高压连接器(电动汽车系列)技术规范

高压连接器(电动汽车系列)技术规范
高压连接器(电动汽车系列)技术规范

1. 范围:

本规范规定了电动汽车系列高压连接器(以下简称连接器)的技术要求、质量保证规定、试验方法。 本规范适用于 GB/T 18384.3 -2015 规定的 B 级电压电路的电动汽车高压连接器。

2. 引用文件:

下列文件中的有关条款通过引用而成为本规范的条款。 凡注日期或版次的引用文件, 其后的任何修改单 (不 包括勘误的内容) 或修订版本都不适用于本规范, 但提倡使用本规范的各方探讨使用其最新版本的可能性。 凡 不注日期或版次的引用文件,其最新版本适用于本规范。

GB/T 4208-2008 外壳防护等级 (IP 代码 )

GB/T 2048-2008 塑料燃烧性能的测定水平法和垂直法 QC/T 413-2002 汽车电子设备基本技术条件 QC/T 417.1-2001 车用电线束插接器 QC/T 29106-2014 汽车电线束技术条件 GB/T 2828 计数抽样检验程序

SAE J2223-2-2011 Connections for On-Board Road Vehicle Electrical Wiring Harnesses — Part 2: Tests and

General Performance Requirements

SAE_J1742-2005 Connections_for_High_Voltage_On-Board_Road_Vehicle_Electrical_Wiring_Harnesses SAE USCAR-2-2013 Performance Specification For Automotive Electrical Connector Systems LV215-1-2009 Electrical/ Electronic Requirements of HV Connectors 3. 要求:

GB/T 18384.3-2015 电动汽车安全要求 第 3 部分:人员触电防护 GB/T 5095.2-1997 电子设备用机电元件 基本试验规程及测量方法

触电阻测试、绝缘试验和电压应力试验

GB/T 5095.3-1997 电子设备用机电元件基本试验规程及测量方法第 GB/T 5095.5-1997 电子设备用机电元件 基本试验规程及测量方法 GB/T 5095.6-1997 GB/T 5095.8-1997

的机械试验

电子设备用机电元件

电子设备用机电元

基本试验规程及测量方法

基本试验规程及测量方

第二部分: 一般检查、 电连续性和接

3 部分:载容流量实验

第 5 部分:机械负荷和寿命试验

第 6 部分:气候试验和锡焊试验 第 8 部分:连接器、接触件及引出端

GB/T 28046.3-2011 道路车辆电气及电子设备的环境条件和试验第 3 部分 _机械负荷标准 GB/T 28046.4-2011 道路车辆电气及电子设备的环境条件和试验第 4 部分 _气候负荷标准 GB/T 28046.5-2013 道路车辆电气及电子设备的环境条件和试验第 5 部分 _化学负荷标准

GB/T 2423.2-2008 电工电子产品环境试验 第 2 部分:试验方法 试验 B :高温 GB/T 2423.5-1995 电工电子产品环境试验 第二部分:试验方法 试验 Ea 和导则 :冲击 GB/T 2423.17-2008 电工电子产品环境试验

第 2 部分:试验方法 试验 Ka :盐雾

3.1 总则连接器应符合本规范所有要求。

3.2 额定值

3.2.1 工作温度:连接器工作温度为-40 ℃~125℃。

3.2.2 额定工作电压:连接器额定工作电压应符合表 1 的规定。

表 1 电压等级

3.2.3额定工作电流单个接触件的额定工作电流应符合表2的规定。

表 2 额定工作电流(工作环境温度30 ℃)

, 3

3.3 材料及表面处理要求

3.3.1 通则

所用材料应符合汽车行业通用要求。

3.3.2 材质要求材质要求见表4。表 4 连接器材质要求

表 5 表面处理要求

3.4 设计与结构

3.4.1 总则

连接器的设计与结构应能承受在使用、安装和维修时正常操作中发生的磕碰,连接器的外形尺寸和安装开孔尺寸应符合GB/T 18384.3-2015 中 6.8 绝缘协调要求中电气间隙和爬电距离的要求。

3.4.2 结构要求

a) 具有高压电气互锁功能的连接器,互锁端子应满足:

——连接时,功率端子先接通,信号端子后接通;

——断开时,信号端子先脱离,功率端子后断开。

b) 连接器的电缆压接、螺纹连接、焊接、连接器锁止等连接应牢固可靠。

c) 若连接器带有屏蔽功能,屏蔽层应具有可接地结构。

3.4.3 接触件

无论是插针接触件还是插孔接触件,应保证在插合过程中不会损坏。

3.4.4 绝缘体的设计与结构

绝缘体的设计和结构要求如下:

a) 绝缘体应保证在外壳内不转动,绝缘体应不能从外壳中卸下来;

b) 绝缘体接触件孔位排列应符合产品设计的规定。

3.4.5 尾部附件

尾部附件用于安装电缆线,它们应具有压紧导线的能力,密封型尾部附件应具有将密封电缆的封线体压紧的能力。尾部附件上不许出现损坏电缆线的任何锐利棱角或毛刺,抗电磁干扰屏蔽尾部附件应使电连接器壳体

与电缆屏蔽层实现电连接。

3.4.6 屏蔽弹簧爪

弹簧爪应设计成能与插合外壳起电气接触,而不防碍正确的插合。

3.4.7 连接与分离

3.4.7.1 总则

连接器对应的连接器插头和连接器插座采用弹性卡扣式、三曲线槽卡口式、手柄拉合式、螺纹连接式、推拉式等连接方式。配对连接器应能在不用工具的情况下完全插合和分离。连接器插合是指插针接触件完全进入

