不等式证明的基本方法
不等式证明的基本方法

4. 放缩法是在证明不等式或变形中, 将条件或结论或变换中的 式子放大或缩小进行求证的方法.放缩时要看准目标,做到 有的放矢, 注意放缩适度. 放缩法是证明不等式的常用技巧, 有些不等式若恰当地运用放缩法可以很快得证,要控制难 度.
比较法
(2010 年高考江苏卷试题)设 a、b 是非负实数,求证:a3 +b3≥ ab(a2+b2). 【思路分析】 先作差,再用不等式的基本性质解答.
不等式证明的基本方法
1.比较法是证明不等式最常用最基本的方法,有两种: (1)求差法:a>b⇔a-b>0; a (2)求商法:a>b>0⇔b>1,(b>0).
2.分析法、综合法是证明数学问题的两大最基本的方法. 综合法是以已知的定义、公理、定理为依据,逐步下推,直 到推出问题的结论为止,简而言之,就是“由因导果”. 分析法是从问题的结论出发,追溯导致结论成立的条件,逐 步上溯,直到使结论成立的条件与已知条件或已知事实吻合 为止,简而言之,就是“执果索因”.
分析法与综合法
如果 a>0,b>0,求证:a3+b3≥a2b+ab2. 【证法一】 (用分析法) 要证 a3+b3≥a2b+ab2, 只需证(a+b)(a2-ab+b2)≥ab(a+b) ∵a>0,b>0,有 a+b>0,故只需证 a2-ab+b2≥ab, 只需证(a-b)2≥0 显然(a-b)2≥0 成立,以上各步均可逆, ∴a3+b3≥a2b+ab2
1.设 a>0,a≠1,0<x<1.求证:|loga(1-x)|>|loga(1+x)|.
证明:方法一:(平方后作差)
2 log2 (1 - x ) - log a a(1+x)
=[loga(1-x)+loga(1+x)]· [loga(1-x)-loga(1+x)]= 1-x loga(1-x )· loga . 1+x
不等式证明的基本方法

不等式证明的基本方法
1.数学归纳法:归纳法是数学证明中最常用的方法之一,通常用来证
明自然数的性质。
对于不等式证明来说,如果我们希望证明不等式对于所
有自然数都成立,可以使用数学归纳法。
首先证明当自然数为1时不等式
成立,然后假设当自然数为k时不等式成立,再证明当自然数为k+1时不
等式也成立。
通过这种逐步推导的方法,可以证明不等式对于所有自然数
都成立。
2.数学推理法:数学推理法是一种基于数学定理和公理的推理方法,
通过逻辑推理来证明不等式的成立。
这种方法通常需要使用一些已知的数
学定理和性质来推导出不等式。
例如,可以使用数学的四则运算定律、平
方差公式、三角不等式等来推导不等式。
3.数学变换法:数学变换法是一种将不等式进行变换的方法,通过变
换不等式的形式来证明不等式的成立。
这种方法通常需要使用一些数学中
常见的变换方法,例如平方去根、换元法、倍加倍减等。
通过适当的变换,可以将不等式转化为更简单的形式,从而更容易证明。
无论采用哪种方法,不等式的证明都需要逻辑严谨、推理正确,以及
对数学定理和性质的熟练应用。
在实际证明中,常常需要综合运用多种方
法来解决问题,使得证明更加简洁和明了。
此外,证明中的每一步变换和
推理都需要严格地说明和证明,避免出现漏洞和错误。
不等式证明基本方法

不等式证明基本方法一、数学归纳法数学归纳法是证明自然数性质的一种基本方法,对于与整数有关的不等式,我们也可以利用数学归纳法进行证明。
其基本思路是先证明当n=1时不等式成立,再假设当n=k时不等式成立,然后通过数学推理证明当n=k+1时不等式也成立。
二、反证法当我们尝试利用数学归纳法证明不等式时,有时可能会遇到困难,这时我们可以尝试使用反证法。
