小波分析在图像处理中的作用
小波分析在图像压缩中的应用

小波分析在图像压缩中的应用引言图像压缩在当今数字图像处理中扮演着重要的角色,因为它可以减少图像的存储空间和传输带宽要求。
小波分析是图像压缩领域中最重要的工具之一。
它是一种时间和频率分析方法,可以提取图像的特定信息。
本文将介绍小波分析的背景和原理,并探讨它在图像压缩中的应用。
小波分析的背景和原理小波分析是一种多尺度分析技术,也称为小波变换。
它是由法国数学家Jean Morlet于1980年提出的,用于描述地震波的信号分析。
小波变换可以将一个信号分解成多个频率组成的子信号,并可以识别出不同时间尺度的信息。
小波变换使用小波函数来描述信号的频率和时间信息,这些函数是具有较小的支持区间的局部函数。
在数学上,小波函数是任意可微函数,满足一定的正交性和可缩放性条件。
小波变换使用的小波函数有两种类型:离散小波函数和连续小波函数。
离散小波函数的支撑区间是有限的,一般选择倍增长的方式来实现多尺度分解。
而连续小波函数的支撑区间是无限的,因此需要使用多分辨率连续小波变换,也称为CWT(Continuous Wavelet Transform,连续小波变换)。
小波变换具有一些重要的性质,例如可逆性、多分辨率等。
这些性质使得小波变换在图像压缩中得到广泛应用。
图像压缩中的小波分析图像压缩一般分为有损压缩和无损压缩两种。
有损压缩指的是在压缩过程中会有一定的信息损失,但可以获得更高的压缩比。
而无损压缩可以生成和原始图像完全一样的压缩数据,但压缩比一般较低,且压缩速度较慢。
小波分析在两种压缩方法中均有重要的应用。
有损压缩中,小波分析通常与离散余弦变换(DCT)结合使用,来实现更好的压缩效果。
小波分析的重要性在于它可以去除图像中的高频噪声,提取图像中的低频信息,从而减少冗余数据。
小波分析在JPEG2000 压缩标准的实现中得到了广泛应用。
在无损压缩中,小波分析可以与无损预测编码(Lossless Predictive Coding,LPC)相结合。
小波分析在图像处理中的应用及发展

小波分析在图像处理中的应用及发展作者:张小英来源:《科技资讯》 2011年第32期张小英(乐山师范学院物理与电子工程学院四川乐山 614000)摘要:本文总结、分析了小波分析在图像处理中的应用。
对小波分析的特点进行了总结分析,并对小波的应用提出了展望。
关键词:小波变换图像处理应用及发展中图分类号:U463.33 文献标识码:A 文章编号:1672-3791(2011)11(b)-0034-01小波变换是一种信号的时间——尺度分析方法,能够提供具有良好局部化性质的正交基,把中的函数与中的数列等同起来,从而把分析问题转化为代数问题来解决。
小波分析之所以在信号处理中有着强大的功能,是基于其分离信息的思想,分离到各个小波域的信息除了与其他小波域的关联,使得处理的时候更为灵活。
1 小波分析在图像处理中的应用小波分析在图像处理中有非常重要的应用,包括图像压缩、图像去噪,图像融合,图像分解,图像增强等。
1.1 图像增强图像增强主要目的是提高图像的视觉质量或者凸显某些特征信息。
基本原理:按照处理空间的不同,常用的增强技术可分为基于图像域和基于变换域两种,前一种直接对像素点进行运算,而后一种相对较复杂,首先将图像从空间域变换到另一个域内表示(最常用是时域或频域变换),通过修正相应域内系数达到提高输出图像对比度目的。
增强是图像处理中最基本技术之一,小波变换将一幅图像分解为大小、位置和方向均不相同的分量,在做逆变换前,可根据需要对不同位置、不同方向上某些分量改变其系数大小,从而使某些感兴趣的分量放大而使某些不需要的的分量减小。
1.2 图像压缩基于小波变换的图像压缩方法已经逐步取代基于离散余弦变换(DCT)或者其他子带编码技术,而成为新的图像压缩国际标准的首选方法。
目前基于小波变换的图像压缩方法已逐步取代了基于离散余弦或其他子代编码技术,而成为新的图像国际标准的首选方法。
基于小波变换的图像压缩步骤如图1所示。
1.3 图像去噪噪声对图像处理十分重要,它影响图像处理的输入、采集、处理的各个环节以及输出结果的全过程。
小波变换在数字图像处理中的应用

小波变换在数字图像处理中的应用数字图像处理是一门跨学科的科学,它涉及到数学、计算机科学、物理学等多个领域。
