某型飞机起落架设计改进及制造技术

某型飞机起落架设计改进及制造技术
某型飞机起落架设计改进及制造技术

2010 年第 8 期·航空制造技术

69

学术论文

RESEARCH

[摘要] 详细介绍了某型飞机起落架设计改进及制造技术。改进后的起落架经试验以及预先飞行验证,各项指标符合要求,满足了新研飞机的使用需要。

关键词: 起落架 设计改进 制造技术

[ABSTRACT] The new technology and processes are introduced in detail, which are adopted in the landing gear design improvement for one type of aircraft. The testing and advance flight validation after improvement shows that all functional performances are qualified and can meet the application requirements of the retrofit aircraft.

Keywords: Landing gear Design improvement Manufacturing technology

为满足某型飞机的研制需要,采用现代起落架的设计理念,在保持原起落架结构以及起落架与飞机的协调关系(连接形式、接口尺寸、电液和操作习惯)等方面基本不变的情况下,从设计、工艺方面进行改进,达到了增强承载能力、减轻重量和提高寿命的目的。试验验证和装机使用表明,改型后的飞机起落架性能优于原型机的性能,实现了减重、增寿,以及增强飞机使用安全性的目标。

1 设计改进

根据飞机起落架改进技术方案要求,在保证飞机安

全性的前提下,尽量减轻起落架的重量,并达到增寿的目的。经设计分析和计算,对不满足强度要求的零部件进行加强改进,对强度较富裕的零部件进行减重改进。1.1 缓冲支柱优化设计

飞机着陆重量的增加,相应引起起落架吸收动量增加,导致起落架着陆冲击载荷的增加。为了尽可能地降低着陆冲击过载,须对起落架的缓冲系统进行优化设计。为此,在充分利用原结构的前提下,进行缓冲器充填参数、阻尼油针的优化设计,选取多组缓冲结构并通过落震试验验证。

通过一系列比较和验证,阻尼油针选用圆角方形截面结构,如图1所示。该油针的选用,使飞机起落架

某型飞机起落架设计改进及制造技术

Design Improvement and Manufacturing Technology of Landing Gear for One Type of Aircraft

中国人民解放军驻陕飞公司军事代表室 王晓平 周 亮 李 鹏

阻尼特性稳定、磨损小,同时提高了缓冲器系统承载能力。

1.2 部分零

(组)件结构重新设计对起落架的部分零(组)件结构重新进行设计,改善

了零件的受力状态,从而提高了起落架的承载能力。如将主起落架斜撑杆由刚性结构改为弹性结构,以改善起

图1 圆角方形截面油针

Fig. 1 Square section pin with round corner

落架斜撑杆的协调承载能力,减少结构不协调引起的结构超载损伤,降低中部接头的应力水平,提高主起落架外筒中部接头的寿命。改进前后的结构如图2、图3所示。

1.3 关键重要件结构加强

由于新研飞机载荷的增加,经计算分析起落架部分零件强度不够,因此必须对零件结构进行改进,对簿弱部位进行加强。为了克服焊接结构的缺点,提高结构件的疲劳强度,前起落架活塞杆、主起落架外筒、前

图2 刚性斜撑杆(原结构)

Fig. 2 Rigid batter brace (original structure)

图3 弹性斜撑杆(改进结构)

Fig. 3 Flexible batter brace (improved structure)

3mm

3mm A腔

70

航空制造技术·2010 年第 8 期

学术论文

RESEARCH

起落架外筒和主起落架车架等主要结构件取消焊缝,采用整体锻件。主起落架外筒中部接头和头部结构改进前后如图4、图5所示,前起落架外筒结构改进前后如图6所示。· 对于高强度零件上的攻丝孔,应位于受压或低拉应力区域,孔的部位应用凹凸台加强,螺纹应位于外部凸台处;

· 对于高应力花键,不开花键退刀槽,大的根部半径,对键槽区采用喷丸强化处理;· 在所有耳片、支座、腹板等处的外部拐角半径最小值为2.5mm ~3.0mm;

· 对于筒形件(或称管状构件),在截面改变处应有尽可能大的圆角半径,规定的最小圆角半径R ≥10a (a

为截面变化处的台阶高度);

采用为螺纹的压入式注油嘴,注油嘴安装在受压或低拉应力区域。(3)高的表面质量。对于高强钢锻件,在所有的锻造表面上至少加工5mm 以上,清除表面缺陷和脱碳层材料,并应尽可能地降低表面粗糙度。(4)有效的抗腐蚀措施。

采用真空冶炼的高强度合金钢。对耐磨表面采用全覆盖镀铬;在所有的内腔、孔径中镀镉钛以及涂两层环氧树脂底漆加润滑脂薄膜;防止水和潮气滞留,提供可靠的排水通道,同时对零件涂以防腐蚀剂。

按上述要求对相关结构件进行耐久性细节设计改进。例如(如图7所示),对前、主起落架外筒撑杆接头等结构件进行细节改进,加长了过渡区,改善传力结构形式。

(a)焊接结构(原结构)(b)整体结构(改进结构)

图4 主起落架外筒中部接头结构改进

Fig. 4 Improved mid adaptor structure of main

fitting on main landing gear

(a)焊接结构(原结构)(b)整体结构(改进结构)

图6 前起落架外筒中部接头结构改进

Fig. 6 Improved mid adaptor structure of main

fitting on nose landing gear

(a)焊接结构(原结构)(b)整体结构(改进结构)

图5 主起落架外筒头部结构改进

Fig. 5 IImproved head structure of main fitting on

main landing gear

图7 细节改进典型示例

Fig. 7 Typical demonstration of detail improvement

1.4 耐久性细节设计改进

起落架结构疲劳危险部位通常包括:轮轴、刹车法兰盘、扭力臂连接及收放作动筒耳片、起落架与机体连接的轴颈与接头,以及前起落架操作转弯机构连接耳片等。此外,对于采用焊接起落架结构,还应包括焊缝及其热影响区的细节设计。

耐久性细节设计改进主要包括:(1)选材。

起落架主要承力构件采用30CrMnSi2A 高强度合金钢或40CrNi2Si2MoVA 超高强度钢。(2)严格控制应力集中。· 对于高应力零件上的沟槽,在槽根部应有尽可能大的圆角半径;

1.5 机轮

航空机轮的主要功能是支撑、刹停飞机和减轻其着陆冲击。随着飞机速度的不断提高和飞机重量的增加,机轮也由初级的弯块式刹车发展到现代复杂的盘式刹车,应用的新技术、新材料和新工艺可以满足新研飞机的要求。

(1)轮胎。采用无内胎,低断面纵横比,它具有能提高起飞速度、承载大、寿命长以及能提供更大的可容刹车装置空间等优点。(2)轮毂。它是机轮的受力构件,采用“A”字型偏置对开式结构,主体材料亦为高强度铝合金2A14,刹车壳体采用30CrMnSiA 钢锻件制造的整体式结构,具有重