反证法的证明过程是:先假设不等式不成立,然后推导出与已知条件或已证明的定理矛盾的结论,从而证明原不等式的正确性。
三、插值法插值法也是一种常见的不等式证明方法。
其基本思路是在待证不等式的两边加入适当的不等式,并利用不等式的传递性和可加减性进行推导,最终得到待证不等式的真假结论。
四、绝对值法对于涉及绝对值的不等式,我们可以利用绝对值的性质进行证明。
例如,对于,a-b,>c这样的绝对值不等式,我们可以根据绝对值的定义将其拆分为两个不等式,再分别进行证明。
另外,利用绝对值不等式的性质,我们还可以进行变量替换等操作,将原不等式化简为更简单的形式进行证明。
五、特殊化方法特殊化方法是指将不等式中的一些变量或参数取特殊值,从而达到简化不等式的目的。
例如,对于含有幂函数的不等式,我们可以通过取特殊值使得幂函数变为常数或者线性函数,从而将原不等式化简为更简单的形式。
综上所述,不等式证明的基本方法包括数学归纳法、反证法、插值法、绝对值法和特殊化方法等。
在具体的证明过程中,我们需要根据待证不等式的特点选择合适的方法,并灵活运用各种数学工具和技巧,从而得到准确的证明结论。
证明不等式的小措施

在学习中,我们经常会遇到不等式证明题.证明不等式的方法有很多种,如比较法、综合法、分析法、反证法、换元法等,本文重点谈一谈证明不等式的三种常用措施.一、利用分析法分析法是指从需要证明的不等式出发,寻找使该不等式成立的条件,从而证明不等式成立,即由“果”寻“因”.运用分析法证明不等式的基本步骤为:①研究待证不等式,将其进行适当的变形、化简;②灵活运用相关的定理、公式、定义进行推理、论证,逐步与已知条件或某些结论靠拢,寻找使其成立需要的条件;③得出结论.例1.已知a,b∈R+,证明:+≥a+b.分析:题目中的已知条件较为简单,解答本题,需由“果”寻“因”,运用分析法来求证.从待证不等式出发,通过开方、移项、运用完全平方式,将其化为完全平方式,从而证明不等式成立.证明:要证明+1+a≥a+b,只需证明1+a2-ab+b2≥()1+a2()1+b2,则需证明()1+a2-1+b22+()a-b2≥0,而()1+a2-1+b22≥0,()a-b2≥0,所以()1+a2-1+b22+()a-b2≥0,所以命题得证.二、运用反证法运用反证法证明不等式,需先假设待证不等式不成立,若原不等式为A≥B,则可假设A<B成立.再将假设的不等式作为条件,据此进行推理、分析,得出与已知条件或某些定义、定理、公式相矛盾的结论,从而说明假设不成立,进而证明不等式成立.例2.已知a,b,c∈(0,+∞),则a+4b,b+9c,c+16a三个数中至少有一个不小于6.证明:假设a+4b,b+9c,c+16a都小于6,则a+4b+b+9c+c+16a<18,由基本不等式可得a+4b+b+9c+c+16a≥+=18,这与假设的结论相矛盾,故假设不成立,所以a+4b,b+9c,c+16a三个数中至少有一个不小于6.本题从正面入手较为困难,需采用反证法来求证.首先假设结论不成立,即a+4b、b+9c、c+16a都小于6,然后利用基本不等式,得出与已知相矛盾的结论,从而证明原结论成立.三、换元运用换元法证明不等式,需用新变量替换不等式或者其中的某一个代数式,通过换元,使其结构、形式得以改变,如将无理式转变为有理式,将分式转化为整式等.再结合已知条件化简、整理换元后的式子,从而证明原不等式成立.例3.若x i∈()0,+∞,i=1,2,3,⋯,n,证明:x21x21+x2x3+x22x22+x2x3+⋯+x2n-1x2n-1+x n x1+x2nx2n+x1x2≤n-1.