到插孔接触件里且连接器插头和连接器插座已正确密封插合,完成连接时,以听到的“卡嗒”声音来表明连接器

已完全插合好。

3.4.7.2 外壳定位通过连接器插头和连接器插座对应两部分上的键和键槽完成定位。

3.4.7.3 插合密封

连接器密封应设计成能消除插合好的连接器中外壳之间的气道,插合连接器的密封件在压缩量最小时应保证密封要求:IP67。

3.4.7.4 润滑

卡合位置和附件螺旋槽上应涂上合适的润滑剂。

3.4.8 连接器插座的安装

连接器插座安装方法应为下列规定中的一种:

a)法兰盘安装;

b)螺母安装。

3.5 互换性同一型号规格的连接器插头与连接器插座应能完全插合和分离。

3.6 接触电阻

按 4.6.3 规定试验时,在插合状态接触件的接触电阻应不大于表 6 的规定。表 6 接触电阻

连接成。

分析研究电动汽车高压互锁

分析研究电动汽车高压互锁 相对于传统汽车而言,电动汽车的一个重要特点就是车内装有能保证足够动力性能的高压系统,包括了充电系统、配电箱、储能系统(动力电池)、动力系统(即驱动电机)等高压部件,如图1所示。由此而存在的高压电伤害隐患完全有别于传统汽车,其高达300 V以上的电压以及可能达到数十、甚至数百安培的电流随时考验着车载高压用电器的使用安全。因此,随着电动汽车行业的不断向前发展,对电动汽车电安全的研究刻不容缓。电动汽车高压电安全措施有以下几点。 1)在用户正常操作时,通过绝缘防护、等电势(搭铁电阻)、外壳IP防护、泄漏电流等措施提供电气防护。

2)环境条件和可能发生的意外事件都可能使得这种保护的强度降低。因此,高压系统配置了绝缘监测功能,一般采用漏电传感器对高压系统进行绝缘监控。 3)在车辆维修保养时,采用紧急维修开关进行安全防护。 4)在异常使用时(例如碰撞、非正常操作断开高压连接器等),采用高压互锁、高压泄放(主动放电、被动放电)保障使用安全。 5)在电路设计时,应能满足电气间隙、爬电距离等要求,并具备各类过压、过流、短路防护功能。 以上为电动汽车高压电安全设计的保护措施,本文主要对高压互锁进行介绍。 1高压互锁的定义 在ISO国际标准《ISO 6469-3: 2001电动汽车安全技术规范第3部分:人员电气伤害防护》中,规定车上的高压部件应具有高压互锁装置,但并没有详细地定义高压互锁系统。高压互锁,也指危险电压互锁回路(HVIL Hazardous Voltage InterlockLoop):通过使用电气小信号,来检查整个高压产品、导线、连接器及护盖的电气完整性(连

【CN209479432U】新能源汽车高压配电盒结构【专利】

(19)中华人民共和国国家知识产权局 (12)实用新型专利 (10)授权公告号 (45)授权公告日 (21)申请号 201920180741.0 (22)申请日 2019.02.01 (73)专利权人 汉腾汽车有限公司 地址 334100 江西省上饶市上饶经济技术 开发区远泉大道3号 (72)发明人 常康伟 汪伟 王建华 张佳谋  周辉 方建威 罗小云 常波  蔡勋杨  (74)专利代理机构 芜湖安汇知识产权代理有限 公司 34107 代理人 朱圣荣 (51)Int.Cl. B60L 3/00(2019.01) (54)实用新型名称 新能源汽车高压配电盒结构 (57)摘要 本实用新型揭示了一种新能源汽车高压配 电盒结构,包括壳体,以及固定在壳体内的电机 控制器、慢充继电器、第一熔断器和第二熔断器, 所述壳体上设有用于连接电源的电源接口、用于 慢充的慢充接口、用于连接电机的三相输出接 口、用于连接传感器的传感器接口、用于直流输 出的直流电输出接口,本实用新型新能源汽车高 压配电盒排布方式,能够在实现高压配电盒基本 的电驱功能外,具有以下特点:1、产品结构紧凑、 体积小,便于在车上安装;2、采用国际主流部件, 保证稳定运行,提高系统安全性;3、产品满足车 辆振动和防护的要求,能适应恶劣工作环境;4、 产品安装和检修容易,维护保养方便;5、适当省 略没必要的元件, 降低成本。权利要求书1页 说明书2页 附图1页CN 209479432 U 2019.10.11 C N 209479432 U

权 利 要 求 书1/1页CN 209479432 U 1.新能源汽车高压配电盒结构,其特征在于:包括壳体,以及固定在壳体内的电机控制器、慢充继电器、第一熔断器和第二熔断器,所述壳体上设有用于连接电源的电源接口、用于慢充的慢充接口、用于连接电机的三相输出接口、用于连接传感器的传感器接口、用于直流输出的直流电输出接口,所述电源接口的正极经第一熔断器连接电机控制器的正极输入端,所述慢充接口的正极连接慢充继电器输入端,所述慢充继电器输出端分两路,一路经第二熔断器和第一熔断器连接电机控制器的正极输入端,另一路连接直流电输出接口的正极,所述电源接口和慢充接口的负极均连接电机控制器的负极输入端和直流电输出接口的负极,所述电机控制器的供电输出端连接三相输出接口,所述电机控制器的信号输入接口连接传感器接口。 2.根据权利要求1所述的新能源汽车高压配电盒结构,其特征在于:所述电机控制器的供电输出端为U、V、W三相线,分别采用三相屏蔽线连接三相输出接口。 3.根据权利要求2所述的新能源汽车高压配电盒结构,其特征在于:所述传感器接口连接新能源汽车电动机上的温度传感器、速度传感器,以及新能源汽车的底板线束。 4.根据权利要求3所述的新能源汽车高压配电盒结构,其特征在于:所述新能源汽车采用的电动机为三相异步电机。 5.根据权利要求1-4中任一所述的新能源汽车高压配电盒结构,其特征在于:所述新能源汽车为电动汽车或混动汽车。 6.根据权利要求5所述的新能源汽车高压配电盒结构,其特征在于:所述电源的额定电压为144V,所述第一熔断器的额定电流为250A,所述第二熔断器的额定电流为25A,所述慢充继电器的工作电压为12V。 7.根据权利要求1或6所述的新能源汽车高压配电盒结构,其特征在于:所述电源接口的正极和第一熔断器之间,以及电机控制器的正极输入端之间均通过厚2mm宽20mm的铜板连接。 2