其中,小波变换是数字图像处理中一种非常重要的技术,它在图像去噪、边缘检测、压缩编码等方面都有广泛的应用。
一、小波变换的基本概念小波变换(Wavelet Transform)是一种信号处理技术,它是通过对信号进行分解和重构来描述信号的局部特征。
与傅里叶变换不同,小波变换可以对信号的高频部分和低频部分进行细致的分析。
小波变换的基本思想是将信号分解成不同频率的小波基函数,并利用这些基函数来描述信号的局部特征。
这里的小波基函数是满足正交归一性和母小波的语法结构,它可以用不同的参数来描述不同的频率和尺度。
常用的小波函数包括Haar小波、Daubechies小波、Symlets小波等。
二、1. 图像去噪图像噪声是数字图像处理中普遍存在的问题,它会影响图像的视觉效果和后续处理结果。
小波变换可以对图像进行频域分析,在不同频率和尺度上对信号进行分解和重构,从而去除图像中的噪声。
例如,可以采用离散小波变换对图像进行处理,利用小波基函数的多尺度特性来分解图像,然后通过阈值去噪的方法来去除噪声。
在这个过程中,可以根据具体的应用需求选择不同的小波基函数和去噪方法。
2. 图像边缘检测图像中的边缘是图像中非常重要的信息,它可以用来描述图像中不同物体的边界。
小波边缘检测可以通过对图像的小波变换进行处理,提取出不同尺度的边缘信息,从而实现图像的边缘检测。
例如,可以利用Gabor小波函数来进行图像边缘检测,将图像分解为不同尺度和方向上的小波系数,然后通过计算其幅度和相位来提取边缘信息。
这个过程可以实现图像的边缘检测,并具有良好的鲁棒性和灵敏度。
3. 图像压缩编码数字图像的压缩编码是数字图像处理中广泛应用的技术,它可以减少存储和传输的开销,并提高图像的传输效率。
小波变换也可以应用于图像的压缩编码中,通过小波分解和量化来实现图像压缩。
论述小波分析及其在信号处理中的应用

论述小波分析及其在信号处理中的应用小波分析是一种数学工具,用于在时域和频域中对信号进行分析。
它可以将信号分解成具有不同频率和时间尺度的小波函数,从而更好地捕捉信号的局部特征和变化。
小波分析在信号处理中有广泛的应用,以下是一些主要的应用领域:1. 信号压缩:小波分析可以提供一种有效的信号压缩方法。
通过对信号进行小波变换并根据重要性剪切或量化小波系数,可以实现高效的信号压缩,同时保留主要的信号特征。
2. 图像处理:小波分析在图像处理中有重要的应用。
通过对图像进行小波变换,可以将其分解成具有不同频率和时间尺度的小波系数,从而实现图像的去噪、边缘检测、纹理分析等。
3. 语音和音频处理:小波分析可以用于语音和音频信号的分析和处理。
通过小波变换,可以提取音频信号的频谱特征,实现音频的降噪、特征提取、语音识别等。
4. 生物医学信号处理:小波分析在生物医学信号处理中有广泛的应用。
例如,通过小波分析可以对脑电图(EEG)和心电图(ECG)等生物医学信号进行时频分析,以实现对心脑信号特征的提取和异常检测。
5. 数据压缩:小波分析在数据压缩中也有应用。
通过对数据进行小波变换,并且根据小波系数的重要性进行压缩,可以实现对大量数据的高效存储和传输。
6. 模式识别:小波分析可以用于模式识别和分类问题。
通过对数据进行小波变换,可以提取重要的特征并进行模式匹配和分类,用于图像识别、人脸识别等应用。
综上所述,小波分析在信号处理中有广泛的应用,可以用于信号压缩、图像处理、语音和音频处理、生物医学信号处理、数据压缩和模式识别等领域。
它提供了一种强大的工具,用于捕捉信号的局部特征和变化,从而推动了许多相关学科的发展。
小波变换在医学图像处理中的应用

小波变换在医学图像处理中的应用小波变换(Wavelet Transform)是一种在信号处理和图像处理中广泛应用的数学工具。
它能够将信号或图像分解成不同频率的子信号或子图像,并且能够保留更多的细节信息。
在医学图像处理中,小波变换被广泛应用于图像去噪、边缘检测、特征提取等方面,为医生提供更准确、可靠的医学诊断结果。
首先,小波变换在医学图像去噪中的应用十分重要。
医学图像往往会受到各种噪声的干扰,如电磁干扰、传感器噪声等。
这些噪声会导致图像质量下降,影响医生对图像的判断。
小波变换能够将图像分解成不同频率的子图像,通过对子图像进行滤波处理,可以去除噪声,保留图像的细节信息。
