毕业论文:蚁群算法的研究应用(定稿)-精品【范本模板】
蚁群聚类算法研究及应用

-5009-0引言俗话说“物以类聚,人以群分”,人们在不知不觉中进行着聚类活动,它是人们认识和探索事物之间内在联系的有效手段。
聚类在数据挖掘中有着重要的地位,它既可以用作独立的数据挖掘工具,来发现数据库中数据分布的一些深入信息,也可以作为其它数据挖掘算法的预处理步骤。
因此,聚类算法的研究具有很重要的现实意义。
蚁群算法不依赖于具体问题,具有全局优化能力,因此受到了广大学者的注意。
此后蚁群算法不断被改进并应用于不同领域。
在聚类分析方面,Deneubourg等人受蚂蚁堆积尸体和分类它们的幼体启发,最早将蚁群算法用于聚类分析,从此开始了蚁群聚类算法的研究。
本文详细地讨论了现有的蚁群聚类算法的基本原理与性能,在归纳总结的基础上提出需要完善的地方,以推动蚁群聚类算法的进一步研究及在更广阔的领域内得到应用。
1聚类概念及数学模型聚类就是把一组个体按照相似性归为若干类或簇,使得属于同一类或簇的个体之间的差别尽可能的小,而不同类或簇的个体间的差别尽可能大。
聚类质量是用对象的相异度来评估,而不同类型变量的相异度的计算方法是不同的,常用的度量方法是区间标度变量中的欧几里得距离。
聚类的数学描述:设样本集={,=1,2,…,},其中为维模式向量,其聚类问题就是找到一个划分={1,2,…,},满足==1,≠,=,,=1,2,…,,≠,且使得总的类内离散度和==1,最小,其中为的聚类中心,=1,2,…,;,为样本到其聚类中心的距离,即,=‖‖。
聚类目标函数为各样本到对应聚类中心的距离总和,聚类中心=1,||为的样本数目。
2蚁群聚类算法分类及应用由于现实的蚁群运动过程接近于实际的聚类问题,所以近年来涌现出大量的蚁群聚类算法。
这些算法不仅思想、原理不同,而且算法的特性也根据解决问题的不同而不同,如初始参数及待聚类数据的要求、聚类形状等。
根据改进方式的不同,蚁群聚类算法可分3类:①基于蚂收稿日期:2007-10-17 E-mail:05lihua@作者简介:裴振奎(1962-),男,山东东营人,博士研究生,副教授,硕士生导师,研究方向为机器学习与计算智能;李华(1977-),女,山东滨州人,硕士研究生,研究方向为数据挖掘、自然计算;宋建伟(1982-),女,河北廊坊人,硕士研究生,研究方向为网络安全、计算智能;韩锦峰(1981-),女,山西大同人,硕士研究生,研究方向为计算智能、数据库系统理论。
(完整word版)蚁群算法报告

蚁群算法报告学院:专业:学号:姓名:目录第一部分:蚁群算法原理介绍 (3)1.1蚁群算法的提出 (3)1.2蚁群算法的原理的生物学解释 (3)1.3蚁群算法的数学模型 (3)1.4蚁群算法实现步骤 (5)第二部分:蚁群算法实例--集装箱码头船舶调度模型 (6)2.1集装箱码头船舶调度流程图 (6)2.2算例与MATLAB编程的实现 (6)2.2.1算法实例 (6)2.2.2 Matlab编程 (8)第三章:MATLAB 优化设计工具箱简介 (14)3.1M ATLAB优化工具箱 (14)3.1.1优化工具箱功能: (15)3.2M ATLAB 优化设计工具箱中的函数 (15)3.2.2 方程求解函数 (15)3.2.3最小二乘(曲线拟合)函数 (16)3.2.4 使用函数 (16)3.2.5 大型方法的演示函数 (16)3.2.6 中型方法的延时函数 (16)3.4优化函数简介 (17)3.4.1优化工具箱的常用函数 (17)3.4.2 函数调用格式 (17)3.5模型输入时所需注意的问题 (19)第一部分:蚁群算法原理介绍1.1蚁群算法的提出蚂蚁是地球上最常见、数量最多的昆虫种类之一,常常成群结队地出现于人类的日常生活环境中。
受到自然界中真实蚁群集体行为的启发,意大利学者M.Dorig 。
于20世纪90年代初,在他的博士论文中首次系统地提出了一种基于蚂蚁种群的新型优化算法—蚁群算法}28}(Ant Colony Algorithm, ACA),并成功地用于求解旅行商问题,自1996年之后的五年时间里,蚁群算法逐渐引起了世界许多国家研究者的关注,其应用领域得到了迅速拓宽。
1.2蚁群算法的原理的生物学解释据观察和研究发现,蚂蚁倾向于朝着信息激素强度高的方向移动。
因此蚂蚁的群体行为便表现出了一种信息激素的正反馈现象。
当某条路径上经过的蚂蚁越多,该路径上存留的信息激素也就越多,以后就会有更多的蚂蚁选择它。
《蚁群算法的研究及其在路径寻优中的应用》范文

《蚁群算法的研究及其在路径寻优中的应用》篇一蚁群算法研究及其在路径寻优中的应用一、引言蚁群算法是一种模拟自然界中蚂蚁觅食行为的优化算法,其灵感来源于蚂蚁在寻找食物过程中所展现出的群体智能和寻优能力。
该算法自提出以来,在诸多领域得到了广泛的应用,尤其在路径寻优问题上表现出色。