学术论文RESEARCH

量轻、寿命长、耐蚀性优于镁合金等优点。

(3)刹车装置。重点在摩擦材料上,刹车盘采用整体针刺毡SC303碳∕碳复合材料制造,其优点是重量轻、刹车性能优良、稳定、寿命长,是理想的摩擦材料。重量由103kg降至78kg,而寿命却由500次起落提高到2500次起落。

2采用的新工艺

在制造过程中采用真空电子束焊、真空热处理、高强度钢零件的表面强化等新工艺。采用一些新的工艺,使飞机起落架的可靠性提高,寿命增加。

2.1真空电子束焊

真空电子束焊接是较为先进的焊接技术,与传统的焊接技术相比具有焊接缺陷少、焊缝强度高(焊缝强度可达到机体金属的95%以上)、热影响区小的特点。采用真空电子束焊接工艺,不但能够提高焊接件的强度和寿命,而且能避免由于改为整体锻件而出现的工艺性差和加工难度大的问题。采用真空电子束焊接的零件有主起落架外筒等,如图8所示。零件表面上产生腐蚀往往出现在扩展的裂纹处。通过表面强化使零件表面产生压缩应力层,以抵制由于工作载荷施加的循环拉应力,可以大大提高金属零件的疲劳寿命,显著提高抗应力腐蚀的能力。采用的表面强化方法有喷丸、小孔挤压、螺纹根部滚压、金刚石挤压强化等方法。

3试验试飞验证

3.1静强度试验

改进后的前、主起落架按照飞机起落架静强度和刚度试验任务书、军用飞机强度和刚度规范GJB67.9-85的要求进行试验。使用载荷卸载1min后,结构没有出现有害的永久变形;在设计载荷下保持3s,结构没有发生破坏,完全满足设计鉴定试验大纲和军用飞机强度和刚度规范GJB67.9-85要求。

3.2落震试验

改进后的前、主起落架经落震试验,完成了设计着陆试验、充填参数容差试验和飞机增重试验后,起落架结构无有害的永久变形,缓冲系统功能无削弱。设计着陆试验过载系数前起落架为落架为1.67,主起落架为1.63。完成储备能量试验后,起落架结构允许产生不失去功能的永久变形但不应破坏。前起落架过载系数2.15,主起落架过载系数2.15,试验结果完全满足设计鉴定试验大纲和军用飞机强度和刚度规范GJB67.9-85要求。

3.3前起落架摆振试验

改进后的前起落架依据摆振试验大纲给定的试验项目,按飞机设计安装状态和装机阻尼孔径,在试验大纲要求的所有载荷和速度范围内试验,前起落架系统没有发生摆振,满足摆振稳定性要求;经过3个周期后,摆振幅值小于初始扰动值的1/4,完全满足设计鉴定试验大纲和军用飞机强度和刚度规范GJB67.9-85要求。3.4装机使用

2006年8月,将两架改进后的飞机起落架分别装于两架新研飞机上领先飞行。截止目前,一架累计飞行560飞行小时/376起落;另一架机累计飞行1000飞行小时/725起落,工作性能良好。

4 结论

改进后的飞机起落架重量、承载能力、寿命等性能指标符合要求,工作性能稳定。首翻期由原来的2000起落/日历时间8年提高到3000起落/日历时间10年;总寿命由原来的10000起落/日历时间20年提高到15000起落/日历时间30年,满足了新研飞机使用要求。(责编 淡蓝)

图8 主起落架外筒(改进结构)

Fig. 8 Main fitting of main landing gear

(improved structure)

整体结构真空电子束焊接

2.2 真空热处理

对起落架的关键重要件由原来的普通热处理改为

真空热处理,使零件具有无氧化、无脱碳(表面脱碳层要

求不大于0.76mm)、表面光亮及不变形的优点,还可以

改善材质,发挥材料的潜力,提高疲劳强度,满足起落架

性能要求。

2.3高强度钢零件的表面强化工艺

改进后的飞机起落架采用的高强度钢

(30CrMnSi2A)或(40CrNi2Si2MoVA)超高强度钢,对应

力集中特别敏感,如不采用适当的表面光整和表面强化

措施,会造成零件的抗应力腐蚀能力差,疲劳寿命降低。

疲劳破坏通常是由于作用在金属零件表面上的循环拉

应力造成的,循环拉应力会引起金属零件上扩展裂纹,

2010 年第 8 期·航空制造技术71

飞机起落架结构优化设计及制造加工

2011 年春季学期研究生课程考核 起落架结构优化设计及制造加工 关键词:起落架设计改进制造技术 为满足某型飞机的研制需要,采用现代起落架的设计理念,在保持原起落架结构以及起落架与飞机的协调关系(连接形式、接口尺寸、电液和操作习惯)等方面基本不变的情况下,从设计、T艺方面进行改进,达到了增强承载能力、减轻重量和提高寿命的目的。试验验证和装机使用表明,改型后的飞机起落架性能优于原型机的性能,实现了减重、增寿,以及增强飞机使用安全性的目标。 1 设计改进 根据飞机起落架改进技术方案要求,在保证飞机安全性的前提下,尽量减轻起落架的重量,并达到增寿的目的。经设计分析和计算,对不满足强度要求的零部件进行加强改进,对强度较富裕的零部件进行减重改进。 1.1 缓冲支柱优化设计 飞机着陆蕈量的增加,相应引起起落架吸收动量增加,导致起落架着陆冲击载荷的增加。为了尽可能地降低着陆冲击过载,须对起落架的缓冲系统进行优化设计。为此,在充分利用原结构的前提下,进行缓冲器充填参数、阻尼油针的优化设计,选取多组缓冲结构并通过落震试验验证。通过一系列比较和验证,阻尼油针选用圆角方形截面结构,如图1所示。该油针的选用,使飞机起落架阻尼特性稳定、磨损小,同时提高了缓冲器系统承载能力。 1.2部分零(组)件结构重新设计 对起落架的部分零(组)件结构重新进行设计,改善了零件的受力状态,从而提高了起落架的承载能力。如将主起落架斜撑杆由刚性结构改为弹性结构,以改善起落架斜撑杆的协调承载能力,减少结构不 圈1圆角方形截面油针 Fig.1 Square section pin with round comer 协调引起的结构超载损伤,降低中部接头的应力水平,提高主起落架外筒中部接头的寿命。改进前后的结 构如图2、图3所示。 图2刚性斜撑杆(原结构) Fig.2 Rigid batter brace(original structure)

飞机起落架设计(中英文对照)

