单相多铁材料中的电子自旋

单相多铁材料中的电子自旋
单相多铁材料中的电子自旋

单相多铁材料中的电子自旋简介

摘要:多铁性材料是指同时具有两种或者两种以上铁性序参量的物质。多铁性材料中出色的磁电耦合效应,使其在自旋电子器件和多态存储等方面有着广阔的应用前景。本文简单介绍多铁材料的定义与分类以及传统钙钛矿多铁材料中的电子自旋构型,重点阐述具有螺旋自旋序的磁致多铁材料。

关键词:多铁材料铁磁性螺旋序电子自旋

引言

1959年Dzyaloshinskii推断Cr2O3材料中存在磁电效应,随后不久便被Astrov 用实验所证实。自此人们发现了第一个磁电耦合材料,多铁的概念开始出现,并开始了对所谓多铁材料的研究。但是迄今为止发现的单相多铁性材料仍比较稀少,这主要是由于多铁性的产生会受到诸多因素的限制。即使是现已被发现的单相多铁材料,其磁电耦合效应相较于实际应用来说也并不理想。近些年来,人们发现一些材料铁电极化直接来源于特殊磁序,即螺旋自旋序结构的多铁材料。这些材料显示出了良好的磁电耦合特性,因此得到了人们的广泛关注。

单相多铁材料的定义与分类

单相多铁材料是指同时具有两种或者两种以上铁性序参量的单相材料,即同时具有铁磁性与铁电性,或者铁磁性、铁弹性、铁电性共存。如果晶体在一定温度范围内具有自发极化强度(无外加电场存在时的极化强度),并且自发极化强度的方向可以随外加电场的变化而变化,这类晶体我们称为铁电体,它所具有的这种性质我们称为铁电性。在铁电居里温度以上,铁电体不发生自发极化,在居里温度以上显示顺电性(类似顺磁性);在铁电居里温度以下,铁电体发生自发极化,晶格结构发生畸变,表现出铁电性。铁电有序要求空间反演对称性破缺。而铁磁性与铁电性非常类似但也有很大的不同。如果晶体在一定范围内具有自发磁化强度(无外加磁场作用情况下),并且自发磁化矢量可以随外加磁场的变化而变化,这类晶体我们称为铁磁体,同样它所具有的这种性质我们称为铁磁性。

多铁材料按照其铁电性与磁性的起源可以分成两大类,即第一类多铁性材料与第二类多铁性。第一类多铁性材料中,铁电性与铁磁性通常来源于不同的离子,典型的代表有BiFeO3、BiMnO3,由于磁性与铁电性的起源不同,所以这类材料中的磁电耦合并不强。第二类多铁性材料中,铁电性与磁性的来源一致,在这类材料多,铁电极化往往源于磁性离子特殊的磁结构导致的对称性的破缺,所以第二类多铁材料的磁电耦合效应很强,典型的物质哟TbMnO3和Ca3CoMnO6.

传统钙钛矿多铁材料中的电子自旋构型

传统钙钛矿结构多铁材料属于第一类多铁材料,它的铁电性与铁磁性来自于不同金属离子。从经验角度来看,几乎所有的ABO3钙钛矿铁电氧化物中B位离子都是过渡金属离子并且它的d轨道电子都是空的(即具有d0构型的离子),如Ti4+,Ta5+,W6+等。由此人们推断铁电体必须要有具d0轨道构型的过渡金属离子。然而磁性氧化物需要具有d轨道未填满的过渡金属离子,如Cr3+,Mn3+,Fe3+等。事实上也确实是这样,对于铁电氧化物来说,B位离子d0轨道的构型易于d轨道和O的2p轨道之间的杂化,降低体系能量,从而引起晶体晶格的畸变。而对于铁磁氧化物来说,如果d轨道电子填满状态下,电子上旋和下旋全部抵消,没

有电子产生局域磁矩,从而无法呈现宏观的铁磁性。铁磁性氧化物,需要具有d 轨道未填满电子的过渡金属阳离子,也就是需要过渡金属阳离子的d轨道被电子部分填充。这样d轨道中未抵消的相同方向的电子为铁磁体提供了局域磁矩,从而宏观呈现铁磁性。这在某些氧化物种可以实现,比如BiFeO3。Fe3+离子具有3d5电子壳层结构,和常规钙钛矿氧化物铁电体中具有d0电子壳层结构的B位阳离子不同,这些壳层中未成对电子可以引起局域的磁矩产生。而对于B离子半径较小的氧化物,实验发现,其低温相的形成不同于常规铁电体四方相的六角晶系稳定结构如图,其空间群为P63cm。因此人们发现在BiFeO3非中心对称的点群中,可以同时存在铁磁性和铁电性,其铁电相变温度为900K左右,而磁性相变温度在100K左右。这说明传统钙钛矿多铁材料中B位阳离子的电子自旋构型只提供了铁磁性,而A位阳离子的位移导致晶格畸变引起了铁电性。由于它的铁电性与铁磁性来源于不同的结构单元,观测到的磁电耦合较弱,所以很难实现磁性和铁电性的互相调控。

具有螺旋自旋序的磁致多铁材料

具有螺旋自旋序的磁致多铁材料属于第二类多铁材料,它的铁电性由晶体内的特殊磁序,铁磁性来自于金属离子,也就是说他的铁电性与铁磁性来自于同一结构单元。只有像这样,铁电性与铁磁性相互本征关联,才有可能实现较强的磁电间的调控。所谓螺旋自旋序就如同我们生活中看到的一些爬藤植物,它以一定螺旋的形式存在,具有一个固定的方向。而电子在空间中也有类似排布,同样也具有固定方向性。电子的这种排布方式来源于晶格中的自旋失措。“失措”一词是用来描述体系中一个(或一些)自旋不能找到这样一个方位,使得它(或它们)与周围近邻自旋间的相互作用都能同时得到满足,如图1。“失措”通常主要由两种因素决定:①源于晶格结构与反铁磁序不相容引起的几何失措;②源于自旋与近邻自旋间存在多重竞争引起的失措。总而言之,两种以上相互竞争的自旋相互作用会导致自旋组态失措,出现螺旋状自旋序。空间不均匀的电子自旋排布会同时破坏了空间反演对称性和时间反演对称性。因此这种螺旋构型可能会产生铁电性。

