定积分及其应用ppt课件

合集下载

定积分及其应用ppt课件

定积分及其应用ppt课件

n
xi 0, f (i )xi 0, i 1
|| T || max{x1, x2 , , xn }
n
b

lim
||T ||0
i 1
f (i )xi

f ( x)dx 0.
a
性质5的推论:(定积分不等式性质)
(1)如果在区间[a, b]上 f ( x) g( x),

b
a
f
(
x
)dx

b
a
g(
x)dx.
(a b)
证明 f ( x) g( x), g( x) f ( x) 0,
b
a[g( x) f ( x)]dx 0,
(a b)

b
g( x)dx
b
f ( x)dx 0,
a
a
于是
b
a f ( x)dx

c
b
f
(
x)dx
c
b
a f ( x)dx c f ( x)dx.
(定积分对于积分区间具有可加性)
性质4
b
b
a 1 dx a
dx b a .
性质5 如果在区间[a, b]上 f ( x) 0,

b
a
f
(
x
)dx

0.
(a b)
证明 f ( x) 0, f (i ) 0, (i 1,2,,n)

积取负号.


a

y f (x)
b
b
特别,当 f (x) 1 时,有a 1 dx (b a)1 b a .

定积分在物理中的应用PPT精品课件

定积分在物理中的应用PPT精品课件
W = 28 (J ) 3
例3 某汽车在高速公路上直线行驶, 刹车后汽车的速度为v(t)=12-0.6t (m/s),求刹车后汽车需前进多少m才 能停住?
120m
小结作业
1.在物理中,定积分主要应用于求变速
直线运动的位移和变力所作的功,其基
本原理如下:
原理1(求变速直线运动的位移):
若物体运动的速度函数为v(t),则物体
作业:
P59练习:1,2. P60习题1.7A组:2,3.
自学导航:
一、动物在自然界 中的作用
问题1:人类是否可以将苍蝇和蚊子赶尽 杀绝?
1、不能,因为在自然界中,某种动物与 其他生物有着直接或者间接的关系,当 某种动物被灭杀后,会间接或者直接影 响其他生物的生存,以至影响到整个自 然界。
2、不能,当某种动物的数量增多时,以 该动物为食的动物也会增多(或它的天 敌也会增多),从而限制了这种动物的 数量。
思考3:根据定积分计算,汽车在这1min
内行驶的路程是多少m?
v(m/s)
ò 10
3tdt=150
30 A
B
0
ò 40
30dt=900
C
10
O 10
40 60 t(s)
ò 60 (- 3 t + 90)dt =300
40
2
思考4:根据定积分的几何意义,如何计 算汽车在这1min内行驶的路程?
v(m/s)
运输 观赏
耕地 食品
3.动物与基因工程
2.动物与仿生学
动物与仿生萤火虫与冷光 Nhomakorabea保护我们的生存环境
草履虫 蚯蚓
净化污水 改良土壤
啄木鸟和杜鹃 壁虎
森林害虫的天敌 捕捉苍蝇、蚊子

定积分的应用93820-PPT文档资料59页

定积分的应用93820-PPT文档资料59页

y1 f1(x)
所围成,则其面积公式为:
b
A f1 ( x ) f 2 ( x ) d x .
a
o
y2 f2(x)
a
b
x
3 、若平面区域是 y—区域:
由左曲线 x1 g1( y) 、
右曲线 x2 g2( y) 、下
y
直线 y a 、上直线y b b
所围成, 则其面积公式为:
2

22
2
A 2 0
2x2 x2
dx
1 2
1 x2
dx
2
练习写出下列给定曲线所围成的图形面来自的定积分表达式。(7)
y2 42x
2
法一:以 y 作积分变量
1
2
A202(2y42)(1y42)dy
4
2 3
法二:以 x 作积分变量
2
y2 4x1
f(x)=x2
y
f(x)=x2
y
y f(x)=(x-1)2-1
f(x)=1
0a

x -1 0 2

x a 0 b x -1 0 2 x


解:(3)在图③中,被积f (函 x) 数1在[a,b]
上连续,f且 (x) 0,根据定积分的几何意
义,可得阴影部分积的为面A badx
y
f(x)=x2
A 0 1 [x (1 ) 2 1 ] d x 0 2 [x (1 ) 2 1 ] dx
授新课:一、直角坐标系情况
1 、 若 f ( x )在 [a , b ]上 不 都 是 非 负 的 ,
则所围成图形(如右图)
b
y

