高压连接器(电动汽车系列)技术规范

合集下载

电动汽车高压连接器技术条件编制说明

电动汽车高压连接器技术条件编制说明
2
9)“4.17 振动等级”需补充对 V4 中极端区域说明; 10)“4.3.1 接触电阻”需细化对端子名义尺寸的定义,明确片式和圆形不同端 子形式的要求及其对应关系; 11)“6.3.7 电流连续性”需对高压连接器的所有孔位进行监测; 12)“6.2.11 端子尾部耐受力”需明确拉力点的选取原则,建议按照方位中八个 方向定义; 2020 年 5 月 22 日,召开第二次线上评审会议,2020 年 6 月 5 日,召开第二 次线上评审会议补充会议,对第一版草案进行评审,经过与会专家的交流讨论, 对第一版标准草案有如下讨论意见: 1)“3.1.15 热稳定状态”按 GB/T11918 中内容对定义进行修订; 2)“4.1.10 颜色”中需补充推荐橙色的色卡号及色差值; 3)“5.2.1 端子抗弯折能力”需通过实测不同材质的圆孔端子、片式端子施加 力来修订试验指标; 4)“5.2.2 连接器尾部耐受力”需按导线规格划分试验线缆长度和试验时尾部 施加力; 5)“4.2.3 电线附件拉力”需通过实测不同导线规格的屏蔽环-电缆拉力来修订 技术要求指标,另外,对于大线径导线与端子拉力需对压接进行要求细化; 6)“4.2.3 电线附件拉力”等后续内容仅对性能指标作要求,不对实现方式进 行考察,暂不考虑铝导线所涵盖应用范围; 7)“4/5.2.7 端子、端子孔防错结构”调整为“4/5.2.7 端子与端子孔防错结构”; 8)“4.2.10 密封件装配稳定性”需通过实测来验证试验可操作性和修订技术 要求指标; 9)“4.2.12 吊耳强度”需通过实测来修订技术要求中破坏力的指标; 10)“4.2.17 连接器操作力”中助力机构在初始位置保持力需通过实测来修订 技术要求指标; 11)“4.2.18 跌落”技术要求修订为“试验后,连接器所有零部件不应从装配位 置脱离,无可见损伤,样品符合 4.1.8 护套外观要求,外表面允许刮擦伤痕”; 12)“5.2.18 跌落”试验方法中修订为样品采用护套及所有附件,不装配导线 和端子;