(a)和(b)分别为一维和二维三角晶格中自旋失措的示意图

目前有两个解释螺旋自旋序导致电极化的机制,一个是2005年年Katsura,Nagaosa,Balatsky 三人提出了一套基于自旋流的理论(KNB理论)用于解释非共

线的磁结构如何导致电子云的偏移,而电子云相对离子实的偏移,贡献了铁电极化。另一个是2006年,Sergienko和Dagotto提出,在TbMnO3中,Dzyaloshinskii —Moriya(DM)作用导致了非共线自旋结构,并且其反作用导致了铁电极化。KNB 理论是基于d轨道电子的紧束缚模型,将近邻离子间的电子重叠作为量子微扰来处理。在KNB模型的计算中,金属离子i和j是通过位于对称中心的O离子连接起来的离子间没有发生相对位移,也就是说电子云的偏移提供了铁电性。而DM理论认为O离子相对于金属阳离子整体发生偏移,导致了铁电性。由此可见,在具体的铁电成分上两者有不同的见解,分别是纯电子云和离子实体。在实际材料中,两者是同时存在的,对于不同体系来说,它们各自占的比重不同。2011年Walker等人用实验证明在TbMnO3中主要是离子实体的位移导致了铁电性。Kimura的综述中讲了更多关于螺旋型磁序多铁的详细情况。

结语

本文简要介绍了单相多铁材料中传统多铁机制与磁致多铁机制中的电子自旋。如今,当人们研究材料的微观机制时大多都要用到电子自旋或者微粒自旋的理论。特殊磁序诱导的铁电性机制将是未来几年内多铁性材料的研究热点,与此同时,人们对电子自旋的研究就有了更大的需求。不仅是多铁材料,随着人们对材料微观结构与低温状态下材料新特性的不断探索,微粒的自旋对人们来说将是非常重要的课题。

参考文献:

1董帅. 多铁性材料_过去_现在_未来. 物理,2010

2王克锋,刘俊明,王雨. 单相多铁性材料极化和磁性序参量的耦合与调控. 科学通报,2008

3董帅,向红军. 磁致多铁性物理与新材料设计. 物理,2014

4金昱伶,金奎娟. 多铁性BiFeO3异质结构在多场作用下物理性质研究. 物理,2013

5孙阳. 高温单相多铁性材料与强磁电耦合效应. 物理,2013

6张俊廷. 螺旋自旋序来源和自发磁化结构. 中国科学,2014

7林林. 自旋失措材料的多铁性研究. 南京大学博士论文,2014

多铁性磁电材料应用于存储技术的研究现状

硅酸盐学报 硅 酸 盐 学 报 · 1792 · 2011年 多铁性磁电材料应用于存储技术的研究现状 施 科,何泓材,王 宁 (电子科技大学微电子与固体电子学院,电子薄膜与集成器件国家重点实验室,成都 610054) 摘 要:多铁性磁电材料同时具有铁电性、铁磁性和磁电效应等多种性能,它为新功能存储器件的设计提供了可能性。主要综述了多铁性磁电单相和复合材料在存储技术领域的应用研究,包括基于多铁性磁电材料设计的“电写磁读”多铁性磁电存储器、多态存储器以及基于多铁性磁电材料设计双稳态储存器件的新原理和新思路;介绍了多铁性磁电材料在存储读头技术方面的应用;并将基于多铁性磁电材料的存储器与其他几种存储器作了简单比较;最后就多铁性磁电材料的存储技术发展面临的挑战进行了总结和归纳。 关键词:多铁性磁电材料;存储器;读头;铁电性;铁磁性 中图分类号:TB34;TP333 文献标志码:A 文章编号:0454–5648(2011)11–1792–08 网络出版时间:2011–10–25 10:49:06 DOI :CNKI:11-2310/TQ.20111025.1049.014 网络出版地址:https://www.360docs.net/doc/922286127.html,/kcms/detail/11.2310.TQ.20111025.1049.014.html Recent Progress in Application of Multiferroic Magnetoelectric Materials on Storage Technology SHI Ke ,HE Hongcai ,WANG Ning (State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Microelectronics and Solid-State Electronics, University of Electronic Science and Technology of China, Chengdu 610054, China ) Abstract: Since multiferroic magnetoelectric (ME) material has ferroelectric, ferromagnetic and magnetoelectric properties, it is pos-sible to use this material for the design of storage device. Recent development on the application of single-phase or composite ME material on storage technology was reviewed. The areas were magnetoelectric random access memories (MERAM) with electric writing and magnetic read, magnetoelectric multiple-state storages, other new storages with novel working principles and ME read heads. In addition, the storage devices based on ME materials were compared with other different storage devices, and the challenges with the storage technology were summarized. Key words: multiferroic magnetoelectric material; storage device; read head; ferroelectricity; ferromagnetism 在器件微型化、功能需求多样化的现代生活和生产中,多功能智能材料成为人们关注的焦点,多 铁性磁电材料[1–4]是其中的典型代表。 这种材料不仅兼具铁电性和铁磁性,而且还具有铁电性/铁磁性之间的耦合性能,如通过外加电场能够改变材料的磁极化[5]或磁阻[6],施加磁场产生电极化的磁电效应[7],磁场下介电常数发生变化的磁介电效应[8]等,可大大开拓材料应用范围。不仅在传统的传感器[9]、存储器[10–11]、微波器件[12–13]等器件领域可以得到应用,还可以利用其同时具备铁电、铁磁、磁电等多 种性质于一体,进一步增加微电子器件设计的自由度,设计出对电、磁、力都响应的集成器件。如今,多铁性磁电材料已成为智能材料与器件方向的研究热点,正受到越来越多研究者的关注[14–17]。 随着信息技术的高速发展,要求存储技术提供速度更快,容量更大,功耗更低,体积更小,寿命更长,可靠性更高的存储器[18]。传统的半导体工艺技术已经逐渐逼近物理极限,难以大幅度提高存储器的性能。要想有突破性的进展,就必须另辟蹊径,寻找新材料或新的原理和方法。多铁性磁电材料同 收稿日期:2011–05–10。 修改稿收到日期:2011–06–28。 基金项目:国家自然科学基金(51002020);中央高校基本科研业务费专 项资金(ZYGX2009J033)资助项目。 第一作者:施 科(1987—),男,硕士研究生。 通信作者:何泓材(1980—),男,博士,副教授。 Received date: 2011–05–10. Approved date: 2011–06–28. First author: SHI Ke (1987–), male, graduate student for master degree. E-mail: she.ki@https://www.360docs.net/doc/922286127.html, Correspondent author: HE Hongcai (1980–), male, Ph.D., associate pro-fessor. E-mail: hehc@https://www.360docs.net/doc/922286127.html, 第39卷第11期 2011年11月 硅 酸 盐 学 报 JOURNAL OF THE CHINESE CERAMIC SOCIETY Vol. 39,No. 11 November ,2011

