第四章 机器人学逆运动学方程
机器人学导论第4章操作臂逆运动学

我们把操作臂的全部求解方法分成两大类:封闭解和数值解法。由于数值解 法的迭代性质,因此它一般要比相应的封闭解法的求解速度慢很多。实际上 在大多数情况下,我们并不喜欢用数值解法求解运动学问题。因为封闭解的 计算速度快,效率高,便于实时控制。而数值法不具有些特点为。
“封闭形式”意指基于解析形式的解法,或者意指对于不高于四次的多项式 不用迭代便可完全求解。可将封闭解的求解方法分为两类:代数法和几何法。 有时它们的区别又并不明显:任何几何方法中都引入了代数描述,因此这两 种方法是相似的。这两种方法的区别或许仅是求解过程的不同。
多重解问题
在求解运动学方程时可能遇到的另一个问题就是多重解问题。一个具有3个旋转关节的 平面操作臂,由于从任何方位均可到达工作空间内的任何位置,因此在平面中有较大的 灵巧工作空间(给定适当的连杆长度和大的关节运动范围)。图4-2所示为在某一位姿 下带有末端执行器的三连杆平面操作臂。虚线表示第二个可能的位形,在这个位形下, 末端执行器的可达位姿与第一个位形相同。
4.1 概述 • 在上一章中讨论了已知操作臂的关节角,计算工具 坐标系相对于用户工作台坐标系的位置和姿态的问 题。在本章中,将研究难度更大的运动学逆问题 :已 知工具坐标系相对于工作台坐标系的期望位置和姿 态,如何计算一系列满足期望要求的关节角? • 第3章重点讨论操作臂的运动学正问题,而本章重点 讨论操作臂的运动学逆问题。
4.4 代数解法与几何解法
代数解法:以第三章所介绍三连杆平面操作臂为例,其坐标和连杆参数如下
按第三章的方法,应用这些连杆参数可以求得这个机械臂的运动学方程:
c123 s 123 B 0 T T W 3 0 0
s123 c123 0 0
0 0 1 0
精品课件-机器人学简明教程(张奇志)-第4章

0
1
0
r32 0
r33 0
pz
1
1r31
0
1r32 0
1r33 0
1
pz
1
(4-6)
第4章 机器人逆运动学
式(3-22)的最后三个数如下:
1 1
px py
a2c2 d3
a3c23
d4s23
1 pz a3s23 a2s2 d4c23
令式(4-6)两边元素(2,4)相等,得到
-pxs1+pyc1=d3 为了求解式(4-8),做三角恒等变换
nx ox ax
Rzyz
ny
oy
a
y
nz oz ax
第4章 机器人逆运动学 根据欧拉变换方程式(2-40)可得如下9个方程:
nnxy
cc c sc c
s s c s
nz s c
ooxy
cc s sc s
sc cc
oazx
s s c s
ay ss
az c
(4-1)
第4章 机器人逆运动学
第4章 机器人逆运动学 第4章 机器人逆运动学
4.1 逆运动学问题的可解性 4.2 欧拉变换解 4.3 PUMA560逆运动学
第4章 机器人逆运动学 4.1 逆运动学问题的可解性
1.解的存在性 逆运动学问题解是否存在完全取决于机械臂的工作空间。 所谓工作空间是指机械臂末 端执行器所能达到的空间位姿的集合。一般来说,对于给 定的机械臂,其工作空间是固定的。而对于少于6个自由度的 机械臂,它在三维空间内不能达到全部位姿。所以通用工业机 器人一般都设计成6个自由度。当期望位姿位于机械臂的工作 空间之外时,逆运动学问题无解。如图4-1所示期望平面机械 臂末端达到B点,显然该逆运动学问题是无解的。
第4章机器人逆运动学(一)

第4章机器人逆运动学(一)引言概述:机器人逆运动学是研究机器人动作规划和控制的重要内容之一。
在工业领域和服务领域中,机器人逆运动学能够帮助机器人根据预设的目标位置和姿态,确定关节角度和长度,从而实现准确的动作控制。
本文将介绍机器人逆运动学的基本原理,以及逆运动学的求解方法和实际应用。
正文:1. 基本原理1.1 前向运动学和逆运动学的关系1.2 关节角度和长度的确定方法1.3 机器人姿态表示方法2. 逆运动学的求解方法2.1 解析法2.2 数值法2.3 迭代法2.4 优化算法2.5 约束条件的处理方法3. 逆运动学的实际应用3.1 机器人轨迹规划3.2 机器人运动控制3.3 机器人碰撞检测与避障3.4 机器人抓取和操作4. 逆运动学问题的局限性和挑战4.1 多解性问题4.2 存在性问题4.3 运动优化问题4.4 环境约束问题4.5 实时性和稳定性问题5. 逆运动学的发展趋势5.1 智能化和自适应控制5.2 机器学习与优化算法的结合5.3 非线性逆运动学求解方法的研究5.4 多机器人协同控制的逆运动学问题5.5 逆运动学在虚拟现实和增强现实中的应用总结:机器人逆运动学是机器人控制领域的重要研究方向之一。