新能源汽车高压连接器

新能源汽车高压连接器

新能源汽车高压连接器新能源汽车高压连接器是新能源汽车中的重要组成部件,主要用于电池管理系统和电动驱动系统之间的连接。

它具有承载高压电流、高温环境下工作的特点,能够保证电流的稳定传输并确保车辆的安全运行。

新能源汽车高压连接器在新能源汽车中起到了关键的作用。

首先,它是电池管理系统和电动驱动系统之间的桥梁,负责将高压电流从电池传输到电动驱动系统中,完成驱动车辆的功能。

在高压电流传输过程中,高压连接器能够稳定地将电流传输到目标位置,确保系统的正常运行。

其次,高压连接器还起到了安全保护的作用。

由于新能源汽车使用的是高压电流,如果连接器质量不好,很容易发生电流泄漏、电弧、短路等问题,导致车辆的故障甚至发生火灾等严重事故。

因此,高压连接器需要具备良好的绝缘性能和防水防尘性能,确保车辆的安全性。

新能源汽车高压连接器的设计需要考虑多种因素。

首先,它需要能够承受高压电流的传输,在材料选择上需要选择能够耐高温高压的材料,如硅胶、氟橡胶等。

其次,连接器的设计需要紧凑,方便安装和维修。

由于新能源汽车的体积相对较小,因此连接器需要尽可能地减小体积,在保证质量的前提下提高连接器的紧凑性。

另外,连接器还需要具备良好的防水防尘性能,以保证在恶劣的环境下依然能够正常工作。

此外,连接器还需要具备高可靠性,确保在长时间使用过程中不会出现故障。

新能源汽车高压连接器的未来发展方向是智能化和集成化。

随着智能汽车的发展,高压连接器也需要具备智能化的功能,如与车辆控制系统的信息交互、自动检测故障等。

另外,随着新能源汽车的普及,高压连接器需要更加符合工业化的生产要求,实现高标准、高质量的生产。

为此,高压连接器的生产过程需要进行全面的自动化和集成化,提高生产效率和质量。

总之,新能源汽车高压连接器在新能源汽车中起到了关键的作用,它不仅承载着高压电流的传输,还具备安全保护的功能。

连接器的设计需要考虑材料的选择、紧凑性、防水防尘性能等因素,并且在未来的发展中需要实现智能化和集成化。

新能源电动汽车高压电缆标准及基本要求

新能源电动汽车高压电缆标准及基本要求
采用大电流传输的结果将导致高功耗和组件的发热,因此高压电缆必须设计承受更高的温度范 围。相比之下,常规的燃油驱动车辆通常使用电缆的额定温度限值到105℃,除非电缆应用在发动机 舱或其它耐较高的温度的区域。电动汽车高压电缆通常要高于通用燃油汽车的限值温度,达到125℃ 或150℃。 电动汽车内如果通过的环路有其他影响因素,主机厂甚至会提出更高的耐高温要求。如排气管附 近、电机前面、电池背面等。
07 耐弯曲
如果电动汽车内部电动机位于靠近车辆的运动部位,会导致连接的高压电缆连续振动,它要求被 设计成能承受高的循环弯曲,以确保良好的弯曲耐力。
08 标识
因为高电压带来应用风险增加,各种标准均定义高压电缆必须在视觉上与通用燃油车辆电缆区 分,指定表面必须是鲜艳的橙色。同时也可以印刷警示内容和特殊标记,如“小心!高压600V”、高 电压的闪电度等级电缆设计使用寿命为3000 h。在公认的电缆标准如ISO 6722、 ISO 14572中,此设定值通常用于长期老化试验。在高压应用领域的客户的特殊要求可能超过 3000h,在规定的温度累计运行时间甚至达到至12000h。
05 屏蔽效果
电动汽车高压电缆的本身并不需要屏蔽,因为不像同轴电缆那样传输数据,但是需要防止或减少 系统中的开关电源产生的高频辐射通过电缆传导到周边关键设备部件。 和燃料驱动的车辆不同,控制电动汽车的电机的多采用三相交流电,携带能量的电压由不同频率 的信号符合而成,由于高频率的脉冲具有陡峭的沿,所以会产生能量有很强的谐波发射到周边区域。 通过使用适当的屏蔽方法完全可以解决EMI问题,在某些情况下为满足屏蔽效果的不同要求需要采用 不同屏蔽类型的组合。

电动汽车高压电缆标准
由于电动汽车领域高压电缆应用的特殊要求,现有的电缆标准不能有效的满足系统应用需求,必 须建立新的标准,以满足电动汽车整车生产厂商、电缆供应商等多方的需求。

电动汽车高压线束技术规范

电动汽车高压线束技术规范

Q/TEV 湖南南车时代电动汽车股份有限公司企业标准Q/TEV 157—2014 电动汽车高压线束设计规范2014-04-30发布2014-05-15实施目次前言 (II)1 范围 (1)2 规范性引用文件 (1)3 术语和定义 (1)4 应满足的功能要求及应达到的性能要求 (2)5 设计输入、输出要求 (4)6 装配要求 (6)7 关键件选用规范要求 (7)8 设计计算 (7)9 安装、试验要求 (9)10 安全使用要求 (10)前言本规范由湖南南车时代电动汽车股份有限公司技术管理部提出并归口。

本规范由湖南南车时代电动汽车股份有限公司技术中心电气技术部负责起草。

本规范主要起草人:谭志红、张群政、汪帆、吕永宾、张沛伟电动汽车高压线束技术规范1 范围本规范规定了电动汽车高压线束设计过程中涉及到的符号、代号、术语及其定义,设计准则,布置要求,结构设计要求,材料选用要求,性能设计要求,设计计算方法,安全使用要求等。