纯电动汽车高压原理设计副本

纯电动汽车高压原理设计 一、电动汽车概述 电动汽车定义及组成 电动汽车(EV,electric vehicle)是指以为动力,由电动机驱动车轮行驶,符合道路交通、安全法规各项要求的车辆。 电动汽车区别于内燃机汽车的最大不同点是动力系统由电力驱动系统组成,电力驱动系统是电动汽车的核心,由驱动电机及其控制器、动力电源、高压配电系统和电力附件组成,电动汽车的其他装置则基本与内燃机汽车相似。 目前,电动汽车上使用的驱动电机广泛采用为永磁无刷或异步交流电机,随着电机和电机控制技术的发展,开关磁阻电机和轮毂电机等势必成为将来电动汽车驱动电机应用的方向。 目前,电动汽车上应用最广泛的动力电源是,但随着新型储能装置的发展和技术革新,类似燃料电池、金属电池、超级电池、超级电容等储能装置也将会改变电动汽车应用的进程。 电动汽车的分类 电动汽车的种类:纯电动汽车(BEV,battery electric vehicle )、混合动力汽车(HEV,Hybrid-electric vehicle)、燃料电池汽车(FCEV,Fuel cell electric vehicle)。 纯电动汽车,驱动电机的能源完全来自于车载电力储能装置——动力电池。 混合动力汽车,驱动电机的能源来自于传统或新型燃和电力储能装置。 串联式混合动力汽车(SHEV):车辆的驱动力只来源于电动机。 并联式混合动力汽车(PHEV):车辆的驱动力由电动机及发动机同时或单独供给。 混联式混合动力汽车(CHEV):同时具有串联式、并联式驱动方式。 燃料电池汽车:以燃料电池作为动力电源的汽车。燃料电池的化学反应过程不会产生有害产物,因此燃料电池车辆是完全无污染的汽车。 电动汽车的历史 早在1873年,由英国人罗伯特·戴维森用一次电池作动力发明了可供实用的

高压连接器(电动汽车系列)技术规范

本规范规定了电动汽车系列高压连接器(以下简称连接器)的技术要求、质量保证规定、试验方法。 本规范适用于GB/T 18384.3-2015规定的B级电压电路的电动汽车高压连接器。 2.引用文件: 下列文件中的有关条款通过引用而成为本规范的条款。凡注日期或版次的引用文件,其后的任何修改单(不包括勘误的内容)或修订版本都不适用于本规范,但提倡使用本规范的各方探讨使用其最新版本的可能性。凡不注日期或版次的引用文件,其最新版本适用于本规范。 GB/T 18384.3-2015 电动汽车安全要求第3部分:人员触电防护 GB/T 5095.2-1997 电子设备用机电元件基本试验规程及测量方法第二部分:一般检查、电连续性和接触电阻测试、绝缘试验和电压应力试验 GB/T 5095.3-1997电子设备用机电元件基本试验规程及测量方法第3部分:载容流量实验 GB/T 5095.5-1997 电子设备用机电元件基本试验规程及测量方法第5部分:机械负荷和寿命试验 GB/T 5095.6-1997 电子设备用机电元件基本试验规程及测量方法第6部分:气候试验和锡焊试验 GB/T 5095.8-1997 电子设备用机电元件基本试验规程及测量方法第8部分:连接器、接触件及引出端的机械试验 GB/T 28046.3-2011道路车辆电气及电子设备的环境条件和试验第3部分_机械负荷标准 GB/T 28046.4-2011道路车辆电气及电子设备的环境条件和试验第4部分_气候负荷标准 GB/T 28046.5-2013道路车辆电气及电子设备的环境条件和试验第5部分_化学负荷标准 GB/T 4208-2008 外壳防护等级(IP代码) GB/T 2423.2-2008 电工电子产品环境试验第2部分:试验方法试验B:高温 GB/T 2423.5-1995 电工电子产品环境试验第二部分:试验方法试验Ea和导则:冲击 GB/T 2423.17-2008 电工电子产品环境试验第2部分:试验方法试验Ka:盐雾 GB/T 2048-2008 塑料燃烧性能的测定水平法和垂直法 QC/T 413-2002 汽车电子设备基本技术条件 QC/T 417.1-2001 车用电线束插接器 QC/T 29106-2014汽车电线束技术条件 GB/T 2828 计数抽样检验程序 SAE J2223-2-2011 Connections for On-Board Road V ehicle Electrical Wiring Harnesses—Part 2: Tests and General Performance Requirements SAE_J1742-2005 Connections_for_High_V oltage_On-Board_Road_Vehicle_Electrical_Wiring_Harnesses SAE USCAR-2-2013 Performance Specification For Automotive Electrical Connector Systems LV215-1-2009 Electrical/ Electronic Requirements of HV Connectors

高压连接器(电动汽车系列)技术规范

本规规定了电动汽车系列高压连接器(以下简称连接器)的技术要求、质量保证规定、试验方法。 本规适用于GB/T 18384.3-2015规定的B级电压电路的电动汽车高压连接器。 2.引用文件: 下列文件中的有关条款通过引用而成为本规的条款。凡注日期或版次的引用文件,其后的任何修改单(不包括勘误的容)或修订版本都不适用于本规,但提倡使用本规的各方探讨使用其最新版本的可能性。凡不注日期或版次的引用文件,其最新版本适用于本规。 GB/T 18384.3-2015 电动汽车安全要求第3部分:人员触电防护 GB/T 5095.2-1997 电子设备用机电元件基本试验规程及测量方法第二部分:一般检查、电连续性和接触电阻测试、绝缘试验和电压应力试验 GB/T 5095.3-1997 电子设备用机电元件基本试验规程及测量方法第3部分:载容流量实验 GB/T 5095.5-1997 电子设备用机电元件基本试验规程及测量方法第5部分:机械负荷和寿命试验GB/T 5095.6-1997 电子设备用机电元件基本试验规程及测量方法第6部分:气候试验和锡焊试验GB/T 5095.8-1997 电子设备用机电元件基本试验规程及测量方法第8部分:连接器、接触件及引出端的机械试验 GB/T 28046.3-2011道路车辆电气及电子设备的环境条件和试验第3部分_机械负荷标准 GB/T 28046.4-2011道路车辆电气及电子设备的环境条件和试验第4部分_气候负荷标准 GB/T 28046.5-2013道路车辆电气及电子设备的环境条件和试验第5部分_化学负荷标准 GB/T 4208-2008 外壳防护等级(IP代码) GB/T 2423.2-2008 电工电子产品环境试验第2部分:试验方法试验B:高温 GB/T 2423.5-1995 电工电子产品环境试验第二部分:试验方法试验Ea和导则:冲击 GB/T 2423.17-2008 电工电子产品环境试验第2部分:试验方法试验Ka:盐雾 GB/T 2048-2008 塑料燃烧性能的测定水平法和垂直法 QC/T 413-2002 汽车电子设备基本技术条件 QC/T 417.1-2001 车用电线束插接器 QC/T 29106-2014 汽车电线束技术条件 GB/T 2828 计数抽样检验程序 SAE J2223-2-2011 Connections for On-Board Road Vehicle Electrical Wiring Harnesses—Part 2: Tests and General Performance Requirements SAE_J1742-2005 Connections_for_High_Voltage_On-Board_Road_Vehicle_Electrical_Wiring_Harnesses SAE USCAR-2-2013 Performance Specification For Automotive Electrical Connector Systems LV215-1-2009 Electrical/ Electronic Requirements of HV Connectors

