遥感数字图像处理教程图像分割
数字图像处理中的图像分割算法

数字图像处理中的图像分割算法数字图像处理是指将数字化后的图像进行处理和分析的一门学科。
图像分割是数字图像处理中的一个重要分支,它的目的是将图像中的像素点按照一定的规则划分为若干个不同的区域,以便进行后续的处理和分析。
图像分割广泛应用于计算机视觉、医学影像处理、自动化检测等领域。
本文将对数字图像处理中的图像分割算法进行分类介绍。
一、全局阈值分割法全局阈值分割法是一种常用的图像分割方法。
它的原理是将图像的灰度级别分为两部分,一部分位于阈值以下,一部分位于阈值以上。
这里所说的阈值是指一个固定的值,它可以由人工设置或者通过计算得出。
全局阈值分割法的优点在于方法简单,计算速度快,适用于灰度变化明显的图像。
但是,它的缺点是对于灰度变化不明显或者需要区分多个物体的图像分割效果不佳。
二、基于区域的图像分割法基于区域的图像分割法是一种将图像分割为不同区域的方法。
它的原理是将图像中相邻像素点的相似性作为分割的依据。
常用的算法包括区域生长法、区域分裂法和区域合并法。
这些方法可以通过定义不同的相似度度量标准来实现对图像分割的控制。
基于区域的图像分割法在处理复杂纹理、颜色相近的图像时的效果比全局阈值分割法好,但是它们对分割顺序和初始区域选择的依赖性较强。
三、边缘检测法边缘是图像中最基本的结构之一,它体现了图像中物体的边界信息。
边缘检测法是通过检测图像中的边缘来实现图像分割的一种方法。
边缘检测法的基本思想是在图像中寻找像素值发生突变的点。
常用的边缘检测算法包括Canny算法、Sobel算法和Prewitt 算法等。
边缘检测法可以在提取边缘信息的同时实现图像分割,但是它对噪声和图像分辨率的依赖性较强。
四、基于能量的图像分割法基于能量的图像分割法是将图像分割看做一种优化问题,通过寻找最优分割来实现图像分割的一种方法。
它的基本思想是将图像中的每一个像素点看做一个节点,并将节点之间的连通性看做一种能量关系。
优化分割问题就可以转化为一个能量最小化的问题。
卫星遥感图像处理中的图像分割算法使用技巧探究

卫星遥感图像处理中的图像分割算法使用技巧探究图像分割算法是卫星遥感图像处理中的重要环节,其作用是将图像分割成不同的区域或对象,以便更好地获取地理信息。
在卫星遥感图像处理中,图像分割算法的准确性和效率是至关重要的。
本文探究了卫星遥感图像处理中常用的图像分割算法以及使用技巧,旨在提供对于该领域的初学者以及研究人员有关卫星遥感图像处理中图像分割算法使用的指导。
一、图像分割算法的基本概念及分类图像分割是指将图像划分为若干互不相交的区域,每个区域内的像素具有相似的特性。
在卫星遥感图像处理中,常用的图像分割算法包括基于阈值的分割、区域增长法、边缘检测法以及基于机器学习的分割等。
1. 基于阈值的分割基于阈值的分割是一种简单且常用的分割算法。
该算法将图像的灰度值与设定的阈值进行比较,根据阈值的大小决定像素属于前景或背景。
常见的阈值分割算法包括全局阈值法、自适应阈值法以及基于直方图的阈值法等。
2. 区域增长法区域增长法是一种基于像素的分割算法,其原理是从种子点开始,根据预设的条件逐步扩展区域。
该算法通常需要提前设定一些种子点,并利用像素之间的相似性进行区域的扩张,直到满足停止条件。
区域增长法通常能更好地适应图像的复杂结构。
3. 边缘检测法边缘检测法是通过检测图像中不连续的强度变化来实现图像分割的算法。
该算法可通过检测图像中的边缘来分割出不同的区域。
常见的边缘检测算法有Sobel、Canny和Laplacian等。