本规范适用于湖南南车时代电动汽车股份有限公司生产的各类新能源客车。

2 规范性引用文件下列文件对于本文件的应用是必不可少的。

凡是注日期的引用文件,仅所注日期的版本适用于本文件。

凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。

GB/T 2423.17 电工电子产品基本环境试验规程-盐雾试验GB 4208 外壳防护等级(IP代码)GB/T 12528-2008 交流额定电压3kV及以下轨道交通车用电缆GB 14315 电力电缆导体用压接型铜、铝接线端子和连接管GB/T 14691 技术制图字体GB/T 18384.2 电动汽车安全要求第2部分功能安全和故障防护GB/T 18384.3 电动汽车安全要求第3部分人员触电防护GB/T 18487.1 电动车辆传导充电系统一般要求GB/T 18487.2 电动车辆传导充电系统电动车辆与交流直流电源的连接要求GB/T 18488.1 电动汽车车用电机及其控制器技术条件GB/T 19596 电动汽车术语QC/T 413 汽车电气设备基本技术条件Q/TEV 100 整车产品图样及技术文件编号规则Q/TEV 31306 电动汽车线束号编号规则Q/TEV 31307 电动汽车动力系统线号编号规则SAE J1654 高压电缆 High Voltage Primary CableSAE J1673 电动汽车高压电缆总成设计 High Voltage Automotive Wiring Assembly Design SAE J1742 道路车辆车载电线束高压连接-试验方法和一般性能要求 Connections for High Voltage On-Board Vehicle Electrical Wiring Harnesses-Test Methods and General Performance Requirements3 术语和定义3.1 工作电压在任何正常工作状态下,电气系统可能产生的交流电压(均方根值rms)或直流电压的最高值(不考虑瞬时电压)。

新能源高压连接器

新能源高压连接器

新能源高压连接器新能源高压连接器(New Energy High Voltage Connector)随着新能源汽车的快速发展,新能源高压连接器作为新能源汽车的重要部件也越来越受到关注。