Aircraft Landing Gear Layouts 飞机起落架设计(中英文对照图) 发布人:圣才学习网发布日期:2010-06-25 14:36 共292人浏览[大] [中] [小] Most aircraft today have three landing gear. 许多现代飞机使用三点式起落架。 Two main landing gear struts located near the middle of the aircraft usually support about 90% of the plane’s we ight while a smaller nose strut supports the rest. 重心附近的两个大的主轮,承担约90% 的重量,小轮子承担余下部分。 This layout is most often referred to as the "tricycle" landing gear arrangement.However,there are numerous other designs that have also been used over the years,and each has its own advantages and disadvantages.Let’s take a closer look at the various undercarriage options available to engineers. 目前的飞机以前三点起落架为主,让我们来回顾一下后三点起落架及其优缺点。(意译) Tail wheel or Tail dragger Gear 后三点尾轮式与后三点尾橇式起落架 Though the tricycle arrangement may be most popular today,that was not always the case.The tail wheel undercarriage dominated aircraft design for the first four decades of flight and is still widely used on many small piston-engine planes. 虽然前三点起落架比较普遍,但是在几十年前的飞机,及当今的许多小型飞机是使用后三点起落架的。 The taildragger arrangement consists of two main gear units located near the center of gravity (CG)that support the majority of the plane’s weight. 后三点起落架,由两个在重心靠前位置的主轮支持大部分的飞机重量。 A much smaller support is also located at the rear of the fuselage such that the plane appears to drag its tail,hence the name. 一个非常小的尾轮装置在机身,看上去这个小轮子是被拖着走,所以,英文Taildragger 也因此而得名。 This tail unit is usually a very small wheel but could even be a skid on a very simple design.它即可以是一个小尾轮,也可以是一个尾橇。

针对IO的缓冲器版图设计

《集成电路版图设计》实验(二): 针对IO的缓冲器版图设计 一.实验内容 参考课程教学中互连部分的有关讲解,根据下图所示,假设输出负载为5PF,单位宽长比的PMOS等效电阻为31KΩ,单位宽长比的NMOS等效电阻为13KΩ;假设栅极和漏极单位面积(um2)电容值均为1fF,假设输入信号IN、EN是理想阶跃信号。与非门、或非门可直接调用LEDIT标准单元库,在此基础上,设计完成输出缓冲部分,要求从输入IN到OUT的传播延迟时间尽量短,可满足30MHz时钟频率对信号传输速度的要求(T=2T p)。 二.实验要求 要求:实验报告要涵盖分析计算过程 图1.常用于IO的三态缓冲器

三、实验分析 为了满足时钟频率对信号传输速度的要求,通过计算与非门和或非门的最坏延时,再用全局的时钟周期减去最坏的延时,就得到了反相器的应该满足的延时要求,可以得到反相器N管和P管宽度应该满足什么要求。标准与非门和或非门的电容、电阻可以通过已知条件算出。由于与非门、或非门可直接调用LEDIT标准单元库,所以本设计的关键在于后级反相器的设计上(通过调整反相器版图的宽长比等),以满足题目对电路延时的要求。由于输入信号IN和是理想的阶跃信号,所以输入的延时影响不用考虑。所以计算的重点在与非门和或非门的延时,以及输出级的延时。对于与非门,或非门的延时,由于调用的是标准单元,所以它的延时通过提取标准单元的尺寸进行估算,输出级的尺寸则根据延时的要求进行设计。 四、分析计算 计算过程: (1)全局延时要求为: 30MHz的信号的周期为T=1/f=33ns; 全局延时对Tp的取值要求,Tp<1/2*T=16.7ns; (2)标准单元延时的计算:

飞机起落架结构及其系统设计

本科毕业论文题目:飞机起落架结构及其故障分析 专业:航空机电工程 姓名: 指导教师:职称: 完成日期: 2013 年 3 月 5 日

飞机起落架结构及其故障分析 摘要:起落架作为飞机在地面停放、滑行、起降滑跑时用于支持飞机重量、吸收撞击能量的飞机部件。为适应飞机起飞、着陆滑跑和地面滑行的需要, 起落架的最下端装有带充气轮胎的机轮。为了缩短着陆滑跑距离,机 轮上装有刹车或自动刹车装置。同时起落架又具有空气动力学原理和 功能,因此人们便设计出了可收放的起落架,当飞机在空中飞行时就 将起落架收到机翼或机身之内,以获得良好的气动性能,飞机着陆时 再将起落架放下来。本文重点介绍了飞机的起落架结构及其系统。对起落 架进行了系统的概述,对起落架的组成、起落架的布置形式、起落架的收 放形式、起落架的收放系统、以及起落架的前轮转弯机构进行了系统的论 述。并且给出了可以借鉴的起落架结构及其相关结构的图片。 关键词:起落架工作系统凸轮机构前轮转弯收放形式

目录 1. 引言 (1) 2. 起落架简述 (1) 2.1 减震器 (1) 2.2 收放系统 (1) 2.3 机轮和刹车系统 (2) 2.4 前三点式起落架 (2) 2.5 后三点式起落架 (3) 2.6 自行车式起落架 (5) 2.7 多支柱式起落架 (5) 2.8 构架式起落架 (6) 2.9 支柱式起落架 (6) 2.10 摇臂式起落架 (7) 3 起落架系统 (7) 3.1 概述 (7) 3.2 主起落架及其舱门 (7) 3.2.1 结构 (8) 3.2.2 保险接头 (8) 3.2.3 维护 (8) 3.2.4 主起落架减震支柱 (8) 3.2.5 主起落架阻力杆 (9) 3.2.6 主起落架耳轴连杆 (10) 3.3 前起落架和舱门 (10) 3.4 起落架的收放系统 (10) 3.4.1起落架收放工作原理 (10) 3.4.2 起落架收放过程中的的液压系统 (11) 3.4.3 主起落架收起时的液压系统工作过程 (12) 3.4.4 主起落架放下时的液压系统工作原理 (13) 3.4.5 在液压系统发生故障时应急放起 (14) 3.4.6 起落架收放的工作电路 (15) 3.5 前轮转弯系统 (17) 3.5.1 功用 (17) 3.5.2 组成 (17) 3.5.3 工作原理 (17) 3.6 机轮和刹车系统 (17) 4 歼8飞机主起落架机轮半轴裂纹故障分析 (17) 4.1 主起落架机轮半轴故障概况 (17) 4.2 主起落架机轮半轴失效分析 (18) 4.3 机轮半轴裂纹检测及断口分析 (20) 4.3.1 外场机轮半轴断裂检查 (20) 4.3.2 大修厂机轮半轴裂纹检查 (21) 4.4 主起落架机轮半轴疲劳试验结果 (22) 4.4.1 机轮半轴疲劳试验破坏部位 (22)

飞机总体设计课程设计解析

南京航空航天大学 飞机总体设计报告——150座级客机概念设计 011110XXX XXX

设计要求 一、有效载荷 –二级布置,150座 –每人加行李总重,225 lbs 二、飞行性能指标 –巡航速度:M 0.78 –飞行高度:35000英尺 –航程:2800(nm) –备用油规则:5%任务飞行用油+ 1,500英尺待机30分钟用油+ 200海里备降用油。 –起飞场长:小于2100(m) –着陆场长:小于1650(m) –进场速度:小于250 (km/h)