4. 基于机器学习的分割基于机器学习的分割算法是近年来发展起来的一种先进的图像分割方法。
该算法通过训练模型,自动从图像中学习分割的规则。
常见的机器学习算法包括K-means聚类、支持向量机(SVM)、随机森林和深度学习等。
二、卫星遥感图像处理中图像分割算法的使用技巧在卫星遥感图像处理中,图像分割算法的使用技巧是影响分割结果准确性和效率的关键。
以下是一些在卫星遥感图像处理中使用图像分割算法的技巧:1. 选择适合的图像分割算法不同的图像分割算法适用于不同的图像特性和任务需求。
测绘技术中的遥感图像分割方法

测绘技术中的遥感图像分割方法一、引言遥感是指通过卫星、飞机等遥感平台获取地表信息的技术手段,由于其高效、高精度的特点,已广泛应用于测绘领域。
而图像分割是遥感图像处理中的一项基础任务,其可以将遥感图像分割成不同的区域或目标,为进一步分析和应用提供基础。
本文将介绍测绘技术中常用的几种遥感图像分割方法。
二、基于阈值的分割方法基于阈值的分割方法是最简单直接的一种方法,其基本思想是通过设定一个或多个阈值,将图像中的像素根据其灰度或颜色值与阈值的大小关系进行分割。
这种方法适用于图像中目标与背景具有较大差异的情况。
然而,在实际应用中,由于图像的复杂性和噪声等因素的存在,简单的阈值设定往往难以达到理想的分割效果。
三、基于区域生长的分割方法基于区域生长的分割方法是一种迭代的方法,其基本思想是从一个或多个种子点开始,通过遍历图像的像素,并根据相邻像素的相似度进行生长,将符合预设条件的像素聚合成一个具有相同属性的区域。
这种方法适用于图像中存在明显的区域边界的情况。
然而,由于区域生长算法的计算量较大且对参数的设定较为敏感,因此在实际应用中需要根据具体情况进行调试和优化。
四、基于边缘检测的分割方法基于边缘检测的分割方法是一种通过检测图像中目标和背景之间的边缘信息进行分割的方法。
其基本思想是通过应用边缘检测算法,如Canny算子等,提取图像中的边缘信息,并对边缘进行连接或填充,得到闭合的区域作为分割结果。
这种方法适用于图像中存在较为清晰的边缘的情况。
然而,由于边缘检测算法对噪声和图像质量较为敏感,因此在实际应用中需要进行预处理和后处理的优化。
五、基于机器学习的分割方法基于机器学习的分割方法是一种通过训练模型并应用模型对图像进行分割的方法。
其基本思想是首先根据已有的标注数据,训练一个分类器或回归模型,然后将该模型应用于新的图像中,根据像素的特征预测其所属的类别或值,从而实现图像的分割。
这种方法适用于图像中存在复杂的纹理、形状等特征的情况。
农业遥感影像处理中的图像分割算法及效果验证

农业遥感影像处理中的图像分割算法及效果验证随着农业技术的不断发展和农业遥感技术的广泛应用,图像分割算法在农业遥感影像处理中扮演着重要的角色。
图像分割是将一个图像划分为若干个具有语义一致性的区域的过程,它有助于提取农业遥感影像中的有用信息,如植被类型和生长状态,土地利用和土地覆盖等。
在农业遥感影像处理中,图像分割的主要目标是提取出农业地区的有用信息,帮助农业生产决策和监测。
图像分割的算法种类繁多,其中最常用的算法包括基于区域的分割算法、基于边缘的分割算法和基于深度学习的分割算法等。
基于区域的分割算法主要基于像素之间的相似性来划分图像区域。
其中最简单的算法是基于阈值的分割方法,它将图像中的像素根据其灰度设定一个阈值,根据像素值与阈值的大小关系将图像区域分为前景和背景。
然而,基于阈值的分割方法对于复杂的农业遥感影像效果并不理想,因此需要更复杂的算法。