新能源高压连接器是指在新能源汽车中传输高压电能的关键设备,其主要作用是连接电动汽车的高压电池和电机系统,实现高压电能的传输和控制。

新能源汽车的高压连接器主要用于电池组与电动机之间的电力传输,其功能主要包括电能传输、信号传输和控制信号传输。

根据不同的连接方式和接口,新能源高压连接器可以分为插拔连接器和导轨连接器两种类型。

插拔连接器是一种常见的高压连接器,其主要特点是连接简单、灵活、插拔方便。

这种连接器通常使用金属接点或针脚来实现高压电能的传输,具有较高的可靠性和耐用性。

插拔连接器广泛应用于电动汽车的电池组和电机系统之间的连接,实现高压电能的传输和控制。

导轨连接器是一种新型的高压连接器,其主要特点是连接可靠、稳定、安全。

这种连接器通常使用金属导轨和导电接头来实现高压电能的传输,具有更高的安全性和可靠性。

导轨连接器广泛应用于电动汽车的电池组和电机系统之间的连接,实现高压电能的传输和控制。

新能源高压连接器的设计和制造需要考虑多方面的因素。

首先,连接器需要具有较高的电流承载能力和耐受能力,以满足电池组和电机系统之间高压电能的传输需求。

其次,连接器需要具有较好的防水、防尘和抗震性能,以适应不同的环境条件和工作场景。

同时,连接器还需要具有较高的耐热性和耐腐蚀性,以确保在高温、高湿度和腐蚀环境下的可靠工作。

为了确保新能源高压连接器的质量和安全性,相关标准和规范也越来越完善。

目前,国内外已有多项标准和规范对新能源高压连接器的设计、制造和测试进行了详细规定。

这些标准和规范主要包括连接器的电气性能、机械性能、环境适应性、防火性能等方面的要求。

新能源高压连接器的发展离不开材料科学和制造技术的进步。

随着材料科学和制造技术的不断发展,新能源高压连接器的材料和工艺也在不断优化和改进。

电动汽车高压线设计标准

电动汽车高压线设计标准

电动汽车高压线设计标准一、引言随着全球对环保和能源转型的重视,电动汽车在全球范围内逐渐普及。

作为电动汽车的关键部分,高压线束的设计和性能直接影响到车辆的安全性和性能。

本文将详细介绍电动汽车高压线束的设计标准。

二、高压线束概述电动汽车的高压线束是电动汽车动力系统中不可或缺的一部分,主要用于传输电能。

由于电动汽车的电源系统需要高电压和大电流,因此高压线束需要具备较高的绝缘性能、耐高温性能和抗电磁干扰性能。

三、设计标准1.绝缘性能:高压线束的绝缘层必须能够承受高电压的冲击,同时也要能够抵抗各种环境因素(如紫外线、湿度、高温等)的侵蚀。

绝缘层的厚度和材料应根据工作电压、工作电流、环境条件等因素进行选择。

2.耐高温性能:由于电动汽车的电池组和电机等部件会产生大量的热量,因此高压线束需要能够在高温环境下工作。

线束的材料和结构设计应能够抵抗高温的侵蚀,同时也要能够保持良好的电性能。

3.抗电磁干扰性能:电动汽车的电机和高电压系统会产生较强的电磁干扰,因此高压线束需要能够抵抗这些干扰。

线束的材料和结构设计应能够降低电磁干扰的影响,同时也要能够保持良好的电性能。

4.机械强度:高压线束需要能够承受车辆行驶过程中的振动和冲击,因此应选择具有较高机械强度的材料和结构。

5.安全性:高压线束的设计应能够确保车辆的安全性。

例如,线束应能够防止电击、过热等危险情况的发生。

四、测试标准1.绝缘测试:在生产过程中和成品之后,应对高压线束进行绝缘测试,以确保其能够承受高电压的冲击和各种环境因素的侵蚀。

2.耐高温测试:在模拟高温环境下对高压线束进行测试,以验证其在高温环境下的性能。

3.抗电磁干扰测试:通过电磁干扰发生器对高压线束进行测试,以验证其抗电磁干扰的能力。

4.机械强度测试:通过模拟车辆行驶过程中的振动和冲击对高压线束进行测试,以验证其机械强度的可靠性。

5.安全性测试:通过模拟实际使用情况,对高压线束进行安全性测试,以确保其不会对车辆和人员造成危害。

电动汽车高压线束技术规范

电动汽车高压线束技术规范

Q/TEV湖南南车时代电动汽车股份有限公司企业标准Q/TEV 157—2014 电动汽车高压线束设计规范2014-04-30发布2014-05-15实施目次前言 (II)1 范围 (1)2 规范性引用文件 (1)3 术语和定义 (1)4 应满足的功能要求及应达到的性能要求 (2)5 设计输入、输出要求 (4)6 装配要求 (6)7 关键件选用规范要求 (7)8 设计计算 (7)9 安装、试验要求 (9)10 安全使用要求 (10)前言本规范由湖南南车时代电动汽车股份有限公司技术管理部提出并归口。

本规范由湖南南车时代电动汽车股份有限公司技术中心电气技术部负责起草。

本规范主要起草人:谭志红、张群政、汪帆、吕永宾、张沛伟电动汽车高压线束技术规范1 范围本规范规定了电动汽车高压线束设计过程中涉及到的符号、代号、术语及其定义,设计准则,布置要求,结构设计要求,材料选用要求,性能设计要求,设计计算方法,安全使用要求等。

本规范适用于湖南南车时代电动汽车股份有限公司生产的各类新能源客车。

2 规范性引用文件下列文件对于本文件的应用是必不可少的。

凡是注日期的引用文件,仅所注日期的版本适用于本文件。

凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。

GB/T 2423.17 电工电子产品基本环境试验规程-盐雾试验GB 4208 外壳防护等级(IP代码)GB/T 12528-2008 交流额定电压3kV及以下轨道交通车用电缆GB 14315 电力电缆导体用压接型铜、铝接线端子和连接管GB/T 14691 技术制图字体GB/T 18384.2 电动汽车安全要求第2部分功能安全和故障防护GB/T 18384.3 电动汽车安全要求第3部分人员触电防护GB/T 18487.1 电动车辆传导充电系统一般要求GB/T 18487.2 电动车辆传导充电系统电动车辆与交流直流电源的连接要求GB/T 18488.1 电动汽车车用电机及其控制器技术条件GB/T 19596 电动汽车术语QC/T 413 汽车电气设备基本技术条件Q/TEV 100 整车产品图样及技术文件编号规则Q/TEV 31306 电动汽车线束号编号规则Q/TEV 31307 电动汽车动力系统线号编号规则SAE J1654 高压电缆 High Voltage Primary CableSAE J1673 电动汽车高压电缆总成设计 High Voltage Automotive Wiring Assembly DesignSAE J1742 道路车辆车载电线束高压连接-试验方法和一般性能要求 Connections for High Voltage On-Board Vehicle Electrical Wiring Harnesses-Test Methods and General Performance Requirements3 术语和定义3.1 工作电压在任何正常工作状态下,电气系统可能产生的交流电压(均方根值rms)或直流电压的最高值(不考虑瞬时电压)。