这样,医生在诊断时能够更清晰地观察到图像中的病变部位,提高了诊断的准确性。
其次,小波变换在医学图像边缘检测中也有广泛的应用。
边缘是图像中物体之间颜色、亮度或纹理变化的界限。
在医学图像中,边缘信息对于病变的定位和分析非常重要。
传统的边缘检测算法往往会受到图像噪声的影响,导致检测结果不准确。
而小波变换能够将图像分解成不同频率的子图像,边缘信息在不同频率的子图像中表现出不同的特征。
通过对子图像进行边缘检测,可以得到更准确的边缘信息,帮助医生更好地分析病变情况。
此外,小波变换还可以应用于医学图像的特征提取。
医学图像往往包含大量的信息,如纹理、形状、颜色等。
这些信息对于疾病的诊断和治疗非常重要。
小波变换能够将图像分解成不同频率的子图像,每个子图像都包含了图像中不同尺度的特征信息。
通过对子图像进行特征提取,可以得到更全面、准确的特征描述,帮助医生更好地理解图像中的信息,从而做出更准确的诊断。
总之,小波变换在医学图像处理中具有广泛的应用。
它能够帮助医生去除图像中的噪声,提取图像中的边缘信息,并且能够提取出图像中的特征信息,为医生提供更准确、可靠的医学诊断结果。
随着医学图像技术的不断发展,小波变换在医学图像处理中的应用也会越来越广泛,为医生的工作提供更大的帮助。
小波分析在图像处理中的应用研究

小波分析在图像处理中的应用研究随着时代的变迁,人们对于图像的处理需求越来越多。
在此背景下,小波分析技术应运而生,成为图像处理领域中的一项重要技术。
小波分析技术的特点是能够将频域和时域结合起来,从而更全面、更准确地描述物理规律。
它可以将复杂的图像分解成多个频段,并针对不同的频段进行处理,从而提高图像的质量。
本文将对小波分析在图像处理中的应用进行研究,并深入探讨其具体应用。
一、小波分析技术的基本概念小波分析技术是一种基于小波变换的信号分析方法,其基本思想是将信号分解成高频和低频两个部分,然后对其进行处理。
与传统的傅立叶变换相比,小波分析技术更加精细,在处理图像时可以更好地保留细节信息。
同时,小波分析技术能够进行多尺度分析,即在不同的频段上分别进行分析,从而更加全面地描述物理规律。
二、小波分析在图像去噪中的应用由于图像的采集过程中可能会受到噪声的干扰,因此在进行图像处理时需要先进行去噪处理。
小波分析技术由于能够将图像分解成多个频段,因此可以针对不同频段进行不同的处理,从而实现更好的去噪效果。
例如,对于较高频段的图像,可以采用高通滤波来减小其强度;对于较低频段的图像,则可以采用低通滤波来增强其细节。
在图像处理中,去噪是一个非常重要的步骤,而小波分析技术正是一种有效的去噪方法。
三、小波分析在图像压缩中的应用在图像传输和存储时,往往需要将图像进行压缩,以减少其占用的空间并提高传输速度。
小波分析技术能够将图像分解成多个频段,因此可以将不同频段的数据进行不同的压缩处理。
例如,对于较高频段的图像,可以采用更高的压缩比;对于较低频段的图像,则需要采用较小的压缩比来保留其细节。
在图像压缩中,小波分析技术可以得到更好的压缩效果,并且能够更好地保留图像的信息。
四、小波分析在图像增强中的应用图像增强是指在改善图像质量的同时保留或增强图像的重要细节信息。
小波分析技术由于可以对不同频段的图像进行不同的处理,因此适用于图像增强。
小波变换在图像处理中的边缘检测技术介绍

小波变换在图像处理中的边缘检测技术介绍引言:在图像处理领域,边缘检测是一项重要的任务,它可以帮助我们识别图像中的物体边界,从而实现图像分割、目标识别等应用。
而小波变换作为一种常用的信号分析工具,也被广泛应用于边缘检测技术中。
本文将介绍小波变换在图像处理中的边缘检测技术。
一、小波变换简介小波变换是一种数学工具,可以将信号分解成不同频率的成分。
与傅里叶变换相比,小波变换具有时域和频域同时存在的特点,能够提供更多的信号细节信息。
小波变换通过将信号与一组基函数进行卷积运算,得到信号在不同尺度和位置上的频谱信息。
二、小波变换在边缘检测中的应用边缘是图像中灰度变化较大的地方,因此在边缘检测中,我们希望能够找到图像中灰度变化的位置。
小波变换通过分析图像中各个尺度的频谱信息,可以有效地提取出图像中的边缘特征。
1. 尺度变换小波变换可以通过改变基函数的尺度来适应不同尺度的边缘特征。
当基函数的尺度较大时,可以检测到较宽的边缘;而当基函数的尺度较小时,则可以检测到较细的边缘。