多铁性物理-东南大学

多铁性:物理、材料及器件专题 编者按作为凝聚态物理与材料物理的前沿分支之一,多铁性研究脱胎于磁电耦合的研究.固体中磁电耦合的概念最初由居里先生提出,至今已有一百多年.在漫长的历史长河中,磁电耦合领域的研究曾经在冷战时期短暂热闹过一阵,但随后是漫长的冷寂期.日内瓦大学的老先生Hans Schmid在磁电耦合领域坐了半辈子冷板凳,在1994年提出了多铁体(multiferroics)这个概念.九年之后,该领域研究才真正引起广泛关注.2003年以BiFeO3薄膜的大铁电极化和TbMnO3单晶的磁控电这两大突破作为里程碑,该领域快速蹿红,吸引了大量研究者的瞩目.在接下来的几年中,研究者在该领域迅速取得了若干重要突破性成果.2007年底美国《科学》杂志遴选了七个下一年度重点关注领域(Areas to Watch),多铁体荣幸入选,并且这是凝聚态物理/材料物理方向唯一入围者. 但出乎意料,2008年铁基超导的异军突起与拓扑绝缘体的系列突破迅速抢占了凝聚态物理/材料物理大舞台的主角位置,掩盖了多铁体的光彩.因此最近十年来多铁领域的研究变得相对平淡.但即使在这样的平淡岁月中,仍然有一群研究者一直在这个领域坚持耕耘,默默地将该领域一步步向前推进.实际上,这个领域在过去十年的发展并不孤独,而是逐渐和物理的各分支(包括理论物理、凝聚态物理、材料物理、光物理、器件物理等)交叉融合.因此当前的多铁领域研究已经涵盖了从基础物理理论,到具体材料体系,再到器件应用等多个方面. 受《物理学报》责任编缉古丽亚的委托,我邀请了国内若干活跃在该领域前沿的中青年专家撰稿,合成这样一期以短篇综述为主的专辑,较为全面和深入地介绍该领域已取得的部分成果以及最新进展.从研究内容上,可大致分为两类:一是,探索多铁性材料和揭示其物理规律;二是,探索多铁性异质结、器件和应用.第一类研究的综述包括(以下排名按投稿先后): 1)Ruddlesden-Popper结构杂化铁电体(浙江大学刘小强、陈湘明等);2)低维铁电材料(南京理工大学阚二军等);3)激发态电荷输运有机多铁体(南京理工大学袁国亮等);4)异常双钙钛矿多铁氧化物(中山大学李满荣等);5)四倍体钙钛矿多铁氧化物(中国科学院物理研究所龙有文等);6)非常规铁电钙钛矿氧化物(上海大学任伟等);7)铋层状多铁氧化物单晶薄膜(中国科学技术大学翟晓芳、陆亚林等).第二类研究的综述包括:1)多铁性磁电异质结及器件(清华大学赵永刚等;西安交通大学胡忠强、刘明等;南京理工大学汪尧进等);2)压电单晶磁电复合薄膜(中国科学院上海硅酸盐研究所郑仁奎等);3)铁电光伏效应(苏州大学蔡田怡、雎胜);4)钙钛矿薄膜的多铁性与氧空位调控(南京航空航天大学杨浩等);5)微纳尺度电场驱动磁翻转(华南师范大学高兴森等).除了短篇综述外,还有三篇研究论文,在此就不细述.希望这个专题能够为国内多铁性及相关领域研究的学术交流做一些贡献. (客座编辑东南大学物理学院董帅)

第七章-自旋和全同粒子

第七章 自旋和全同粒子 §7 - 1 电子自旋 一 电子自旋的概念 在非相对论量子力学中,电子自旋的概念是在原子光谱的研究中提出来的。实验研究表明,电子不是点电荷,它除了轨道运动外还有自旋运动。 描述电子自旋运动的两个物理量: 1 、 自旋角动量(内禀角动量)S 它在空间任一方向上的投影s z 只能取两个值 21±=z s ;

(7. 1) 2、 自旋磁矩(内禀磁矩)μs 它与自旋角动量S 间的关系是: S e s m e -=μ, (7. 2) B e s 2μμ±=±=m e z , (7. 3) 式中(- e ):电子的电荷,m e :电 子的质量,B μ:玻尔磁子。 3、电子自旋的磁旋比(电子的自旋磁 矩/自旋角动量) e s e s 2m e g m e s z z =-=μ, (7. 4)

g s = –2是相应于电子自旋的g因数,是对于轨道运动的g因数的两倍。 强调两点: ●相对论量子力学中,按照电子的 相对论性波动方程 狄拉克 方程,运动的粒子必有量子数为 1/2的自旋,电子自旋本质上是 一种相对论效应。 ●自旋的存在标志着电子有了一个 新的自由度。实际上,除了静质 量和电荷外,自旋和内禀磁矩已 经成为标志各种粒子的重要的 物理量。特别是,自旋是半奇数 还是整数(包括零),决定了粒子 是遵从费米统计还是玻色统计。

二 电子自旋态的描述 ψ ( r , s z ):包含连续变量r 和自旋投 影这两个变量, s z 只能取 ±2/ 这两个离散值。 电子波函数(两个分量排成一个二行一列的矩阵) ?? ? ??-=)2/,()2/,(),( r r r ψψψz s , (7. 5) 讨论: ● 若已知电子处于/2z s = ,波函数 写为 (,/2)(,) 0z s ψψ??= ??? r r ● 若已知电子处于/2z s =- ,波函数