本文介绍了机器人逆运动学的基本原理,包括前向运动学与逆运动学的关系、关节角度和长度的确定方法,以及机器人姿态表示方法。
同时,还介绍了逆运动学的求解方法和实际应用,包括机器人轨迹规划、运动控制、碰撞检测与避障,以及抓取和操作等。
此外,还探讨了逆运动学问题面临的局限性和挑战,并展望了逆运动学的发展趋势,包括智能化和自适应控制、机器学习与优化算法的结合等。
逆运动学的研究将有助于推动机器人应用在更广泛的领域中,提高机器人的灵活性和性能。
运动学逆解公式

运动学逆解公式
运动学逆解是指已知机器人末端执行器的位置、姿态和运动学参数,求解机器人各关节的角度。
运动学逆解公式的具体形式取决于机器人的类型和结构,以下是几种常见机器人的运动学逆解公式:
1. 二自由度平面机械臂的运动学逆解公式:
θ1 = atan2(y, x) - acos((l1^2 + l2^2 - r^2)/(2*l1*l2))
θ2 = -acos((x^2 + y^2 - l1^2 - l2^2)/(2*l1*l2))
其中,θ1和θ2分别为机械臂两个关节的角度,x和y为末端执行器的位置坐标,l1和l2为机械臂两个关节的长度,r为末端执行器到机械臂起点的距离。
2. 三自由度空间机械臂的运动学逆解公式:
θ1 = atan2(y, x)
θ3 = acos((x^2 + y^2 + z^2 - l1^2 - l2^2 - l3^2)/(2*l2*l3))
k1 = l2 + l3*cos(θ3)
k2 = l3*sin(θ3)
θ2 = atan2(z, sqrt(x^2 + y^2)) - atan2(k2, k1)
其中,θ1、θ2和θ3分别为机械臂三个关节的角度,x、y和z为末端执行器的位置坐标,l1、l2和l3为机械臂三个关节的长度。
3. 六自由度工业机器人的运动学逆解公式:
由于六自由度工业机器人的运动学逆解公式比较复杂,这里不再给出具体公式。
通常采用数值计算方法求解,如牛顿-拉夫逊法、雅可比逆法等。
需要注意的是,运动学逆解公式只能求解机器人的正解,即机器人末端执行器的位置、姿态和运动学参数必须是合法的。
如果末端执行器的位置、姿态和运动学参数不合法,就无法求解出机器人各关节的角度。
逆运动学的解析法原理及推导过程 详细

逆运动学的解析法原理及推导过程详细逆运动学是机器人学中的一个重要分支,它研究的是如何通过机器人的末端执行器的位置和姿态来计算出机器人各个关节的角度。
逆运动学的解析法是一种常用的计算方法,它可以通过数学公式来求解机器人的逆运动学问题。
逆运动学的解析法原理是基于机器人的运动学模型,通过对机器人的运动学方程进行求解,得到机器人各个关节的角度。
机器人的运动学方程可以表示为:
T = T1 * T2 * T3 * … * Tn
其中,T表示机器人的末端执行器的位姿,T1、T2、T3、…、Tn 表示机器人各个关节的变换矩阵。
通过对运动学方程进行求解,可以得到机器人各个关节的角度。
逆运动学的解析法推导过程如下:
1. 确定机器人的运动学模型,包括机器人的DH参数、末端执行器的位姿等信息。
2. 根据机器人的运动学模型,建立机器人的运动学方程。
3. 对运动学方程进行求解,得到机器人各个关节的角度。
具体的求解过程需要根据机器人的具体情况进行分析和计算。
一般
来说,可以采用数学工具如矩阵运算、三角函数等来进行计算。
逆运动学的解析法具有计算速度快、精度高等优点,适用于对机器人进行精确控制的场合。
但是,由于机器人的运动学模型比较复杂,解析法的求解过程也比较繁琐,需要一定的数学基础和计算能力。
逆运动学的解析法是机器人学中的一种重要计算方法,它可以通过数学公式来求解机器人的逆运动学问题,具有计算速度快、精度高等优点,是机器人控制中不可或缺的一部分。
机器人运动学正解逆解-课件

C1 (C 234 C 5C 6 S 234 S6 ) S1 S 5 C 6 S1 (C 234 C 5C 6 S 234 S6 ) C S S 1 5 6 S 234 C 5C 6 0
求逆运动学方程的解
依次用 A1 左乘上面两个矩阵,得到:
n x C 1 n y S1 nz n x S1 n y C 1 0 o x C 1 o y S1 oZ o x S1 o y C 1 0 a x C 1 a y S1 az a x S1 a y C 1 0 Px C1 Py S1 pz Px S1 Py C1 1 C 234 S 5 C 234 a4 C 23 a 3 C 2 a 2 S 234 S 5 S 234 a4 S 23 a 3 S 2 a 2 C5 0 0 1
2. 学会用D-H法对机器人建模 学习重点:1. 给关节指定参考坐标系
2. 制定D-H参数表
3. 利用参数表计算转移矩阵
背景简介:
1955 年, Denavit 和 Hartenberg( 迪纳维特和哈坦伯格 ) 提出 了这一方法,后成为表示机器人以及对机器人建模的标准方法, 应用广泛。
总体思想:
y0
O0
连杆0
z0
d1 x0
解:
例2、PUMA560运动学方程(六个自由度,全部是旋转关节)
关节变量都是θ
θ2
θ1
θ3
θ4
θ5 θ6
PUMA560机器人的连杆及关节编号
A1
A2
为右手坐标系,Yi轴:按右手定则 Zi轴:与Ai+1关节轴重合,指向任意 Xi轴: Zi和Zi-1构成的面的法线, 或连杆i两端轴线Ai 与Ai+1的公垂线(即: Zi和Zi-1的公垂线)
解释机器人运动学方程的正解和逆解

解释机器人运动学方程的正解和逆解
机器人运动学方程是研究机器人运动规律的一种数学工具。
机器人运动由位置、速度和加速度三部分组成,而机器人运动学方程便是描述这三部分关系的方程。
机器人运动学方程分为正解和逆解。
正解是指根据机器人关节角度、长度等参数,推导出机器人末端执行器的位置、速度和加速度等运动学参数的过程。
在机器人运动学分析中,正解一般使用解析法、几何法和向量法等方法。
通常我们会在正解中借助三角函数和向量函数,对机械臂的运动主体进行数学建模,推导出机器人最终执行器的位置和末端的速度、加速度等参数,完成机器人运动学方程的正解。
而逆解则是指在已知机器人末端执行器的位置、速度和加速度等参数的基础上,求出机器人关节角度,这样机器人才能达到需要执行的动作。
逆解是机器人指令控制中的核心技术之一,一般采用数值计算的方法来求解。
逆解方法有直接法和迭代法两种,直接法一般应用于计算复杂的工业机器人,而迭代法则更适用于机场搬运、医疗康复等关节数较少的应用场景。
机器人运动学方程的正解和逆解都涉及高等数学和工程数学的知识,需要对机器人的运动学规律有一定的理解和掌握。
随着人工智能和机器人技术的不断发展,机器人运动学方程的应用将得到更广泛的推广和应用,成为未来机器人研究和应用的重要工具。
六自由度机器人逆向运动学解题过程

六自由度机器人逆向运动学解题过程
六自由度机器人逆向运动学主要是通过求解机器人末端执行器的位姿,从而得到关节的角度。
逆向运动学求解的过程如下:
1. 了解机器人运动学模型:首先需要了解六自由度机器人的运动学模型,包括机器人臂部的结构、关节类型和运动学参数。
常见的运动学模型有DH(Denavit-Hartenberg)模型和旋量法。
2. 建立运动学方程:根据机器人臂部的结构,建立运动学方程。
对于DH模型,运动学方程为:
θ1 * A1 + θ2 * A2 + θ3 * A3 + θ4 * A4 + θ5 * A5 + θ6 * A6 = T
其中,θ1-θ6为六个关节的角度,A1-A6为相邻两个关节之间的变换矩阵。
3. 初始化关节角度:给定一个初始的关节角度序列,作为求解逆向运动学的输入。
4. 求解位姿:利用运动学方程,将关节角度序列代入,计算出末端
执行器的位姿。
5. 评价求解结果:根据实际应用需求,评价求解结果的精度和实用性。
如果结果不满足要求,可以调整初始关节角度序列,重复步骤2-4,直至得到满意的解。
6. 应用:将求解得到的关节角度序列应用于机器人控制系统,实现机器人的运动。
在求解过程中,可以使用一些优化算法,如牛顿法、梯度下降法等,以提高求解速度和精度。
同时,为了减少计算复杂度,可以采用一些技巧,如LU分解、QR分解等。
需要注意的是,六自由度机器人逆向运动学求解过程依赖于机器人运动学模型的精确性、运动学方程的稳定性和求解算法的性能。
在实际应用中,可能需要根据具体情况调整模型和算法,以获得更优的求解结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Chapter Ⅳ Inverse Kinematic Equations