通过尺度变换,小波变换可以适应不同大小的边缘特征,提高边缘检测的准确性。
2. 多尺度分解小波变换可以将图像分解成不同尺度的频谱信息,从而提取出不同尺度的边缘特征。
通过对图像进行多尺度分解,可以获取到图像中不同层次的边缘信息,从而实现更全面的边缘检测。
3. 边缘响应小波变换可以通过计算图像在不同尺度上的边缘响应,来检测图像中的边缘特征。
边缘响应可以通过计算小波变换的高频系数来实现,高频系数表示图像中灰度变化较大的位置。
通过计算边缘响应,可以找到图像中的边缘位置,实现边缘检测的目的。
三、小波变换边缘检测算法基于小波变换的边缘检测算法有很多种,其中比较常用的有Canny边缘检测算法和Sobel边缘检测算法。
1. Canny边缘检测算法Canny边缘检测算法是一种经典的边缘检测算法,它基于小波变换的多尺度分解和边缘响应计算。
该算法首先对图像进行高斯滤波,然后利用小波变换进行多尺度分解,计算边缘响应。
小波变换在图像处理中的应用

小波变换在图像处理中的应用小波变换是一种非常有用的数学工具,可以将信号从时间域转换到频率域,从而能够更方便地对信号进行处理和分析。
在图像处理中,小波变换同样具有非常重要的应用。
本文将介绍小波变换在图像处理中的一些应用。
一、小波变换的基本原理小波变换是一种多尺度分析方法,可以将一个信号分解成多个尺度的成分。
因此,它比傅里叶变换更加灵活,可以适应不同频率的信号。
小波变换的基本原理是从父小波函数出发,通过不同的平移和缩放得到一组不同的子小波函数。
这些子小波函数可以用来分解和重构原始信号。
二、小波变换在图像压缩中的应用图像压缩是图像处理中的一个重要应用领域。
小波变换可以被用来进行图像压缩。
通过将图像分解成多个频率子带,可以将高频子带进行压缩,从而对图像进行有效的压缩。
同时,小波变换还可以被用来进行图像的无损压缩,对于一些对图像质量和细节要求较高的应用领域,如医学影像、遥感图像等,无损压缩是十分重要的。
三、小波变换在图像去噪中的应用在图像处理中,图像噪声是常见的问题之一。
可以使用小波变换进行图像去噪,通过对图像进行小波分解,可以将图像分解成多个频率子带,从而可以选择合适的子带进行滤波。
在小波域中,由于高频子带中噪声的能量相对较高,因此可以通过滤掉高频子带来对图像进行去噪,从而提高图像的质量和清晰度。
四、小波变换在图像增强中的应用图像增强是图像处理中另一个非常重要的应用领域。
在小波域中,可以对图像进行分解和重构,通过调整不同子带的系数,可以对图像进行增强。
例如,可以通过增强高频子带来增强图像的细节和纹理等特征。
五、小波变换在图像分割中的应用图像分割是对图像进行处理的过程,将图像分割成不同的对象或区域。
在小波域中,小波分解可以将图像分解成不同的频率子带和空间维度上的子带。
可以根据不同子带的特征进行分割,例如,高频子带对应细节和边缘信息,可以使用高频子带进行边缘检测和分割,从而得到更准确更清晰的分割结果。
总结小波变换是图像处理中一个非常有用的工具,可以被用来进行图像压缩、去噪、增强和分割等应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
任务书1本课题研究目的(1)了解图像变换的意义和手段(2) 熟悉离散余弦变换的基本性质(3)热练掌握FFT的方法反应用(4)通过本实验掌握利用MATLAB编程实现数字图像的离散余弦变换。
通过本次课程设计,掌握如何学习一门语言,如何进行资料查阅搜集,如何自己解决问题等方法,养成良好的学习习惯。
扩展理论知识,培养综合设计能力。
2本课题完成任务(重点、难点)(1)熟悉并掌握离散余弦变换(2)了解离散余弦在图像处理中的作用(3)通过实验了解小波分析在图像处理中的应用(4)用MATLAB实现离散余弦变换仿真3本课题实施要求摘要基于离散余弦变换的图像压缩算法,其基本思想是在频域对信号进行分解,去除信号点之间的相关性,并找出重要系数,滤掉次要系数,以达到压缩的效果,但该方法在处理过程中并不能提供时域的信息,在比较关心时域特性的时候显得无能为力。
但是这种应用的需求是很广泛的,比如遥感测控图像,要求在整幅图像有很高压缩比的同时,对热点部分的图像要有较高的分辨率,单纯的频域分析的方法显然不能达到这个要求,虽然可以通过对图像进行分块分解,然后对每块作用不同的阀值或掩码来达到这个要求,但分块大小相对固定,有失灵活性。