基于边缘的分割算法主要是通过检测图像中亮度或颜色的不连续性来找出图像边缘,并根据边缘将图像分割为不同的区域。
常见的基于边缘的分割算法包括Sobel算子、Canny算子等。
这些算法通常可以较好地识别出图像中的边缘,但对于复杂的农业遥感影像,由于农田中植物的生长状况、背景干扰等因素,算法的表现可能会受到影响。
基于深度学习的分割算法近年来得到了广泛的应用。
深度学习是一种模拟人类神经网络的学习算法,在图像分割任务中表现出较好的性能。
常用的深度学习模型包括U-Net、FCN等,它们通过从大量的标记图像中学习,能够较准确地分割出农业遥感影像中的不同区域。
为验证图像分割算法的效果,常用的方法是通过定性和定量的评估。
在定性评估中,可以直观地观察图像分割结果,判断算法是否能准确地分割出农业遥感影像中的不同区域。
在定量评估中,可以使用一些指标来衡量算法的准确性,如精确度、召回率和F1分数等。
另外,为了提高图像分割算法在农业遥感影像处理中的效果,还可以采用一些优化方法。
例如,可以结合传统的基于阈值的分割方法和深度学习的方法,将它们的优点相结合,以获得更准确的分割结果。
遥感图像处理8

8.0 遥感图像分割概述
第 8 章 图 像 分 割
②图像分割定义与基本算法 图像分割研究方向: 1)提取有效的属性; 2 )寻求更好的分割途径和分割质量评 价体系; 3)分割自动化。
8.1 基于图像灰度的分割方法
第 8 章 图 像 分 割
①基于灰度分布的阈值方法
所谓阈值分割方法就是确定某个阈值Th, 根据图像中每个像元的灰度值大于或小于该阈 值Th,来进行图像分割。 设原图像为f(x,y),经过分割处理后的 图像为g(x,y),g(x,y)为二值图像,阈值方法 的数学模型如下:
8.1 基于图像灰度的分割方法
第 8 章 图 像 分 割
①基于灰度分布的阈值方法
●间最大距离法
3)计算相对距离度量值S:
( 2 Th) (Th 1 ) S 2 ( 2 1 )
4)选择最佳的阈值Th=Th*,使得图像按照该 阈值分为Cl和C2两类后,满足
S |Th Th* max{ S}
8.1 基于图像灰度的分割方法
第 8 章 图 像 分 割
①基于灰度分布的阈值方法
●均匀性度量法
均匀性度量方法的设计思想是,假设当图像被 分为目标物和背景两个类别时,属于同一类别内的 像元值分布应该具有均匀性。 采用方差来度量像元间的均匀性。设原图像为 f(x , y) ,结果图像为 g(x,y) 。通过图像分割将原图 像分为 C1 和 C2 (即背景与目标)两类,则算法步 骤如下:
第8章 图像分割
遥感图像分割是遥感数字图像处理的扩展 和发展方向。 内容: 图像分割的基本概念、分割方法和
技术。
重点: 图像分割的灰度阈值、边界检测、
边缘跟踪技术,区域分割、区域增长和分裂合 并方法。
遥感图像处理中的多尺度分割方法与应用研究

遥感图像处理中的多尺度分割方法与应用研究遥感图像处理是利用遥感技术获取的图像数据进行处理和分析的科学。
遥感图像通常具有高分辨率和大范围的特点,需要采用有效的分割方法来提取和识别图像中的地物信息。
多尺度分割方法是一种常用的图像分割技术,通过在不同尺度下对图像进行分割,可以提高分割的准确性和鲁棒性。
本文将介绍多尺度分割方法的原理和常见的应用研究,旨在为遥感图像处理领域的研究者和应用者提供参考。
多尺度分割方法是基于图像多尺度表示的思想,将图像分解成不同尺度的子图像,并在不同尺度下对子图像进行分割。
常见的多尺度分割方法包括基于区域的分割方法和基于边缘的分割方法。
基于区域的多尺度分割方法主要是基于图像的颜色、纹理和形状等特征,将图像分割为一系列区域,每个区域具有相似的特征。