飞机总体布局 一、尾翼的数目及其与机翼、机身的相对位置 (一)平尾前、后位置与数目的三种形式 1.正常式(Conventional) 优点:技术成熟,所积累的经验和资料丰富,设计容易成功。 缺点:机翼的下洗对尾翼的干扰往往不利,布置不当配平阻力比较大 采用情况:现代民航客机均采用此布局,大部分飞机采用的位移布局形式2.鸭式(Canard) 优点:1.全机升力系数较大;2.L/D可能较大;3.不易失速 缺点:1.为保证飞机纵向稳定性,前翼迎角一般大于机翼迎角; 2.前翼应先失速,否则飞机有可能无法控制 采用情况:轻型亚音速飞机及军机采用 3.无尾式( Tailless ) 优点:1.结构重量较轻:无水平尾翼的重量。 2.气动阻力较小——由于采用大后掠的三角翼,超音速的阻力更小 缺点:1. 具有稳定性的无尾飞机进行配平时,襟副翼的升力方向向下,引起升力损失 2. 起飞着陆性能不容易保证 采用情况:少量军机采用 综上所述,采用正常式尾翼布局 (二)水平尾翼高低位置选择 (a) 上平尾(b) 中平尾(c) 下平尾(d) 高置平尾(e) “T”平尾 选择平尾高低位置的原则 1.避开机翼尾涡的不利干扰:将平尾布置在机翼翼弦平面上下不超过5%平均气动力弦长的位置,有可能满足大迎角时纵向稳定性的要求。 2.避开发动机尾喷流的不利干扰 综合考虑后,选择上平尾 (三)垂尾的位置和数目 位置 - 机身尾部 - 机翼上部

飞机起落架的设计分析

[键入公司名称] [键入文档标题] [键入文档副标题] [键入作者姓名] 姓名:龙玉 起落架的结构,布置型式,疲劳强度研究,动力学研究,设计与分析

目录 一.引言……………………………………………………………………………………………………………………………..2二.起落架结构概述…………………………………………………………………………. .2 1.结构 (2) ①.承力支柱、减震器 (2) ②.收放系统 (2) { ③.机轮和刹车系统 (2) ④.转弯系统 (2) 2.布置型式 (3) ①.前三点式起落架 (3) ②.后三点式起落架 (3) ③.自行车式起落架 (3) ④.多支柱式起落架 (3) '

3.结构分类 (4) 三.起落架研究现状与发展趋势 (4) (一). 疲劳破坏的相似规律…………………………………………………………………………………………. 5 1.疲劳强度的统计估算 法………………………………………………………………………………………………………… (5) 2.起落架结构材料疲劳破坏相似规律的研 究 (5) (二). 起落架动力学的分析方法 (6) & (三). 起落架设 计………………………………………………………………………………………… (6) 1.主起落架长度与防翻角的关 系 (6) 2.主起落架长度与尾座角的关 系 (6) 3.主起落架长度与侧翻角的关 系 (6) (四). 发展趋 势………………………………………………………………………………………… (8) ^ 四.总结 (8) 五.参考文

献 (8) / 飞机起落架的设计分析 一.引言 起落架是航空器下部用于起飞降落以及滑行时支撑航空器并用于移动的附件装置。起落架是唯一一种支撑整架飞机的部件,因此它是飞机不可分缺的一部份;随着飞行器设计和制造技术的发展,起落架也在不断的改进和创新之中。 在二战以前,由于飞机的飞行速度较低,所以当时的起落架在飞机飞行的时候也可以暴露在外面,这样对飞行性能的影响不太大,所用的技术要求不高。但二战后随着科技的井喷式的发展,飞机的飞行速度大幅度提高。速度的不断提升引起以致到超音速的阶段,由此伴随着的空气阻力也随之增大。为减小空气阻力,人们便设计出了可收放的起落架。尽管起可以收放的起落架加大了飞机的重量,但从整体来说这大大促进了飞机的飞行的进步。 二.起落架结构概述 1.结构 为了缩短着陆滑跑距离,机轮上装有刹车或自动刹车装置。此外还包括 ①.承力支柱、减震器(常用承力支柱作为减震器外筒):减震器即为飞行器在着陆或在不平坦的跑到上运动时用来消减飞机摇摆震动的结构以防止飞机颠簸。当减震器受撞击压缩时,空气的作用相当于弹簧,贮存能量。 、

飞行器设计与工程专业(卓越工程师)培养方案

飞行器设计与工程专业(卓越工程师)2017级本科培养方案一、专业简介 飞行器设计与工程专业依托航空宇航科学与技术学科及力学学科,将无人机、通用航空飞机、民用航空飞机、战斗机等飞行器作为重点对象,具有突出的专业特色。现具有专职教师9名,其中副教授2名,讲师7名,硕士生导师5名。近年来,完成多项省、市、国家级科研课题,完成航天科技集团、航天科工集团、中国商用飞机有限公司等重点专项课题,建立航空航天工程学部“创新飞行器设计实践基地,学生在实践基地完成创新型飞行器设计、制造和控制仿真等实践工作。 本专业注重工程教育与工程训练相结合,注重对学生创新精神和实践能力的培养,特别是在加强学生工程实践能力和综合能力培养方面取得了很好的实效,得到有关用人单位的高度评价。多年来招生和就业情况良好。 二、培养目标及服务面向 培养适应社会主义现代化建设和国家战略性航空航天产业迅猛发展需要的德、智、体、美等全面发展,具备较好的数学、力学基础知识和航空航天工程基本理论,具有较强的工程实践能力、技术创新意识、工程管理能力和综合素质的高级工程技术人员和研究人员。 毕业生应掌握空气动力、飞行器总体设计、强度分析、结构设计和飞行力学等方面的专业知识,熟悉间飞行器设计与制造相关领域的新技术,能够在航空航天企业、民航部门、科研院所、通用航空及相关领域中从事科研、设计、制造和开发等高级工程技术和管理方面的工作。 三、培养要求 1、具有较强的社会责任感、较好的人文素养和良好的职业道德,健全的人格和健康的体魄; 2、具有从事领域工作所需的自然科学知识和社会科学知识; 3、系统地掌握本专业领域宽广的基础知识,掌握飞行器设计基础、力学基础、机械设计、自动控制原理、电工与电子技术等方面的基础理论。 4、掌握本专业领域内所需的飞行器设计的空气动力、强度分析、结构设计和