自旋电子学简介

自旋电子学简介 今天,我们一起去听了王博士关于《自旋电子学简介》的讲座,通过这次的讲座,我对自旋电子学有了更加深刻的认识。 在传统的微电子学中,一般是利用电子的荷电性由电场来控制电子的输运过程的,而对电子的自旋状态是不予考虑的.为了能够进一步提高信息处理速度和存储密度,就必须对电子的自旋加以利用,由此发展出一门新的学科———自旋电子学。 自旋电子学(Spintronics or spin electronics),亦称磁电子学(Magneto—electronics),是一门结合磁学与微电子学的交叉学科。它是利用电子的自旋属性进行工作的电子学。早在19世纪末,英国科学家汤姆逊发现电子之后,人们就知道电子有一个重要特性,就是每一个电子都携带一定的电量,即基本电荷(e=1.60219x10-19库仑)。到20世纪20年代中期,量子力学诞生又告诉人们,电子除携带电荷之外还有另一个重要属性,就是自旋。电子的自旋角动量有两个数值,即±h/2。其中正负号分别表示“自旋朝上”和“自旋朝下”,h是量子物理中经常要遇到的基本物理常数,称为普朗克常数。 通过对电子电荷和电子自旋性质的研究,最近在电子学和信息技术领域出现了明显的进展。这个进展的重要标志之一就是诞生了自旋电子学。在传统的电子学中,数据处理集成电路所用的是半导体中电子的电荷,但并不是说电子的自旋自由度以前从没有用过,例如传统的数据存储介质,如磁盘,用的就是磁性材料中电子的自旋。 事实上,半导体中有很多类型的自旋极化现象,如载流子的自旋,半导体材料中引入的磁性原子的自旋和组成晶体的原子的核自旋等等。从某种意义上说,已有的技术如以巨磁电阻(GMR)为基础的存储器和自旋阀都是自旋起作用的自旋电子学最基本的应用。但是,其中自旋的作用是被动的,它们的工作由局域磁场来控制。这里所指的自旋电子学则要走出被动自旋器件的范畴,成为基于自旋动力学的主动控制的应用。因为自旋动力学的主动控制预计可以导致新的量子力学器件,如自旋晶体管、自旋过滤器和调制器、新的存储器件、量子信息处理器和量子计算。从这个意义上说,自旋电子学是在电子材料,如半导体中,主动控制载流子自旋动力学和自旋输运的一个新兴领域。已经证明,通过注入、输运和控制这些自旋态,可以执行新的功能。这就是半导体自旋电子学新领域所包含的内容,它涉及自旋态在半导体中的利用。 对于目前的自旋电子学,令人感兴趣的两个重要的物理学原理是:自旋作为一个动力学变数,它有量子力学固有的量子特性,这些特性将导致新的自旋电子学量子器件而不是传统的以电子电荷为基础的电子学。另一个是与自旋态有关的长驰豫时间或相干时间。在磁性半导体中,自旋朝上的载流子浓度往往多于自旋朝下的载流子,这些载流子运动会产生所谓自旋极化电流。自旋极化电流的大小、存在的时间长短取决于许多因素,如材料的特性、界面、外场及温度等等。事实上,半导体中的载流子自旋可以通过局域磁场,或通器件的栅极改变外加电场,甚至通过偏振光地进行操作。这一事实,是开发自旋电子学应用的一个重要的物理基础。 半导体自旋电子学器件的目的之一是利电子自旋和核自旋很长的相干时间,并基于半导体器件来执行量子信息处理。用半导体实现量子计算机有很多优点,不仅仅因为它是固体材料,可适合于大规模集成,而且通过量子约束可以自由控制其维度,并允许用外场,如光、电或磁场改变其特性。本节将简介利用半导体中的自旋如何构造固体量子计算机的基本原理。 半导体自旋电子学(spintronics)作为半导体物理发展的新分支,目前主要在两个方面着重展开研究:半导体磁电子学和半导体量子自旋电子学。前者希望在最近的将来会有实际的结果,后者则已成为21世纪的重要研究论题。半导体自旋电子学作为信息处理

钙钛矿类单相多铁材料的研究现状

龙源期刊网 https://www.360docs.net/doc/922286127.html, 钙钛矿类单相多铁材料的研究现状 作者:杨雯陆海鹏 来源:《科技资讯》2018年第11期 摘要:钙钛矿结构因其存在多铁性质吸引了很多研究兴趣。主要介绍了几种重要的钙钛 矿结构的研究现状。Bi基钙钛矿体系存在很高的铁电极化强度;锰氧化物是一种典型的强关 联电子体系,体系可以在不同条件下发生各种相变;R2NiMnO6在室温下具有相当大的磁介电效应以及存在室温铁磁转变温度。同时提出了目前钙钛矿结构存在的问题。 关键词:多铁材料钙钛矿结构铁电性质铁磁性质 中图分类号:TQ174.75+6 文献标识码:A 文章编号:1672-3791(2018)04(b)-0102-02 随着无线通信技术、信息存储技术、电磁干扰技术等领域的快速发展,人们对材料的选择提出了更高的要求。多铁材料是指当一种材料同时具有铁弹性、铁电性、铁磁性等其中两种或以上的基本性质。由于电磁耦合相互作用,多铁材料突破了Maxwell方程描述的电磁转换的限制,可以对铁电极化强度P、磁化强度M进行调控。这意味着,不仅可以通过施加外加电场E,外加磁场H也可以调控电荷有序使铁电自发极化重新定向分布甚至诱导铁电相变的产生。同样,也可以通过外加电(磁)场控制多铁材料体内的磁化方向甚至会诱导铁磁相变的产生。在通信、计算机以及微波器件等现代科技领域有着广泛和诱人的发展前景,可以应用于多存储态存储器、可调微波器件、自旋阀等。对于这一类材料的研究已经成为当前国际上理论物理学界的一个研究热点。 1 研究现状 多铁材料主要分为复合体系和单相体系,复合体系通过应力为中介实现铁磁性和铁电性耦合。单相磁电材料的铁磁性质和铁电性质同时形成一个单相体系中,但是目前很少发现性能优异的此类材料。钙钛矿结构是一种可能存在室温多铁性质的材料。1993年,Helmolt等人在 La2/3Ba1/3MnO3钙钛矿型铁磁薄膜中发现室温下可达60%的巨磁电阻效应。在 La2/3Ca1/3MnO3和Nd0.7Sr0.3MnO3样品中观察到的庞磁电阻比率分别大于105%和106%。由于钙钛矿氧化物独特的电磁性质,在巨磁阻、超导等方面有着良好的应用前景。同时,钙钛矿及其衍生物的结构、组成多样化,结构有很强的适应性,可用多种离子取代A位或B位离子,能够开发出许多自然界没有的铁电或压电材料。 1.1 Bi基钙钛矿体系 最常见的具有多铁性质的钙钛矿材料为Bi基钙钛矿体系BiFeO3,BiFeO3具有丰富的结 构和物相,拥有很大的自发铁电极化,其铁电和铁磁转变温度都高于室温(800℃以上)。所以,一直受着很多科学家的关注。2003年,J.Wang等在science上发表了BiFeO3外延薄膜的