常用的算法包括基于水平集的方法、标准化割降方法和区域生长方法等。
其中,基于水平集的方法将图像分割为多个子区域,并通过图像边界的演化来得到最终的分割结果。
标准化割降方法将图像分割为多个具有相似特征的子区域,并通过自适应阈值来实现分割。
区域生长方法从种子像素开始,根据像素之间的相似性将像素逐步合并成为区域。
基于边缘的多尺度分割方法主要是基于图像的边缘信息,将图像分割为不同的边缘区域。
常用的算法包括Canny算子、Sobel算子和Laplacian算子等。
其中,Canny算子是一种常用的边缘检测算法,通过计算图像中像素间的梯度和非最大抑制来得到图像的边缘区域。
Sobel算子和Laplacian算子分别通过计算图像中像素的一阶和二阶导数来得到边缘信息。
多尺度分割方法在遥感图像处理中具有广泛的应用。
一方面,多尺度分割方法可以应用于遥感图像的地物提取和分类。
通过提取图像中的地物信息,可以对地物进行分类和识别,为地理信息系统(GIS)的建设和管理提供数据支持。
另一方面,多尺度分割方法还可以应用于遥感图像的变化检测和监测。
通过对多时相的遥感图像进行分割和比较,可以检测地物的变化和演化情况,为城市规划、农业监测和环境保护等领域提供参考。
4遥感图像分割

2 f ( x, y) f ( x 1, y) f ( x 1, y) f ( x, y 1) f ( x, y 1) 4 f ( x, y)
• 模板:可以用多种方式被表示为数字形式。定义数字形式的拉普拉斯 的基本要求是,作用于中心像素的系数是一个负数,而且其周围像素 的系数为正数,系数之和必为0。对于一个3x3的区域,经验上被推荐 最多的形式是:
阈值分割法:阈值获取方法2
P参数法
前提:各区域面积占图像总面积的比例p是预先设定或 大致清楚的。
图像分割引言
• 图像分割的基本思路 1. 从简到难,逐级分割 – 分割矩形区域 – 定位牌照 – 定位文字
图像分割引言
• 图像分割的基本思路
2. 控制背景环境,降低 分割难度 – 背景环境: 路面、天空
图像分割引言
• 图像分割的基本思路 3. 把焦点放在增强感兴 趣对象,缩小不相干 图像成分的干扰上 – 感兴趣的对象: 汽车牌照 – 不相干图像成分: 非矩形区域
图像分割引言
• 不连续性
– 边界分割法 – 边缘连接分割法
• 相似性
– 阈值分割法 – 面向区域的分割
图像分割:边界分割法
• 边界分割法
– 点的检测 – 线的检测 – 边的检测
图像分割:边界分割法
• 点的检测
– 用空域的高通滤波器来检测孤立点 例:
8 8 8 -1 -1 -1
8
128 8
8 8
T
图像分割:阈值分割法
• 通过直方图得到阈值
– 基本思想 边界上的点的灰度值出现次数较少
T
阈值分割法:阈值获取方法1
• 通过直方图得到阈值
– 取值的方法: 取直方图谷底(最小值)的灰度值为阈值T – 缺点:会受到噪音的干扰,最小值不是预 期的阈值,而偏离期望的值; – 改进:
遥感数字图像处理教程遥感数字图像的表示和统计描述

可描述纹理的主要性质
–粗细度 –方向性 –对比度
纹理特征描述
• 统计方法
–傅里叶变换的功率谱 –正交变换谱 –自相关函数 –灰度级同构矩阵 –灰度级差分 –纹理模板
• 结构方法
力图通过找到纹理基元,以基元的特征和其排列规则作为纹理描述的特征 进行纹理分割,只适用于规则性较强的人工纹理,遥感图像处理中受限。
2. 反映像素值变化信息的统计参数 方差----像素值与平均值差异的平方和,
反映像素值的离散程度。
