x -=两边都加上一次项系数一般的平方得到()()2222141x x -+-=+-∴()215x -=,开平方得,1x -=∴11x =+21x =-5.(1)12x =,22x =--(2)11x =,212x =【分析】本题考查解一元二次方程.根据方程的特征选择恰当方法求解是解题的关键.(1)用配方法求解即可;(2)用因式分解法求解即可.【详解】(1)解:∵()44x x +=,∴244x x +=,即2448x x ++=,∴()228x +=,∴2x +=±∴12x =,22x =--.(2)解:∵22310x x -+=,∴()()1210x x --=,∴10x -=或210x -=,∴11x =,212x =.6.(1)0x =;(2)11x =+21x =【分析】本题考查解分式方程和一元二次方程:(1)将分式方程转化为整式方程,求解后,进行检验即可;(2)公式法解一元二次方程即可.【详解】解:(1)去分母得:()()341x x ++-=-整理得:211x -=-,移项合并得:0x =,经检验0x =是分式方程的解;(2)方程化为一般式为2210x x --=,2(2)41(1)80D =--´´-=>,1x ===±1211x x \==7.(1)10x =,22x =(2)1x =2x 【分析】本题考查了解一元二次方程的方法,当把方程通过移项把等式的右边化为0后方程的左边能因式分解时,一般情况下是把左边的式子因式分解,再利用积为0的特点解出方程的根.因式分解法是解一元二次方程的一种简便方法,要会灵活运用.当化简后不能用分解因式的方法即可考虑求根公式法,此法适用于任何一元二次方程.(1)用因式分解法解方程即可;(2)利用求根公式法解方程即可.【详解】(1)解:原方程移项得220x x -=,()20x x -=,解得10x =,22x =.(2)2a =Q ,6b =-,1c =,x \==1x \8.(1)124x x == (2)1x =,2x =【分析】本题考查了一元二次方程的解法,解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,(1)利用因式分解法解一元二次方程即可;(2)利用公式法解一元二次方程即可;解题的关键是掌握一元二次方程的解法.【详解】解:(1)()4416x x x -=-()44(4)0x x x ---=()240x -=解得:124x x ==;(2)22830x x -+=283a b c ==-=,,,2464423400b ac -=-´´=>,∴∴x =,1x =9.(1)1242x x ==-,(2)12112x x ==-,【分析】本题考查了一元二次方程的求解,熟练掌握一元二次方程的求解方程是解题关键.(1)利用直接开方法求解一元二次方程即可;(2)利用因式分解方求一元二次方程.【详解】(1)解:()219x -=,13x -=±,1242x x \==-,;(2)()211x x x -=-,()()2110x x x -+-=,(1)(21)0x x -+=,12112x x ==-,.10.(1)122,2x x =-=;(2)1x =,2x =【分析】本题考查解一元二次方程,掌握解方程的步骤与方法,根据方程的特点,选择合适的方法解方程是解决问题的关键.(1)用因式分解法解方程即可;(2)利用公式法解方程即可.【详解】(1)解:2(2)4(2)x x +=+,2(2)4(2)0x x +-+=,(2)(24)0x x ++-=,∴122,2x x =-=;(2)22310x x --=,其中2,3,1a b c ==-=-,∴()942117D =-´´-=,∴x1x \2x =.11.(1)11x =,2x =(2)1x =,2x 【分析】本题考查解一元二次方程,(1)将方程移项,然后提取公因式()1x -,然后将方程转化为两个一元一次方程来求解即可;(2)将方程整理为一般形式,找出a 、b 、c 的值,计算出根的判别式,再代入求根公式即可求解;熟练掌握解一元二次方程的一般方法并灵活运用是解题的关键.【详解】(1)解:()()2311x x x -=-,∴()()23110x x x ---=,∴()()1310x x x --é-ùû=ë,即()()1210x x -+=,∴10x -=或210x +=,解得:11x =,212x =-;(2)整理得:22510x x -+=,此时2a =,=5b -,1c =,∵()25421258170D =--´´=-=>,∴x =∴1x 2x =.12.(1)5x =或3x =-(2)1x =-或5x =-【分析】本题考查了解一元二次方程,解题的关键是运用因式分解法来解答.(1)先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,即可求出结果.(2)先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,即可求出结果.【详解】(1)解:²215,x x -=()()530x x -+=,即:50x -=或30x +=,∴5x =或3x =-;(2)解:()()()1525x x x -+=-+,()()()15250x x x -+++=,()()1250x x -++=,即: 10x +=或50x +=,∴1x =-或13.(1)12x x ==(2)123,9x x ==【分析】本题主要考查解一元二次方程:(1)方程整理后运用公式法求解即可;(2)方程移项后运用因式分解法求解即可【详解】(1)解:()234x x x -=-2264x x x -=-22740x x -+=∵()274244932170,D =--´´=-=>∴x =∴12x x =(2)解:()22239x x -=-,()()222390,x x ---=()()()223330,x x x --+-=()()()32330x x x ---+=éùëû,()()390x x --=,30,90,x x -=-=解得,123,9x x ==14.(1)14x =,22x =-(2)1x 2x =【分析】本题考查了解一元二次方程-公式法及直接开平方法,利用公式法解方程时,首先将方程整理为一般形式,找出a 、,b 及c 的值,计算出根的判别式的值,当根的判别式的值大于等于0时,代入求根公式即可求出解.(1)方程两边除以3变形后,利用平方根的定义开方转化为两个一元一次方程来求解;(2)方程整理为一般形式,找出a ,b 及c 的值,计算出根的判别式的值大于0,代入求根公式即可求出解.【详解】(1)解:23(1)27x -=,变形得:2(1)9x -=,开方得:13x -=±,14x \=,22x =-;(2)解:241x =方程整理得:2410x -=,这里4a =,b =1c =-,Q 216180D +=>,x \则1x 2x =.15.(1)12y =-;243y =(2)11x =;212x =【分析】本题主要考查了解一元二次方程,熟知解一元二次方程的直接开平方法和因式分解法是解题的关键.(1)用直接开平方法解方程;(2)先把方程左边利用十字相乘法分解因式,然后解方程.【详解】(1)解:()()22321y y -=-321y y -=-或()321y y -=--解得12y =-;243y =(2)解:213120x x -+=因式分解,得()()1120x x --=10x -=或120-=x 解得11x =;212x =16.(1)12x =,28x =-(2)方程无解【分析】本题考查一元二次方程的解法,灵活选用直接开平方法、配方法、公式法和因式分解法解方程是解题的关键.(1)利用直接开平方法解一元二方程即可;(2)先把方程整理为一般式得到得5²650x x -+=,然后利用公式法解方程.【详解】(1)解:26925x x ++=()2325x +=35x +=或35x +=-解得:12x =,28x =-;(2)解:()25160x x +-=25650x x -+=565a b c ==-=,,,2436455640b ac -=-´´=-<,方程没有实数根,∴方程无解.17.(1)123,1x x ==-(2)121,1x x =-=(3)120,y y ==(4)1222y y =+=-【分析】本题考查了一元二次方程,选择合适的方法解一元二次方程是解题的关键.(1)利用因式分解法即可解答;(2)利用因式分解法即可解答;(3)利用因式分解法即可解答;(4)利用直接开平方法即可解答.【详解】(1)解:2230x x --=,()()310x x -+=,30,10x x \-=+=,解得123,1x x ==-;(2)解:()2(1)21x x x +=+,()2(1)210x x x +-+=,()(1)120x x x ++-=,10,120x x x \+=+-=解得121,1x x =-=;(3)解:220y -=,(20y y -=,解得120,y y ==;(4)解:2(2)120y --=,2(2)12y -=,2y -=解得1222y y =+=-.18.(1)14x =,22x =-(2)11x =,223x =【分析】本题考查解一元二次方程,熟练掌握一元二次方程的解法是解题的关键.(1)用因式分解法求解即可;(2)用因式分解法求解即可.【详解】(1)解:228=0x x --,()()420x x -+=,40x -=或20x +=,∴14x =,22x =-;(2)解:()()3121x x x -=-,()()31210x x x ---=,()()1320x x --=,10x -=或320x -=,∴11x =,223x =.19.(2)1x =2x =【分析】本题考查了解分式方程、解一元二次方程,熟练掌握运算方法是解此题的关键.(1)先去分母,将分式方程化为整式方程,解整式方程并检验即可得出答案;(2)利用公式法解一元二次方程即可.【详解】(1)解:33222x x x-+=--,去分母得:()3223x x -+-=-,解得:43x =,检验:当43x =时,20x -¹,43x \=是原方程的解;(2)解:230x x --=Q 1a =,1b =-,3c =-,()()2241413130b ac \D =-=--´´-=>,x \=∴1x20.(1)17x =+17x =-;(2)12x =,243x =.