飞机装配工艺

飞机装配与一般机械的转配有些不同,但飞机装配和一般机械的装配究竟有什么的不同?下面就简单的介绍一下: 1.、一般机械的装配工作占产品劳动总量的20%,而飞机装配占劳动总量的50%——60%,而且质量要求高,技术难度大 2、飞机装配使用了许多复杂的装配型架,飞机制造的准确度很大程度上取决与装配的准确度,而一般机械主要取决于零件制造的准确度。 3、飞机装配采用许多复杂的型架 4、飞机装配中零件数量,零件大,刚度小,产量比通用机械小 5、通用机械用公差配合制度来保证装配精度,飞机是以采用模线样板法。 不太适合自动化 工艺分离面:为了满足生产工艺,结构件间的分离面 设计分离面:设计的时候这个位置是可以拆装的,这些部件形成的课拆卸的分离面 第一章飞机装配过程和装配方法 飞机结构的分解: 装配过程:一般是由零件先装配成比较简单的组合件和板件,然后逐渐地装配成比较复杂的锻件和部件,最后将部件对接成整架飞机。 机翼和机身具有不同的功能,故结构不同,所以要设计成两个单独的部件,发动机装在机身内,为便于更换,维护和修理,将机身分为前机身和后机身,鸵面相对于固定翼作相对运动,故划分为单独部件,某些零件设计有可卸件,以便维护,检查及装填用 装配基准 以骨架外形为基准 大梁和翼肋的定位,铺上蒙皮,用橡皮绳或钢带紧压在骨架上,骨架蒙皮的铆接误差组成: 1、骨架零件制造的外形误差 2、骨架的装配误差 3、蒙皮的厚度误差 4、蒙皮和骨架由于贴合不紧而产生的误差 5、装配连接的变形误差 为提高外形准确度必须提高零件的制造准确度、骨架装配的准确度,装配时将蒙皮紧贴在骨架上。 以蒙皮外形为基准误差积累是有外向内 隔框按型架定位,通过撑杆将蒙皮紧贴在型架卡板上,通过补偿件将骨架与壁板连接。 误差组成: 1、装配型架卡板的外形误差 2、蒙皮和卡板外形之间由于贴合不紧而产生的误差 3、装配连接的变形误差 装配定位:要确定零件、组合件、板件、锻件之间的相对位置。 对定位的要求: 1、保证定位符合图纸和技术条件所规定的准确度要求 2、定位和固定要操作简单可靠

飞机装配工艺总复习题

填空题 1、机装配中,常用的定位方法用画线定位、用装配孔定位和用装配夹具(型架)定 位。 2、确定铆钉孔位置的常用方法有按画线钻孔、按导孔钻孔和按钻模钻孔。 3、飞机转配铆接中,有正铆和反铆两种锤铆方法。 4、工艺分离面的主要特点是采用不可卸连接,设计分离面的主要特点是采用可卸连接。 5、密封铆接的密封形式有自密封铆接密封、缝内密封、缝外密封和表面密封四种。 6、胶接点焊有“先胶后焊”和“先焊后胶”两种基本的工艺过程。 7、在飞机制造成批生产中,采用分散装配原则时,其协调内容一般为工件与工件之间的协 调和工件与装配夹具(型架)之间的协调。 8、飞架制造中,模线可分为理论模线和结构模线。 9、在飞机装配中有三大连接技术,分别是铆接、胶接和焊接。 10、飞机装配型架一般由骨架、定位件、夹紧件和辅助设备等部分组成。 11、飞机装配夹具除了有起定位作用外,还有校正零件形状和限制装配变形的作用。 12、在飞机装配中除了用用装配夹具(型架)作为主要定位方法外,对不太复杂得组合件或 板件可用装配孔定位的定位方法。对无协调要求及定位准确度不高的部位可采用用划线定位的方法。 13、飞机部件的对接,一般采用叉耳式及接头、围框式接头和胶接式接头等三式。 14、飞机制造中,传统方式是采用实物的模拟量协调系统,现代方式是采用数字量尺寸传递 体系。 15、装配型架的骨架的结构形式有框架式、组合式、分散式和整体底座式。 16、切面样板有切面内、切面外、反切面内和反切外面等四种。 17、胶接点焊是高剪切强度的胶接和低成本的点焊组合。 18、设计分离面是为结构和使用需要而取的,主要特点是采用可拆卸连接。 19、在飞机装配中,铆接是应用最广泛的一种连接技术。 20、机尾翼相对于机身位置准确度是通过飞机水平测量来检查的。 21、普通铆接的铆接过程是制铆钉孔、制埋头窝(对埋头铆钉而言)、放铆钉和铆接。 22、比较复杂的机身总装型架的骨架一般采用分散式。 23、胶接点焊中,胶接体现的主要特点是高剪切强度,点焊体现的主要特点是低成本。

飞机前起落架驱动系统设计与性能分析

飞机前起落架驱动系统设计与性能分析 陈炎 南京航空航天大学,南京 210000 摘要:本文以大型民机起落架液压系统为研究对象,结合具体设计要求,采用电力传动技术,设计了一套起落架收放系统的新型驱动系统。本系统还利用一套双余度电控应急方案取代了传统的钢索滑轮应急放机构,并针对其蜗轮蜗杆传动机构进行了初步设计。最后在https://www.360docs.net/doc/925577652.html,b和https://www.360docs.net/doc/925577652.html,b软件平台上分别建立起落架收放机构及其控制系统的联合仿真模型,并分别对系统在正常收放和应急放模式下的性能进行仿真分析,初步实现了飞机收放系统的机电液一体化仿真。通过本文的研究工作,可以为飞机起落架液压系统的改进提供了一些有价值的经验和结论,为进一步的优化设计和试验工作奠定了的基础,对我国飞机起落架相关设计工作提供了技术支持。 关键词:民机起落架、系统设计、Virtual Lab Motion、Amesim、联合仿真 0前言 起落架系统在飞机滑跑起飞、着陆时支撑飞行器重量、承受着当飞机与地面接触时产生的静、动载荷、吸收和消耗飞机在着陆撞击、跑道滑行等地面运动时所产生的能量,在减缓飞机发生振动,降低飞机地面载荷,提高乘员舒适性,保证飞机飞行安全等方面发挥着极其重要的作用,是飞机设计过程中的重要环节。传统的飞机起落架设计中一般采用液压驱动装置。液压系统具有技术成熟、输出功率大、动态响应好、定位精度高的优点,但是由于液压系统采用了集中式液压源,飞机全身布满液压管路、造成其易泄露、易污染、易燃、结构复杂、重量大等问题,同时为了维持输出,液压系统需要工作在连续模式下,这使得其利用率很低,由此可见液压系统的可靠性问题成为了整个飞机系统中的薄弱环节之一,致使飞机不得不采用多余度作动系统,这又带来了重量、体积增加等新的问题。 近些年来,随着“功率电传”系统的不断发展,国外提出了“多电或者全电”驱动的设计思路。利用多电/全电技术,广泛采用电力作动器和功率电传技术,可以取代飞机上机械传动、气压、液压和润滑系统,从而大大减少飞机的重量和复杂性,可使飞机的可靠性、维修性、效率、生存能力和灵活性大为改善,同时由于燃油消耗量的减少、飞机出勤率的提高,可明显节省飞行成本。 目前,用于飞行控制、环境控制、刹车、燃油和发动机启动系统的电力作动系统已得到验证,国外也已经开始对飞机起落架驱动系统进行研究,他们预测用新型电力作动系统取代原来的液压系统将显着提高起落架系统的可靠性。可以说起落架驱动系统全电化的实现,无论对我国民用还是军用飞机性能的提高都具有重要的意义,是未来飞机起落架系统发展的新趋势。 本文以我国大型民机为设计背景,以多电/全电飞机为设计思想,针对飞机起落架驱动系统开展分析、设计和仿真工作,初步形成一套集机电一体化设计、仿真、分析流程。 1驱动系统方案设计 1.1起落架驱动系统设计要求 飞机前起落架驱动系统的主要作用是实现起落架的收放和转弯功能。传统的前起落架驱动系统是通过集中液压源进行驱动的,但随着目前飞机向全电/多电化方向发展的趋势,飞机内不再设有集中液压源,所以原有的液压系统就需要重新设计。以起落架收放系统为例,其设计要求如下: 飞机起落架收放系统的主要作用是在飞机起飞离地后,将起落架及起落架舱门收起并上锁,在飞机着陆前,打开舱门控制起落架放下并上锁,是飞机中的关键系统之一。同时,收放系统在起落架收起过程中,能控制起落架及相关部件(如舱门)按顺序开、关。 飞机前起落架收放系统的具体设计要求是:

飞机总体设计课程设计报告

国内使用的喷气式公务机设计 班级: 0111107 学号: 011110728 姓名:于茂林

一、公务机设计要求 类型 国内使用的喷气式公务机。 有效载重 旅客6-12名,行李20kg/人。 飞行性能: 巡航速度: 0.6 - 0.8 M 最大航程: 3500-4500km 起飞场长:小于1400-1600m 着陆场长:小于1200-1500m 进场速度:小于230km/h 据世界知名的公务机杂志B&CA发布的《2011 Purchase Planning Handbook》,可以将公务机按照价格、航程、客舱容积等数据分为超轻型、轻型、中型、大型、超大型。 根据设计要求,可以确定我们设计的公务机属于轻型公务机:价格在700-1800万美元、航程在3148-5741公里、客舱容积在8.5-19.8立方米的公务机。与其他公务机相比,轻型公务机主要靠较低的价格、低廉的运营成本、在较短航程内的高效率来取得竞争优势。 由此,从中选出一些较主流机型作为参考 二、确定飞机总体布局 1、参考机型 庞巴迪航空:里尔45xr、里尔60xr 巴西航空:飞鸿300、 塞斯纳航空:奖状cj3 机型座位数巡航速度M 起飞场长m 着陆场长m 航程km 最大起飞重量kg 里尔45XR 9 0.79 1536 811 3647 9752 里尔60XR 9 0.79 1661 1042 4454 10659 飞鸿300 9 0.77 1100 890 3346 8207 奖状CJ3 9 0.72 969 741 3121 6300

2、可能的方案选择: 正常式 前三点起落架 T型平尾 / 高置平尾 + 单垂尾 尾吊双发涡轮喷气发动机 / 翼吊双发喷气发动机 / 尾吊双发喷气发动机 小后掠角梯形翼+下单翼 / 小后掠角T型翼+中单翼 / 直机翼+上单翼 3、最终定型及改进 1)正常式、T型平尾、单垂尾 ①避免机翼下洗气流和螺旋浆滑流的影响:1、减小尾翼振动;2、减小尾翼结构疲劳;3、避免发动机功率突然增加或减小引起的驾驶杆力变化 ②“失速”警告(安全因素) ③外形美观(市场因素) ④由于飞机较小,平尾不需要太大,对垂尾的结构重量影响不大 2)小后掠角梯形翼(带翼梢小翼)、下单翼 ①本次公务机设计续航速度0.6-0.8M,处于跨音速范围,故采用小展弦比后掠翼,后掠角大约30左右,能有效地提高临界M数,延缓激波的产生,避免过早出现波阻。 ②翼梢小翼的功能是抵御飞机高速巡航飞行时翼尖空气涡流对飞机形成的阻力作用,提高机翼的高速巡航效率,同时达到节油的效果。 ③采用下单翼,起落架短、易收放、结构重量轻;发动机和襟翼易于检查和维修;从安全考虑,强迫着陆时,机翼可起缓冲作用;更重要的是,因为公务机下部无货物仓,减轻机翼结构重量。 3)尾吊双发涡轮喷气发动机,稍微偏上 ①主要考虑对飞机的驾驶比较容易,座舱内噪音较小,符合易操纵性和舒适性的要求。 ②机翼升力系数大 ③单发停车时,由于发动机离机身近,配平操纵较容易; ④起落架较短,可以减轻起落架重量。 ⑤由于机翼与客舱地板平齐有点偏高,为了使发动机的进气不受影响,故将发动机安排的稍稍偏上。 4)前三点起落架,主起落架安装在机翼上 ①适用于着陆速度较大的飞机,在着陆过程中操纵驾驶比较容易。 ②具有起飞着陆时滑跑的稳定性。 ③飞行员座舱视界的要求较容易满足。 ④可使用较强烈的刹车,缩短滑跑距离。

飞机装配定位方法及其应用案例解析

一、飞机装配定位方法及其应用案例 飞机装配过程一般是由零件先装配成比较简单的组合件和板件,然后逐渐地装配成比较复杂的锻件和部件,最后将部件对接成整架飞机。 机翼和机身具有不同的功能,故结构不同,所以要设计成两个单独的部件,发动机装在机身内,为便于更换,维护和修理,将机身分为前机身和后机身,鸵面相对于固定翼作相对运动,故划分为单独部件,某些零件设计有可卸件,以便维护,检查及装填用。 在装配过程中首要问题是要按图纸及设计要求确定零件,组合件之间的相对位置,即进行装配定位。。定位方法是完成在装配过程中定位零件、组合件的手段,包括基准件定位法、画线定位法、装配孔定位法和装配型架定位法四种常用的定位方法: 1、用基准零件定位 待装配的零件、组合件以基准零件、组合件或者先装的零件、组合件来确定装配位置。这种装配定位方法简便易行,装配开放,协调性好,在一般机械产品中大量使用。基准零件一般是先定位或安装好的零件,零件要有足够的刚度及较高的准确度,在装配时一般没有修配或补充加工等工作。在飞机制造中,液压、气动附件以及具有如(图1-1)所示,连接框和长行用的角片可以预先装在长行上,然后按角片确定框的纵向位置,或者在骨架装配时按框和长珩定位角片。这种基准件定位法要求基准件位置准确、刚性强,多用于小零件和小组合件的定位,方法简单、方便。