本文将首先介绍蚁群算法的基本原理,然后探讨其在路径寻优中的应用,并分析其优势与挑战。
二、蚁群算法的基本原理蚁群算法是一种模拟蚂蚁觅食行为的仿生优化算法,通过模拟蚂蚁在寻找食物过程中释放信息素并相互交流的行为,实现寻优过程。
其主要特点包括:1. 分布式计算:蚁群算法采用分布式计算方式,使得算法具有较强的鲁棒性和适应性。
2. 正反馈机制:蚂蚁在路径上释放的信息素会吸引更多蚂蚁选择该路径,形成正反馈机制,有助于找到最优解。
3. 多路径搜索:蚁群算法允许多条路径同时搜索,提高了算法的搜索效率。
三、蚁群算法在路径寻优中的应用路径寻优是蚁群算法的一个重要应用领域,尤其是在交通物流、机器人路径规划等方面。
以下是蚁群算法在路径寻优中的具体应用:1. 交通物流路径优化:蚁群算法可以用于解决物流配送中的路径优化问题,通过模拟蚂蚁的觅食行为,找到最优的配送路径,提高物流效率。
2. 机器人路径规划:在机器人路径规划中,蚁群算法可以用于指导机器人从起点到终点的最优路径选择,实现机器人的自主导航。
3. 电力网络优化:蚁群算法还可以用于电力网络的路径优化,如输电线路的规划、配电网络的优化等。
四、蚁群算法的优势与挑战(一)优势1. 自组织性:蚁群算法具有自组织性,能够在无中央控制的情况下实现群体的协同寻优。
2. 鲁棒性强:蚁群算法对初始解的依赖性较小,具有较强的鲁棒性。
3. 适用于多约束问题:蚁群算法可以处理多种约束条件下的路径寻优问题。
(二)挑战1. 计算复杂度高:蚁群算法的计算复杂度较高,对于大规模问题可能需要较长的计算时间。
2. 参数设置问题:蚁群算法中的参数设置对算法性能有较大影响,如何合理设置参数是一个挑战。
蚁群算法在0-1整数规划问题中的应用研究 毕业论文

华北科技学院毕业论文目录蚁群算法在0-1整数规划问题中的应用研究............................. I I 摘要............................................................... I I ABSTRACT.......................................................... I II 第1章绪论 (1)1.1蚁群算法的背景 (1)1.2蚁群算法的基本思想 (2)1.3蚁群算法基本原理 (2)第二章单目标0-1整数规划问题的蚁群算法 (5)2.1单目标0-1规划问题 (5)2.2经典方法求解 (5)2.3用蚁群算法的求解 (6)2.4实例求解及分析 (7)2.4.1用回溯算法求解 (7)2.4.2用蚁群算法的求解 (8)第三章多目标0-1整数规划问题及其求解 (11)3.1问题概述 (11)3.2用蚁群算法的求解 (11)第四章一般整数规划问题及其求解 (14)4.1问题阐述 (14)4.2用蚁群算法的求解 (14)第五章总结 (17)参考文献 (19)附录 (20)致谢 (26)I蚁群算法在0-1整数规划中的应用蚁群算法在0-1整数规划问题中的应用研究摘要:群智能算法是一种新兴的人工智能方法,已成为越来越多研究者的关注焦点。
蚁群算法是群智能算法的一个重要的分支,是意大利学者M. Dorigo通过模拟蚁群觅食行为提出的。
本文系统介绍了蚁群算法的背景、原理、模型的建立及对蚁群算法参数的合理设定,给出了其参数设定的基本原则及算法的实现过程。
同时提出了蚁群算法在单目标0-1整数规划问题中的应用,利用蚂蚁在整数空间内运动,同时在路径上留下激素,以此引导搜索方向,建立了新的模型算法,并引入实例进行求解验证,证明了本文新模型算法的合理性和相比其他方法的优越性。
本文还提出了蚁群算法在多目标0-1规划以及一般整数规划中的应用,仿照在单目标0-1规划中的思想,改进算法,建立模型并求解,成功证明本文的蚁群算法,不仅可用于基本的0-1规划问题,而对多目标0-1规划问题同样适用,更为重要的是,算法还能求解非线性形式的一般整数规划问题。
《蚁群算法的研究及其在路径寻优中的应用》范文

《蚁群算法的研究及其在路径寻优中的应用》篇一蚁群算法研究及其在路径寻优中的应用一、引言随着科技的快速发展和人们对算法的不断研究,许多高效的优化算法逐渐浮出水面。
其中,蚁群算法作为一种启发式搜索算法,在路径寻优问题中展现出强大的能力。
本文将首先对蚁群算法进行详细的研究,然后探讨其在路径寻优中的应用。
二、蚁群算法的研究1. 蚁群算法的起源与原理蚁群算法是一种模拟自然界蚂蚁觅食行为的优化算法。
它通过模拟蚂蚁在寻找食物过程中释放信息素并跟随信息素移动的行为,来寻找最优路径。
该算法的核心思想是利用正反馈机制和群体智能,通过个体间的信息交流和协同工作来找到最优解。
2. 蚁群算法的特点蚁群算法具有以下特点:一是具有较强的鲁棒性,对问题的模型要求不高;二是易于与其他优化算法结合,提高求解效率;三是具有分布式计算的特点,可以处理大规模的优化问题。