【分析】(1)利用配方法解答即可求解;(2)移项提取公因式,利用因式分解法解答即可求解本题考查了解一元二次方程,掌握解一元二次方程的方法是解题的关键.【详解】(1)解:∵214210x x -+=,∴21421x x -=-,∴214492149x x -+=-+,即()2728x -=,∴7x -=±∴17x =+17x =-(2)解:移项提取公因式得,()()32420x x x ---=,因式分解得,()()2340x x --=,∴20x -=或340x -=,∴12x =,243x =.21.(1)1213x x ==(2)1215,2x x ==【分析】该题考查了解一元二次方程,解一元二次方程常用方法:配方法,公式法,因式分解法,直接开平方法.(1)整理后用配方法解答即可;(2)整理后用公式法解答即可;【详解】(1)解:2961-=-x x 移项得29610x x -+=,配方得2(31)0x -=,∴1213x x ==.(2)()()32510x x --=,整理得:221150x x -+=,∵2115,,==-=a b c ,∴()2241142581b ac -=--´´=,∴1194x ±===,∴15=x ,212x =.22.(1)12x =,20x =(2)3x =【分析】本题考查一元二次方程和分式方程的解法,正确掌握方程的解法是解题的关键.(1)利用因式分解法解一元二次方程即可;(2)先把方程两边乘以1x -,把分式方程转化为一元一次方程求解,然后进行验根即可.【详解】(1)解:()22240x x -+-=()()22220x x -+-=()()x 2x 220--+=20x -=或x 220-+=,解得:12x =,20x =;(2)1211x x x-=--两边同时乘以1x -得:()121x x +=-解方程得:3x =,经检验:3x =是原方程的解,∴.23.(1)1x =2x =(2)15x =-,21x =【分析】本题考查解一元二次方程,灵活选用解一元二次方程的方法是解题的关键.(1)运用公式法求解即可;(2)运用因式分解法求解即可.【详解】(1)解:原方程可化为2710x x -+=,()2247411450b ac -=--´´=>,x =1x (2)∵2450x x +-=,∴()()510x x +-=,∴50x +=或10x -=,∴15x =-,21x =.24.(1)123x =,223x =(2)1x =2x =【分析】本题考查解一元二次方程.关键是熟练掌握配方法和公式法解一元二次方程的一般步骤.(1)用配方法解一元二次方程时,先将常数项移到等号的右侧,将等号左右两边同时加上一次项系数一半的平方,即可将等号左边的代数式写成完全平方形式;(2)用公式法解方程时,先确定a ,b ,c 的值,再计算D ,若0D ³,即可代入求根公式,解得即可.【详解】(1)24133x x -=244143939x x +=+-;22739x æö-=ç÷èø\23x -;123x =+223=(2)整理得:22490x x ---=1672880D =+=>,\方程有两个不等的实数根x ==\1x =,2x =25.(1)13x =,25x =(2)12x =, 22x =【分析】本题考查了解一元二次方程,解题的关键是:(1)移项后利用因式分解法求解即可;(2)利用配方法求解即可.【详解】(1)解:()2263x x -=-,∴()()23260x x ---=,∴()()23230x x ---=,∴()()3320x x ---=,即()()350x x --=∴30x -=或50x -=,∴13x =,25x =;(2)解:2470x x --=,∴247x x -=,∴24474x x -+=+,∴()2211x -=,∴2x -=,∴12x =, 22x =.26.(1)11x =-,25x =;(2)12023x =,22029x =【分析】本题考查了解一元二次方程-因式分解法(1)利用解一元二次方程-因式分解法进行计算,即可解答;(2)设2024x a -=,则原方程可化为:2450a a --=,然后利用(1)的结论进行计算,即可解答.【详解】解:(1)2450x x --=,(5)(1)0x x -+=,50x -=或10x +=,1251x x ==-,;(2)设2024x a -=,则原方程可化为:2450a a --=,由(1)可得:5a =或1a =-,∴20245x -=或20241x -=-,解得:12029x =,22023x =,故答案为:12029x =,22023x =.27.(1)16x =-,21x =(2)12x x ==【分析】本题考查了一元二次方程的求解,熟练掌握一元二次方程的求解方法是解题关键.(1)利用配方法进行求解即可;(2)利用公式法进行求解即可.【详解】(1)解:2560x x +-=,256x x +=,225255624x x æö++=+ç÷èø,254924x æö+=ç÷èø,5722x +=±,16x \=-,21x =;(2)223203x x +-=,23a =Q ,3b =,2c =-,22Δ434b ac \=-=-x \==12x x \=28.(1)12x =+22x =-(2)13y =,22y =-.【分析】本题考查了解一元二次方程,解此题的关键是掌握解一元二次方程方法将一元二次方程转化成一元一次方程求解.(1)利用配方法解一元二次方程,即可解题;(2)先分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】(1)解:2480x x --=,24412x x -+=,()2212x -=,2x -=±2x =±12x =+22x =-(2)解:()3260y y y -+-=,()()3230y y y -+-=,()()320y y -+=,有30y -=或20y +=,解得13y =,22y =-.29.(1)13x =,212x =-(2)12x =,24x =-【分析】本题考查了配方法及因式分解法解一元二次方程,能够根据方程特点灵活选用不同的解法是解题的关键.(1)根据配方法解一元二次方程的步骤求解即可;(2)根据因式分解法解一元二次方程的步骤求解即可.【详解】(1)解:方程两边同除以2,移项得:25322x x -=即25254921616x x -+=.配方得,2549416x æö-=ç÷èø开方得,5744x -=±.13x \=,212x =-.(2)解:原方程可化为2280x x +-=,分解因式得,()()240x x -+=解得12x =,24x =-.30.(1)122214,99x x ==(2)123,3y y =+=(3)12x x ==(4)1231,4x x ==【分析】本题主要考查了解一元二次方程:(1)利用直接开平方的方法解方程即可;(2)利用配方法解方程即可;(3)利用公式法解方程即可;(4)先移项,然后利用因式分解法解方程即可.【详解】(1)解:∵()281216x -=,∴()281216x =-,∴429x -=±,解得122214,99x x ==;(2)解;∵2660y y --=,∴266y y -=,∴26915y y +=-,∴()2315y -=,∴3y -=解得123,3y y =+=;(3)解:2481x x --=-整理得24810x x -=+,∴481a b c ===-,,,∴()2844180D =-´´-=,∴x =解得2x =(4)解:∵()()4131x x x -=-,∴()()41310x x x ---=,∴()()4310x x --=,∴430x -=或10x -=,解得1231,4x x ==.31.(1)134x =,234x =-;(2)13x =-,24x =;【分析】本题考查了解一元二次方程的方法,掌握并熟练运用直接开平方法,因式分解法,配方法,公式法是解题关键.(1)移项得2916x =,利用直接开平方法即可求解;(2)分解因式得(3)(4)0x x +-=,利用因式分解法即可求解;【详解】(1)解:由 21690x -=得2916x =,\ 134x =,234x =-.(2)解:由2120x x --=,得(3)(4)0x x +-=,\ 13x =-,24x =.32.(1)5x =;(2)12x =,21x =-;【分析】本题考查了分式方程和一元二次方程.通过去分母将分式方程转化为整式方程后求解,再将整式方程的解代入最简公分母,如果最简公分母不为零,则整式方程的解是原分式方程的解,否则不是原分式方程的解;对于一元二次方程,可以通过因式分解法,配方法,公式法来求解,掌握分式方程和一元二次方程的解法是解题的关键.(1)方程两边同乘(2)(1)x x -+化为整式方程后求解,检验整式方程的根是否使得(2)(1)x x -+为零,即可得解;(2)利用因式分解法即可求解;【详解】(1)1221x x =-+两边同乘(2)(1)x x -+得:(1)2(2)x x +=-,即124x x +=-,解得:5x =,检验当5x =,(2)(1)0x x -+¹,故5x =是原方程的解.(2)220x x --=分解因式得(2)(1)0x x -+=,解得12x =,21x =-.33.(1)11x =,23x =(2)14x =24x =【分析】本题考查了解一元二次方程,掌握解一元二次方程的方法是解题的关键.(1)利用因式分解法即可求解;(2)利用配方法求解即可.【详解】(1)解:2430x x -+=,()()130x x --=,10x -=或30x -=,11x =,23x =;(2)解:2810x x --=,281x x -=2228414x x -+=+()2417x -=4x -=14x =,24x =.34.(1)1219x x =-=-,(2)12x x ==【分析】本题主要考查解一元二次方程:(1)方程移项后运用直接开平方法求解即可;(2)方程运用公式法求解即可【详解】(1)解:()25160+-=x ()2516x +=()54+=±x 5454x x +=+=-,∴1219x x =-=-,(2)解:22630x x --=263a b c ==-=-,,()()2²46423600D =-=--´´-=>b ac=x ∴1x35.