2、用画线定位 即待装配的零件按画在零件上的线条确定装配位置,如(图1-2)所示,角材位置按腹板上划线定位。这种定位方法准确度较低,一般用于刚性较大,无协调要求和位置准确度要求不高的零件定位;还有此方法工作效率不高,容易产生差错,所以在飞机研制阶段为了减少工艺装配数量,采用这种方法定位零件,在成批生产中作为一种辅助的定位方法 3、用装配孔定位 即是把相互连接的零件、组合件分别按一定的协调手段,具体过程如下:装配以前,在各个零件的部分铆钉位置上(一般是每隔400mm左右钻一个装配孔,孔径比铆钉孔径小)预先按各自的钻孔样板分别钻出装配孔,装配时个零件之间的相对位置按这些装配孔设置。如图1-3所示。其中,孔称为装配孔。 装配孔的数量取决于零件的尺寸和刚度,一般不少于两个。在尺寸大、刚性弱的零件上取的装配孔数量应适当增加。这种定位方法在铆接装配中应用比较广泛。它适用于平面型和单曲面壁板型组合件装配。按装配孔定位的特点:(1)定位迅速、方便; (2)减少或简化装配型架;

飞机起落架机构设计及安全性分析开题报告

毕业设计(论文)开题报告 题目飞机起落架机构设计及安全性分析 一、毕业设计(论文)依据及研究意义: 飞机的起落架是飞机起飞和着陆的重要装置,它在工作过程中承受着极大的冲击载荷,所以采用高强度钢或超高强度钢制作。起落架在长期使用的过程中,受到外界各种因素的影响,它的坚固程度会变差,甚至产生裂纹。本文针对起落架的焊接进行了深入的分析与研究,并在此基础上研究了完善和加强飞机起落架的焊接工艺与材料的焊接性,从而大大的降低了飞机起落架焊接时出现的问题并提高了其焊接质量。起落架是飞机起飞、着陆系统,对飞机的性能和安全起着十分重要的作用 起落架是飞机在地面停放、滑行、起飞着陆滑跑时用于支撑飞机重力,承受相应载荷的装置。简单地说,起落架有一点象汽车的车轮,但比汽车的车轮复杂的多,而且强度也大的多,它能够消耗和吸收飞机在着陆时的撞击能量。概括起来,起落架的主要作用有以下四个: ①承受飞机在地面停放、滑行、起飞着陆滑跑时的重力。 ②承受、消耗和吸收飞机在着陆与地面运动时的撞击和颠簸能量。 ③滑跑与滑行时的制动。

④滑跑与滑行时操纵飞机。 二、国内外研究概况及发展趋势 起落架的收放机构运动复杂,起落架的收放,上、下位锁开锁和上锁,舱门的打开和关闭等均要正确匹配和协调,否则将会发生飞行事故。 我国开展了与起落架现代设计技术密切相关的专题研究,并取得了一大批研究成果,其中有些达到世界先进水平,如变油孔双腔缓冲器设计技术,飞机前轮防摆技术,飞机地面运动动力学分析技术,长寿命、高可靠性起落架设计及寿命评估技术,起落架结构优化设计技术,起落架收放系统仿真分析技术,起落架主动控制技术等,这些成果部分地应用于型号研制中,并取得了一定效果。许多学者与研究生在理论方面也开展了一系列研究工作。《起落架设计与评定技术指南》集中反应了我国近年来在起落架现代设计理论与方法方面的进展情况。但与国外相比,我国的大量研究成果是分散的,孤立的,没有作为模型、算法或程序模块集成于一套系统中,成为设计师的实用工具,更没有在高水平的硬件与软件平台上形成一套先进、实用、高效的起落架专业CAD/CAE软件系统,因而我国型号研制基本上仍是完全采用传统模式,费时、费力、耗资。 国内起落架的研究软件主要有南京航空航天大学和西北工业大学共同开发的起落架设计分析软件系统LCAE,功能比较强大,能进行结构布局设计、起落架机构运动分析或应力分析、有限元总体应力分析、变形及载荷分析、缓冲性能分析、损伤绒线分析、及破坏危险性分析。可以实现图形及文本的前处理功能、后处理功能、分析程序的过程处理功能。另外还有南京理工大学和沈阳飞机研究所的起落架设计专家系统ALGDES,它能进行结构布局设计和强度分析、系统空间位置造型仿真机干涉分析,它建立了起落架设计的知识表示形式和组织形式,即专家系统。北京航空航天大学和西北工业大学都做过起落架防滑刹车系统的机械装置和仿真软件。有人研究了飞机接地时所受到的加速度的计算方法[6],介绍了最大过载对飞行、起落架和气动力参数的敏感性。从国外文献上来看,有的从动能的角度研究了起落架摆振,还有的对在各种条件下的起落架性能进行了仿真,主要是在载荷及变形方面给予仿真。 在起落架行业,国外在大力开展起落架理论与专题研究的基础上,发展和推广应用起落架现代设计技术。在与现代设计技术密切相关的起落架专业理论研究方面,国外从六十年代开始,己做了大量专题研究工作。如DAUTI等公司从六、

歼七起落架故障分析

长沙航空职业技术学院毕业设计(论文) 歼七飞机起落架收放系统故障分析 系别航空装备维修工程系 专业飞机附件维修 姓名 班级 指导老师 及职称李向新 二〇一一年××月×××日 长沙航空职业技术学院

毕业设计(论文)任务书

毕业设计(论文)任务书 (2) 摘要................................. 错误!未定义书签。第1章歼七飞机前起落架自动收起的故障研究错误!未定义书签。 1.1起落架收放控制原理分析 ....................... 错误!未定义书签。 1.2起落架自动收起原因分析 ......................... 错误!未定义书签。 1.2.1电液换向阀性能不良 .............................. 错误!未定义书签。 1.2.2系统不完整,回油路堵死 ...................... 错误!未定义书签。 1.3 故障验证 .................................................... 错误!未定义书签。 1.4 维修对策 .................................................... 错误!未定义书签。第2章数据符合规定前起落架为何放不下错误!未定义书签。 2.1地面检查和模拟试验情况 ......................... 错误!未定义书签。 2.2原因分析 ..................................................... 错误!未定义书签。 2.3 结论............................................................. 错误!未定义书签。 第3章总结 (3) 参考文献............................... 错误!未定义书签。致谢错误!未定义书签。