多铁性材料BiFeO3的制备及其掺杂改性的研究(可编辑)

多铁性材料BiFeO3的制备及其掺杂改性的研究(可编辑)多铁性材料BiFeO3的制备及其掺杂改性的研究 单位代码: 10293密级: 硕士学位论文论文题目 : 多铁性材料 BiFeO 的制备及其掺杂 改性研究 3 1010030913 学号王希望姓名李兴鳌导师光学 学科专业光电子功能材料、性质和器件 研究方向理学硕士 申请学位类别 2013.02.26 论文提交日期I multiferroic properties of co-substituted BiFeO 3 nanoparticlesThesis Submitted to Nanjing University of Posts and Telecommunications for the Degree ofMaster of Master of Science By Xiwang Wang Supervisor: Prof. Xing’ao LiFebruary 2013II南京邮电大学学位论文 原创性声明 本人声明所呈交的学位论文是我个人在导师指导下进行的研究工作及取得 的研究成果。尽我所知,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写过的研究成果,也不包含为获得南京邮电大学或其它教育机构的学位或证书而使用过的材料。与我一同工作的同志对本研究所做的

任何贡献均已在论文中作了明确的说明并表示了谢意。本人学位论文及涉及相关资料若有不实,愿意承担一切相关的法律责任。 研究生签名:_____________ 日期:____________南京邮电大学学位论文使用授权声明 本人授权南京邮电大学可以保留并向国家有关部门或机构送交论文的复印件和电子文 档;允许论文被查阅和借阅;可以将学位论文的全部或部分内容编入有关数据库进行检索; 可以采用影印、缩印或扫描等复制手段保存、汇编本学位论文。本文电子文档的内容和纸质 论文的内容相一致。论文的公布(包括刊登)授权南京邮电大学研究生院办理。 涉密学位论文在解密后适用本授权书。 研究生签名:____________ 导师签名:____________ 日期:_____________III 摘要 BiFeO 是一种非常有应用前景的钙钛矿型多铁性功能材料,由于本身存在很多缺陷限制 3 了现实中的应用,其中最大的问题就是材料本身的多铁性能太弱, 距离应用的要求差距还很 大。如何提高 BiFeO 材料的多铁性能成为目前亟待解决的问题。本文期望通过掺杂方法以期 3 得到高性能的 BiFeO 材料。 3

自旋电子学与自旋电子器件简述

自旋电子学与自旋电子器件简述 陈闽江,邱彩玉,孙连峰 (国家纳米科学中心 器件研究室 北京 100190) 一、引言 2007年10月,瑞典皇家科学院宣布,将该年度诺贝尔物理学奖授予在 1988年分别独立发现纳米多层膜中巨磁电阻效应的法国Albert Fert 教授和德国Peter Grunberg 教授。其随后的应用不啻为革命性的,因为它使得计算机硬盘的容量从几十兆、几百兆,一跃而提高了几百倍,达到几十G 乃至上百G 。越来越多的人开始了解这个工作及其对我们生活的影响,并意识到这个工作方向的重要意义。 1988年在磁性多层膜中发现巨磁电阻效应(Giant Magnetoresistance ,GMR),1993年和1994年在钙钛矿锰氧化物中发现庞磁电阻效应(Colossal Magnetoresistance ,CMR),特别是1995年在铁磁性隧道结材料中发现了室温高隧穿磁电阻效应(Tunneling Magnetoresistance ,TMR)以及后续形成的稀磁半导体等研究热潮,这些具有里程碑意义的人工合成磁性材料的成功制备和深入研究,不仅迅速推动了近20年凝聚态物理新兴学科——自旋电子学(spintronics)的形成与快速发展,也极大地促进了与自旋极化电子输运相关的磁电阻材料和新型自旋电子学器件的研制和应用。中国科学院物理研究所朱涛研究员表示:“Albert Fert 和Peter Grunberg 种下了一粒种子,随着20世纪90年代应用的突破,这粒种子长成了一棵小苗——自旋电子学,这是一个成长很快、前景广阔的磁学分支。” 二、电子自旋与自旋电子学 要阐明自旋电子学,就不得不先简述一下电子自旋这一概念。电子自旋不是电子的机械自转,电子自旋及磁矩是电子本身的内禀属性,所以也被称为内禀角动量和内禀磁矩。它们的存在标志电子还有一个新的内禀自由度。所以电子状态的完全描述不但包括空间三个自由度的坐标(r ),还必须考虑其自旋状态。更确切地说,要考虑自旋在某给定方向(例如z 轴方向)的投影的两个可能取值的波幅,即波函数中还应该包含自旋投影这个变量(习惯上取为),Z S 从而记为。与连续变量r 不同,只能取两个离散值。 (,)Z r s ψZ S 2± 接下来,认识电的和磁的相互作用在强度上的差异和不同的特点,可以了解自旋电子学的潜力。电荷周围存在电场,通过静电力和其他电荷发生相互作用,这种相互作用是强的和长程的。在常见的半导体中,两个相距5的元电A 荷间的相互作用能可达0.2eV ,它正比于距离的倒数。1V 的电压可使载流子1r 改变1eV 的能量。然而距离为5的一对电子自旋之间的磁偶极耦合能却只有A

量子—电子自旋与Pauli原理

量子—电子自旋与Pauli原理 部门: xxx 时间: xxx 整理范文,仅供参考,可下载自行编辑

§3 电子自旋与Pauli原理 1.自旋量子数S和自旋磁量子数ms 波函数的定量描述 自旋角动量 自旋量子数 自旋角动量Z方向投影 自旋磁量子数 自旋磁矩 ge =2.00232 电子自旋因子 自旋磁矩Z轴投影 2 自旋的由来 理论一般说所需量子数=问题的维数, 三维空间中描写电子是充分的。 但是Einstein提出相对论,指出时间是第四维, 原子中电子速度接近光速, 应有四个量子数。 相对论+ Schr?dinger方程=Dirac方程(四维>有第四个量子数。 第四个量子数对应什么?