(1)11x =+,21x =-(2)15x =-,21x =【分析】本题考查了一元二次方程的求解,熟练掌握利用配方法、因式分解法解一元二次方程是解题的关键.(1)利用配方法解一元二次方程即可;(2)利用因式分解法解一元二次方程即可.【详解】(1)解:2270x x --=,移项得:227x x -=,配方得:22171x x -+=+,即()218x -=,开方得:1x -=±,解得:11x =+,21x =-;(2)解:()()2565x x +=+,移项得:()()20655x x -++=,分解因式得:()()5560x x ++-=,即()()510x x +-=,可得:50x +=或10x -=,解得:15x =-,21x =.36.(1)12x =22x =(2)10x =,213x =【分析】本题考查了解一元二次方程,解题的关键是∶(1)利用配方法求解即可;(2)利用因式分解法求解即可.【详解】(1)解∶ 2420x x --=2x 4x 2-=24424x x -+=+()226x -=2x -=∴12x = , 22x =;(2)解∶2620x x -=()2310x x -=20x =或310x -=解得10x =, 213x =.37.(1)13x =,2x =(2)12x x =【分析】本题主要考查解一元二次方程的能力.(1)先移项,再利用因式分解法解方程即可;(2)先化为一般形式,再利用公式法解方程即可.【详解】(1)解:()()32332x x x -=-,移项得()()323320x x x ---=,因式分解得()()3230x x --=,∴30x -=或320x -=,解得13x =,223x =;(2)解:2142x x +=,2280x x \+-=,2a =Q ,1b =,8c =-,()2Δ142865\=-´´-=,x \=解得38.(2)1202x x ==,【分析】本题主要考查了解一元二次方程;(1)先把常数项移到方程右边,再把二次项系数化为1,接着把方程两边同时加上一次项系数一半的平方进行配方解方程即可;(2)先移项,然后利用因式分解法解方程即可.【详解】解:(1)∵23610x x -+=∴2361x x -=-,∴2123x x -=-,∴22213x x -+=,∴()2213x -=,∴1x -=解得12x x ==;(2)∵()1x x x -=,∴()10x x x --=,∴()20x x -=,∴0x =或20x -=,解得1202x x ==,.39.(1)132x =,212x =-(2)14x =,23x =-【分析】本题考查了解一元二次方程,掌握解一元二次方程的方法是解题的关键.(1)利用直接开平方法求解即可;(2)利用因式分解法求解即可.【详解】(1)解:直接开平方得:212x -=±,∴212x -=或212x -=-,解得:132x =,212x =-;(2)解:移项得:()()()232130x x x +--+=,因式分解得:()()33210x x x ++-+=,即()()340x x +-=,∴40x -=或30x +=,解得:14x =,23x =-.40.(1)1103x =,2103x =-(2)18x =,26x =-【分析】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.(1)先移项,再开平方即可得到答案;(2)直接开平方即可得到答案.【详解】(1)解:210009x -=Q ,21009x \=,则1103x =,2103x =-;(2)解:()2149x -=Q ,17x -=或17x -=-,解得18x =,26x =-.41.(1)14x =-,21x =(2)121x x ==【分析】本题考查因式分解法解一元二次方程,熟练掌握因式分解法是解决问题的关键.(1)根据提公因式法因式分解解一元二次方程即可得到答案;(2)先由多项式乘以多项式展开,再由完全平方差公式因式分解解一元二次方程即可得到答案.【详解】(1)解:()()2454x x +=+,()()4450x x \++-=,即()()410x x +-=,40x \+=或10x -=,解得14x =-,21x =;(2)解:()()134x x +-=-,22340x x \--+=,即2210x x -+=,()210x \-=,即10x -=,解得121x x ==.42.(1)1254x x =-=,(2)1222x x =--=-+【分析】本题主要考查了解一元二次方程:(1)先把方程左边利用提公因式法分解因式,然后解方程即可;(2)利用配方法解方程即可.【详解】(1)解:∵()()4540x x x -+-=,∴()()540x x +-=,∴50x +=或40x -=,解得1254x x =-=,;(2)解:∵2410x x -=+,∴241x x +=,∴2445x x ++=,∴()225x +=,∴2x +=解得1222x x =--=-+43.(1)11x =,23x =(2)1x =,2x =【分析】本题考查了解一元二次方程-公式法,因式分解法.熟练掌握解一元二次方程的方法是解题的关键.(1)利用解一元二次方程-因式分解法,进行计算即可解答;(2)利用解一元二次方程-公式法,进行计算即可解答.【详解】(1)解: 2(1)2(1)0x x ---=,(1)(12)0x x ---=,10x -=,30x -=,11x =,23x =;(2)解:22310x x +-=,Q 2342(1)D =-´´-98=+170=>x \=1x \.44.(1)121,3x x ==(2)12x x =【分析】本题考查解一元二次方程,熟练掌握求解方法是解题关键;(1)利用因式分解法求解即可;(2)利用公式法求解即可.【详解】(1)∵2430x x -+=,∴()()130x x --=∴10x -=或30x -=,∴121,3x x ==(2)22310x x --=∴2,3,1a b c ==-=-∴()()22Δ43421170b ac =-=--´´-=>,∴方程有两不等实数根,∴1,2x∴12x ==.45.(1)121x x ==;(2)12122x x ==,【分析】本题主要考查了解一元二次方程:(1)先移项,然后利用完全平方公式配方,进而解方程即可得到答案;(2)先移项,然后利用因式分解法解方程即可得到答案.【详解】解:(1)221x x =-2210x x -+=()210x -=解得121x x ==;(2)()2142x x x -=-()()212210x x x ---=()()2210x x --=20x -=或210x -=解得12122x x ==,.46.,234x =-(2)1x =2x =【分析】(1)利用配方法求解即可;(2)先把方程化成一般式2310x x --=,然后利用公式法求解即可;本题考查了解一元二次方程,解题的关键在于灵活选取适当的方法解方程.【详解】(1)解:22310x x +-=23122x x +=,22331924216x x æö++=+ç÷èø,2317416x æö+=ç÷èø,34x +=134x =-,234x =-;(2)22213x x x -=+,2310x x --=,()()2Δ3411130=--´´-=>,∴∴x =∴1x 47.(1)原方程无解;(2)13x =,21x =【分析】本题考查了解分式方程,解一元二次方程,解题的关键是:(1)分式方程去分母转化为整式方程,求出整式方程的解,经检验即可得到分式方程的解;(2)利用配方法求解即可.【详解】解:(1)两边都乘以2x -,得:3521x x -=-+,解得2x =,经检验2x =是原方程的增根,所以原方程无解;(2)2430x x -+=,∴243x x -=-,∴24434x x -+=-+,即()221x -=,∴21x -=或21x -=-,解得13x =,21x =.48.(1)1253x x =-=,(2)1202y y ==,【分析】本题主要考查了解一元二次方程:(1)先把方程左边利用十字相乘法分解因式,然后解方程即可得到答案;(2)先移项,然后把方程左边利用平方差公式分解因式,进而解方程即可得到答案.【详解】(1)解:∵22150x x +-=,∴()()530x x +-=,∴50x +=或30x -=,解得1253x x =-=,;(2)解:∵()()22121y y +=-,∴()()221210y y +--=,∴()()1211210y y y y ++-+-+=,∴1210y y ++-=,1210y y +-+=,解得1202y y ==,.49.(1)1231x x =-=,(2)12132x x ==,【分析】本题考查了直接开平方法、因式分解法解一元二次方程.熟练掌握直接开平方法、因式分解法解一元二次方程是解题的关键.(1)利用直接开平方法解一元二次方程即可;(2)利用因式分解法解一元二次方程即可.【详解】(1)解:2(1)4x +=,∴12x +=±,解得,1231x x =-=,;(2)解:22730x x -+=,()()3210x x --=,∴30x -=或210x -=,解得,12132x x ==,.50.(1)1x =2x =;(2)12x =-,21x =.【分析】本题考查了解一元二次方程,熟练掌握因式分解法和配方法是解本题的关键.(1)利用配方法求解即可;(2)利用因式分解法求解即可.【详解】(1)解:210x x --=,21544x x -+=,x æçèx x1x =2x =;(2)解:()22x x x +=+,()()220x x x +-+=,()()210x x +-=,20x +=或10x -=,12x =-,21x =.。
沪教版 八年级 初二 上册 一元二次方程100道计算题练习(附答案)