三、蚁群算法在路径寻优中的应用1. 路径寻优问题的描述路径寻优问题是一种典型的组合优化问题,如物流配送、旅行商问题等。
在这些问题中,需要找到一条或多条从起点到终点的最优路径,使得总距离最短或总成本最低。
2. 蚁群算法在路径寻优中的应用原理蚁群算法在路径寻优中的应用原理是通过模拟蚂蚁的觅食行为,将问题转化为在图论中的路径搜索问题。
蚂蚁在搜索过程中会释放信息素,信息素会随着时间逐渐挥发或扩散。
蚂蚁根据信息素的浓度选择路径,同时也会释放新的信息素。
通过这种正反馈机制,蚁群算法能够在搜索过程中找到最优路径。
3. 蚁群算法在路径寻优中的优势蚁群算法在路径寻优中具有以下优势:一是能够处理大规模的路径寻优问题;二是具有较强的全局搜索能力,能够找到全局最优解;三是具有较好的鲁棒性和稳定性,对问题的模型要求不高。
四、实验与分析为了验证蚁群算法在路径寻优中的效果,我们进行了多组实验。
实验结果表明,蚁群算法在处理不同规模的路径寻优问题时,均能取得较好的效果。
同时,通过对算法参数的调整,可以进一步提高算法的求解效率和精度。
蚁群算法的原理与应用论文

蚁群算法的原理与应用论文引言蚁群算法(Ant Colony Optimization,简称ACO)是一种模拟蚂蚁觅食行为的优化算法。
它源于对蚂蚁在寻找食物过程中的集体智能行为的研究,通过模拟蚂蚁在寻找食物时的信息交流和路径选择,来寻求最优解。
蚁群算法具有全局搜索能力、自适应性和高效性等特点,被广泛应用于各个领域的优化问题求解中。
蚁群算法的原理蚁群算法的原理主要包括蚂蚁行为模拟、信息交流和路径选择这三个方面。
蚂蚁行为模拟蚂蚁行为模拟是蚁群算法的核心,它模拟了蚂蚁在寻找食物时的行为。
蚂蚁沿着路径前进,释放信息素,并根据信息素的浓度选择下一步的移动方向。
当蚂蚁在路径上发现食物时,会返回到蚂蚁巢穴,并释放更多的信息素,以引导其他蚂蚁找到这条路径。
信息交流蚂蚁通过释放和感知信息素来进行信息交流。
蚂蚁在路径上释放信息素,其他蚂蚁在感知到信息素后,会更有可能选择这条路径。
信息素的浓度通过挥发和新的信息素释放来更新。
路径选择在路径选择阶段,蚂蚁根据路径上的信息素浓度选择移动的方向。
信息素浓度较高的路径更有可能被选择,这样会导致信息素逐渐积累并形成路径上的正反馈。
同时,蚂蚁也会引入一定的随机因素,以增加算法的多样性和全局搜索能力。
蚁群算法的应用蚁群算法已经在各个领域得到广泛的应用,下面列举了几个常见的领域:•路径规划:蚁群算法能够用于求解最短路径和最优路径问题。
通过模拟蚂蚁寻找食物的行为,可以得到最优的路径解决方案。
•旅行商问题:蚁群算法被广泛应用于旅行商问题的求解中。
通过模拟蚂蚁的行为,找到最优的旅行路径,使得旅行商能够有效地访问多个城市。
总结蚁群算法是一种模拟蚂蚁觅食行为的优化算法,通过模拟蚂蚁的行为和信息交流,来寻找最优解。
蚁群算法具有全局搜索能力、自适应性和高效性等特点,在各个领域都得到了广泛应用。
未来,随着对蚁群算法的深入研究和改进,相信它会在更多的优化问题求解中发挥重要作用。
以上是关于蚁群算法的原理与应用的论文,希望对读者有所帮助。
自适应蚁群算法及其应用【精品文档】(完整版)
粒子群算法及其参数设置摘要本文对标准蚁群算法、MMAS蚁群算法、自适应蚁群算法做了较详细系统的总结,其中主要讨论了自适应蚁群算法在DNA序列比对中的应用,主要的过程是:首先,我们设一个计分函数和一个得分策略,在任意给出一对DNA序列,建立一个序列比对矩阵。
现由4只蚂蚁从左上角向右下角移动,并且最终到达右下角,那么这4只蚂蚁随意走出4条路径,根据4条路径得出4对等长的比对,再依照计分函数分别计算出4条路径的比对得分,再由5.3式进一步验证4条路径的平均得分值,取其中得分最高(即最优路径)路径;进行第二次信息素增量的调整,方法是根据蚂蚁所走过的方向和该方向上得分比例计算出来的,信息素的变化量利用矩阵来存储,那么下一次蚂蚁所选的路径就要根据以前在各条路径上的信息素浓度总和的大小选择移动方向,最终经过有限次迭代,蚂蚁就会找到一条最优路径,也就是一条与原来DNA最相似的DNA链。