高等数学(第三版)课件:定积分的应用

高等数学(第三版)课件:定积分的应用

线 y f ( x,) 直线 x a, x b (a b) 与
• x 轴围成的面积是在x 轴上方和下方曲边梯形
面积的差.
• • 同样可由微元法分析
•⒉ 一般地,根据微元法由曲线 y f ( x), y g( x),
• ( f ( x) g( x)) 及直线x a, x b 所围的图形
• 面积.(右图所示)
• 解: 取 为积分变量,

面积微元为
d
A
1 2
(a )2
d
• 于是
A 2 1 (a )2d a 2 2
02
23
2 4 a 2 3
03
• 例5 计算双纽线 r 2 a2 cos2 (a 0)

所围成的平面图形的面积(下图所示)
• 解 因 r 2 0,故 的变化范围是 [ 3 , 5 ,]
• ⑴分割区间[a,b],将所求量(曲边梯形面积 A )
分为部分量(小曲边梯形面积 Ai)之和;
• ⑵确定各部分量的近似值(小矩形面积);
Ai f (i )xi
• ⑶求和得所求量的近似值(各小矩形面积之和);
n
A f (i )xi
i 1
• ⑷对和式取极限得所求量的精确值(曲边梯形面积).
n
A lim 0
• 它表示高为f ( x) 、底为 dx 的一个矩形面积.
• ⑵由定积分几何意义可知,当 f (x) 0 时,由曲
线 y f (x),直线 x a, x b (a b) 与 x 轴所围成
的曲边梯形的面积A为
A
b
f (x)dx
.
a
• ⑶当 f ( x)在区间 [a, b]上的值有正有负时,则曲

定积分在几何中的应用 课件

定积分在几何中的应用  课件

y=x2-3围成平面图形的面积是
S [3 2x (x2 3)]dx 3 (3 2x x2 )dx
1
1
(3x
x2
1 3
x3
31
(3 3 32 1 33) [1 3 (1)2 1 (1)3]
3
3
9 2 1 32 . 33
【拓展提升】求函数图象围成平面图形面积的方法 (1)画出两个函数的图象,先将两个函数方程联立方程组求 解,得到函数图象的交点的横坐标a,b(a<b),确定积分区间 [a,b]. (2)在公共的积分区间上,由上界函数减去下界函数作为被积 函数,定积分的值就等于两个函数图象围成平面图形的面
积,即 S a[b f1(x) (f其2 (中x)]fd1x(x)>f2(x)).
类型 二 计算复杂平面图形的面积 【典型例题】 1.由两条曲线y=x2, y 1 x2与直线y=1围成平面区域的面积
4
是_______.
2.求曲线 y x 与直线y=2-x,y 1 x 围成图形的面积.
3
【解题探究】1.题1中怎样确定积分变量的区间? 2.如何将图形的面积转化为定积分计算? 探究提示: 1.由直线y=1分别与曲线y=x2y, 1 x联2 立,求出交点坐标,
(2x
1 2
x2
1 6
x2)
13
=2 3
1 6
(2x
1 3
x2
)
13
=5 6 1 9 21 1 1=2 1 .
63
36
【互动探究】若将题2中条件变为如图由直线y=x-2,曲线 y2=x所围成图形,试求其面积S.
【解析】由
y2
x得, x=1或x=4,
y x 2,
故A(1,-1),B(4,2),如图所示:

高等数学第六章第二节定积分在几何学上的应用课件.ppt

高等数学第六章第二节定积分在几何学上的应用课件.ppt

解:
cos x 0,
2
x
2
s
2
2
2 2 0
1 y2 dx 1 ( cos x)2 dx
2 2
2 cos x dx
0
2
2
2
2
sin
x 2
2
0
4
的弧长.
例11. 计算摆线
一拱
的弧长 .
y
解: ds
(dd
x t
)2
(
d d
y t
)
2
d
t
o
a2 (1 cos t)2 a2 sin2 t d t
1 y2 dx
因此所求弧长
s b 1 y2 dx a
b
a
1 f 2(x) dx
y
y f (x)
ds
o a xxdxb x
(2) 曲线弧由参数方程给出:
弧长元素(弧微分) :
ds (dx)2 (dy)2
2 (t) 2 (t) dt
因此所求弧长
s
2 (t) 2 (t) d t
(3) 曲线弧由极坐标方程给出:
y b
o x ax
则 V 2 a y2 dx 0
(利用对称性)
2
b2 a2
a
(a
2
x2
)
dx
0
2
b2 a2
a2 x
1 3
x3
a 0
4 ab2
3
方法2 利用椭圆参数方程
则 V 20a y2 dx 2 ab2 sin3t d t
2 ab2 2 1
3
4 ab2
3
特别当b
=
a