飞机起落架的减震系统

8. 6起落架的减震系统 一、概述 飞机起落架的减震系统由减震器和轮胎组成?其中减震器(也称缓冲器)是所有现代 起落架所必须具备的构件,也是最重要的构件?某些起落架可以没有机轮、刹车、收放系统等,但是它们都必须具备某种形式的减震器。而轮胎虽然也能吸收一部分能量,但仅占减震系统总量的10%?15%。当飞机以一定的下沉速度(一般“限制下沉速度”为3 m/s,美国规定某些短距起落或海军用舰载机等可以更大些)着陆时,起落架会受到很大的撞击,并来回振动?减震装置的主要作用就是用来吸收着陆和滑行时的撞击能,以使作用到机体上的载荷减小到可以接受的程度;同时须使振动很快衰减。由以上功用对减震装置提出如下的设计要求. (1)在压缩行程(正行程)时,减震装置应能吸收设计规范要求的全部撞击能,而使作 用在起落架和机体结构上的载荷尽可能小。在压缩过程中载荷变化应匀滑,功量曲线应充实一一也即减震器应具有较高的效率. (2)为了减少颠簸或在伸展行程(反行程)中不出现回跳,要求系统在压缩行程中所吸收的能量中的较大部分(一般应有65%?80%左右)转化为热能消散掉。 (3)为了让起落架能及时承受再次撞击,减震器应有必要的能量和伸展压力使起落架 恢复到伸出状态,伸展放能时应柔和,支柱慢慢伸出,这样可消除回跳。减震器完成一个正、反行程的时间应短,一般不能大于o. 8s。以上⑵,(3)项措施同时也对提高乘员舒适性有利。 (4)着陆滑跑时,根据各种飞机对所预定的使用跑道的通过性(漂浮性)要求,规定在遇到某一高度的凸台和坑洼地时载荷系数不能超过允许值,(如某些次等级跑道的路面包含有76 mn高的凸台.以及一定波长和波幅的波形表面隆起)。轮胎的弹性变形和弹性力对吸收能量、减小载荷系数和提高滑行时乘员的舒适性等方面均起一定作用,但是它不能消耗能量。 二、减震器的类型 总的说减震器可分为两大类广类是由橡胶或钢制的固体“弹簧”式减震器;另一类是使用气体、油液或两者混合(通常称油气式)的流体“弹簧”式减震器。利用橡胶、钢弹簧和气体作为介质的减震器是利用介质变形吸收撞击动能,靠介质内的分子摩擦消耗能量,因此这些减震器的热耗作用很小,只适用于轻型低速飞机以及后三点式起落架的尾乾.图8. 24对不同类型减震器的效率V和效率/重量比作了比较。v(%)‘A/ LS,其中A为减震器在正行程中实际吸收的能量;I为正行程中受到的最大载荷;s为正行程中的最大行程。由团可知油气式减震器是目前效率/重量比最高的减震器类型,其效率实际上可达到80%一90%之间。图8. 25所示波音-737 主起落架的试验曲线表明其效

飞机降落曲线课程设计

中北大学理学院 课 程 设 计 题目:飞机降落曲线绘制 课程:数值分析

成员:1408024133 邢栋 1408024129 肖锦柽 目录 一.飞机降落问题介绍 (3) 二、问题分析 (4) 三.实验方法: (5) 方法一(多项式求解) (5) I思路 (5) II程序 (5) III运行结果 (6) IV图像 (6) 方法二(Hermite差值法) (7) I思路 (7) II程序 (7) III运行结果 (7) IV图像 (8) 四.实际案例: (8) 五.设计总结: (9) 六.心得体会: (10)

二.问题分析: 在研究飞机的自动着陆系统时,技术人员需要分析飞机的降落曲线.根据经验,一架水平飞行的飞机,其降落曲线是一条三次抛物线,已知飞机的飞行高度为1000m,开始降落时距原点的横向距离为12000m飞机的着陆点为原点O,且在整个降落过程中,飞机的水平速度始终保持为常数540km/h. 飞机降落图像有:

由此,我们假定降落曲线方程为:且该曲线方程满足已知条件

三.实验方法: 1.方法一(多项式求解): I思路.运用多项式求解方程组(Gauss),即将四个已知条件代入一般三次曲线方程中,得出关于a,b,c,d的新的方程组: II程序.在MATLAB中编写M文件如下: A=[12000^3,12000^2,12000,1;3*12000^2,2*12000,1,0;0 0 1 0;0 0 0 1]; b=[1000;0;0;0]; x=inv(A)*b y=poly2sym(x') x=0:12000; y=vectorize(y) y=eval(y);

某型飞机起落架设计改进及制造技术

2010 年第 8 期·航空制造技术 69 学术论文 RESEARCH [摘要] 详细介绍了某型飞机起落架设计改进及制造技术。改进后的起落架经试验以及预先飞行验证,各项指标符合要求,满足了新研飞机的使用需要。 关键词: 起落架 设计改进 制造技术 [ABSTRACT] The new technology and processes are introduced in detail, which are adopted in the landing gear design improvement for one type of aircraft. The testing and advance flight validation after improvement shows that all functional performances are qualified and can meet the application requirements of the retrofit aircraft. Keywords: Landing gear Design improvement Manufacturing technology 为满足某型飞机的研制需要,采用现代起落架的设计理念,在保持原起落架结构以及起落架与飞机的协调关系(连接形式、接口尺寸、电液和操作习惯)等方面基本不变的情况下,从设计、工艺方面进行改进,达到了增强承载能力、减轻重量和提高寿命的目的。试验验证和装机使用表明,改型后的飞机起落架性能优于原型机的性能,实现了减重、增寿,以及增强飞机使用安全性的目标。 1 设计改进 根据飞机起落架改进技术方案要求,在保证飞机安 全性的前提下,尽量减轻起落架的重量,并达到增寿的目的。经设计分析和计算,对不满足强度要求的零部件进行加强改进,对强度较富裕的零部件进行减重改进。1.1 缓冲支柱优化设计 飞机着陆重量的增加,相应引起起落架吸收动量增加,导致起落架着陆冲击载荷的增加。为了尽可能地降低着陆冲击过载,须对起落架的缓冲系统进行优化设计。为此,在充分利用原结构的前提下,进行缓冲器充填参数、阻尼油针的优化设计,选取多组缓冲结构并通过落震试验验证。 通过一系列比较和验证,阻尼油针选用圆角方形截面结构,如图1所示。该油针的选用,使飞机起落架 某型飞机起落架设计改进及制造技术 Design Improvement and Manufacturing Technology of Landing Gear for One Type of Aircraft 中国人民解放军驻陕飞公司军事代表室 王晓平 周 亮 李 鹏 阻尼特性稳定、磨损小,同时提高了缓冲器系统承载能力。 1.2 部分零 (组)件结构重新设计对起落架的部分零(组)件结构重新进行设计,改善 了零件的受力状态,从而提高了起落架的承载能力。如将主起落架斜撑杆由刚性结构改为弹性结构,以改善起 图1 圆角方形截面油针 Fig. 1 Square section pin with round corner 落架斜撑杆的协调承载能力,减少结构不协调引起的结构超载损伤,降低中部接头的应力水平,提高主起落架外筒中部接头的寿命。改进前后的结构如图2、图3所示。 1.3 关键重要件结构加强 由于新研飞机载荷的增加,经计算分析起落架部分零件强度不够,因此必须对零件结构进行改进,对簿弱部位进行加强。为了克服焊接结构的缺点,提高结构件的疲劳强度,前起落架活塞杆、主起落架外筒、前 图2 刚性斜撑杆(原结构) Fig. 2 Rigid batter brace (original structure) 图3 弹性斜撑杆(改进结构) Fig. 3 Flexible batter brace (improved structure) 3mm 3mm A腔

相关文档
最新文档