电动汽车高压连接器概述及测试验证

电动汽车高压连接器概述及测试验证

无论是纯电动、混合、燃料电池汽车,都需有一套完整的高压连接系统,这个系统中,往往都应用大量的高压连接器,这一点与传统汽车有着明显的区别。

高压系统工作时放电电流有可能达到数几十安,甚至高达数百安。

但是在新能源电动汽车发展初期,高压连接器并没有得到整车企业的足够重视,认为高压连接与传统低压线连接类似,重心在“三电”(电驱、电池、电控)上面,但随着时间的推移,大家发现高压连接系统比较容易发生问题,且一旦发生问题,后果都比较严重,轻则过热,严重时容易发生高温或燃烧事件。

本研究围绕高压连接器的发展历程展开,分析中国电动汽车用高压连接器的标准体系、测试方法,针对产品使用过程中的性能指标,搭建高压连接器测试系统,开展高压连接器的物理连接、电气性能等方面的测试,为产品的不断改进提供了支撑。

1、高压连接器的发展历程电动汽车高压连接器的发展与电动汽车的发展是同步进行的,从连接器角度来说,国内电动汽车连接器发展经历以下几代。

1)第1代高压连接器(图1),2008年左右开始,主要是由当时工业连接器改款而来。

这代产品的特点,以金属连壳体为主,无高压互锁功能,防误插入(防呆)效果较差。

比较有代表性产品有安费诺HV系列的金属连接器,后来市场上很多款连接器是基于这种类型产品延伸扩展出来的。

2)第2代高压连接器(图2),在第1代的基础上增加了高压互锁功能,连接器的外壳也逐渐由金属变为塑料。

3)第3代高压连接器(图3),塑料+屏蔽功能+高压互锁的高压连接器。

有代表性的是行业中800系列产品(这类产品是通过操作顺序来实现部分二级解锁功能,不是直接机械式结构),如TE/安费诺/智绿及国内新一代产品。

4)第4代高压连接器(图4),塑料+屏蔽功能+高压互锁+二级解锁的高压连接器。

有代表性的是行业中280系列产品,如TE/智绿及国内新一代产品,这类产品是通过机械结构来实现二级解锁功能,更为安全。

5)未来一代高压连接器(图5)会在第4代产品上考虑冷却方式,如配合大功率充电带液冷、风冷的方式,来有效提高传输能量密度,降低质量,提高产品综合性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 范围:本规范规定了电动汽车系列高压连接器(以下简称连接器)的技术要求、质量保证规定、试验方法。

本规范适用于 GB/T 18384.3 -2015 规定的 B 级电压电路的电动汽车高压连接器。

2. 引用文件:下列文件中的有关条款通过引用而成为本规范的条款。

凡注日期或版次的引用文件, 其后的任何修改单 (不 包括勘误的内容) 或修订版本都不适用于本规范, 但提倡使用本规范的各方探讨使用其最新版本的可能性。

凡 不注日期或版次的引用文件,其最新版本适用于本规范。

GB/T 4208-2008 外壳防护等级 (IP 代码 )GB/T 2048-2008 塑料燃烧性能的测定水平法和垂直法 QC/T 413-2002 汽车电子设备基本技术条件 QC/T 417.1-2001 车用电线束插接器 QC/T 29106-2014 汽车电线束技术条件 GB/T 2828 计数抽样检验程序SAE J2223-2-2011 Connections for On-Board Road Vehicle Electrical Wiring Harnesses — Part 2: Tests andGeneral Performance RequirementsSAE_J1742-2005 Connections_for_High_Voltage_On-Board_Road_Vehicle_Electrical_Wiring_Harnesses SAE USCAR-2-2013 Performance Specification For Automotive Electrical Connector Systems LV215-1-2009 Electrical/ Electronic Requirements of HV Connectors 3. 要求:GB/T 18384.3-2015 电动汽车安全要求 第 3 部分:人员触电防护 GB/T 5095.2-1997 电子设备用机电元件 基本试验规程及测量方法触电阻测试、绝缘试验和电压应力试验GB/T 5095.3-1997 电子设备用机电元件基本试验规程及测量方法第 GB/T 5095.5-1997 电子设备用机电元件 基本试验规程及测量方法 GB/T 5095.6-1997 GB/T 5095.8-1997的机械试验电子设备用机电元件电子设备用机电元基本试验规程及测量方法基本试验规程及测量方第二部分: 一般检查、 电连续性和接3 部分:载容流量实验第 5 部分:机械负荷和寿命试验第 6 部分:气候试验和锡焊试验 第 8 部分:连接器、接触件及引出端GB/T 28046.3-2011 道路车辆电气及电子设备的环境条件和试验第 3 部分 _机械负荷标准 GB/T 28046.4-2011 道路车辆电气及电子设备的环境条件和试验第 4 部分 _气候负荷标准 GB/T 28046.5-2013 道路车辆电气及电子设备的环境条件和试验第 5 部分 _化学负荷标准GB/T 2423.2-2008 电工电子产品环境试验 第 2 部分:试验方法 试验 B :高温 GB/T 2423.5-1995 电工电子产品环境试验 第二部分:试验方法 试验 Ea 和导则 :冲击 GB/T 2423.17-2008 电工电子产品环境试验第 2 部分:试验方法 试验 Ka :盐雾3.1 总则连接器应符合本规范所有要求。