关键词:标准蚁群算法,MMAS算法,自适应蚁群算法,DNA序列比对目录1.引言 (1)2.标准蚁群算法 (1)2.1蚁群算法原理 (1)2.2蚁群算法的实现 (2)2.3 基本蚁群算法的优缺点 (4)2.3.1 基本蚁群算法的优点 (4)2.3.2 基本蚁群算法的缺点 (4)3.标准蚁群算法和MMAS(Max-Min Ant System)蚁群算法 (5)3.1 MMAS的概念 (5)3.2 AS与MMAS的对比 (5)3.3 MMAS和AS的区别 (6)3.4 最好、最坏路径信息素全局更新策略 (7)3.5 MMAS蚁群算法的特点 (7)4.自适应蚁群算法 (7)4.1 自适应蚁群算法的概述 (7)4.2 自适应的信息更新策略 (8)4.2.1 引题 (8)4.2.2 改进的蚁群算法过程 (8)4.2.3 自适应蚁群算法的稳定性和收敛性 (10)5.自适应蚁群算法在DNA中的应用 (10)5.1 序列比对 (10)5.2 动态蚁群算法和DNA序列比对的联系 (12)5.3 自适应调整信息素的改进算法 (18)6.结束语 (18)1.引言在二十世纪九十年代初期,意大利M.Dorigo,V.Maniezzo,A.Colorni等人从蚂蚁觅食的自然现象中受到启发,经过大量的观察和实验发现,蚂蚁在觅食过程中留下了一种外激素,又叫信息激素,它是蚂蚁分泌的一种化学物质,蚂蚁在寻找食物的时候会在经过的路上留下这种物质,以便在回巢时不至于迷路,而且方便找到回巢的最好路径。
《蚁群算法的研究及其在路径寻优中的应用》范文
《蚁群算法的研究及其在路径寻优中的应用》篇一蚁群算法研究及其在路径寻优中的应用一、引言蚁群算法(Ant Colony Optimization, ACO)是一种模拟自然界蚂蚁觅食行为的仿生优化算法,它借鉴了蚁群在寻找食物过程中所表现出的寻优特性。
自20世纪90年代提出以来,蚁群算法因其优秀的全局寻优能力和较强的鲁棒性,在许多领域得到了广泛的应用。
本文将重点研究蚁群算法的原理及其在路径寻优中的应用。
二、蚁群算法的研究(一)蚁群算法的原理蚁群算法的基本思想是模拟自然界中蚂蚁觅食的行为过程。
蚂蚁在寻找食物的过程中,会释放一种称为信息素的化学物质,通过信息素的浓度来指导其他蚂蚁的行动。
蚁群算法通过模拟这一过程,使整个群体通过协同合作的方式寻找最优解。
(二)蚁群算法的特点1. 分布式计算:蚁群算法通过多只蚂蚁的协同合作来寻找最优解,具有较好的分布式计算能力。
2. 正反馈机制:信息素的积累和扩散使得算法具有较强的正反馈机制,有利于快速找到最优解。
3. 鲁棒性强:蚁群算法对初始解的依赖性较小,具有较强的鲁棒性。
三、蚁群算法在路径寻优中的应用路径寻优问题是一种典型的组合优化问题,广泛应用于物流配送、车辆路径规划、网络路由等领域。
蚁群算法在路径寻优中的应用主要体现在以下几个方面:(一)物流配送路径优化物流配送过程中,如何合理安排车辆的行驶路径,使总距离最短、时间最少,是物流企业关注的重点。
蚁群算法可以通过模拟蚂蚁觅食的过程,为物流配送提供最优路径。
(二)车辆路径规划车辆路径规划是指在一定区域内,如何合理安排车辆的行驶路线,以满足一定的约束条件(如时间、距离等),使总成本最低。
蚁群算法可以通过多只蚂蚁的协同合作,为车辆路径规划提供有效的解决方案。
(三)网络路由优化在网络通信领域,如何选择最佳的路由路径,以实现数据传输的高效性和可靠性是网络路由优化的关键。
蚁群算法可以通过模拟信息素的传播过程,为网络路由选择提供最优的路径。
毕业论文:蚁群算法的研究应用(定稿)-精品【范本模板】
第一章绪论1。
1选题的背景和意义受社会性昆虫行为的启发,计算机工作者通过对社会性昆虫的模拟产生了一系列对于传统问题的新的解决方法,这些研究就是群体智能的研究。
群体智能作为一个新兴领域自从20世纪80年代出现以来引起了多个学科领域研究人员的关注,已经成为人工智能以及经济社会生物等交叉学科的热点和前沿领域。
群体智能(Swarm Intelligence)中的群体(Swarm)指的是“一组相互之间可以进行直接通信或者间接通信(通过改变局部环境)的主体,这组主体能够合作进行分布问题求解,群体智能指的是无智能或者仅具有相对简单智能的主体通过合作表现出更高智能行为的特性;其中的个体并非绝对的无智能或只具有简单智能,而是与群体表现出来的智能相对而言的。
当一群个体相互合作或竞争时,一些以前不存在于任何单独个体的智慧和行为会很快出现。
群体智能的提出由来已久,人们很早以前就发现,在自然界中,有的生物依靠其个体的智慧得以生存,有的生物却能依靠群体的力量获得优势。
在这些群体生物中,单个个体没有很高的智能,但个体之间可以分工合作、相互协调,完成复杂的任务,表现出比较高的智能。
它们具有高度的自组织、自适应性,并表现出非线性、涌现的系统特征。
群体中相互合作的个体是分布式的,这样更能够适应当前网络环境下的工作状态;没有中心的控制与数据,这样的系统更具有鲁棒性,不会由于某一个或者某几个个体的故障而影响整个问题的求解。
可以不通过个体之间直接通信而是通过非直接通信进行合作,这样的系统具有更好的可扩充性。
由于系统中个体的增加而增加的系统的通信开销在这里十分小.系统中每个个体的能力十分简单,这样每个个体的执行时间比较短,并且实现也比较简单,具有简单性。
因为具有这些优点,虽说群集智能的研究还处于初级阶段,并且存在许多困难,但是可以预言群集智能的研究代表了以后计算机研究发展的一个重要方向。