证明:由题意可知,x2ix2i+x i+1x i+2=1-x i+1x i+2x2i+x i+1x i+2=1-11+x2i xi+1xi+2,()1≤i≤n,设yi=x2ixi+1xi+2,y i>0,可得0<y i y j≤1()i≠j,则11+yi+11+yj=2+y i+y j()1+yi()1+yj=1+y i+y j+11+y i+y j+y i y j≥1,则x21x21+x2x3+x22x22+x2x3+⋯+x2n-1x2n-1+x n x1+x2nx2n+x1x2=n-æèçöø÷11+y1+11+y2+⋯+11+yn≤n-1,所以x21x21+x2x3+x22x22+x2x3+⋯+x2n-1x2n-1+x n x1+x2nx2n+x1x2≤n-1.令yi=x2ixi+1xi+2,通过换元,将不等式转化为结构简单的式子,再根据已知条件进行推理、分析,便可快速证明结论.一般来说,分析法主要适用于证明含有根式、分式、绝对值的不等式;反证法适用于证明从正面入手较为困难的不等式问题;换元法适用于证明不等式结构复杂的问题.有时,可同时使用两个或两个以上的方法来证明不等式,这样能有效地提升解题的效率.(作者单位:江苏省扬州市高邮市临泽中学)杨乐42。
不等式证明方法大全

不等式证明方法大全1.推导法:推导法是指通过逻辑推理从已知不等式得出要证明的不等式。
常用的推导法有数学归纳法、递推法、代入法等。
其中,数学归纳法是一种常见的证明不等式的方法,它基于以下两个基本原理:基准步和归纳假设。
(1)基准步:证明当一些特定的变量取一些特定的值时,不等式成立。
(2)归纳假设:假设当一些特定的变量取小于等于一些特定值时,不等式成立。
通过利用以上两个原则,可以通过递推关系不断推导得出要证明的不等式。
2.数学运算法:数学运算法是指通过对不等式进行各种数学运算来得到要证明的不等式。
常用的数学运算包括加法、减法、乘法、除法等。
在进行这些运算时,需要注意运算规则和要证明的不等式所满足的条件,避免运算过程中引入新的限制条件。
3.几何法:几何法是指通过将不等式转化为几何问题进行证明。
几何法常用于证明平面图形的不等式定理,如三角形的不等式定理、平行四边形的不等式定理等。
通过将要证明的不等式几何化,可以通过几何性质和定理进行证明。
4.广义的带参数的方法:广义的带参数的方法是指将要证明的不等式引入参数,通过参数的取值范围来证明不等式的成立。
这种方法常用于证明含有多个变量的复杂不等式,通过引入参数使得不等式简化或者更易处理。
5.分情况讨论法:分情况讨论法是指将要证明的不等式拆分为几个不同的情况进行讨论,分别证明每个情况下不等式的成立。
通过逐个讨论每种情况,可以得出要证明的不等式的证明。
6.反证法:反证法是指假设要证明的不等式不成立,通过推理推出与已知条件矛盾的结论,从而证明不等式的成立。
反证法常用于证明不等式的唯一性和存在性。
7.递推法:递推法是指通过依次推导出不等式的前一项和后一项之间的关系,逐步逼近要证明的不等式。
通过不断进行递推,可以逐步证明不等式的成立。
以上是一些常见的不等式证明方法,它们可以单独使用,也可以结合使用。
在进行不等式证明时,需要注意逻辑严谨、计算准确和推导合理,同时还需要根据具体的题目和要求选择合适的证明方法。
证明不等式的基本方法

x2
例7(1)设
y2
1, 求x
y的最大值,
16 9
并求此时的x, y值。 三角换元
(2)设 x, y R,且 x2 y 2 1,
求证:| x2 2xy y 2 | 2 ;
(1)设 x r sin, y r cos,且 | r | 1
证明:∵ a, b 是正数,且 a b , ∴要证 aabb abba ,只要证 lg (aabb ) lg(abba ) ,
只要证 a lg a b lgb b lg a a lgb .