3.2 额定值3.2.1 工作温度:连接器工作温度为-40 ℃~125℃。

3.2.2 额定工作电压:连接器额定工作电压应符合表 1 的规定。

表 1 电压等级3.2.3额定工作电流单个接触件的额定工作电流应符合表2的规定。

表 2 额定工作电流(工作环境温度30 ℃), 33.3 材料及表面处理要求3.3.1 通则所用材料应符合汽车行业通用要求。

3.3.2 材质要求材质要求见表4。

表 4 连接器材质要求表 5 表面处理要求3.4 设计与结构3.4.1 总则连接器的设计与结构应能承受在使用、安装和维修时正常操作中发生的磕碰,连接器的外形尺寸和安装开孔尺寸应符合GB/T 18384.3-2015 中 6.8 绝缘协调要求中电气间隙和爬电距离的要求。

3.4.2 结构要求a) 具有高压电气互锁功能的连接器,互锁端子应满足:——连接时,功率端子先接通,信号端子后接通;——断开时,信号端子先脱离,功率端子后断开。

b) 连接器的电缆压接、螺纹连接、焊接、连接器锁止等连接应牢固可靠。

c) 若连接器带有屏蔽功能,屏蔽层应具有可接地结构。

3.4.3 接触件无论是插针接触件还是插孔接触件,应保证在插合过程中不会损坏。

3.4.4 绝缘体的设计与结构绝缘体的设计和结构要求如下:a) 绝缘体应保证在外壳内不转动,绝缘体应不能从外壳中卸下来;b) 绝缘体接触件孔位排列应符合产品设计的规定。

3.4.5 尾部附件尾部附件用于安装电缆线,它们应具有压紧导线的能力,密封型尾部附件应具有将密封电缆的封线体压紧的能力。

尾部附件上不许出现损坏电缆线的任何锐利棱角或毛刺,抗电磁干扰屏蔽尾部附件应使电连接器壳体与电缆屏蔽层实现电连接。

3.4.6 屏蔽弹簧爪弹簧爪应设计成能与插合外壳起电气接触,而不防碍正确的插合。

3.4.7 连接与分离3.4.7.1 总则连接器对应的连接器插头和连接器插座采用弹性卡扣式、三曲线槽卡口式、手柄拉合式、螺纹连接式、推拉式等连接方式。

配对连接器应能在不用工具的情况下完全插合和分离。

连接器插合是指插针接触件完全进入到插孔接触件里且连接器插头和连接器插座已正确密封插合,完成连接时,以听到的“卡嗒”声音来表明连接器已完全插合好。

3.4.7.2 外壳定位通过连接器插头和连接器插座对应两部分上的键和键槽完成定位。

3.4.7.3 插合密封连接器密封应设计成能消除插合好的连接器中外壳之间的气道,插合连接器的密封件在压缩量最小时应保证密封要求:IP67。

3.4.7.4 润滑卡合位置和附件螺旋槽上应涂上合适的润滑剂。

3.4.8 连接器插座的安装连接器插座安装方法应为下列规定中的一种:a)法兰盘安装;b)螺母安装。

3.5 互换性同一型号规格的连接器插头与连接器插座应能完全插合和分离。

3.6 接触电阻按 4.6.3 规定试验时,在插合状态接触件的接触电阻应不大于表 6 的规定。

表 6 接触电阻连接成。

按 4.6.4 规定试验时,任何相邻端子之间,端子与外壳之间,端子与屏蔽壳之间的绝缘电阻应不小于表 的规定。

表 7 绝缘电阻常态( M Ω)环境试验后( M Ω)20002003.8 介质耐电压按 4.6.5 规定试验时,连接器任何相邻接触件之间、任一接触件与外壳之间以及任一接触件与屏蔽壳之间 承受表 8 规定的试验电压,试验 1 分钟应无击穿、飞弧等现象。