经验 Uhlenback, Goud Smit, 提出电子具有不依赖于轨道运动的固有磁矩的假设。 电子固有的角动量, 的态也有角动量, 比做经典的自旋。 引入自旋角动量 实验:Stern-Gerlach实验 碱金属原子(基态银>射线束,在磁场中分裂并发生偏移, 分裂总为偶数。 (基态H>S轨道上仅有一个电子,且轨道磁矩 分裂不是轨道磁矩, 而且轨道磁矩分裂为, 总为奇数。

这里固有磁矩只有两个取向,顺磁场和逆磁场,大小一样。规定:自旋量子数 自旋角动量大小 自旋角动量在磁场方向的分量 由方向的自旋量子数来决定 表示:态 态 空间分布: 自旋平行

自旋反平行 自旋磁矩 电子自旋固子 看法:把电子的部分角动量看作是由于电子自旋而引起的,只不过是一种简化了直观图象。实际原因并不清楚。 3.电子的完全波函数 ,不能由方程直接求出, 自旋波函数为的本征函数 它们也是正交归一的,

层状类钙钛矿多铁性材料研究进展

第45卷第12期2017年12月 硅酸盐学报Vol. 45,No. 12 December,2017 JOURNAL OF THE CHINESE CERAMIC SOCIETY https://www.360docs.net/doc/922286127.html, DOI:10.14062/j.issn.0454-5648.2017.12.01 层状类钙钛矿多铁性材料研究进展 张大龙,陈志伟,黄伟川,李晓光 (中国科学技术大学物理系,合肥 230026) 摘要:多铁性材料的自旋、电荷、轨道、晶格等多重有序存在着复杂的相互作用,且对磁场、电场、光场、应变和温度等多种外界环境敏感,从而表现出一些新奇的物理现象,使其在存储器、传感器、微波等领域中有重要的应用价值。随着对单相多铁材料研究的深入,人们已从简单钙钛矿结构的多铁性研究转向复杂的层状类钙钛矿体系,其丰富而复杂的结构给人们提供了更广泛的设计和调控空间。介绍并分析了如Double-Perovskite(DP)、Ruddlesden-Popper(RP)、Aurivillius(AU)以及A n B n O3n+2系列等层状类钙钛矿多铁性特征的研究进展。人们已发现Bi2FeCrO6等DP体系、(1–x)(Ca y Sr1–y)1.15Tb1.85Fe2O7–x Ca3Ti2O7等RP体系、Bi4NdTi3Fe1–x Co x O15–Bi3NdTi2Fe1–x Co x O12–δ等AU体系以及La6(Ti0.67Fe0.33)6O20层状材料等,均具有室温或近室温多铁性。最后提出了当前面临的问题和对未来的展望。 关键词:多铁性;Double-Perovskite;Ruddlesden-Popper;Aurivillius 中图分类号:TQ174.1+3 文献标志码:A 文章编号:0454–5648(2017)12–1707–14 网络出版时间:2017–11–01 14:32:30 网络出版地址:https://www.360docs.net/doc/922286127.html,/kcms/detail/11.2310.TQ.20171101.1432.001.html Development of Multiferroic Layered-Perovskite-like Oxides ZHANG Dalong, CHEN Zhiwei, HUANG Weichuan, LI Xiaoguang (Department of Physics, University of Science and Technology of China, Hefei 230026, China) Abstract: Single phase multiferroic materials with the coexistence of spin, charge, orbit, and lattice orderings have some physical phenomena, which are sensitive to several external stimulations like magnetic field, electric field, optical field, strain and temperature. These materials can be thus used in the field of storage, sensors, microwave, etc. For room-temperature multiferroics, people pay attention to more complex systems, such as layered-perovskite-like systems, which may provide broader space for designing and controlling new multifunctional materials and devices. This review represented recent development on the multiferroic properties of Double-Perovskite (DP), Ruddlesden-Popper(RP), Aurivillius(AU) and A n B n O3n+2 series compounds, respectively. All these layered systems, such as DP phases Bi2FeCrO6, RP phases (1–x)(Ca y Sr1–y)1.15Tb1.85Fe2O7–x Ca3Ti2O7, AU phases Bi4NdTi3Fe1–x Co x O15–Bi3NdTi2Fe1–x Co x O12–δ and La6(Ti0.67Fe0.33)6O20, show the coexistence of ferroelectricity and ferromagnetism above or near room temperature. Finally, we put forward the current issues we are facing and the outlooks of the future. Keywords: multiferroic properties; Double-Perovskite; Ruddlesden-Popper; Aurivillius 多铁性材料是指兼具铁电、铁磁、铁弹或者铁涡等初级铁序中的2种及以上的材料体系,有丰富的物理性质和巨大的应用潜力,引起国际上的广泛关注。驱动多铁性研究的动力有2方面:从基础研究的角度,多铁材料集成了自旋、电荷、轨道、晶格等多重有序结构,对磁场、电场、光场、应力和温度等多种外界环境响应明显,这种复杂的、交叉的研究对象正是固体物理发展到凝聚态物理的产物之一[1–2];从应用的角度,多铁材料能实现多重物理量之间的交叉调控,将为现代电子学在后摩尔时代的发展提供材料基础[3–5]。 单相多铁性材料主要分为第I类和第II类多铁 收稿日期:2017–06–19。修订日期:2017–07–07。 基金项目:国家自然科学基金(51332007、21521001、51622209);国家重点研发计划(2016YFA0300103、2015CB921201)资助。 第一作者:张大龙(1988—),男,博士。 通信作者:李晓光(1961—),男,博士,教授。Received date:2017–06–19. Revised date: 2017–07–07. First author: ZHANG Dalong (1988–), male, Ph.D. E-mail: zdl37@https://www.360docs.net/doc/922286127.html, Correspondent author: LI Xiaoguang (1961–), male, Ph.D., Professor. E–mail: lixg@https://www.360docs.net/doc/922286127.html,