(a lg a b lg b) (b lg a a lg b) = (a b)(lg a lg b)
= (a2 b2 )(a b) = (a b)(a b)2
∵ a,b 是正数,且 a b ,∴ a b 0, (a b)2 >0
∴ (a3 b3 ) (a2b ab2 ) >0,∴ a3 b3 a2b ab2
注:比较法是证明不等式的基本方法,也是 最重要的方法,另外,有时还可作商比较.
当且仅当(a b)(b c)≥0 时,等号成立.
四.反证法:
假设命题结论的反面成立,经过正确的推理, 引出矛盾,因此说明假设错误,从而证明原命题 成立,这样的证明方法叫反证法.(正难则反)
例、已知 f (x) x2 px q,求证:
1
| f (1) |,| f (2) |,| f (3) |中至少有一个不小于2 。
求证:已知a, b, c R+,求证 :书P25页2(2)
不等式证明的几种方法

不等式证明的几种方法1.直接证明法直接证明法是最常用的证明方法之一、该方法是通过运用数学定义、公理和已知条件,直接推导出要证明的不等式。
例如,要证明a+b≥2√ab,我们可以通过平方两边的方式将不等式变形为(a-b)^2≥0的形式,再通过数学运算的方式得出结论。
2.反证法反证法是常用的证明方法之一,尤其适用于不等式证明。
该方法是先假设要证明的不等式为假,然后通过推导得出与已知条件矛盾的结论,从而证明所假设的不等式为真。
例如,要证明3√ab≥2(a+b)不成立,我们可以先假设不等式成立,然后通过运算推导出与已知条件不符的结果。
由此可知,不等式不成立。
3.数学归纳法数学归纳法适用于一类特殊的不等式,即对于其中一自然数n,当n=1时不等式成立,且当n=k时不等式成立,则当n=k+1时不等式也成立。
通过反证法证明。
例如,要证明n^2<2^n,首先当n=1时,不等式成立。
假设当n=k时,不等式也成立,即k^2<2^k成立。
我们需要证明当n=k+1时,不等式也成立,即(k+1)^2<2^(k+1)成立。
通过反证法推导出与已知条件矛盾的结果,即可证明不等式成立。
4.几何法几何法可以通过将不等式转化为几何问题来证明。
例如,要证明a^2+b^2≥2ab,可以将不等式转化为平面上两点的距离的问题。
通过建立几何模型,可以直观地看出不等式成立的原因。
例如,可以将两个正方形的面积进行比较,或者使用勾股定理来解决问题。
5.代数方法代数方法是通过将不等式转化为代数方程或函数的性质来证明。
例如,要证明3a^2+3b^2+2c^2≥4ab+4bc+4ca,可以通过将不等式整理为一个二次函数的形式,然后通过对函数进行研究来得出结论。
以上是几种常见的不等式证明方法,其中每种方法都有其独特的适用范围和优势。
在实际应用中,根据具体的题目和情况选择合适的证明方法可以更高效地解决问题。
基本不等式的20种证明方法

基本不等式的20种证明方法
基本不等式“基本”在哪里?你认为怎样得引入最能体现他的本质?