一元二次方程100道计算题练习1、)4(5)4(2+=+x x 2、x x 4)1(2=+ 3、22)21()3(x x -=+4、31022=-x x 5、(x+5)2=16 6、2(2x -1)-x (1-2x )=07、x 2 =64 8、5x 2 - 52=0 9、8(3 -x )2 –72=010、3x(x+2)=5(x+2) 11、(1-3y )2+2(3y -1)=0 12、x 2+ 2x + 3=013、x 2+ 6x -5=0 14、x 2-4x+ 3=0 15、x 2-2x -1 =016、2x 2+3x+1=0 17、3x 2+2x -1 =0 18、5x 2-3x+2 =019、7x 2-4x -3 =0 20、 -x 2-x+12 =0 21、x 2-6x+9 =022、22(32)(23)x x -=- 23、x 2-2x-4=0 24、x 2-3=4x25、3x 2+8 x -3=0(配方法) 26、(3x +2)(x +3)=x +14 27、(x+1)(x+8)=-1228、2(x -3) 2=x 2-9 29、-3x 2+22x -24=0 30、(2x-1)2+3(2x-1)+2=031、2x 2-9x +8=0 32、3(x-5)2=x(5-x) 33、(x +2) 2=8x34、(x -2) 2=(2x +3)2 35、2720x x += 36、24410t t -+=37、()()24330x x x -+-= 38、2631350x x -+= 39、()2231210x --=40、2223650x x -+=补充练习:一、利用因式分解法解下列方程(x -2) 2=(2x-3)2 042=-x x 3(1)33x x x +=+x 2-23x+3=0 ()()0165852=+---x x二、利用开平方法解下列方程51)12(212=-y 4(x-3)2=25 24)23(2=+x三、利用配方法解下列方程25220x x -+= 012632=--x x01072=+-x x四、利用公式法解下列方程-3x 2+22x -24=0 2x (x -3)=x -3. 3x 2+5(2x+1)=0五、选用适当的方法解下列方程(x +1) 2-3 (x +1)+2=0 22(21)9(3)x x +=- 2230x x --=21302x x ++= 4)2)(1(13)1(+-=-+x x x x2)2)(113(=--x x x (x +1)-5x =0. 3x (x -3) =2(x -1) (x +1).应用题:1、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为扩大销售增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价一元,市场每天可多售2件,若商场平均每天盈利1250元,每件衬衫应降价多少元?2、两个正方形,小正方形的边长比大正方形的边长的一半多4 cm ,大正方形的面积比小正方形的面积的2倍少32平方厘米,求大小两个正方形的边长.3、如图,有一块梯形铁板ABCD ,AB ∥CD ,∠A =90°,AB =6 m ,CD =4 m ,AD =2 m ,现在梯形中裁出一内接矩形铁板AEFG ,使E 在AB 上,F 在BC 上,G 在AD 上,若矩形铁板的面积为5 m 2,则矩形的一边EF 长为多少?4、如右图,某小在长32米,区规划宽20米的矩形场地ABCD 上修建三条同样宽的3条小路,使其中两条与AD 平行,一条与AB 平行,其余部分种草,若使草坪的面积为566米2,问小路应为多宽?5、某商店经销一种销售成本为每千克40元的水产品,据市场分析,若按每千克50元销售一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克,商店想在月销售成本不超过1万元的情况下,使得月销售利润达到8000元,销售单价应定为多少?6.某工厂1998年初投资100万元生产某种新产品,1998年底将获得的利润与年初的投资的和作为1999年初的投资,到1999年底,两年共获利润56万元,已知1999年的年获利率比1998年的年获利率多10个百分点,求1998年和1999年的年获利率各是多少?思考:1、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。
专题21.4一元二次方程的解法(精选精练100题)(专项练习)1「含答案」

专题21.4 一元二次方程的解法(精选精练100题)(专项练习)【题型目录】1、直接开平方法解一元二次方程(1-20题);2、配方法解一元二次方程(21-40题);3、公式法解一元二次方程(41-60题);4、因式分解法解一元二次方程(61-80题);5、换元法解一元二次方程(81-90题);6、解可化以一元二次方程的分式方程(91-100题).四、因式分解法解一元二次方程1.用因式分解法解方程:(1)2411x x =;(2)()2224x x -=-2.用因式分解法解下列方程:(1)()()()262x x x --=-;(2)()()22167920x x --+=.3.用因式分解法解下列方程:(1)()()120x x +-=;(2)()()3521127x x x --=-+.4.用因式分解法解下列方程:(1)269x x -=-;(2)224(3)25(2)0x x ---=.5.用因式分解法解下列方程:(1)250x x +=;(2)(5)(6)5x x x --=-.6.用因式分解法的方法解下列方程:(1)22150x x --= ;(2)2326x x (+)=+7.因式分解法解方程:(1)()()23525x x -=-;(2)()()22200abx a b x ab ab -++=¹;8.用因式分解法解下列方程:(1)()2236x x +=+;(2)231212x x +=;(3)()223240x x +-=;(4)()()()521123x x x -=-+.9.用因式分解法解下列一元二次方程:(1)21502x x -=;(2)()()23727x x -=-;(3)()22210x x +-=.10.用因式分解法解下列方程:(1))23x x =;(2)()()221210x x x ---=.11.用因式分解法解下列方程.(1)2560x x --=(2)3(2)2(2)x x x -=-12.用因式分解法解下列方程:(1)()2218x x -=-;(2)()()2222x x x -=-;(3)23x -=-.13.用因式分解法解下列方程:(1)2350y y -=;(2)2412x x =;(3)296x x +=-;(4)229(1)x x =-.14.用因式分解法解下列方程.(1)()()222320x x ---=;(2)()2211t t -+=.15.用因式分解法解下列方程:(1)()2212x x -=;(2)()()222310y y +--=.16.用因式分解法解下列方程:(1)(2)(4)0x x +-=; (2)4(21)3(21)x x x +=+.17.用因式分解法解下列方程:(1)(2)(23)6x x --=;(2)()44x x -=-.18.用因式分解法解方程:(1)3x (2x +1)=2(2x +1);(2)22(3)(52)x x -=-.19.用因式分解法解方程.(1)22437365x x x x +-=--(2)()233x x x -=-20.用因式分解法解一元二次方程(1)()()41570x x +-=;(2)2(23)4(23)x x +=+.五、换元法解一元二次方程21.()()233320y y -+-+=.22.解方程:2231712x x x x -+=-.23.若实数x ,y 满足2222()(2)3x y x y ++-=,求22x y +的值.24.解方程:226212x x x x--=-.25.解方程()225160x --=.26.如果2222()(2)3x y x y ++-=,请你求出22xy +的值.27.阅读下面的例题,回答问题:例:解方程:220x x --=令y x =,原方程化成220y y --=解得122,1y y ==-(不合题意,舍去) 2,2x x \=\=±\ 原方程的解是122,2x x ==-.请模仿上面的方法解方程:()21160x x ----=28.阅读下列材料:为解方程4260x x --=可将方程变形为()22260x x --=然后设2x y =,则()222x y =.例:4260x x --=,解:令2x y =,原方程化为260y y --=,解得12y =-,23y =,当12y =-时,22x =-(无意义,舍去)当23y =时,23x =,解得x =\原方程的解为1x =2x =.上面这种方法称为“换元法”,把其中某些部分看成一个整体,并用新字母代替(即:换元),则能使复杂的问题转化成简单的问题.利用以上学习到的方法解下列方程:(1)()()22225260x x x x ----=;(2)()23511x x ++-=.29.阅读材料:在学习解一元二次方程以后,对于某些不是一元二次方程的方程,我们可通过变形将其转化为一元二次方程来解.例如: 解方程:2–320x x +=.解:设x t =,则原方程可化为:2–320t t +=.解得:1212t t ==,.当1t =时,1x =,∴1x =±;当2t =时,2x =,∴2x =±.∴原方程的解是:12341122x x x x ==-==-,,,.上述解方程的方法叫做“换元法”.请用“换元法”解决下列问题:(1)解方程:220x x -=;(2)解方程:42–1090x x +=.(3)解方程:221211x x x x +-=+.30.换元法是数学中的一种解题方法.若我们把其中某些部分看成一个整体,用一个新字母代替(即换元),则能使复杂的问题简单化.如:解二元一次方程组2()3()22()3x y x y x y x y ++-=-ìí+--=î,按常规思路解方程组计算量较大.可设x y a +=,x y b -=,那么方程组可化为23223a b a b +=-ìí-=î,从而将方程组简单化,解出a 和b 的值后,再利用x y a +=,x y b -=解出x 和y 的值即可.用上面的思想方法解方程:(1)222432x x x x ++=+;(2)2250x x ++-=六、解可化以一元二次方程的分式方程31.解分式方程:2216111x x x +-=--.32.解分式方程:221226x x x x+++=.33.解分式方程:11133x x +=+-34.解分式方程:()2218111x x x --=+-35.解分式方程:241142x x +=--.36.解分式方程:224124x x x -=-+-37.解分式方程21211x x x -=++38.