4.1 引言 4.2 逆运动学方程的解 4.3 斯坦福机械手的逆运动学解 4.4 欧拉变换的逆运动学解
4.5 RPY变换的逆运动学解
4.6 球坐标变换的逆运动学解 4.7 本章小结
4.1
引言 (Introduction)
C4 C2 C1a x S1a y S 2 a z S 4 S1a x C1a y
2 1 x 1 y 2 z 5
5 4 2 1 x 1 y 2 z 4 1 x 1 y 4 5 2 1 x 1 y 2 z 4 2 1 x 1 y 2 z 1 x 1 y
(4.28)
注意:
根据式(4.1) T6 = A1 A2 A3 A4 A5 A6
分别用An(n=1,2,…,5)的逆左乘式(4.1)有
A1-1 T6 = 1T6 A2-1 A1-1 T6 = 2T6 A3-1A2-1 A1-1 T6 = 3T6 A4-1 A3-1A2-1 A1-1 T6 = 4T6 A5-1 A4-1 A3-1A2-1 A1-1 T6 = 5T6 ( 1T6 = A2 A3 A4 A5 A6 ) ( 2T6 = A3 A4 A5 A6 ) ( 3T6 = A4 A5 A6 ) ( 4T6 = A5 A6 ) ( 5T6 = A6 ) (4.2) (4.3) (4.4) (4.5) (4.6)
x y x y x y
- +
y
x y
+ +
θ x
- -
+ -
就不难确定欧拉角所在的象限。
为此,我们采用本章第二节的方法,用Rot (z, ø )-1左乘 式(4.31)有 Rot-1(z,ø ) T = Rot (y, θ) Rot (z, ψ) (4.46)
图4.1 正切函数所在象限
即
cos sin 0 0 sin cos 0 0 0 0 1 0 0 n x n 0 y 0 n z 1 0 ox oy oz 0 ax ay az 0 p x cos cos sin py p z sin cos 1 0 cos sin cos sin sin 0 sin 0 cos 0 0 0 (4.47) 0 1
4.4 欧拉变换的逆运动学解 (Inverse solution of Euler Angles )
由第三章知欧拉变换为 Euler (ø , θ,ψ) = Rot (z, ø ) Rot (y, θ) Rot (z,ψ) 我们用T来表示欧拉变换的结果,即 T = Euler (ø , θ , ψ) 或 T = Rot (z, ø ) Rot (y, θ) Rot (z,ψ) 其中 (4.31) (4.30) (4.29)
d3 S 2 C1 px S1 p y C2 pz
(4.25)
(4.26)
4 tan 1
1
C2 C1a x S1a y S 2 a z
S1a x C1a y
6 tan 1
tan (4.27) S C a S a C a C C C C o S o S o S S o C o S S C o S o C o S C C o S o S o C S o C o
Hale Waihona Puke py d2 1 1 tan tan p 2 x r 2 d2
1
(4.23)
根据同样的方法,利用式(4.9)和式(4.13)矩阵元素相等建立的相关的方程 组,可得到其它各关节变量如下:
2 tan
1
C1 p x S1 p y pz
(4.24)
根据上述五个矩阵方程对应元素相等,可得到若干个可解的代数方程,便可
求出关节变量θn或 dn。
4.3 斯坦福机械手的逆运动学解
( Inverse solution of Stanford manipulator)
在第三章我们推导出 Stanford Manipulator 的运动方程和各关节齐次变换式。 下面应用式(4.2)~(4.6)进行求解:
所谓逆运动学方程的解,就是已知机械手直角坐标空间的位姿 (pose)T6,求出各节变量θn or dn 。 T6 = A 1 A 2 A 3 A 4 A 5 A 6 逆运动学方程解的步骤如下: (1)根据机械手关节坐标设置确定An (4.1)
An为关节坐标的齐次坐标变换,由关节变量和参数确定。关节变量 和参数有:
由式(4.20)可得
1
= d2/r
( 0< d2/r ≤1 ) < )
(4.20)
sin(Φ -θ 1)= d2/r con(Φ -θ 1)=
(0< Φ -θ
2
1
(4.21) (4.22)