(1)做差证明
(2)分析法证明
(3)综合法证明
(4)排序不等式
根据排序不等式所说的逆序和小于等于顺序和,便能得到
化简得
(5)函数证明
我们对原函数求导,并令导数等于零。
求的最小值
得出
(5)指数证明
首先这里要用到两个梯形的面积公式。
一个是大家小学都学过的
易得
进而有
进一步有
指取对有
(6)琴生不等式证明
取 y=lnx
由琴生不等式得到
进而有
(7)无字证明(Charles D. Gallant)
(8)无字证明(Doris Schattschneider)
(9)无字证明(Roland H. Eddy)
(10)无字证明(Ayoub B. Ayoub)
(11)无字证明(Sidney H. Kung)
(12)无字证明(Michael K. Brozinsky)
(13)无字证明(Edwin Beckenbach & RichardBellman)
(14)无字证明
(15)无字证明(RBN)
(16)无字证明
进而有
(17)无字证明
进而有
(18)无字证明
有
(19)构造函数证明
由
得
(20)构造期望方差证明
由
得
另外还有向量法,复数法,积分法等,均值定理在数学内外有广泛得运用,不仅可以推广,还可以联系多个领域,一个简单结论证明的背后往往可展示引人人胜的各种思路!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝对值的三角不等式;不等式证明的基本方法
一、教学目的
1、掌握绝对值的三角不等式;
2、掌握不等式证明的基本方法
二、知识分析
定理1 若a,b为实数,则,当且仅当ab≥0时,等号成立。
几何说明:(1)当ab>0时,它们落在原点的同一边,此时a与-b的距离等于它们到原点距离之和。
(2)如果ab<0,则a,b分别落在原点两边,a与-b的距离严格小于a与b到原点距离之和(下图为ab<0,a>0,b<0的情况,ab<0的其他情况可作类似解释)。
|a-b|表示a-b与原点的距离,也表示a到b之间的距离。
定理2 设a,b,c为实数,则,等号成立
,即b落在a,c之间。
推论1
推论2
[不等式证明的基本方法]
1、比较法是证明不等式的一种最基本的方法,也是一种常用的方法,基本不等式就是用比较法证得的。
比较法有差值、比值两种形式,但比值法必须考虑正负。
比较法证不等式有作差(商)、变形、判断三个步骤,变形的主要方向是因式分解、配方,判断过程必须详细叙述。
如果作差后的式子可以整理为关于某一个变量的二次式,则可考虑用到判别式法证。
2、所谓综合法,就是从题设条件和已经证明过的基本不等式出发,不断用必要条件替换前面的不等式,直至推出要证明的结论,可简称为“由因导果”,在使用综合法证明不等式时,要注意基本不等式的应用。
所谓分析法,就是从所要证明的不等式出发,不断地用充分条件替换前面的不等式,或者是显然成立的不等式,可简称“执果索因”,在使用分析法证明不等式时,习惯上用“”表述。
综合法和分析法是两种思路截然相反的证明方法,其中分析法既可以寻找解题思路,如果表述清楚,也是一个完整的证明过程.注意综合法与分析法的联合运用。
3、反证法:从否定结论出发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的证明方法。
4、放缩法:欲证A≥B,可通过适当放大或缩小,借助一个或多个中间量,使得,,再利用传递性,达到证明的目的.这种方法叫做放缩法。
【典型例题】
例1、已知函数,设a、b∈R,且a≠b,求证:
思路:本题证法较多,下面用分析法和放缩法给出两个证明:
证明:
证法一:
①
当ab≤-1时,式①显然成立;
当ab>-1时,式①②
∵a≠b,∴式②成立。
故原不等式成立。
证法二:当a=-b时,原不等式显然成立;
当a≠-b时,
∴原不等式成立。
点评:此题还可以用三角代换法,复数代换法、数形结合等证明,留给读者去思考。
例2、设m等于|a|、|b|和1中最大的一个,当|x|>m时,求证:。
思路:本题的关键是对题设条件的理解和运用,|a|、|b|和1这三个数中哪一个最大?如果两两比较大小,将十分复杂,但我们可以得到一个重要的信息:
m≥|a|、m≥|b|、m≥1。
证明:
故原不等式成立。