纯电动汽车高压原理设计---副本

纯电动汽车高压原理设计---副本

纯电动汽车高压原理设计 一、电动汽车概述 1.1 电动汽车定义及组成 电动汽车(EV,electric vehicle)是指以车载电源为动力,由电动机驱动车轮行驶,符合道路交通、安全法规各项要求的车辆。 电动汽车区别于内燃机汽车的最大不同点是动力系统由电力驱动系统组成,电力驱动系统是电动汽车的核心,由驱动电机及其控制器、动力电源、高压配电系统和电力附件组成,电动汽车的其他装置则基本与内燃机汽车相似。 目前,电动汽车上使用的驱动电机广泛采用为永磁无刷或异步交流电机,随着电机和电机控制技术的发展,开关磁阻电机和轮毂电机等势必成为将来电动汽车驱动电机应用的方向。 目前,电动汽车上应用最广泛的动力电源是锂离子动力电池,但随着新型储能装置的发展和技术革新,类似燃料电池、金属电池、超级电池、超级电容等储能装置也将会改变电动汽车应用的进程。 1.2 电动汽车的分类 电动汽车的种类:纯电动汽车(BEV,battery electric vehicle )、混合动力汽车(HEV,Hybrid-electric vehicle)、燃料电池汽车(FCEV,Fuel cell electric vehicle)。 纯电动汽车,驱动电机的能源完全来自于车载电力储能装置——动力电池。 混合动力汽车,驱动电机的能源来自于传统或新型燃和电力储能装置。 串联式混合动力汽车(SHEV):车辆的驱动力只来源于电动机。 并联式混合动力汽车(PHEV):车辆的驱动力由电动机及发动机同时或单独供给。 混联式混合动力汽车(CHEV):同时具有串联式、并联式驱动方式。 燃料电池汽车:以燃料电池作为动力电源的汽车。燃料电池的化学反应过程不会产生有害产物,因此燃料电池车辆是完全无污染的汽车。 1.3 电动汽车的历史

电动汽车高压动力线束解决方案 HV系列连接器

Amphenol HV HV series connector and cable assembly & Application: high voltage and high current in hybrid car and electrical car cable assembly solution

About company 1932 Connecticut 3050 Amphenol was founded in 1932 and headquartered in Connecticut, USA. As one of the largest manufacturers of interconnect solution, Amphenol has more than 50 manufacturing facilities and a presence in more than 30 countries. Amphenol can provide interconnect solution to customers anywhere around the globe...... IMA&I Amphenol Pcd Shenzhen Co.,Ltd. is the only one member company of Amphenol International Military & Aerospace and Rail & Mass Transit Industrial Corp., also we are the R & D, manufacture and sales centre in China built by Amphenol International Military & Aerospace and Rail & Mass T ransit Industrial Dept (For short: IMA). We extend and sale our corporation overseas company's products in China market. . Amphenol is one of the system solution provider leader in HV& EV, for its high performance in Outlet charger & cable assemble solution, our products are reliable work well under high or low temp, vibration, limited space and other rugged environment, so we are famous in this industry, our customer all over the country, that is Chery Automobile, Wu Zhou Long Motor, Jianghuai Automobile, BYD Automobile, Geely Automobile, Changan Automobile, Nissan Motor, Changfeng Motor...... Amphenol Pcd Shenzhen expects to deliver the best products and service to you.

电动汽车高压系统电压等级技术规范标准编制说明

国家标准《电动汽车高压系统电压等级技术规范》编制说明 (征求意见稿) 一、任务来源 根据国家“863” 计划《电动汽车整车及零部件技术标准研究》(2011AA11A277)要求,其子项目《电动汽车高压系统电压等级技术规范》,由东风集团股份有限公司技术中心负责起草,计划于2013年12月完成。 二、标准编制的意义和适用范围 标准编制的目的在于促进中国电动汽车行业电动附件等零部件企业的产品平台化发展,减少产品种类,提高产品销售数量,降低产品成本,推进电动汽车产业发展。 该标准适用于混合动力汽车、插电式混合动力汽车和纯电动汽车。对于电压等级小于144V与大于600V电动汽车高压系统,不在本标准规定范围之内。该标准为推荐性标准,不排斥整车企业开发定制的不符合该标准所规定的电压等级的电动汽车产品。该标准为推荐性标准,不排斥整车企业由于技术进步、整车布置空间等问题,导致整车电压等级略微偏离该电压等级。 三、工作过程简述 2011年9月,接到对《电动汽车高压系统电压等级技术规范》制定的任务后,东风汽车公司首先成立了标准制定工作组,确定了制定原则和方法,制定了工作计划,以确保标准制定质量和进度。 1.广泛征集意见和建议