解分式方程:252112x x x+-=3.39.解分式方程:2164122x x x x +=--40.解分式方程:2212111x x x -+=--1.(1)10x =,2114x =(2)12x =,24x =【分析】本题考查了因式分解法解一元二次方程,掌握因式分解的方法是解题的关键;(1)先移项然后提公因式,根据因式分解法解一元二次方程;(2)先移项然后提公因式,根据因式分解法解一元二次方程,即可求解.【详解】(1)解:移项,得:24110x x -=,因式分解,得:(411)0x x -=于是,得:0x =或4110x -=,∴10x =,2114x =.(2)移项,得()22240x x --+=,即()()22220x x ---=,因式分解,得:(2)(22)0x x ---=,整理,得:(2)(4)0x x --=,于是,得20x -=或40x -=,∴12x =,24x =.2.(1)12x =,27x =(2)1227x =,234x =【详解】(1)方程左右两边都有因式()2x -,先移项,然后利用提公因式法将等式的左边因式分解;(2)直接利用平方差公式将方程的左边因式分解.(1)移项,得()()()2620x x x ----=,∴()()2610x x ---=,即()()270x x --=,∴20x -=或70x -=,∴12x =,27x =.(2)因式分解,得()()42836428360x x x x -++---=.化简,得()()072234x x --=,∴7220x -=或340x -=,∴1227x =,234x =.3.(1)11x =-,22x =(2)112x =-,223x =【详解】解:(1)()()120x x +-=Q ,10x \+=或20x -=,11x \=-,22x =.(2)原方程可化为2620x x --=,()()21320x x \+-=,210x \+=或320x -=,112x \=-,223x =.4.(1)123x x ==(2)12164,73x x ==【分析】(1)先移项,然后利用完全平方公式因式分解求解;(2)先移项,然后直接开平方即可解答此方程.【详解】(1)解:269x x -=-2690x x -+=()230x -=解得:123x x ==;(2)解:224(3)25(2)0x x ---=[][]220()5232()x x --=-,[][]2(3)5(2)2(3)5(2)0x x x x -+----=,()5()0232x x --+=或()5()0232x x ---=,解得12164,73x x ==.【点睛】本题考查解一元二次方程,解题的关键是明确方程的特点,选择合适的方法解方程.5.(1)10x =,25x =-(2)15=x ,27x =【分析】(1)直接用因式分解法求解即可;(2)先移项,再用因式分解法求解即可.【详解】(1)∵250x x +=∴()50x x +=∴0x =或50x +=∴10x =,25x =-(2)∵(5)(6)5x x x --=-∴()(5)(6)50x x x ----=∴(5)(61)0x x ---=∴50x -=或610x --=∴15=x ,27x =【点睛】本题考查了解一元二次方程,熟练掌握因式分解法是解答本题的关键.6.(1)15x =,23x -=;(2)13x -=,21x -=【分析】(1)直接利用因式分解法求解即可;(2)先移项,再利用因式分解法求解即可.【详解】(1)解:22150x x --= ,(x ﹣5)(x +3)=0,则x ﹣5=0或x +3=0,∴15x =,23x -=;(2)解:2326x x ++()=,2323x x ++()=(),移项,得23230x x ++()﹣()=,则(x +3)(x +1)=0,∴x +3=0或x +1=0,∴1231x x --=,=.【点睛】本题考查了因式分解法求解一元二次方程,熟练进行因式分解是解题的关键.7.(1)121353x x ==,(2)12b a x x a b==【分析】(1)分解因式,即可得出两个两个一元一次方程,求出方程的解即可;(2)分解因式,即可得出两个两个一元一次方程,求出方程的解即可;【详解】(1)解:()()23525x x -=-方程变形为:()()23525x x -+-=0,∴()()50532x x éù+ë-=û-,∴()()53130x x --=,∴12135,3x x ==;(2)解:()()22200abx a b x ab ab -++=¹()()0ax b bx a --=,∵0ab ¹,∴0,0a b ¹¹,∴12,ba x x a b==【点睛】本题考查的知识点是解一元二次方程,掌握用因式分解法解一元二次方程是解此题的关键.12(2)122x x ==(3)12x =-,225x =-(4)112x =,28x =-【分析】利用因式分解法解一元二次方程即可.【详解】(1)原方程可变形为()()2230x x ++-=,即()()210x x +-=,所以20x +=或10x -=,即12x =-,21x =.(2)原方程可变形为2440x x -+=,即()220x -=,所以122x x ==.(3)原方程可变形为()()3223220x x x x +-++=,即()()2520x x ++=,所以20x +=或520x +=,即12x =-,225x =-.(4)原方程可变形为()()21530x x -++=,即()()2180x x -+=,210x -=或80+=x ,∴112x =,28x =-.【点睛】本题主要考查了利用因式分解法解一元二次方程,熟练掌握适合因式分解法解一元二次方程——把方程的右边化为0,左边能通过因式分解化为两个一次因式的积的形式的方程是解题的关键.12(2)17x =,2193x =(3)113x =-,21x =-【分析】(1)利用提公因式法进行因式分解,求解即可;(2)通过移项,提公因式法进行因式分解,求解即可;(3)利用平方差公式,进行因式分解,求解即可.【详解】(1)解:21502x x -=因式分解,得1502x x æö-=ç÷èø.于是0x =,1502x -=,解得10x =,210x =;(2)()()23727x x -=-移项,得()()237270x x ---=,因式分解,得()()73720x x --+=éùëû,于是70x -=,3190x -=,解得17x =,2193x =;(3)()22210x x +-=因式分解,得()()21210x x x x éùéù+++-=ëûëû,于是310x +=,10x +=,解得113x =-,21x =-.【点睛】此题考查了因式分解法求解一元二次方程,解题的关键是掌握因式分解的有关方法.10.(1)120x x =,(2)12112x x ==,【分析】利用因式分解法解方程即可.【详解】(1)解:∵)23x x =,∴)230x x -=,∴)310x x éù-=ëû,∴)310x -=或0x =,解得120x x ==,;(2)解:∵()()221210x x x ---=,∴()()21210x x x ---=,即()()1210x x --=,∴10x -=或210x -=,解得12112x x ==,.【点睛】本题主要考查了解一元二次方程,熟知因式分解法解一元二次方程的步骤是解题的关键.11.(1)18x =,27x =-(2)12x =,223x =【分析】(1)首先把方程变形可得(8)(7)0x x -+=,进而得到两个一元一次方程,然后分别求出x 的值即可;(2)首先对方程进行整理,得出3(2)2(2)0x x x ---=,再因式分解可得(2)(32)0x x --=,然后得出两个一元一次方程,求解即可得出答案.【详解】(1)2560x x --=,(8)(7)0x x \-+=,80x \-=或70x +=,18x \=;27x =-;(2)3(2)2(2)x x x -=-,移项,得3(2)2(2)0x x x ---=,(2)(32)0x x \--=,20x \-=或320x -=,12x \=;223x =.【点睛】本题考查用因式分解法解一元二次方程,熟练掌握用因式分解法解一元二次方程的方法和步骤是解题关键.12.(1)1212x x ==-(2)12x =,22x =-(3)12x x ==【分析】(1)先移项,再把括号展开进行因式分解,即可求解;(2)先移项,再提取公因式()2x -进行因式分解,即可求解;(3)先移项,再用完全平方公式进行因式分解,即可求解.【详解】(1)解:()22180x x +-=,241840x x x -+=+,24410x x ++=,()2210x +=,210x +=,21x =-,1212x x ==-.(2)解:()()22220x x x ---=,()()2220x x x ---=,()()220x x ---=,20x -=或20x --=,12x =,22x =-.(3)解:230x -+=,(20x =,0x =,12x x ==【点睛】本题主要考查了用因式分解法求解二元一次方程,解题的关键是熟练掌握因式分解的方法.13.(1)1250,3y y ==(2)120,3x x ==(3)123x x ==-(4)1211,42x x ==-【分析】(1)根据题意,利用因式分解法解一元二次方程;(2)根据题意,利用因式分解法解一元二次方程;(3)根据题意,利用因式分解法解一元二次方程;(4)根据题意,利用因式分解法解一元二次方程即可求解.【详解】(1)解:2350y y -=,()350y y -=,解得:1250,3y y ==;(2)解:2412x x =,24120x x -=,()430x x -=,解得:120,3x x ==;(3)解:296x x+=-2690x x ++=即()230x +=,解得:123x x ==-;(4)解:229(1)x x =-,()22910x x --=,即()()22310x x --=,∴()()31310x x x x +--+=,即()()41210x x -+=,解得:1211,42x x ==-.【点睛】本题考查了因式分解法解一元二次方程,掌握因式分解法解一元二次方程是解题的关键.14.