随着计算机技术的飞速发展,智能计算方法的应用领域也越来越广泛,当前存在的一些群体智能算法有人工神经网络,遗传算法,模拟退火算法,群集智能,蚁群算法,粒子群算等等。
蚁群算法在车辆路径优化中的应用毕业设计论文
蚁群算法在车辆路径优化中的应用毕业设计论文蚁群算法在车辆路径优化中的应用毕业设计论文本科毕业生设计(论文)毕业设计(论文)题目:蚁群算法在车辆路径优化中的应用姓名学号0910312134 所在学院湖北工业大学专业班级09计职1班指导教师日期2013 年 5 月8 日摘要许多实际工程问题可以抽象为相应的组合优化问题,TSP问题是作为所有组合优化问题的范例而存在的,它已成为并将继续成为测试组合优化新算法的标准问题。
从理论上讲,使用穷举法可以求解出TSP问题的最优解;但是对现有的计算机来说,让它在如此庞大的搜索空间中寻求最优解,几乎是不可能的。
所以,各种求TSP问题近似解的算法应运而生了,本文所描述的蚁群算法(AC)也在其中。
目前已出现了很多的启发式算法,而蚁群算法作为一种新型的启发式算法,已成功地应用于求解TSP问题。
蚂蚁通过分泌信息素来加强较好路径上信息素的浓度,同时按照路径上的信息素浓度来选择下一步的路径:好的路径将会被越来越多的蚂蚁选择,因此更多的信息素将会覆盖较好的路径;最终所有的蚂蚁都集中到了好的路径上。
蚂蚁的这种基于信息素的正反馈原理正是整个算法的关键所在。
本文介绍了基本蚁群算法概念、原理及蚁群算法的特点,再根据蚁群算法的缺点做出了优化。
采用轮盘赌选择代替了基本框架中通过启发式函数和信息素选择路径,改进蚁群算法的信息素传递参数,让整个算法更快速的找到最优解。
其次,采用最大最小优化系统限制最大值和最小值,让整个系统更快收敛,得到最优解。
关键字:蚁群算法,TSP问题,启发式函数,轮盘算法,最大最小优化ABSTRACT Many practical engineering problems can be abstracted as corresponding combinatorial optimization problem, TSP problem is an example of all as a combinatorial optimization problem, it has become and will continue to be a new combinatorial optimization algorithm of standard test problems. In theory, using the exhaustion method can solve the TSP problem optimal solution; But for the existing computer, let it in such a large search space to seek the optimal solution, it is almost impossible. So, all kinds of algorithm arises at the historic moment, the approximate solution of the TSP problem described in this paper, ant colony algorithm (AC) is amongthem. Has appeared a lot of heuristic algorithm and ant colony algorithm as a kind of new heuristic algorithm, has been successfully used in solving TSP problems. Ant secretion by pheromones to strengthen the good path pheromone concentration, at the same time according to the path to choose the next path pheromone concentration: good paths will be more and more ants to choose, so that more information will cover good path; Eventually all the ants on a good path. This positive feedback based on the pheromone of ant principle is the key to the whole algorithm. This paper introduces the basic concept of ant colony