为了解掌握国内主机及零部件厂在研和已上市电动汽车及零部件产品高压系统电压等级信息,使制定的标准充分、合理、适宜,2011年9月,东风汽车公司起草了“电动汽车高压用电系统及零部件电压等级技术规范调查问卷”,对上汽、奇瑞、一汽、长安、广汽、北汽、国轩、万向等59个单位进行了问卷调查,收到问卷20份。 2.对返还的20份问卷进行了统计分析,以确定国内电动汽车高压系统及零部件电压等级分布情况,为电压等级标准制定提供数据支持。 3.对关键高压零部件电压等级确定因素如下:对于动力电池系统我们考虑现有电芯模块成组及电池系统的方便性通用性互换性与电压等级之间的关系;对于高压配电系统、电机及其控制器系统、DC/DC 转换器、电动空调、PTC加热器等高压零部件,我们分析和考虑了其关键零部件效率、电压、成本、整车搭载之间的关系,最后提出了其电压等级。 4.收集查阅国内电动汽车高压系统电压等级相关标准、文件,以确保修订后的标准与相关标准、文件的相容性。 5.2012年8月,我们走访了奇瑞、上汽、英飞凌公司,进行企业和零部件厂家调研,讨论标准主体思想,听取企业意见和建议,丰富并修改了标准和编制说明的内容。 6.2012年8月-2012年9月提出行业标准草案(第一稿),并通过标准研究工作组秘书处发往各有关单位征求意见,再次收集了同时在网上广泛征求意见部分意见和建议。共收集到9个单位共21条意

大中型客车高压配电盒设计规范 V3.0

大中型客车高压配电盒设计规范 编号 编制 审核 标准 批准 日期

前言 为总结和完善设计开发经验,积累和规范相关技术数据,形成指导性技术文件,引导开发工作步入标准化、规范化,提高产品开发质量和竞争力,提升产品品质,建立大中型客车高压配电柜的设计规范,为公司客车产品的高压配电柜的设计开发提供参考。 本规范为首次发布版本。 1 范围 本规范规定了大中型客车高压电器柜接口类型、高压原理、设计要求及安全功能 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件 GB/T 2423.17 电工电子产品环境试验第2部分: 试验方法试验Ka:盐雾 GB/T 18384.3 电动汽车安全要求第3部分人员触电防护 GB/T 18387 电动车辆的电磁场发射强度的限值和测量方法 GB/T 18488.2 电动汽车用电机及其控制器第2部分试验方法 3外部接口 高压配电柜提供高压接口和低压接口,高压接口类型见表1,低压接口类型见表2。接口数量及类型也可根据项目需求定制。 表错误!文档中没有指定样式的文字。高压接口 序号接口名称对接设备功能 1 动力电池正极 动力电池高压储能装置 2 动力电池负极 3 电机控制器正极 电机控制器电机运行控制 4 电机控制器负极 5 DC/DC正极 DC/DC 低压蓄电池充电 6 DC/DC负极 7 DC/AC(转向)正极 DC/AC(转向)驱动电动转向油泵电机 8 DC/AC(转向)负极 9 DC/AC(制动)正极DC/AC(制动)驱动电动打气泵电机

纯电动汽车高压熔断器计算及选型

一、概述 现阶段动力电池能量密度越来越高,单体电芯容量越来越大,各高压部件一旦出现短路现象而无相应的保护措施,轻则部件损坏,重则引起火灾(尤其动力电池),后果将不堪设想,所以各高压部件回路的保护至关重要,本文将阐述纯电动汽车高压直流熔断器计算及选型方法,并实例说明。电动汽车电气拓扑图如图一所示。 图一电动汽车电气拓扑图 二、熔断器选型 2.1 熔断器分类 1)按动作特性主要分为: 普通熔断器(gG/gL)、快速熔断器部分范围保护(aR)、快速熔断器全范围保护(gR)、Time-delay型及特殊熔断器; 2)按照外形形状主要分为: a、英标熔断器 英式熔断器壳体采用陶瓷材质,圆柱管体,具有体积小、浪湧耐受性能強、性价比高、弧电压小、功耗低等特点,一般小于100A的熔断器推荐采用英式系列熔断器。英标BS88熔断器样式如图二所示。 图二英标BS88熔断器

b、美标熔断器 美式熔断器系列的产品,两端触刀为一体式,熔体直接一次性焊接,可抗强冲击及振动,具备高阻燃、高绝缘性能,弧电压小,功耗低,此系列为电动汽车的优选,一般大于100A的熔断器推荐采用美标系列以增加可靠性。美标熔断器样式如图三所示。 图三美标熔断器 c、欧标熔断器 欧标方形熔断器壳体采用陶瓷材质,该产品具有运行温度低、功率损耗小、焦耳积分值小等特点,适用于要求结构紧凑、性能优越、大功率应用场合,尤其在手动维修开关(MSD)中大量使用。欧标方形熔断器样式如图四所示。 图四欧标方形熔断器 d、法标熔断器 法标熔断器具有循环性能强、体积小、构造独特等特点,模块化底座方便安装,结构紧凑,适用于占用空间小的PDU、BDU、小型交流驱动器以及其它小功率应用。法标圆形熔断器样式如图五所示。 图五法标圆形熔断器

动力电池高压连接器(单芯)技术规范

目录 1 、目的 (2) 2 、适用范围 (2) 3 、定义 (2) 4 、职责分配 (2) 5 、流程图 ........................................................ . (2) 6 、程序内容 ..................................................... .. (2) 6.1 动力电池高压连接器技术参数要求 (3) 6.1.1 高压连接器性能要求 (4) 6.1.2 高压连接器技术参数要求 (4) 6.2 高压连接器结构设计要求 (5) 6.2.1 高压连接器插座中接触件与动力电池主电路连接端设计要求 (7) 6.2.2 高压连接器插座固定于箱体面设计要求 (7) 6.2.3 高压连接器插座与插头连接触件设计要求 (7) 6.2.4 高压连接器插件的绝缘防触摸设计要求 (8) 6.2.5 高压连接器的保护壳体设计要求 (8) 6.2.6 高压连接器的防呆设计要求 (8) 6.2.7 高压连接器的防呆设计要求 (8) 6.2.8 高压连接器的高压互锁设计要求 (9) 6.2.9 高压连接器的温控互锁设计要求 (9) 6.2.10 高压连接器的动力线缆设计要求 (9) 6.2.11 高压连接器的互换性设计要求 (9) 6.3 动力电池高压连接器检验标准要求 (11) 6.4供应商送样承认要求 (13) 7、相关文件 (13) 8、相关记录 (13)