表 8 试验电压连接器额定电压( V )试验用交流电压( V )试验用直流电压( V )20~100 1000 1600 110~300 16002500>3001000+2 (额定电压)1600+3.2 (额定电压)3.9 温升3.9.1 常态温升环。

每日记录一次温升,在通电后 30 分钟记录,温升最大不得超过 55 ℃。

3.10 防水3.10.1 防水 IP67按照 4.6.9 的试验方法进行防水试验后,连接器插合界面处应无渗水现象,在室温下晾置 30 分钟后其绝 缘电阻应符合表 7 的规定,耐电压应该符合表 8 的规定。

(在客户有气密封要求或者批量生产时,可用利用气密性工装,加压 30KPa ,保压 3min ,气压泄漏< 2KPa ,检测过程中,喷涂肥皂水,无气泡产生的方法代替 )。

3.10.2 动态防水按照 4.6.10 的试验方法进行防水试验后,连接器插合界面处应无渗水现象,在室温下晾置 缘电阻应符合表 7 的规定,耐电压应该符合表 8 的规定。

按照 4.6.6 的试验方法, 插合好的连接器接通额定电流 触对的温升应≤ 55 ℃。

3.9.2 高温带负载持续温升按照 4.6.7 的试验方法, 插合好的连接器接通额定电流 流,持续 1 分钟,记录温度变化数据。

3.9.3 电流循环按照 4.6.8 的试验方法, 插合好的连接器接通额定电流 2 小时 ,连接器接触对的温升应≤ 50℃, 短时过载接2 小时 ,连接器接触对的温升应≤ 50℃, 通入峰值电30 分钟后其绝R total =R crimp1+R contact +R crimp23.7 绝缘电阻3.10.3 防水IP68按照 4.6.11 的试验方法进行防水试验后,连接器插合界面处应无渗水现象,在室温下晾置30 分钟后其绝缘电阻应符合表7 的规定,耐电压应该符合表8 的规定。

3.11 湿热循环按照 4.6.12 的试验方法进行湿热循环试验,试验结束后,取出 5 分钟内检测绝缘电阻、耐电压、接触电阻和外观质量, 随后测试IP67 密封防水性能,试验后连接器锁紧装置强度应符合表11 的规定。

3.12 高温老化按照 4.6.13 的试验方法进行高温老化试验,试验结束后,取出 5 分钟内检测绝缘电阻、耐电压、接触电阻和外观质量, 随后测试IP67 密封防水性能,试验后接触件和绝缘体的保持力应符合表12 的规定。

3.13 温度冲击按 4.6.14 的试验方法进行极限高低温冲击试验,试验结束后,取出 5 分钟内检测绝缘电阻、耐电压、接触电阻和外观质量, 随后测试IP67 密封防水性能,试验后连接器插拔应柔和,无卡滞现象,直接插拔力或者采用助力装置的的操作力应该小于100N,试验后接触件和绝缘体的保持力应符合表12 的规定。

3.14 温度贮存按照4.6.15 的试验方法进行恒温贮存试验,试验结束后,取出5 分钟内检测绝缘电阻、耐电压、接触电阻、IP67密封防水和外观质量,试验后连接器锁紧装置强度应符合表11 的规定。

3.15 盐雾按照 4.6.16 的试验方法进行盐雾试验,经受表 5 规定时间的中性盐雾试验后的外观应符合下列要求:a) 金属零件表面应无起泡、起皱,不得暴露出基体金属;b) 非金属零件表面无明显泛白、膨胀、起泡、皱裂、麻坑等。

接触件盐雾试验后接触电阻应符合表 6 的规定。

3.16 化学液体试验按照 4.6.17 的试验方法进行耐化学试液试验,经受表9 规定时间的试验后的外观应符合下列要求:a) 金属零件表面应无起泡、起皱,不得暴露出基体金属;b ) 非金属零件表面无明显泛白、膨胀、起泡、皱裂、麻坑等。

表9 耐化学试液试验后测试绝缘电阻≥200M Ω;耐电压能承受规定的试验电压 1 分钟无电介质断裂或击穿现象;验后连接器锁紧装置强度应符合表11 的规定,高压互锁拉脱力应不小于100N ;试验后接触件和绝缘体的保持力应符合表12 的规定。

相关文档
最新文档