(1)125,13x x ==(2)1211,2t t ==【分析】(1)利用因式分解法解答,即可求解;(2)利用因式分解法解答,即可求解.【详解】(1)解:()()222320x x ---=,∴()()()()2322320x x x x -+--éùé-ùëûëû-=,∴()()3510x x --=,∴350x -=或10x -=,∴125,13x x ==.(2)解:()2211t t -+=∴()22110t t -+-=,∴()()1210t t --=,∴1211,2t t ==.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.123(2)1213,42y y =-=【分析】(1)根据因式分解法解一元二次方程;(2)根据因式分解法解一元二次方程即可求解.【详解】(1)解:移项,得()22120x x --=,因式分解,得()()12120x x x x -+--=,得10,130x x -=-=或,解得:1211,3x x ==;(2)解:因式分解,得()()2312310y y x y ++-+-+=,合并同类项,得()()41230y y +-+=,得410230y y +=-+=或,解得:1213,42y y =-=.【点睛】本题考查了解一元二次方程,掌握解一元二次方程的方法是解题的关键.16.(1)12=2,=4x x -;(2)1213,24x x =-=.【分析】运用因式分解法解一元二次方程即可.【详解】解:(1)∵(2)(4)0x x +-=;∴20x +=,40x -=,∴12x =-,24x =;(2)4(21)3(21)x x x +=+,4(21)3(21)0x x x +-+=,(21)(43)0x x +-=,∴210x +=或430x -=,∴112x =-,234x =.【点睛】本题考查了因式分解法解一元二次方程,熟练掌握因式分解的方法是解本题的关键.122(2)122x x ==【分析】(1)先化为一般形式,再利用因式分解法解一元二次方程;(2)先化为一般形式,再利用因式分解法解一元二次方程即可求解.【详解】(1)解:(2)(23)6x x --=,223466x x x --+=,即2270x x -=,∴()270x x -=,解得:12720,x x ==;(2)解:()44x x -=-,即2440x x -+=,()220x -=,解得:122x x ==.【点睛】本题考查了因式分解法解一元二次方程,掌握因式分解法解一元二次方程是解题的关键.18.(1)1x =-12,2x =23;(2)1x =2,2x =83.【分析】(1)先把等号右边变形为0,再将左边分解因式,即可解出未知数的值;(2)先把等号右边变形为0,再将左边分解因式,即可解出未知数的值.【详解】(1)解:∵3x (2x +1)-2(2x +1)=0,∴(2x +1)(3x -2)=0,∴2x +1=0或3x -2=0,解得1x =-12,2x =23;(2)解:∵22(3)(52)x x -=-,∴22(3)(5)02x x --=-,∴(352)(3520)x x x x +---+=-,即(2)(308)x x --=,∴2-x =0或3x -8=0,解得1x =2,2x =83.【点睛】本题考查解一元二次方程-因式分解法,解题的关键是掌握因式分解法解一元二次方程的一般步骤.19.(1)113x =-,213x =(2)112x =,23x =【分析】(1)先将原方程化成一般式,然后再因式分解法求解即可;(2)先将原方程化成一般式,然后再因式分解法求解即可.【详解】(1)解:22437365x x x x +-=--2910x -=(3x +1)(3x -1)=03x +1=0,3x -1=0113x =-,213x =.(2)解:()233x x x -=-2263x x x -=-22730x x -+=(2x -1)(x -3)=02x -1=0,x -3=0112x =,23x =.【点睛】本题主要考查了解一元二次方程,掌握运用因式分解法解一元二次方程是解答本题的关键.20.(1)114x =-,275x =(2)132x =-,212x =【分析】(1)将一元二次方程化为两个一元一次方程即可;(2)将一元二次方程化为两个一元一次方程即可.【详解】(1)解:()()41570x x +-=;410x +=,570x -=,解得:114x =-,275x =(2)解:()()223423x x +=+,()()2234230x x +-+=,()()232340x x ++-=;()230x +=,()2340x +-=解得:132x =-,212x =.【点睛】本题考查因式分解法解一元二次方程,解题关键是将它化为两个一元一次方程.21.2y =或1y =【分析】本题考查了解一元二次方程的方法,将()3y -看作一个整体,设3y t -=,利用因式分解法求得t 的值,进而即可求得y .【详解】解:设3y t -=,则原方程即2320t t ++=,∴()()120t t ++=,∴10t +=或20t +=,解得1t =-或2t =-,∴31y -=-或32y -=-,解得,2y =或1y =.22.1234111,22x x x x =+==-=【分析】本题考查了换元法解可以化为一元二次方程的分式方程等知识.设21x y x =-,原方程变为1732y y +=,解得12y =或23y =.再分别代入21x y x =-,求出1x =或12x =-或2x =,代入最简公分母进行检验即可求解.【详解】解:设21x y x =-,则211x x y-=,原方程变为1732y y +=,去分母得:26720y y -+=,解得12y =或23y =.当2112x x =-时,去分母得:2210x x --=,解得:1x =当2213x x =-时,去分母得:22320x x --=,解得:12x =-或2x =,检验:当1x =()()2110x x x +-¹,当12x =-或2x =时,()()2110x x x +-¹,∴分式方程的解为1234111,22x x x x ===-=.23.223x y +=.【分析】本题主要考查用换元法解一元二次方程,解答本题的关键在于,掌握整体代换思想方法的应用,将22x y +看成一个整体t ,转换成一个关于t 的一元二次方程求解即可.【详解】解:令22x y t +=,则,原方程变为,()23t t -=,即,2230t t --=,()()310t t -+=解得:13t =,21t =-;又220x y +³Q ,∴223x y +=.24.123,1x x ==-【分析】本题考查用换元法解分式方程的能力,用换元法解一些复杂的分式方程是比较简单的一种方法,根据方程特点设出相应未知数,解方程能够使问题简单化,注意求出方程解后要验根.可根据方程特点设22y x x =-,则原方程可化为260y y --=,解一元二次方程求y ,再求x .【详解】设22y x x =-,则原方程化为61y y-=\260y y --=,即()()320y y -+=,解得12y =-,23y =.当12y =-时,222x x -=-,该方程无解,当23y =时,223x x -=.解得13x =,21x =-,检验:当13x =时,原方程左边69632196=--=-==-右边,当21x =-时,原方程左边61232112=+-=-==+右边,∴13x =,21x =-都是原方程的根,∴原方程的根是13x =,21x =-.25.13x =,23x =-,31x =,41x =-【分析】设25y x =-,求出y 后,可得关于x 的方程,再解方程即可.【详解】设25y x =-,原方程化为2160y -=,解得14y =,24y =-,当14y =时,254x -=,29x =,则13x =,23x =-;当24y =-时,254x -=-,21x =,则31x =,41x =-,所以原方程的解为13x =,23x =-,31x =,41x =-.【点睛】本题考查了换元法和直接开平方法解方程,掌握求解的方法是关键.26.22x y +的值为3【分析】设22x z y +=,然后用因式分解法求解即可,求解时注意220x y +>.【详解】设22x z y +=,∴(2)3z z -=.整理得:2230z z --=,∴(3)(1)0z z -+=.∴121,3z z ==-.∵220z x y =+>,∴1z =- (不合题意,舍去)∴3z =.即22x y +的值为3.【点睛】本题考查了一元二次方程的解法,常用的方法有直接开平方法、配方法、因式分解法、求根公式法,熟练掌握各种方法是解答本题的关键.27.1224x x =-=,【分析】本题主要考查了换元法解一元二次方程,令1m x =-,则原方程化为260m m --=,解方程得到3m =,则1=3x -,据此求解即可.【详解】解:令1m x =-,则原方程化为260m m --=,∴()()320m m -+=,解得3m =或2m =-(不合题意,舍去),∴1=3x -,∴13x -=±,解得1224x x =-=,.28.(1)11x =,21x =,341x x ==(2)10x =、25x =-【分析】本题考查了换元法解一元二次方程;(1)令22x x y -=,原方程化为2560y y --=,进而得出226x x -=,221x x -=-,解方程,即可求解;(2y =,原方程化为2321y y -=,解得113y =-,21y =,进而分别解一元二次方程,即可求解.【详解】(1)解:令22x x y -=,原方程化为2560y y --=,解得16y =,21y =-.当16y =时,226x x -=,解得1x =.当21y =-时,221x x -=-,解得1x =.\原方程的解为:11x =,21x =,341x x ==(2y =,原方程化为2321y y -=,解得113y =-,21y =当113y =-13=-(无意义舍去)当21y =1=,解得10x =、25x =-.\原方程的解为10x =、25x =-.29.(1)1234022x x x x ====-,,;(2)12341133x x x x ==-==-,,,;(3)1x =和12x =-.