algorithm, principle and characteristics of ant colony algorithm, according to the disadvantages of ant colony algorithm optimization. Adopting roulette selection instead of the basic framework by heuristic function and choose path pheromone, pheromone passing parameters of improved ant colony algorithm, make the whole algorithm find the optimal solution more quickly. Second, limiting the maximum and the minimum maximum minimum optimization system, make the whole system faster convergence and the optimal solution is obtained. Keywords: ant colony algorithm, the TSP problem, a heuristic function, roulette algorithm, maximum_minimum optimization 目录摘要2 ABSTRACT3 第1章绪论6 1.1研究目的和意义6 1.2 国内外研究现状7 1.2.1 国外研究现状7 1.2.2 国内研究现状8 1.3 本文研究内容9 (1)基本蚁群算法9 (2)蚁群算法的优化9 (3)蚁群算法在TSP 问题中的应用9 1.4 开发环境与工具9 1.5 论文的组织结构10 第2章蚁群算法10 2.1 蚁群算法简介10 2.2 蚁群算法的原理11 2.2.1 蚂蚁觅食规则12 2.2.2 蚂蚁移动规则12 2.2.3 蚂蚁避障规则12 2.2.4 蚂蚁撒信息素规则12 2.3 蚁群算法的特点及优缺点13 2.3.1 蚁群算法的特点13 2.3.2 蚁群算法的优点14 2.3.3 蚁群算法的缺点14 2.5 蚁群算法的核心函数15 (1)初始化15 (2)选择下一个城市,返回城市编号15 (3)更新环境信息素17 (4)检查终止条件18 (5)输出最优值18 2.6 蚁群算法的参数分析19 2.6.1 蚂蚁数量N_ANT_COUNT19 2.6.2 启发因子19 2.6.3 期望启发因子20 2.6.4 信息素挥发度20 2.6.5 总信息量(DBQ)21 第3章改进的蚁群算法21 3.1 轮盘赌选择22 3.1.1 轮盘赌选择基本思想22 3.1.2 轮盘赌选择工作过程22 3.2 MAX_MIN ACO24 3.2.1 MAX_MIN算法的框架结构24 3.2.2 MAX_MIN 算法流程图26 第4章蚁群算法在车辆路径问题中的应用28 4.1 车辆路径问题简介28 4.1.1 车辆路径问题定义28 4.1.2 车辆路径问题分类29 4.2 车辆路径问题的求解算法29 4.2.1 精确算法29 4.2.2 启发式算法30 4.3 蚁群算法解决车辆路径问题31 4.4 数值实验结果及分析33 4.4.1 轮盘赌选择优化前后数据对比33 4.4.2 MAX_MIN算法改进前后数据对比34 第5章总结与展望36 参考文献36 第1章绪论TSP问题是一种特殊的车辆路径问题,是作为所有组合优化问题的范例而存在的,它已成为并将继续成为测试组合优化新算法的标准问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章绪论1。
1选题的背景和意义受社会性昆虫行为的启发,计算机工作者通过对社会性昆虫的模拟产生了一系列对于传统问题的新的解决方法,这些研究就是群体智能的研究。
群体智能作为一个新兴领域自从20世纪80年代出现以来引起了多个学科领域研究人员的关注,已经成为人工智能以及经济社会生物等交叉学科的热点和前沿领域。
群体智能(Swarm Intelligence)中的群体(Swarm)指的是“一组相互之间可以进行直接通信或者间接通信(通过改变局部环境)的主体,这组主体能够合作进行分布问题求解,群体智能指的是无智能或者仅具有相对简单智能的主体通过合作表现出更高智能行为的特性;其中的个体并非绝对的无智能或只具有简单智能,而是与群体表现出来的智能相对而言的。
当一群个体相互合作或竞争时,一些以前不存在于任何单独个体的智慧和行为会很快出现。
群体智能的提出由来已久,人们很早以前就发现,在自然界中,有的生物依靠其个体的智慧得以生存,有的生物却能依靠群体的力量获得优势。