1 目的 Objectives: : 汽车产业是国民经济的重要支柱产业,在国民经济和社会发展中发挥着重要作用,随着我国经济持续快速发展和城镇化进程加速推进,今后较长一段时期汽车需求仍将保持增长势头,由此带来的能源紧张和环境问题更加突出,加快培育和发展节能汽车与新能源汽车,即是有效缓解能源和环境压力,推动汽车产业可持续的紧迫任务,也是加快汽车产业转型升级、培育新的经济增长点和国际竞争优势的战略举措。 新能源电动汽车产业正是在这一时代背景下应运而生,动力总成作为整个新能源汽车的核心,如何保证其安全稳定显得尤为重要。由于当前在动力电池高压连接器部分国内还没有发布国家标准,大多企业是执行企业标准或参照其它同类产品的标准执行,或者直接借用其它行业使用的连接器,上述原因对连接器在使用过程中的安全及互换性带来挑战。为了实现公司产品标准化和设计标准化,统一产品各个部位的设计细节,避免不合理的产品设计,减少设计错误率,工程师在设计过程中思路清晰且有据可依,品质有据可检,生产操作便捷,缩短供应商生产周期,特定此规范。 2 适用范围 Applicable Scope: : 本规范适用目前公司所有动力电池高压连接器,文件中明确规范了高压连接器的结构设计标准及高压连接器技术标准要求,但对于创新型高压连接器设计不完全适用。 3 定义 Definitions: : 3.1 动力电池高压连接器:一种借助于电信号或机械力的作用使电路内被阻断处或孤立不通的电路之间,架起沟通的桥梁,从而使电流流通,使电路实现预定的功能; 3.2 下文中所有尺寸单位默认为 MM,重量单位默认为 KG; 4 职责分配 Responsibility Dis tribution: : 4.1 产品工程部都依照标准文件的要求执行。 4.2 品质中心来料检验可以参考此规范文件对品质进行评估和检验。 4.3 采购中心可依此规范选择可满足我司技术要求的供应商。 5 流程图 Process Chart: : 无。 6 程序内容 Procedure Content: : 6.1 动力电池高压连接器技术参数要求 6.1.1 高压连接器性能参数要求

电动汽车高压电气系统安全设计

纯电动汽车高压电气系统安全设计摘要:在电动汽车研发安全设计中,纯电动汽车安全设计除与传统燃油车一样考虑乘员的主动安全与被动安全外,还需重点考虑动力电池系统和高压系统安全。为解决纯电动汽车高压电系统的安全问题,文章对高压部件和高压线束防护与标识、预充电回路保护、高压设备过载/短路保护、绝缘电阻检测、动力电池电流电压检测、高压接触器触点状态检测、高压互锁电路检测、充电互锁检测、高压系统余电放电保护以及碰撞安全等高压系统潜在的安全问题提出了相应的解决方案,形成一整套完整的电动汽车高压电气系统的安全设计方案。该方案能确保电动汽车高压系统安全可靠地运行。关键词:纯电动汽车;高压电气系统;高压触点;绝缘电阻;高压互锁;碰撞安全。 现代电动汽车一般分为纯电动汽车、混合动力汽车、燃料电池电动汽车、外接式可充电混合动力汽车及增程式电动汽车。纯电动汽车是指完全由蓄电池提供电力驱动的电动汽车,工作电压高达几百伏,远远高于安全电压。且高压系统工作时放电电流有可能达到数十安,甚至高达上百安[1]。当高压电路发生绝缘、短路及漏电等情况时,会直接对驾乘人员的人身生命财产安全造成危害。 因此,在设计高压系统和对高压系统关键部件进行选型时,不仅要满足整车驱动的要求,还必须确保驾乘人员和汽车运行环境安全。因此,纯电动汽车整车的电气系统安全性已成为评价纯电动汽车安全性的一项重要指标。文章简述了某公司纯电动轿车高压电气系统的安全设计与控制策略。 1纯电动汽车电气系统安全分析 纯电动轿车电气系统主要包括低压电气系统、高压电气系统及CAN通讯信息网络系统。低压电气系统采用12V供电系统,除了为灯光照明系统、娱乐系统及雨刷器等常规低压用电器供电外,还为整车控制器、电池管理系统、电机控制器、DC/DC转换器及电动空调等高压附件设备控制回路供电; 高压电气系统主要包括动力电池组、电驱动系统、DC/DC电压转换器、电动空调、电暖风、车载充电系统、非车载充电系统及高压电安全管理系统等; CAN总线网络系统用来实现整车控制器和电机控制器、以及电池管理系统、高压电安全管理系统、电动空调、车载充电机和非车载充电设备等控制单元之间的相互通信。 纯电动汽车电压和电流等级都比较高,动力电压一般都在300~400V(直流),电流瞬间能够达到几百安。人体能承受的安全电压值的大小取决于人体允许通过的电流和人体的电

电动汽车高压连接器概述计测试

电动汽车高压连接器概述及测试验证 无论是纯电动、混合、燃料电池汽车,都需有一套完整的高压连接系统,这个系统中,往往都应用大量的高压连接器,这一点与传统汽车有着明显的区别。高压系统工作时放电电流有可能达到数几十安,甚至高达数百安。 但是在新能源电动汽车发展初期,高压连接器并没有得到整车企业的足够重视,认为高压连接与传统低压线连接类似,重心在“三电”(电驱、电池、电控)上面,但随着时间的推移,大家发现高压连接系统比较容易发生问题,且一旦发生问题,后果都比较严重,轻则过热,严重时容易发生高温或燃烧事件。 华碧实验室围绕高压连接器的发展历程展开,分析中国电动汽车用高压连接器的标准体系、测试方法,针对产品使用过程中的性能指标,搭建高压连接器测试系统,开展高压连接器的物理连接、电气性能等方面的测试,为产品的不断改进提供了支撑。 01 高压连接器的发展历程 电动汽车高压连接器的发展与电动汽车的发展是同步进行的,从连接器角度来说,国内电动汽车连接器发展经历以下几代。 1)第1代高压连接器(图1),2008年左右开始,主要是由当时工业连接器改款而来。这代产品的特点,以金属连壳体为主,无高压互锁功能,防误插入(防呆)效果较差。比较有代表性产品有安费诺HV系列的金属连接器,后来市场上