点评:将题设条件中的文字语言“m等于|a|、|b|、1中最大的一个”转化为符号的语言“m≥|a|、m≥|b|、m≥1”是证明本题的关键。
例3、函数的定义域为[0,1]且。
当∈[0,1],
时都有,求证:。
证明:不妨设,以下分两种情形讨论。
若
则
,若
则
综上所述
点评:对于绝对值符号内的式子,采用加减某个式子后,重新组合,运用绝对值不等式的性质变形,是证明绝对值不等式的典型方法。
例4、已知a>0,b>0,求证:。
思路:如果用差值比较法,下一步将是变形,显然需要通分,是统一通分,还是局部通分?从题目结构特点看,应采取局部通分的方法。
证明:
①
②
∴原不等式成立。
点评:在上面得到①式后,其分子的符号可由题设条件作出判断,但它没有②明显,所以,变形越彻底,越有利于最后的判断,本题还可以用比值比较法证明,留给读者去完成。
例5、设x>0,y>0,且x≠y,求证:
思路:注意到x、y的对称性,可能会想到重要不等式,但后续思路不好展开,故我们可采用分析法,从消去分数指数幂入手。
证明:∵x>0,y>0,且x≠y,
点评:在不便运用比较法或综合法时,应考虑用分析法。
应注意分析法表述方法,其中寻求充分条件的语句常用符号“”表述。
本题应用了分析法,既找到了解题思路,又使问题完满地得到了解决,可谓一举两得。
例6、已知a、b、c∈R+,求证:。
思路:因不等式的左边的两个因式都可以进行因式分解。
结合a、b、c∈R+的条件,运用重要不等式,采用综合法进行证明。
解析:
即
点评:用重要不等式证明不等式,一要注意重要不等式适用的条件,二要为运用重要不等式创造条件。
另外,同向不等式相加或相乘,在综合法中常用到。
例7、证明:对于任意实数x、y,有
思路:采取分析法和比较法二者并用的方法来处理。
证明:用分析法
不等式②显然成立,下面证明不等式①
同号
,即
点评:上述证明中,前半部分用的是分析法,后半部分用的是比较法,两种方法结合使用,使问题较容易解决,这一点应加以注意。
例8、(1)用反证法证明以下不等式:已知,求证p+q≤2。
(2)试证:(n≥2)。
思路:运用放缩法进行证明。
证明:(1)设p+q>2,则p>2-q,
这与=2矛盾,
(2),
又。
将上述各式两边分别相加得
点评:用放缩法证明不等式过程中,往往采用添项或减项的“添舍”放缩,拆项对比的分项放缩,函数的单调性放缩,重要不等式放缩等。
放缩时要注意适度,否则不能同向传递。
【模拟试题】
1、设a、b是满足ab<0的实数,那么()
A、B、
C、D、
2、设ab>0,下面四个不等式①|a+b|>|a|;②|a+b|<|b|;③|a+b|<|a-b|;④|a+b|>|a|-|b|中,正确的是()
A、①和②
B、①和③
C、①和④
D、②和④
3、下面四个式子①;②;③;
④中,成立的有()
A、1个
B、2个
C、3个
D、4个
4、若a、b、c∈R,且,则下列不等式成立的是()
A、B、
C、D、
5、设a、b、c∈R,且a、b、c不全相等,则不等式成立的一个充要条件是()
A、a、b、c全为正数
B、a、b、c全为非负实数
C、D、
6、已知a<0,-1<b<0则()
A、B、
C、D、
7、设实数x、y满足,若对满足条件的x、y,x+y+c≥0恒成立,c的取值范围是()
A、B、
C、D、
8、对于任意的实数x,不等式恒成立,则实数a的取值范围是_________。
9、若a>c>b>0,则的值的符号为__________。
10、设a、b、c∈R+,若,则__________。
11、已知x,y∈R,且,则z的取值范围是
__________。
12、设,
求证:。
13、已知a、b是不等正数,且,
求证:。
14、已知,求证:中至少有一个不小于。
15、设a、b为正数,求证:不等式①
成立的充要条件是:对于任意实数x>1,有②
【试题答案】
1、B
2、C
3、C
4、B
5、C
6、D
7、A
8、(-∞,3)
9、负
10、9
11、
12、证明:
13、证明:a、b是不等正数,且
而一定成立,故成立。
14、证明:用反证法。
假设都小于,则
,
而
,相互矛盾,
中至少有一个不小于。
15、证明:设,那么不等式②对恒成立的充要条件是函数的最小值大于b。
当且仅当,时,上式等号成立。
故的最小值是。
因此,不等式②对x>1恒成立的充要条件是>b。