《高数定积分》课件

《高数定积分》课件

05
广义积分及其收敛性判别法
广义积分的概念及分类
广义积分的定义
广义积分是相对于正常积分而言的一种特殊积分,其积分区间可能包含无穷大或者无界 函数。
广义积分的分类
根据被积函数和积分区间的不同,广义积分可分为无穷限广分的收敛性判别法
比较判别法
通过比较被积函数与已知收敛或发散的函数,来判断广义积分的收敛性。
换元法求解定积分
01
换元法的基本思想
通过变量代换简化定积分的计算 。
02
常见的换元方法
03
换元法的注意事项
三角函数代换、倒代换、根式代 换等。
代换后需调整积分上下限,并验 证代换的可行性。
分部积分法求解定积分
分部积分法的基本思想
将复杂函数拆分为简单函数 进行积分。
常见的分部积分公式
幂函数与三角函数、幂函数 与指数函数、幂函数与对数 函数等。
06
定积分在经济学等领域的应用
由边际函数求原经济函数
边际函数与定积分的关系
边际函数描述的是经济量变化的瞬时速率,而定积分则可用于求取原经济函数,即总量 函数。
求原经济函数的步骤
首先确定边际函数的表达式,然后根据定积分的定义,对边际函数进行积分,得到原经 济函数的表达式。
示例
已知某产品的边际收益函数为MR(q),通过对其进行定积分,可以得到总收益函数 TR(q)。
曲线的长度、图形的面积等。
THANKS
感谢观看
原函数与不定积分概念
原函数定义
原函数是指一个函数的导数等于给定函数的函数。根据微积分基本定理,不定积分就是求原函数的过 程。
不定积分性质
不定积分具有线性性质、常数倍性质和积分区间可加性。这些性质在求解复杂函数的定积分时非常有 用。

第5章 定积分及其应用(共132页)

第5章 定积分及其应用(共132页)
22
10:31:46
23
课后作业
课前预习
5.2 定积分的计算
书面作业
P128: 2;3;计算
5.2.1 变上限积分 5.2.2 牛顿-莱布尼兹公式 知识回顾与小结
10:31:46
25
5.2.1 变上限积分
设函数 f ( x ) 在闭区间
变上限积分动态演示
上述和式的极限,即得曲边梯形的面积
A lim f ( i ) x i
0
i 1 n
7
变速直线运动的路程
设某物体的运动速度 v v ( t )是时间 t 的连续函数,
T2 ]内所走过的路程 s . 求物体在时间间隔 [ T1 ,
第一步 分割
T2 ]中任意插入 n 1 个分点, 在时间间隔 [ T1 ,
微积分学基本定理
b]上连续, F ( x )是 f ( x ) 设函数 f ( x ) 在闭区间 [a , b] 上的一个原函数, 则 在 [a ,

b a
f ( x )d x F (b) F (a )
称为牛顿-莱布尼兹公式,或称为 N-L 公式.
32
N-L 公式表明:
b ]上的定积分等于它的 一个连续函数在区间 [ a ,
第三步
求和,即
求和
把 n 个子时间段内物体所走过的路程
s v ( i ) t i
i 1 n
第四步
取极限
记 max { t 1 , t2 , , t n } ,取
上述和式的极限,即得变速直线运动的路程
s lim v ( i ) t i
0
与 u x 2 复合
而成的,所以
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
i 1, 2, , n.
oa x1
b xi1 i x i xn1
x
以[xi1,xi]为 底f(, i)为 高 的 小 矩 形
A i f (i )xi
22
n
n
(3)求和 A Ai f(i)xi
i1
i1
(4)取极限 当分割无限加细 ,
即 Tm a x 1x , x { 2, x n} 0时 ,
)ti
25
二、定积分的定义
定义 设 函 数 f(x )在 [a ,b ]上 有 界 , 在 [a ,b ]中 任 意 插 入
若干个分点a x x x x x b
012
n 1 n
把区间[a, b]分成n个小区间,各 小 区 间 的 长 度 依 次 为
x i x i x i 1 , ( i 1 , 2 , ) , 在 各 小 区 间 上 任 取
a
f
( x)dx lim T 0 i1
f (i )xi
n
ba ba
lim f(a
i)
.
n i1
n
n
29
例1
利用定义计算定积分
1 x 2dx . 0
解 xi
T x把 i [0 x,i1 1]n等 n1, 分 , x 取i i n i x(i i, (i1 , 1,,2n ,),, n)