d 1 2r
这里±号表示机械手是右肩结构(+)还是左肩结构(-)。
由式(4.21)、(4.22)和(4.18)可得到第一个关节变量θ1的值
nx n T6 y nz 0
ox oy oz 0
ax ay az 0
px py pz 1
( 3 )由 T6 和An(n=1,2,…,6)和式(4.1 )求出相应的关节变量 θn 或 dn。
4.2 逆运动学方程的解(Solving inverse kinematic equations)
2
- S1 px+C1 py = d2 px = r cosΦ py = r sinΦ
r px p y
1
2
(4.18) (4.19)
py tan p x 将式(4.16)和式(4.17)代入式(4.15)有
sinΦ conθ 1-conΦ sinθ
这里
f11 = C1 x+S1 y f12 = - z f13 = - S1 x+C1 y
其中 x =[ nx ox ax px ]T, y =[ ny oy ay py ]T, z =[ nz oz az pz ]T 由第三章得到的斯坦福机械手运动学方程式(3.48)为 C2( C4C5C6 - S4S6 ) - S2S5C6 -C2( C4C5S6 + S4C6 )+ S2S5S6 S2( C4C5C6 - S4S6 ) + C2S5C6 -S2( C4C5 S6+ S4C6 )- C2S5S6 S4C5C6 + C4C6 -S4C5S6 + C4C6 0 0
cos 1 (a z )
由式(4.40)和式(4.43)可解出φ角
(4.43)
ax cos 1 sin
由式(4.36)和式(4.43)可解出Ψ角
(4.44)
nz cos 1 sin
(4.45)
这里需要指出的是,在我们采用式( 4.43 ) ~ 式( 4.45 ) 来计算 θ 、 φ 、 Ψ 时都是采用反余弦函数,而且式( 4.43 )和 式(4.45)的分母为sinθ,这会带来如下问题: 1 )由于绝对值相同的正负角度的余弦相等,如 cosθ = cos(-θ),因此不能确定反余弦的结果是在那个象限; 2)当sinθ接近于0时,由式(4.43)和式(4.45)所求出 的角度φ和Ψ是不精确的; 3 )当 θ = 0 或±180º 时,式( 4.43 )和式( 4.45 )无数值 解。 为此,我们必须寻求更为合理的求解方法。 由三角函数的知识我们知道,反正切函数θ=tan-1(x / y )所在的象限空间可由自变量的分子和分母的符号确定 (如图4.1所示),因此如果我们得到欧拉角的正切表达式,
cos cos cos sin sin sin cos cos cos sin sin cos 0
cos cos sin sin cos sin cos sin cos cos sin sin 0
比较式(4.32)和式(4.33)有
n x cos cos cos sin sin
n y sin cos cos cos sin
(4.34)
(4.35)
(4.36) (4.37) (4.38) (4.39) (4.40) (4.41)
nz sin cos
将上式写成如下形式
f11 (n) f ( n) 12 f13 (n) 0 f11 (o) f12 (o) f13 (o) 0 f11 (a) f12 (a) f13 (a) 0 f11 ( p) cos cos f12 ( p) sin f13 ( p) sin cos 1 0 cos sin cos sin sin 0 sin 0 cos 0 0 0 0 1
o x cos cos sin sin cos
o y sin cos sin cos cos
oz sin sin
a x cos sin
a y sin sin
a z cos
(4.42)
由式(4.42)可解出θ角
n x n T y nz 0
ox oy oz 0
ax ay az 0
px py pz 1
(4.32)
Rot ( z , ) Rot ( y, ) Rot ( z , ) cos sin 0 0 sin cos 0 0 0 0 cos 0 0 0 1 0 sin 0 1 0 0 sin 1 0 cos 0 0 0 cos sin 0 0 0 1 0 sin cos 0 0 0 0 0 0 1 0 0 1 cos sin sin sin con 0 0 0 (4.33) 0 1