单相多铁材料中的电子自旋

单相多铁材料中的电子自旋简介 摘要:多铁性材料是指同时具有两种或者两种以上铁性序参量的物质。多铁性材料中出色的磁电耦合效应,使其在自旋电子器件和多态存储等方面有着广阔的应用前景。本文简单介绍多铁材料的定义与分类以及传统钙钛矿多铁材料中的电子自旋构型,重点阐述具有螺旋自旋序的磁致多铁材料。 关键词:多铁材料铁磁性螺旋序电子自旋 引言 1959年Dzyaloshinskii推断Cr2O3材料中存在磁电效应,随后不久便被Astrov 用实验所证实。自此人们发现了第一个磁电耦合材料,多铁的概念开始出现,并开始了对所谓多铁材料的研究。但是迄今为止发现的单相多铁性材料仍比较稀少,这主要是由于多铁性的产生会受到诸多因素的限制。即使是现已被发现的单相多铁材料,其磁电耦合效应相较于实际应用来说也并不理想。近些年来,人们发现一些材料铁电极化直接来源于特殊磁序,即螺旋自旋序结构的多铁材料。这些材料显示出了良好的磁电耦合特性,因此得到了人们的广泛关注。 单相多铁材料的定义与分类 单相多铁材料是指同时具有两种或者两种以上铁性序参量的单相材料,即同时具有铁磁性与铁电性,或者铁磁性、铁弹性、铁电性共存。如果晶体在一定温度范围内具有自发极化强度(无外加电场存在时的极化强度),并且自发极化强度的方向可以随外加电场的变化而变化,这类晶体我们称为铁电体,它所具有的这种性质我们称为铁电性。在铁电居里温度以上,铁电体不发生自发极化,在居里温度以上显示顺电性(类似顺磁性);在铁电居里温度以下,铁电体发生自发极化,晶格结构发生畸变,表现出铁电性。铁电有序要求空间反演对称性破缺。而铁磁性与铁电性非常类似但也有很大的不同。如果晶体在一定范围内具有自发磁化强度(无外加磁场作用情况下),并且自发磁化矢量可以随外加磁场的变化而变化,这类晶体我们称为铁磁体,同样它所具有的这种性质我们称为铁磁性。 多铁材料按照其铁电性与磁性的起源可以分成两大类,即第一类多铁性材料与第二类多铁性。第一类多铁性材料中,铁电性与铁磁性通常来源于不同的离子,典型的代表有BiFeO3、BiMnO3,由于磁性与铁电性的起源不同,所以这类材料中的磁电耦合并不强。第二类多铁性材料中,铁电性与磁性的来源一致,在这类材料多,铁电极化往往源于磁性离子特殊的磁结构导致的对称性的破缺,所以第二类多铁材料的磁电耦合效应很强,典型的物质哟TbMnO3和Ca3CoMnO6. 传统钙钛矿多铁材料中的电子自旋构型 传统钙钛矿结构多铁材料属于第一类多铁材料,它的铁电性与铁磁性来自于不同金属离子。从经验角度来看,几乎所有的ABO3钙钛矿铁电氧化物中B位离子都是过渡金属离子并且它的d轨道电子都是空的(即具有d0构型的离子),如Ti4+,Ta5+,W6+等。由此人们推断铁电体必须要有具d0轨道构型的过渡金属离子。然而磁性氧化物需要具有d轨道未填满的过渡金属离子,如Cr3+,Mn3+,Fe3+等。事实上也确实是这样,对于铁电氧化物来说,B位离子d0轨道的构型易于d轨道和O的2p轨道之间的杂化,降低体系能量,从而引起晶体晶格的畸变。而对于铁磁氧化物来说,如果d轨道电子填满状态下,电子上旋和下旋全部抵消,没

§6.2 电子的自旋算符和自旋函数

§6.2 电子的自旋算符和自旋函数 重点: 自旋算符和波函数的引入及意义 (一)自旋算符 与轨道角动量满足同样的对易关系: (6.2-1a) 分量式为: (6.2-1b) 及 (6.2-2) 由于在空间任意方向上的投影只能取两个数值,所以三个算符的本 征都是,即

(6.2-3) 的本征值用磁量子数示的式子,可以把的 仿照轨道角动量z方向分量算符 本征值表为 (6.2-4) 其中为自旋磁量子数。 因为自旋角动量平方算符: 所以的本征值是 (6.2-5) 仿照的本征值用角量子数表示的式子,的本征值也可写成 (6.2-6) 比较(6.2-5)与(6.2-6)式,可得,我们称s为自旋量子数,它只能取一个数值, 即。 (二)自旋波函数 电子具有自旋,所以描写电子状态的波函数除包括描写其质心坐标x、y、z的自变量外,还需引入描写自旋变量S z,所以电子的波函数庆写为

(6.2-7) 由于S z只能取两个数值,所以上式实际上相当于两个波函数 (6.2-8) 根据波函数的统计解释,和表示t时刻的x、y、z点附近单位体积内找到电子 自旋分别和的几率。因此考虑到电子自旋以后,电子波函数的归一化条件为 (6.2-9) 和对x、y、z的依赖关系 当电子的自旋和轨道运动相互作用小到可以略去时,这时 是相同时,我们可以把 (6.2-10) 是描写自旋状态自旋函数,称为自旋波函数。它的自旋变量S z只是取和 式中 的本征态,则本征值方程为 (6.2-12) 和任何力学量的算符一样,它的本征函数应是正交归一的,即

(6.2-13) 显然,对于本征值为的态中,找到自旋的电子的几率为1,找到自 旋为的电子的几率为零,因此,的函数数值可取为 (6.2-14)相似地有 (6.2-15)首先把电子的波函数(6.2-8)式用下列二行一列矩阵表示 (6.2-16)则 (6.2-17) 分别表示电子处于及的自旋态,而 (6.2-18) 是的共轭矩阵,于是波函数的归一化条件为