在这些群体生物中,单个个体没有很高的智能,但个体之间可以分工合作、相互协调,完成复杂的任务,表现出比较高的智能。
它们具有高度的自组织、自适应性,并表现出非线性、涌现的系统特征。
群体中相互合作的个体是分布式的,这样更能够适应当前网络环境下的工作状态;没有中心的控制与数据,这样的系统更具有鲁棒性,不会由于某一个或者某几个个体的故障而影响整个问题的求解。
可以不通过个体之间直接通信而是通过非直接通信进行合作,这样的系统具有更好的可扩充性。
由于系统中个体的增加而增加的系统的通信开销在这里十分小.系统中每个个体的能力十分简单,这样每个个体的执行时间比较短,并且实现也比较简单,具有简单性。
因为具有这些优点,虽说群集智能的研究还处于初级阶段,并且存在许多困难,但是可以预言群集智能的研究代表了以后计算机研究发展的一个重要方向。
随着计算机技术的飞速发展,智能计算方法的应用领域也越来越广泛,当前存在的一些群体智能算法有人工神经网络,遗传算法,模拟退火算法,群集智能,蚁群算法,粒子群算等等。
蚁群算法只是其中的一种。
人工智能计算也有人称之为“软计算",是们受自然(生物界)规律的启迪,根据其原理,模仿求解问题的算法。
从自然界得到启迪,模仿其结构进行发明创造,这就是仿生学.这是我们向自然界学习的一个方面。
另一方面,我们还可以利用仿生原理进行设计(包括设计算法),这就是智能计算的思想。
群体智能的研究涉及到生物学、心理学、社会学、控制理论、决策理论等领域;个体行为是构成群体行为的基础,个体之间的组织结构、个体行为之间的关系和群体行为的涌现机制是研究群体行为的关键要素。
目前主要研究仿生的群体优化算法,群体组织内部的通信机制及其应用方面,如微粒群算法、蚁群算法、群体机器人等。
群体智能应用于解决大多数优化问题或者能够转化为优化求解的问题,目前应用领域已经扩展到多目标优化、数据分类、数据聚类、模式识别、生物系统建模、机器人控制、决策支持以及仿真和系统辨识等方面.集群是生物中常见的一种生存现象。
大自然中可以看到成群结队的大雁、鱼以及蚂蚁等动物,他们会暂时或永久的聚集成群。
蚂蚁算法是由意大利学者M.Dorigo ,V。
Manierio ,A。
Collorni等人于二十世纪九十年代提出的一种新型的模拟进化算法.经过研究发现,蚂蚁在觅食的过程中通过一种称之为信息素(Pheromone)的物质相互传递信息。
更具体地,蚂蚁在运动过程中能够在其所经过的路径上留下信息素,而且在运动过程中能够感受到这种信息素的存在及其强度,并以此指导自己的运动方向。
蚂蚁倾向于朝着信息素浓度高的方向前进,因此,由大量蚂蚁组成的蚁群的行为便表现出一种信息的正反馈现象:某一路径上走过的蚂蚁越多,则后来者选择该路径的概率就越大。
蚁群就是通过个体之间这种信息交换机制来彼此协作达到搜索食物的目的。
Colorni和Dorigo等人在研究该问题的基础之上提出了一类模拟自然界蚁群觅食行为的模拟进化算法—-蚁群算法。
蚁群通过信息交换与互相协作找到从蚁穴到食物源的最短路径的机制显然可以被借鉴来求解各种与最优路径相关的组合优化问题。
1.2国内外研究现状1)群体算法研究群体智能研究起源于对社会性昆虫(如蚂蚁、蜜蜂等)的群体行为的研究.现有的对群体智能的研究,大都是从某一种有大量个体表现出来的群体行为出发,从它们的群体行为中提取模型,为这些行为建立一些规则,从而提出算法,应用于解决实际中的问题.群智能理论研究领域有两种主要的算法:蚁群算法(ACO)和微粒群算法(PSO)。
前者是对蚂蚁群落食物采集过程的模拟,已成功应用于许多离散优化问题.微粒群算法也是起源于对简单社会系统的模拟,最初是模拟鸟群觅食的过程,但后来发现它是一种很好的优化工具。
a)蚁群算法(ACO)蚂蚁个体在觅食过程中,会在自己经过的路径留下信息素,后面的蚂蚁个体通过感知信息素的浓度来决定自己的路径。
由于信息素随时间挥发,所以比较短的路径上信息素浓度也比较大。
因此,蚂蚁就可以通过这种方式找到更短的路径觅食,为解决各种寻优问题提供了一种新的方法.意大利学者Macro Dorigo用于求解TSP问题,以后有用于求解二次分配问题、皇后问题、函数优化问题、背包问题。
b)微粒群优化算法(PSO)PSO由James Kennedy和R.C.Eberhart在1995年提出的,是一种基于种群寻优的启发式搜索算法,该算法源于对鸟群、鱼群觅食行为的模拟。
首先初始化一群随机粒子(随机解),然后通过迭代寻找最优解,每次迭代中,粒子通过跟踪两个极值(个体极值和全局极值)来更新自己的速度和位置。
应用在函数的优化问题,神经网络的训练。
2)群体机器人[14]群体智能最初被应用于描述细胞机器人系统。
通过对蚂蚁等社会性昆虫行为研究,发现了社会性昆虫的自组织、自组装能力。