很多款连接器是基于这种类型产品延伸扩展出来的。 2)第2代高压连接器(图2),在第1代的基础上增加了高压互锁功能,连接器的外壳也逐渐由金属变为塑料。

3)第3代高压连接器(图3),塑料+屏蔽功能+高压互锁的高压连接器。有代表性的是行业中800系列产品(这类产品是通过操作顺序来实现部分二级解锁功能,不是直接机械式结构),如TE/安费诺/智绿及国内新一代产品。 4)第4代高压连接器(图4),塑料+屏蔽功能+高压互锁+二级解锁的高压连接器。有代表性的是行业中280系列产品,如TE/智绿及国内新一代产品,这类产品是通过机械结构来实现二级解锁功能,更为安全。

电动汽车(高压配电箱)标准

2016年我公司将大批量生产新能源车,预计年产量3000台,为了更好的降低采购成本,提高产品质量,增强市场竞争力,实现企业更好更快的发展,本着公开、公平、公正的原则,我司决定对新能源车用的高压配电箱进行公开招标。 一、招标项目: 1.高压配电箱 二、技术要求: 一、技术标准: 1. 符合QC/T413-2002 《汽车电气设备基本技术条件》中各项规定; 2. 符合GB 2893-2001 《安全色》的相关规定 3. 符合GB 2894-1996 《安全标志》的相关规定 4. 符合GB 4208-2008 《外壳防护等级(IP代码)》的相关规定 5. 符合GB/T 2423.1 《电工电子产品环境试验第二部分:试验方法试验A:低温(GB/T2423.1-2008)》; 6. 高压电器设备耐电压性能必须符合CJ/T5008 <无轨电车试验方法>中耐电压试验的要求和规定; 7. 符合GB/T 18384.3 2015 《电动汽车安全要求第3部分:人员触电防护》中各项规定; 8. 符合GB/T 18384.2-2015 《电动汽车安全要求第2 部分:功能安全和故障防护》中各项规定; 9. 符合GB/T 2423.2 《电工电子产品环境试验第二部分:试验方法试验B:高温(GB/T2423.2-2008)》中各项规定; 10. 符合GB/T 2423.17 《电工电子产品环境试验第二部分:试验方法试验Ka:盐雾(GB/T2423.17-2008)》中各项规定; 11. 符合GB/T 1303.1-1998 《环氧玻璃布层压板》 二、技术参数: 2.1见附录 三、整机主要技术参数 3.1 防护等级:IP65 3.1.1符合GB4208-2008中IP65要求 3.2 工作温度范围:-40℃~+85℃ 3.2.1 低温按GB/T2423.1相关要求进行,试验温度-40℃,持续时间不低于2小时,试验过程中,

电动汽车高压原理设计

电动汽车高压原理设计 摘要:随着电动汽车行业的蓬勃发展,电动汽车高压部分的重要性越来越受到人们的重视。近些年来,电动汽车动力电池组、高压配电盒起火自燃的事故屡见不鲜,引起了政府企业的高度关注。本文先对电动汽车的进行概念性阐述,再对高压原理进行分析,结合高压部分的安全策略,进行电动汽车高压原理的设计。 一、电动汽车的概述 1.1电动汽车的定义与组成 电动汽车(EV : electric vehicle)是指以动力电池组为动力,由电机驱动车辆行驶,符合国家道路安全法的车辆。 电动汽车与传统汽车最大的区别在于动力系统由电力系统组成,电力驱动系统是电动汽车的核心,由驱动电机及其控制器、动力电源、高压配电盒、电力附件组成。其他部件:转向系统、减震系统、悬挂系统等则与传动车相似。 目前,电动汽车多采用永磁同步电机或交流异步电机作为驱动电机。随着电机电控技术的发展,开关磁阻电机、轮边驱动技术也得到较快的发展。 现阶段,电动汽车多采用锂电池作为动力电池。随着新型储能技术的发展,燃料电池、超级电容等技术必将占有一席之地。 1.2电动汽车的分类 电动汽车的主要分类有:纯电动汽车(BEV : battery electric vehicle)、混合动力汽车(HEV : Hybrid electric vehicle)、燃料电池汽车(FCEV : fuel cell electric vehicle)。 纯电动汽车:驱动电机的能源完全来自于车载电源存储装置——动力电池。 混合动力汽车:驱动电机的能源来自常规动力燃油或者动力电池。 燃料电池汽车:以燃料电池作为动力源的汽车,燃料电池的化学反应中不会产生有害物,因此燃料电池汽车完全是无污染的汽车。 目前,受限于国内技术水平,国产电动汽车主要以纯电动汽车为主,车型多为6米以上乘用车或大巴车。混合动力汽车与燃料电池汽车在国外发展较为迅速,但是生产规模及产量普遍较小。在未来一段时间内,纯电动汽车将会是国内生产商的主要产能对象。 1.3电动汽车的历史 早在1873年,英国人罗比特.戴维森就利用一次性电池作为动力源制造出可供实用的电动汽车。19世纪末到20世纪初,这段时间是电动汽车发展的黄金时期。电动汽车以低转速高扭矩、操作简单方便、噪声小等诸多优点广受欢迎。但是,随着内燃机技术的快速发展,燃油车以续航时间长、速度快、成本低等有点逐渐占领市场。直到1973年中东石油危机,电动汽车的身影才再次出现在大众的视野里,GM EV1、RAV4 EV等电动车相继问世。时至今日,污染问题日益严重,节能减排是大势所趋,电动车的开发与普及或许是解决眼下问题的有效途径。 二、电动汽车高压原理设计 纯电动汽车高压部分主要由驱动电机及其控制器、动力电源、高压配电盒、电力附件组成,如图2-1所示。