【分析】本题考查了整体换元法,整体换元法是我们常用的一种解题方法,在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现.把一些形式复杂的方程通过换元的方法变成一元二次方程,从而达到降次的目的.(1)设x t =,则原方程可化为220t t -=,解方程求得t 的值,再求x 的值即可;(2)设2x a =,则原方程可化为2–1090a a +=,解方程求得a 的值,再求x 的值即可;(3)设21x m x +=,则原方程可化为2–1m m=,整理得2––20m m =,解方程求得m 的值,再求x 的值,检验后即可求得分式方程的解.【详解】(1)解:设x t =,则原方程可化为:220t t -=.解得:1202t t ==,.当0=t 时,0x =,∴0x =;当2t =时,2x =,∴2x =±.∴原方程的解是:1234022x x x x ====-,,;(2)解:设2x a =,则原方程可化为2–1090a a +=,即()()190a a --=,解得:1a =或9a =,当1a =时,21x =,∴1x =±;当9a =时,29x =,∴3x =±;∴原方程的解是:12341133x x x x ==-==-,,,;(3)解:设21x m x +=,则原方程可化为2–1m m=,整理得2––20m m =,∴()()120m m +-=,解得:1m =-或2m =,当1m =-时,211x x+=-,即210x x ++=,由141130D =-´´=-<知此时方程无解;当2m =时,212x x+=,即2210x x --=,解得:1x =或12x =-,经检验1x =和12x =-都是原分式方程的解.30.(1)1=1x -;2=2x ;31x =41x =(2)11x =-,21x =【分析】该题主要考查了换元思想解方程,一元二次方程的解答,分式方程的解答,解题的关键是运用换元法进行整体代换;(1)设2(0)2x t t x =¹+,将原方程化为2320t t -+=,解得2t =或1t =,再分别代入22x t x =+求解分式方程的解即可;(2()0t t =³,则有222x x t +=,将原方程化为:2450t t +-=,解得5t =-(舍)或1t =t =求解即可;【详解】(1)设2(0)2x t t x =¹+,\原方程化为23t t+=,\2320t t -+=,解得2t =或1t =,当1t =时,212x x =+,解得2x =或=1x -,经检验,=1x -或2x =是方程的解;当2t =时,222x x =+,解得1x =1x =-,经检验,1x =或1x =∴原方程的解为:1=1x -;2=2x ;31x =;41x =(2()0t t =³,则有222x x t +=,\原方程可化为:2450t t +-=,解得5t =-(舍)或1t =,1=,\2210x x +-=,解得11x =-或21x =-;经检验:11x =,21x =是原方程的解.31.4x =-【分析】本题主要考查了解分式方程,根据解分式方程的步骤求解即可,注意解分式方程最后要验根,熟练掌握分式方程的解法是解题的关键.【详解】解:2216111x x x +-=--方程左右同乘以21x -、去分母得:()()()221116x x x ++--=,去括号得:2222116x x x x +++-+=,移项、合并同类项得:2340x x +-=,因式分解得:()()410x x +-=,∴40x +=或10x -=,解得:14x =-,21x =,检验:14x =-,则211150x -=¹,故是原分式方程的根,21x =,则2210x -=,故是原分式方程的增根,∴原分式方程的解为4x =-.32.12x =-,22x =-,31x =【分析】本题考查了解分式方程和解一元二次方程,能把解分式方程转化成解一元二次方程是解此题的关键,注意:解分式方程一定要进行检验.原方程化为211226x x x x æöæö+-++=ç÷ç÷èøèø,设1x a x +=,则原方程变形为2226a a +-=,求出a 的值,当4a =-时,方程为14x x+=-,求出方程的解,当2a =时,方程为12x x +=,求出方程的解,最后进行检验即可.【详解】解:原方程化为:211226x x x x æöæö+-++=ç÷ç÷èøèø,设1x a x+=,则原方程化为:2226a a +-=,即2280a a +-=,解得:4a =-或2a =,当4a =-时,14x x+=-,整理得:2410x x ++=,Q 24411120D =-´´=>,x \=解得:12x =-,22x =-;当2a =时,12x x +=,整理得:2210x x -+=,()210x -=,解得:1x =,经检验12x =-,22x =-,31x =都是原方程的解,所以原方程的解是12x =-22x =-,31x =.33.12x x ==【分析】方程两边同乘以()()33x x +-可得一个关于x 的一元二次方程,再利用直接开平方法解一元二次方程即可得.【详解】解:11133x x +=+-,方程两边同乘以()()33x x +-,得()()3333x x x x +--+=+,去括号,得2933x x x --+=+,移项、合并同类项,得215x =,直接开平方,得12x x ==经检验,12x x ==【点睛】本题考查了解分式方程、解一元二次方程,熟练掌握解分式方程的方法是解题关键,需注意的是,分式方程的解要进行检验.34.5x =【分析】根据分式方程的解法步骤求解即可.【详解】解:去分母,得()222181x x --=-,去括号,得2224281x x x -+-=-移项、合并同类项,得2450x x --=,解得11x =-,25x =,经检验,5x =是方程的解.【点睛】本题考查解分式方程、解一元二次方程,熟练掌握分式方程的解法步骤是解答的关键.35.=1x -【分析】方程两边同时乘以()24x -,化为整式方程,解方程即可求解,最后要检验.【详解】解:241142x x +=--,方程两边同时乘以()24x -,得()2442x x +-=+,即220x x --=,()()210x x -+=,解得122,1x x ==-,检验:当2x =时,()24x -0=,当=1x -时,()240x -¹.∴=1x -是原方程的解.【点睛】本题考查了解分式方程,解一元二次方程,正确的计算是解题的关键,注意要检验.36.x =4【分析】两边都乘以x 2-4化为整式方程求解,然后验根即可.【详解】解:224124x x x -=-+-,两边都乘以x 2-4,得2(x -2)-4x =-(x 2-4),x 2-2x -8=0,(x +2)(x -4)=0,x 1=-2,x 2=4,检验:当x =-2时,x 2-4=0,当x =4时,x 2-4≠0,∴x =4是原分式方程的根.【点睛】本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出未知数的值后不要忘记检验.37.x =3【分析】将分式方程去分母化为整式方程,解整式方程求出解并检验即可.【详解】解:21211x x x -=++化为整式方程得()2211x x -+=,整理得2230x x --=,解得123,1x x ==-,检验:当x =3时,x +1¹0;当x =-1时,x +1=0,∴原分式方程的解是x =3.【点睛】此题考查了解分式方程,正确掌握解分式方程的法则及步骤是解题的关键.38.x 1=56,x 2=18【分析】观察可得最简公分母是12x (2x ﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【详解】解:方程的两边同乘12x (2x ﹣1),得24x 2+5(2x ﹣1)=36x (2x ﹣1),整理,得48x 2﹣46x +5=0,即()()65810x x --=解得x 1=56,x 2=18,检验:当x =56或18时,x (2x ﹣1)≠0.即原方程的解为:x 1=56,x 2=18.【点睛】本题考查了解分式方程,解一元二次方程,正确的计算是解题的关键.39.83x =-【分析】将分式方程转化为整式方程,然后解整式方程,注意分式方程的结果要进行检验.【详解】解:整理,得:1641(2)2xx x x +=--,去分母,得:216(2)4x x x +-=,221624x x x +-=,232160x x +-=,(2)(38)0x x -+=,解得:12x =,283x =-,检验:当2x =时,(2)0x x -=,2x \=不是原分式方程的解,当83x =-时,(2)0x x -¹,83x \=-是原分式方程的解,\分式方程的解为83x =-.【点睛】本题考查解分式方程,解一元二次方程,掌握解分式方程和因式分解法解一元二次方程的步骤是解题关键,注意分式方程的结果要进行检验.40.2x =-【分析】先去分母化为整式方程求解,最后记得检验即可.【详解】解:原方程可化为()()2121111x x x x --=-+-去分母得()()()()211211x x x x -+-=+-,解得11x =,22x =-经检验11x =是增根,2x =-是原方程的解,\原方程的解为2x =-.故答案为2x =-.【点睛】本题考查了解分式方程,熟练掌握一般步骤是解题的关键,需要注意的是最后要记得检验是否为方程的根.