布鲁塞尔自由大学的Macro Dorigo领导的项目Swarm-bots,其目标是建立一个由多个类似于昆虫且简单的机器人组成的群体,由多个简单机器人组成的群体机器人系统通过协调、协作可以完成单个机器人无法完成或难以完成的工作。
研究群体机器人系统,目标是建立经济、灵活、健壮的系统去完成复杂的任务,主要研究内容为群体机器人之间的交互、通信、协作与控制、机器人的自组装等。
1。
3 群体智能研究应用随着群体智能理论和研究算法的进一步成熟,已经将其应用到一些工程优化问题中,并且已取得了明显的效果。
文献15采用PSO对神经网络进行了优化,并利用其设计了电力变压器的智能保护机制15。
文献[16]利用PSO实现了对各种连续和离散控制变量的优化,从而达到了控制核电机组电流稳定输出电压的目的16。
蚁群优化算法为解决组合优化问题提供了新思路,并很快被应用到其它组合优化问题中。
比较典型的应用研究包括:网络路由优化、数据挖掘以及一些经典的组合优化问题.蚁群算法在电信路由优化中己取得了非常显著的应用成果。
17—20HP公司和英国电信公司在90年代中后期都开展了这方面的研究,设计了蚁群路由算法(ACR).Lumer和FaietaDeneubourg提出将蚁巢分类模型应用于数据聚类分析21.其基本思想是将待聚类数据随机地散布到一个二维平面内,然后将虚拟蚂蚁分布到这个空间内,并以随机方式移动,当一只蚂蚁遇到一个待聚类数据时即将之拾起并继续随机运动,若运动路径附近的数据与背负的数据相似性高于设置标准则将其放置在该位置,然后继续移动,重复上述数据搬运过程。
按照这样的方法可实现对相似数据的聚类22。
吴斌等人又在简化分类模型的基础上系统地提出了一种基于群体智能的聚类算法23。
1.4 蚁群算法的研究应用蚁群算法(ant colony algorithm,简称ACA)是最近几年才提出来的一种新型的模拟进化算法.它是由意大利学者Pofigo等人受到人们对自然界中真实蚁群集体行为的研究成果的启发而首先提出来的.1⋯蚁群算法的应用进展以蚁群算法为代表的群智能已成为当今分布式人工智能研究的一个热点,许多源于蜂群和蚁群模型设计的算法己越来越多地被应用于企业的运转模式的研究.当前对蚁群算法的研究,不仅有算法意义上的研究,还有从仿真模型角度的研究,并且不断有学者提出对蚁群算法的改进方案。
从当前可以查阅的文献情况来看,研究和应用蚁群算法的学者主要集中在比利时、意大利、英国、法国、德国等欧洲国家,日本和美国在这一两年内也开始启动对蚁群算法的研究。
国内于1998年末才开始有少量公开报道和研究成果.美国五角大楼正在资助关于群智能系统的研究工作—群体战略,它的一个实战用途是通过运用成群的空中无人驾驶飞行器和地面车辆来转移敌人的注意力,让自己的军队在敌人后方不被察觉地安全进行。
英国电信公司和美国世界通信公司以电子蚂蚁为基础,对新的电信网络管理方法进行了试验。
群智能还被应用于工厂生产计划的制定和运输部门的后勤管理。
美国太平洋西南航空公司采用了一种直接源于蚂蚁行为研究成果的运输管理软件,结果每年至少节约了1000万美元的费用开支。
英国联合利华公司己率先利用群智能技术改善其一家牙膏厂的运转情况。
美国通用汽车公司、法国液气公司、荷兰公路交通部和美国一些移民事务机构也都采用这种技术来改善其运转的机能。
鉴于群智能广阔的应用前景,美国和欧盟均于近几年开始出资资助基于群智能模拟的相关研究项目,并在一些院校开设群体智能的相关课程。
国内,国家自然科学基金”十五"期间学科交叉类优先资助领域中的认知科学及其信息处理的研究内容中也明确列出了群智能领域的进化、自适应与现场认知主题.蚁群优化算法最初用于解决TSP问题,经过多年的发展,已经陆续渗透到其他领域中,如,图着色问题、大规模集成电路设计、通讯网络中的路由问题以及负载平衡问题、车辆调度问题等。
蚁群算法在若干领域己获得成功的应用,其中最成功的是在组合优化问题中的应用。
1。
5 本文的工作本文选择了自然界的蚂蚁作为研究对象,通过研究蚂蚁的群体行为,首先对系统进行建模然后用计算机仿真的方法建立了一个具有蚂蚁所拥有特性的虚拟系统,并用图形化的方式进行了演示,通过系统运行演示蚂蚁复杂行为产生过程。
1)对蚁群的觅食行为等规律进行了分析,并建立了一种基于向量的数据模型,模型由环境、主体、行为规则组成。
环境为蚁群生存的空间,主体间通过环境相互作用;主体包括蚂蚁主体、窝主体、障碍物主体、信息素主体和食物主体;行为规则有:范围规则,环境规则,觅食规则,移动规则,避障规则,播撒信息素规则.通过对蚂蚁主体的属性和行为规则的抽取,模型尽可能地反映蚂蚁的主要属性。
2)然后利用Java技术进行软件设计,自下而上地构建了一个虚拟蚂蚁系统。
3)使用已建立好的系统模型进行了仿真,通过设置障碍物以及对参数的调整,来观察仿真结果所表现出来的不同群体行为,并对仿真的结果分析,来研究蚂蚁产生的复杂行为及其原因-—即个体与环境,以及个体之间的交互.第二章群体智能理论及其研究方法2。