b
f (x)dx
b
b
f (t )dt f (u)du .
a
a
a
2o.当 T 0, 分点n个 ;数 但反之 . 不
3o.若f 在[a,b]的某一个积分和 不存的 在 极 ,限
或若f 在[a,b]的某两个积分和都的存极在限但 极限值 不相等 ,则f(x)在[a,b]上不可 . 积
播放 6
曲边梯形如图所示:
(1)分割 T : a x 0 x 1 x 2 x n 1 x n b ,
把 区 [a,b间 ]分n 成 个 小[x区 i1,xi间 ], 长 度
xi xi xi1;
y
y f(x)
(2)近似代替
i [ xi1, xi ] ,
28
4 o .如 果 f(x )在 [a ,b ]上 可积 , 则
b f (x)dx 某特殊积分和 的极限 . a
若 取 T:把 [a,b]n等 分 ,则 xi
xi
xi1
ba, n
取i xi ab nai, (i1,2, ,n)
则当 T 0 n ,
b
n

伽德纳
1
Archimedes
2
第一节 定积分的概念与性质
一、定积分问题的提出
实例1 (求曲边梯形的面积)
y
曲边梯形:由连续曲线
yf(x)
y f ( x) ( f ( x) 0)、
A?
x轴 与 两 条 直 线 xa、 o a
bx
x b 所围成的平面图形 .
3
用矩形面积近似取代曲边梯形面积
思路:把整段时间分割成若干小段,每小段上 速度看作不变,求出各小段的路程再相加,便 得到路程的近似值,最后通过对时间的无限细 分过程求得路程的精确值.
24
设一物 M以 体变v 速 v(t)作直线 , 运 求 该 物 体 a到 从时 时 b的 刻 刻运 动S.路 程
(1)分割 T : a t0 t 1 t2 tn 1 tn b
y
y
oa
b xo a
bx
(四个小矩形)
(九个小矩形)
显然:小矩形越多,矩形总面积越接近曲 边梯形面积.
4
例 如 ,y求 x2,由 直y曲 线 0,x线 0,x1所 围
平面图形的面积。
公元前二百 多年前的阿 基米德就已 会用此法求 出许多不规 则图形的面 积
Aera=?
阿基米德
5
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系.
n
曲边梯形面积为
A l i m T 0 i1
f (i )xi
求曲边梯形面积所用的方法步骤:
分割、近似代替、求和、 取极限 .
23
实例2 (求变速直线运动的路程)
设某物体作直线运动,已知速度v v(t )是 时 间 间 隔 [T1 ,T2 ] 上 t 的 一 个 连 续 函 数 , 且 v(t) 0,求物体在这段时间内所经过的路程.
第五章 定积分及其应用
本章主题词:曲边梯形的面积、定积分、变 上限的积分、牛顿-莱布尼茨公式、换元积分 法、分部积分法、广义积分。
数学不仅在摧毁着物理科学中紧锁的大 门,而且正在侵入并摇撼着生物科学、心理 学和社会科学。会有这样一天,经济的争执 能够用数学以一种没有争吵的方式来解决, 现在想象这一天的到来不再是谎缪的了。
一 点 i ( i x i) , 作 乘 积 f ( i ) x i( i 1 , 2 , )
n
并 作 和 Sf(i)xi,
i1
记||T|| max{x1, x2 , , xn } ,如 果 不 论 对 [a,b]
26
怎样的分法, 也 不 论 在 小 区 间 [ x i 1 ,x i] 上
ti ti ti1, 令 Tma t1x , t2 {, , tn},
(2)近似代替 i [ti 1 ,ti],i 1 ,2 , ,n .
n
si v(i)ti
(3)求和 S)取极限
S
lim
T 0 i1
v(i
f (i )xi
积分和 或黎曼和
[a,b] 称为
积分下限



积分区间 .
积 函 数
积 表
分 变
黎曼积分
达 式

[a , b]上不可积.
n

lim
T 0 i1
f(i )xi
不存在 则,称 f(x)在 27
注意:
1o. 定积分是积分和, 的其 极结 限果是一个数 它只与被积函 f 和 数积分区[a间 ,b]有关,而与 所用的积分变量无 的关 记 . 号
点 i怎 样 的 取 法 , 只要当|| T || 0 时,和 S总 趋 于
确 定 的 极 限 I, 我 们 称 这 个 极 限 I 为 函 数 f ( x )
在 区 间 [ a ,b ] 上 的 定 积 分 , 记为
积分上限
n
b
a
f
( x)dx

I
lim ||T ||0
i 1
相关文档
最新文档