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程100道计算题练习1、)4(5)4(2+=+x x 2、x x 4)1(2=+ 3、22)21()3(x x -=+4、31022=-x x 5、(x+5)2=16 6、2(2x -1)-x (1-2x )=07、x 2 =64 8、5x 2 - 52=0 9、8(3 -x )2 –72=010、3x(x+2)=5(x+2) 11、(1-3y )2+2(3y -1)=0 12、x 2+ 2x + 3=013、x 2+ 6x -5=0 14、x 2-4x+ 3=0 15、x 2-2x -1 =016、2x 2+3x+1=0 17、3x 2+2x -1 =0 18、5x 2-3x+2 =019、7x 2-4x -3 =0 20、 -x 2-x+12 =0 21、x 2-6x+9 =022、22(32)(23)x x -=- 23、x 2-2x-4=0 24、x 2-3=4x25、3x 2+8 x -3=0(配方法) 26、(3x +2)(x +3)=x +14 27、(x+1)(x+8)=-1228、2(x -3) 2=x 2-9 29、-3x 2+22x -24=0 30、(2x-1)2+3(2x-1)+2=031、2x 2-9x +8=0 32、3(x-5)2=x(5-x) 33、(x +2) 2=8x34、(x -2) 2=(2x +3)2 35、2720x x += 36、24410t t -+=37、()()24330x x x -+-= 38、2631350x x -+= 39、()2231210x --=40、2223650x x -+=补充练习:一、利用因式分解法解下列方程(x -2) 2=(2x-3)2 042=-x x 3(1)33x x x +=+x 2 ()()0165852=+---x x二、利用开平方法解下列方程51)12(212=-y 4(x-3)2=25 24)23(2=+x三、利用配方法解下列方程25220x x -+= 012632=--x x01072=+-x x四、利用公式法解下列方程-3x 2+22x -24=0 2x (x -3)=x -3. 3x 2+5(2x+1)=0五、选用适当的方法解下列方程(x +1) 2-3 (x +1)+2=0 22(21)9(3)x x +=- 2230x x --=21302x x ++= 4)2)(1(13)1(+-=-+x x x x--xx x(x+1)-5x=0. 3x(x-3) =2(x-1) (x+1).23(=)2)(11应用题:1、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为扩大销售增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价一元,市场每天可多售2件,若商场平均每天盈利1250元,每件衬衫应降价多少元?2、两个正方形,小正方形的边长比大正方形的边长的一半多4 cm,大正方形的面积比小正方形的面积的2倍少32平方厘米,求大小两个正方形的边长.3、如图,有一块梯形铁板ABCD,AB∥CD,∠A=90°,AB=6 m,CD=4 m,AD=2 m,现在梯形中裁出一内接矩形铁板AEFG,使E在AB上,F在BC上,G在AD上,若矩形铁板的面积为5 m2,则矩形的一边EF长为多少?4、如右图,某小在长32米,区规划宽20米的矩形场地ABCD上修建三条同样宽的3条小路,使其中两条与AD平行,一条与AB平行,其余部分种草,若使草坪的面积为566米2,问小路应为多宽?5、某商店经销一种销售成本为每千克40元的水产品,据市场分析,若按每千克50元销售一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克,商店想在月销售成本不超过1万元的情况下,使得月销售利润达到8000元,销售单价应定为多少?6.某工厂1998年初投资100万元生产某种新产品,1998年底将获得的利润与年初的投资的和作为1999年初的投资,到1999年底,两年共获利润56万元,已知1999年的年获利率比1998年的年获利率多10个百分点,求1998年和1999年的年获利率各是多少? 思考:1、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。
2、若关于x 的一元二次方程220x x k +-=没有实数根,则k 的取值范围是3、如果012=-+x x ,那么代数式7223-+x x 的值4、五羊足球队举行庆祝晚宴,出席者两两碰杯一次,共碰杯990次,问晚宴共有多少人出席?5、某小组每人送他人一张照片,全组共送了90张,那么这个小组共多少人?6、将一条长20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长作成一个正方形。
(1)要使这两个正方形的面积之和等于17cm 2,那么这两段铁丝的长度分别为多少?(2)两个正方形的面积之和可能等于12cm 2吗?若能,求出两段铁丝的长度;若不能,请说明理由。
(3)两个正方形的面积之和最小为多少?答案第二章 一元二次方程备注:每题2.5分,共计100分,配方法、公式法、分解因式法,方法自选,家长批阅,错题需在旁边纠错。
姓名: 分数: 家长签字:1、)4(5)4(2+=+x x 2、x x 4)1(2=+ 3、22)21()3(x x -=+X=-4或1 x=1 x=4或-2/34、31022=-x x 5、(x+5)2=16 6、2(2x -1)-x (1-2x )=0X=-1或-9 x=-1/2或-27、x 2 =64 8、5x 2 - 52=0 9、8(3 -x )2 –72=0X=8或-8 x= x=0、610、3x(x+2)=5(x+2) 11、(1-3y )2+2(3y -1)=0 12、x 2+ 2x + 3=0X=-2或5/3 y=1/3 或-1/3 无解13、x 2+ 6x -5=0 14、x 2-4x+ 3=0 15、x 2-2x -1 =0 X=1或316、2x 2+3x+1=0 17、3x 2+2x -1 =0 18、5x 2-3x+2 =0 1/3或-1 1或-2/519、7x 2-4x -3 =0 20、 -x 2-x+12 =0 21、x 2-6x+9 =0 1或-3/73或-4 322、22(32)(23)x x -=- 23、x 2-2x-4=0 24、x 2-3=4x1或-125、3x 2+8 x -3=0(配方法) 26、(3x +2)(x +3)=x +14 27、(x+1)(x+8)=-1228、2(x -3) 2=x 2-9 29、-3x 2+22x -24=0 30、(2x-1)2+3(2x-1)+2=0 (2x-1+2)(2x-1+1)=0 2x(2x+1)=0 x=0或x=-1/231、2x 2-9x +8=0 32、3(x-5)2=x(5-x) 33、(x +2) 2=8x b^2-4ac=81-4*2*8=17 3(x-5)+x(x-5)=0 x^2+4x+4-8x=0 x=(9+根号17)/4或 (3+x)(x-5)=0 x^2-4x+4=0 (9-根号17)/4 x=-3或x=5 (x-2)^2=0 x=234、(x -2) 2=(2x +3)2 35、2720x x += 36、24410t t -+= x^2-4x+4-4x^2-12x-9=0 x(7x+2)=0 (2t-1)^2=0 3x^2+16x+5=0 x=0或x=-2/7 t=1/2 (x+5)(3x+1)=0 x=-5或x=-1/337、()()24330x x x -+-= 38、2631350x x -+= 39、()2231210x --=(x-3)(4x-12+x)=0 (2x-7)(3x-5)=0 (2x-3)^2=121(x-3)(5x-12)=0 x=7/2或x=5/3 2x-3=11或2x-3=-11 x=3或x=12/5 x=7或x=-440、2223650x x -+= (2x-13)(x-5)=0 x=13/2或x=5补充练习:六、利用因式分解法解下列方程(x -2) 2=(2x-3)2 042=-x x 3(1)33x x x +=+(x-2)^2-(2x-3)^2=0 x(x-4)=0 3x(x+1)-3(x+1)=0 (3x-5)(1-x)=0 x=0或x=4 (x+1)(3x-3)=0 x=5/3或x=1 x=-1或x=1x 2-23x+3=0 ()()0165852=+---x x(x-根号3)^2=0 (x-5-4)^2 =0 x=根号3 x=9七、利用开平方法解下列方程51)12(212=-y 4(x-3)2=25 24)23(2=+x(2y-1)^2=2/5 (x-3)^2=25/4 3x+2=2根号6或3x+2=-2 2y-1=2/5或2y-1=-2/5 x-3=5/2或x=-5/2 根号6y=7/10或y=3/10 x=11/2或x=1/2 x=(2根号6-2)/3或x= -(2根号6+2)/3八、利用配方法解下列方程25220x x -+= 012632=--x x01072=+-x x(x-5根号2/2)^2=21/2 x^2-2x-4=0 x^2-3/2x+1/2=0 (x-7/2)^2=9/4 x=(5根号2+根号42)/2 (x-1)^2=5 (x-3/4)^2=1/16 x=5或x=2 或x=(5根号2-根号42)/2 x=1+根号5或 x=1或x=1/2 x=1-根号5九、利用公式法解下列方程-3x 2+22x -24=0 2x (x -3)=x -3. 3x 2+5(2x+1)=0b^2-4ac=196 2x^2-7x+3=0 3x^2+10x+5=0 x=6或4/3 b^2-4ac=25 b^2-4ac=40x=1/2或3 x=(-5+根号10)/3或 (-5-根号10)/3十、选用适当的方法解下列方程(x +1) 2-3 (x +1)+2=0 22(21)9(3)x x +=- 2230x x --= (x+1-2)(x+1-1)=0 (2x+1+3x-9)(2x+1-3x+9)=0 (x-3)(x+1)=0 x(x-1)=0 x=8/5或10 x=3或x=-1 x=0或121302x x ++= 4)2)(1(13)1(+-=-+x x x x (x+1)(2x-7)=0 (x+3/2)^2=7/4 x^2+x-6=0x=-1或7/2 x=(-3+根号7)/2或 (x+3)(x-2)=0 (-3-根号7)/2 x=-3或22)2)(113(=--x x x (x +1)-5x =0. 3x (x -3) =2(x -1) (x +1).3x^2-17x+20=0 x(x-4)=0 x^2-9x+2=0(x-4)(3x-5)=0 x=0或4 b^2-4ac=73x=4或5/3 x=(9+根号73)/2或(9-根号73)/2应用题:1、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为扩大销售增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价一元,市场每天可多售2件,若商场平均每天盈利1250元,每件衬衫应降价多少元?设每件衬衫应降价x 元。