高压连接器(电动汽车系列)型式实验大纲 A0版

序号测试项目A组 温升 测试 B组防 护测 试 C组 湿热 循环 D组 高温 老化 E组 温度 冲击 F组 温度 贮存 G组 盐雾 测试 H组 化学 试剂 I组 阻燃 测试 J组 机械 寿命 K组 振动 冲击 1 外观及机械 检查 1,10 1,10 1,8 1,8 1,8 1,8 1,4 1,6 1 1,10 1,9 2 互换性2,11 2,11 2,9 2,9 2,9 2,9 2,7 2,11 2,10 3 接触电阻3,12 3,12 3,10 3,10 3,10 3,10 2,5 3,12 3,11 4 绝缘电阻4,13 4,13 4,11 4,11 4,11 4,11 3,8 4,13 4,12 5 介质耐电压5,14 5,14 5,12 5,12 5,12 5,12 4,9 5,14 5,13 6 常态温升 6 7 高温带负载 持续温升 7 8 电流循环8 9 防水IP67 6 6,13 6,13 6,13 6,13 6,15 6,14 10 动态防水7 11 防水IP68 8 12 潮湿(湿热循 环) 7 13 高温老化7 14 温度冲击7 15 低温试验7 16 盐雾 3 17 化学液体试 验 5 18 阻燃测试 2 19 连接器插入 力和分离力 14 7,9 20 锁紧装置强 度 14 14 10 21 外壳间导电 性 16 22 保持力14 15 11 17

23 机械寿命8 24 线缆压接端 子的抗拉强 度 18 25 机械冲击7 26 抗振动8 27 触电防护9 28 跌落9 每个测试组样品数量 (对) 5 5 5 5 5 5 5 5 5 5 5 外观及机械检查参考SAE USCAR-2-2013 5.1.8规定,目视法检测,连接器的外观应无裂纹、掉块、肿胀、毛刺和其他机械损伤;标志应完整、正确、清晰;金属零件镀层应均匀、完整;连接器的结构、外形、安装及安装尺寸应符合技术图样要求。(对应国标:GB/T 5095.2-1997试验1a,1b) 互换性用同一型号规格的连接器的插头与插座进行插合检查,同一型号规格的连接器,其插头与插座应保证工作上的完全互换。 接触电阻参考SAE USCAR-2-2013 5.3.2规定,端子压接线长度75mm±3mm;测试电流:50mA; 测试结果应减去75mm±3mm*2导线电阻;并采用下列规定:连接器应正常装配插合,一般情况下可用精度不低于1%的直流低电阻测试仪进行测试,接触电阻满足附表二规定(对应国标:GB/T 5095.2-1997试验2a) 绝缘电阻参考SAE USCAR-2-2013 5.5.1规定,采用下列规定:a)测试电压:(1000±10)VDC; b)测试电压施加点:相邻接触件与接触件之间,接触件与壳体(屏蔽)之间;c)绝缘电阻应≥2000MΩ(常态);环境试验后应≥200MΩ(对应国标:GB/T 5095.2-1997中试验3a) 介质耐电压参考SAE J1742 5.5.2规定,并采用下列规定:a)测试电压:电压上升速率≤500V/s,按附表一试验电压承受(60±5)s;b)测试电压施加点:相邻接触件与接触件之间,接触件与壳体(屏蔽)之间,接触件与信号接触件之间;c)漏电流应<5mA,d)测试条件为常态,应能承受规定的试验电压一分钟无电介质断裂或击穿现象。(对应国标:GB/T 5095.2-1997中试验4a) 常态温升参考SAE USCAR-2-2013 5.3.3规定,端子压接线缆长度:1000mm,通过的电流参考如附表三,额定电流接触对温升应≤50K;在温升稳定后施加两倍额定峰值电流,试验时间为1分钟,短时过载时接触对温升应≤55K(对应国标:GB/T 5095.3-1997中试验5a)

电动汽车-高压控制系统设计规范

M电动汽车 高压控制系统设计规范书 编制: 审核: 批准:

编制说明: 1.本文件适用于ME纯电动汽车。 2.本文件定义了纯电动汽车高压控制系统设计规范。 3.本文件一经发布即时生效,在更新版本文件发布之前持续有效。 4.本文件由新能源产品部发布,如有问题请即时反馈。

M纯电动汽车高压控制系统设计规范书 一、编写目的 指导开发人员设计开发高压控制系统,规范电动汽车高压控制系统开发的基本原则与要求。 二、适用范围 适用于ME纯电动汽车高压控制系统设计开发 三、设计规范内容 1,设计原则规范 ①需求驱动原则。即围绕总体需求及各阶段的需 ②安全优先原则。即保证安全性前提下,设计系统结构,防止触电、 漏电、高压短路等原则。 ③可靠性优先原则。即设计是否成功要以能否确保可靠性为标准。 ④器件抗震原则。必须在系统设计选器件时,保证器件抗震,符合车 辆要求。 ⑤屏蔽原则。必须保证高压控系统工作时不干扰车辆其它系统。 2.开发流程规 开发过程应包含需求分析、系统设计、开发及过程控制、系统联调、文档归档及验收申请等环节。具体地,又划分为: 项目立项流程 接受任务后,根据与项目经理交流中领会公司的任务意图并结合市场调研和现有知识水平,完成需求分析,可行性分析:完成

系统设计;完成任务分解,提交项目开发策划书,供領导审决。 项目实施管理流程 建立项目开发团队; 产生各阶段文档; 评审各阶段文档及任务实施结果; 系统开发流程 根据系统设计任务书(含方案书)进行任务理解、分解,生成各单元控制模块任务书; 实施设计书; 生成各阶段文档; 评审文档及开发结果; 系统测试工作流程 测试工作分解在开发各阶段; 建立各单元控制模块任务测试用例; 根据测试用例实施阶段测试和系统测试; 3,文档规范 项目开发策划书接受任务后,根据与客户或领导交流中领会的任务意图并结合市场调研和现有知识水平,完成需求分析、可行性分析提出任务分解结果和工作内容;提出资源(人力、财力、时间)需求; 4.高压控制系统设计 系统分层设计结构

相关文档
最新文档