2 M 1NiM 0 1jN 0 1fi,jf2
方差是衡量图像信息量大小的重要度量。
变差----像素最大值与最小值的差。反映图 像灰度值的变化程度
反差----又称为对比度,反映图像的显示效 果和可分辨率,表示方法多种。
在空间域,滤波即为卷积运算
3.6 纹理
通常被定义为图像的某种局部性质,或是 对局部区域中像素之间关系的一种度量。 纹理是由纹理基元按某种确定性的规律或 只是按某种统计规律重复排列组成的。
纹理作为自然或人工地物表面的一种基本特征,是人们描 述和区分不同地形形态的重要依据之一。
人们常用纹理特征区分不同的地形形态: “低丘大多平滑而不破碎、表面呈凸形,高丘纹理则高度破碎” “人工地物中的道路、居民地等具有较为规则的纹理,而自然地物则
最 小 值
直 方 图 的 绘 制
最 大 值
数字影像 直方图
对于数字图像而言,实际就是图像灰 度值概率密度函数的离散化图形。
灰度图像的直方图
彩色图像的分波段直方图
2. 性质
只能反映图像的灰度分布规律,而不能反映 图像像素的位置,即丢失了像素的位置信息
任何一幅特定的图像都有唯一的直方图与之 对应,但不同图像可以有相同的直方图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
灰度值
通过交互方式得到阈值
基本思想:
在通过交互方式下,得到对象(或背景 )的灰 度值,比得到阈值T容易得多。
假设:对T 象=的f(x灰0,度y0)值–(也R 称有样:点值)为f(x0,y0),且: f(x,y) T
f(x,y) f(x0,y0) – R |f(x,y) – f(x0,y0)| R 其中R 是容忍度,可通过试探获得。
分割原则包括: 利用区域灰度不连续性的基于边界的分割; 利用区域灰度相似性的基于区域的分割。
利用区域灰度不连续性的基于边界的分割 检测图像像素灰度级的不连续性,找到点、线
(宽度为1)、边(不定宽度)。先找边,后确定区 域。
利用区域灰度相似性的基于区域的分割
检测图像像素的灰度值的相似性,通过选择阈值, 找到灰度值相似的区域,区域的外轮廓就是对象 的边。
)R1,R2,…,RN:
①
N
R i
R
;
i 1
② 对所有的i和j,i≠j,有Ri∩Rj = ;
③ 对i = 1,2,…,N,有P(Ri) = TRUE;
④ 对i≠j,有P(Ri∪Rj) = FALSE;
⑤ 对i =1,2,…,N,Ri是连通的区域。
二、图像分割的基本原则
灰度图像的分割是基于像素灰度值的两个基本特性: 不连续性和相似性,
If f(x,y) T set 255
Else set 0
在四邻域中有背景的像素,即是边界像素。
阈值分割法
阈值分割法的特点:
适用于物体与背景有较强对比的情况,重要的是 背景或物体的灰度比较单一。(可通过先求背景 ,然后求反得到物体)
这种方法总可以得到封闭且连通区域的边界。
f(x0,y0) T
期的阈值,而偏离期望的值;
改进:取两个峰值之间某个固定位置,如 中间位置上。由于峰值代表的是区域内外 的典型值,一般情况下,比选谷底更可靠 ,可排除噪音的干扰
通过直方图得到阈值
T
通过直方图得到阈值
对噪音的处理 对直方图进行平滑处理,如最小二乘法,等不 过点插值。
通过边界特性选择阈值
基本思想:
阈值分割法
通过交互方式得到阈值 通过直方图得到阈值 通过边界特性选择阈值 简单全局阈值分割 分割连通区域 基于多个变量的阈值
阈值分割法
0 0 255 0 255 255
阈值分割法的基本思想:
255 255 255
确定一个合适的阈值T(阈值选定的好坏是此 方法成败的关键)。