自旋电子学研究与进展_詹文山

评述 自旋电子学研究与进展 3 詹 文 山 (中国科学院物理研究所 磁学国家重点实验室 北京 100080) 摘 要 自旋电子学是最近几年在凝聚态物理中发展起来的新学科分支,它研究在固体中自旋自由度的有效控制和操纵,在金属和半导体中自旋极化、自旋动力学、自旋极化的输运和自旋电子检测.由于它在信息存储方面的重大应用前景,受到学术界和工业界的高度重视.文章扼要地介绍了自旋电子学发展的历程和发展中的最重要的发现.最近几年,最奇特的发现和最重要的应用莫过于巨磁电阻,薄膜领域纳米技术的迅速发展使巨磁电阻的应用变成可能.作为磁记录头它已使硬磁盘的记录密度提高到170Gbit/in 2.动态随机存储器MRAM 的研究已实现16Mbit 的存储密度. 关键词 自旋电子学,巨磁电阻,磁隧道结,自旋阀 Recent progress i n spi n tron i cs ZHAN W en 2Shan (S tate Key L aboratory forM agnetis m ,Institute of Physics,Chinese acade m y of Sciences,B eijing 100080,China ) Abstract Sp intr onics is a new branch of condensed matter physics devoted t o studies on the manipulation of the s p in degree of freedo m in solids .It involves sp in polarization,s p in dynam ics,s p in trans port,and the detec 2tion of s p in polarized electr ons in metals and sem iconduct ors .Sp intr onics has attracted great attention fr om scien 2tists and manufacturers because of its potential app licati on in infor mati on st orage .A brief review of the develop 2ment of s p intr onics and its most i mportant discoveries will be given .The most exciting event in recent years may be the discovery of the giant magnetoresistance effect in metallic multilayer fil m s and the successful app lication of this effect to infor mation storage .Based on this effect,the magnetic recording density has been increased to 170Gbit /in 2 .A magnet oresistive random access memory of 16Mbit st orage density has als o been developed .These re 2sults clearly demonstrate the i m portance of sp intr onics for infor mati on technology .Keywords Sp intr onics,giant magnet oresistance,magnetic tunnel junctions,s p in valve 3 国家重点基础研究发展计划(批准号:2001CB610600),国家自 然科学基金(批准号:59731010)资助项目 2006-04-04收到初稿,2006-06-02修回  Email:wszhan@aphy .i phy .ac .cn 1 自旋电子学研究的历史回顾 电子具有电荷和自旋两种属性是人所共知的. 电子在电场中运动由于带有电荷而形成电流.导体在磁场中做切割磁力线的运动时,导体中产生电流.反过来,在磁场中的通电导体将产生垂直磁场的运动.从而发明电动机和发电机,成就了一个世纪的文明.在半导体中由于导带中的电子和价带中失去电子形成空穴的输运特性,构成P N 结,1947年发明半 导体晶体管,开创半导体电子学,打开了当代通信和数据处理技术发展的大门,奠定了现代信息社会的基础.所有这些都是基于电子具有电荷的属性.电子在完整晶体的周期性势场中运动是不受阻碍的,因而称为透明的.但是由热引起晶格振动或晶体中的各种缺陷,对电子散射而形成了阻碍.电子不受到散射的平均路程称为平均自由程.在低温下,金属的电

铁磁性材料

铁磁性材料 铁磁性物质属强磁性材料, 它在电工设备和科学研究中的 应用非常广泛,按它们的化学成 分和性能的不同,可以分为金属 磁性材料和非金属磁性材料(铁 氧体)两大族。 1 金属磁性材料 金属磁性材料是指由金属合 金或化合物制成的磁性材料,绝 大部分是以铁、镍或钴为基础,再加入其他元素经过高温熔炼、机械加工热处理而制成,这种磁性材料在高温、低频、大功率等条件下,有广泛的应用,但在高频范围,它的应用则受到限制。金属磁性材料还可分为硬磁、软磁和压磁材料等,实验表明,不同铁磁性物质的磁滞回线形状有很大差异,图示给出了三种不同铁磁材料的磁滞回线,其中,软磁性材料的面积最小;硬磁材料的矫顽力较大,剩磁也较大;而铁氧体材料的磁滞回线则近似于矩形,故亦称矩磁材料。 软磁材料的特点是相对磁导率r 和饱和磁感强度max B 一般都比较大,但矫顽力c H 比硬磁质小得多 ,磁滞回线所包围的面积很小,磁滞特性不显著如图(a),软磁材料在磁场中很容易被磁化,而由于它的矫顽力很小,所以也容易去磁,因此,软磁材料是很适宜于制造电磁铁、变压器、交流电动机、交流发电机等电器中的铁心的另一个原因。 硬磁材料又称永磁材料,它的特点是剩磁r B 和矫顽力c H 都比较大,磁滞回线所包围的面积也就大, 磁滞特性非常显著如图(b),所以把硬磁材料放在外磁场中充磁后,仍能保留较强的磁性,并且这种剩余磁性不易被消除,因此硬磁材料适宜于制造永磁体。在各种电表及其他一些电器设备中,常用永磁铁来获得稳定的磁场。1998年6月3日,由美国“发现者号”航天飞机携带的、美籍华裔物理学家丁肇中教授组织领导的阿尔法磁谱仪上所用的永磁体,就是由中国科学院电工研究所等单位研制的稀土材料钕铁硼永磁体,其磁感强度高达0. 14T ,该永磁体的直径为1. 2m ,高0. 8m ,而阿尔法磁谱仪是用来探测宇宙中反物质和暗物质的,这是人类第一次将大型永磁铁送入宇宙空间,对宇宙中的带电粒子进行直接观测,它极有可能给人类开拓一个全新的科学领域而带来一次新的科学突破。 压磁材料具有强的磁致伸缩性能,所谓磁致伸缩是指铁磁性物体的形状和体积在磁场变化时也会发生变化,特别是改变物体在磁场方向上的长度。当交变磁场作用在铁磁性物体上时,它随着磁场的增强,可以伸长,或者缩短,如钴钢是伸长,而镍则缩短,不过长度的变化是十分微小的,约为其原长的1/100000,磁致伸缩在技术上有重要的应用,如作为机电换能器用于钻孔、清洗,也可作为声电换能器用于探测海洋深度、鱼群等。 2 非金属磁性材料——铁氧体 铁氧体,又叫铁淦氧,是一族化合物的总称,它由三氧化二铁(Fe 2O 3)和其他二价的金属氧化物(如

相关文档
最新文档