将大于等于阈值的像素作为物体或背景,生 成一个二值图像。
算法实现:
各维分量波谷之间进行逻辑与运算,从波 谷重合的点,得到实际的阈值T。
应用场合:有多个分量的颜色模型,如RGB模 型、CMYK模型、HSI模型
8.3 边缘检测
一、边缘的定义
图像中像素灰度有阶跃变化或屋顶变化的那些 像素的集合。
如果直方图的各个波峰很高、很窄、对称 ,且被很深的波谷分开时,有利于选择阈 值。
为了改善直方图的波峰形状,我们只把区 域边缘的像素绘入直方图,而不考虑区域 中间的像素。
用微分算子,处理图像,使图像只剩下边 界中心两边的值。
通过边界特性选择阈值
基本思想:
这种方法有以下优点:
1)在前景和背景所占区域面积差别很大时,不 会造一个灰度级的波峰过高,而另一个过低
2)边缘上的点在区域内还是区域外的概率是相 等的,因此可以增加波峰的对称性
3)基于梯度和拉普拉斯算子选择的像素,可以 增加波峰的高度
通过边界特性选择阈值
算法的实现:
1)对图像进行梯度计算,得到梯度图像。 2)得到梯度值最大的那一部分(比如10%)
的像素直方图
3)通过直方图的谷底,得到阈值T。
如果用拉普拉斯算子,不通过直方图,直接得 到阈值,方法是使用拉普拉斯算子过滤图像, 将0跨越点对应的灰度值为阈值T.
简单全局阈值分割
基本思想:用前述方法获得阈值T,并产生一 个二值图,区分出前景对象和背景
算法实现:
规定一个阈值T,逐行扫描图像。 凡灰度级大于T的,颜色置为255;凡灰度
级小于T的,颜色置为0。
适用场合:明度图像是可以控制的情况,例 如用于工业监测系统中。
分割连通区域
基本思想:用前述方法获得阈值T,并产生 一个二值图,区分出单独的连通前景对象和 背景区域
第8章 图像分割
8.1 图像分割的概念与方法分类 8.2 阈值分割法 8.3 边缘检测 8.4 区域分割 8.5 区域生长 8.6 数学形态法
8.1 图像分割的概念与方法分类
图像分析与图像分割
图像分析对图像中感兴趣的目标进行检测和测 量,以获得它们的客观信息,从而建立对图像的 描述。
预处理 图像分割 特征提取 对象识别
图像分割的方法 基于边缘的分割方法 先提取区域边界,再确定边界限定的区域。 区域分割 确定每个像素的归属区域,从而形成一个区 域图。 区域生长 将属性接近的连通像素聚集成区域 分裂-合并分割 综合利用区域分割和区域生长两种方法,既 存在图像的划分,又有图像的合并。
8.1 阈值分割法
通过交互方式得到阈值
实施方法:
(1)通过光标获得样点值f(x0,y0) (2)选取容忍度R (3)if |f(x,y)–f(x0,y0)| R set 255
else set 0
通过直方图得到阈值
基本思想 边界上的点的灰度值出现次数较少
T
通过灰度值为阈值T 缺点:会受到噪音的干扰,最小值不是预
图像分析系统的基本构成
一、图像分割的概念
前景 (感兴趣目标) 背景 图像分割是将图像分成互不重叠的区域并提取出感 兴趣目标技术。 利用区域特性,如灰度、颜色、纹理等
图像分割的严格定义(Conzalez R C,1992):
令集合R代表整个图像区域,对R的分割可看作
将R分成N个满足以下五个条件的非空子集(子区域
算法实现:
规定一个阈值T,上下左右4个方向进行 逐行扫描图像
凡灰度级大于T的,颜色置为255;凡灰 度级小于T的,颜色置为0。
分割连通区域
适用场合:印前等。 先左后右,先上半部分、后下半部分
基于多个变量的阈值
基本思想:把前面的方法扩展到多维空间,则 寻找波谷的过程,变为寻找点簇的过程。