在这个方面,小波分析就优越的多,由于小波分析固有的时频特性,可以在时频两个方向对系数进行处理,这样就可以对感兴趣的部分提供不同的压缩精度。
第一章:课题意义小波变换是对人们熟知的傅里叶变换与短时(窗口)傅里叶变换的一个重大突破,为信号分析、图像处理、量子物理及其它非线性科学的研究领域带来革命性的影响,是20世纪公认的最辉煌的科学成就之一。
图像处理的目的,就是对数字化后的图像信息进行某些运算或处理,以提高图像的质量或达到人们所要求的预期结果。
图像处理的任务是对未加工的图像进行一定处理而成为所需的图像。
小波在图像处理上的应用思路主要采用将空间或者时间域上的图像信号(数据)变换到小波域上,成为多层次的小波系数,根据小波基的特性,分析小波系数特点,针对不同需求,结合常规的图像处理方法(算法)或提出更符合小波分析的新方法(算法)来处理小波系数,再对处理后的小波系数进行反变换(逆变换),将得到所需的目标图像。
第二章:小波分析的应用研究现状国外研究小波的时间较早,80年代就有相关的文章和著作发表,Mallat算法是小波理论突破性的成果,其作用相当于傅里叶分析的FFT。
1989年,Meyer出版的《小波与算子》是目前较权威较系统的小波理论著作。
美国Texas A&M大学数学与电气工程教授、逼近论中心主任、小波研究的权威之一崔锦泰著的‘An introduction to wavelets’是美国科学出版社出版的一部小波研究向深广方向发展。
Daubechies的‘The lectures on wavelets’总结了她的研究成果,为向世界科技工作者普及小波理论做出了积极的贡献。
我国对小波的研究起步较晚,1994年形成国内的小波研究高潮,并在信号的去噪和图像的压缩、机械故障检测等方面取得了较大的进展。
从公开发表的应用性文章的内容来看,主要可分为两大部分:一部分是利用小波分析对信号进行消噪处理,以提高解释方法的分辨率,这一部分包括小波变换用于信噪分离、弱信号的提取以及信号奇异点与奇异度的测定和多尺度边缘检测与重构;另一部分是利用小波分析做图像或数据压缩。
利用小波分析对信号或图像进行去噪或压缩处理,最关键的就是如何选阀值和如何进行阀值的量化,从某种程度上说,他直接关系到信号消噪和压缩的质量。
有关量化编码方法目前只要采用嵌入式零树小波EZW编码、多级树集合分裂编码SPIHT、集合分裂嵌入块编码SPECK以及可逆嵌入小波压缩算法CREW。
现在我国有一批年轻的博士哥说是正在努力攻关,期待去的小波及其应用研究的突破性进展。
第三章:小波分析的算法设计利用小波变换的时频局部化特性,把图像的细节系数都置零,从压缩图像中可以很明显的看出只有中间部分变得模糊,而其他部分的细节信息可以分辨的很清楚。
1.图像局部压缩,MATLAB代码设置如下:load tire%使用sym4小波对信号进行一层小波分解[ca1,ch1,cv1,cd1]=dwt2(X,'sym4');codca1=wcodemat(ca1,192);codch1=wcodemat(ch1,192);codcv1=wcodemat(cv1,192);codcd1=wcodemat(cd1,192);%将四个系数图像组合为一个图像codx=[codca1,codch1,codcv1,codcd1]%复制原图像的小波系数rca1=ca1;rch1=ch1;rcv1=cv1;rcd1=cd1;%将三个细节系数的中部置零rch1(33:97,33:97)=zeros(65,65);rcv1(33:97,33:97)=zeros(65,65);rcd1(33:97,33:97)=zeros(65,65);codrca1=wcodemat(rca1,192);codrch1=wcodemat(rch1,192);codrcv1=wcodemat(rcv1,192);codrcd1=wcodemat(rcd1,192);%将处理后的系数图像组合为一个图像codrx=[codrca1,codrch1,codrcv1,codrcd1]%重建处理后的系数rx=idwt2(rca1,rch1,rcv1,rcd1,'sym4');subplot(221);image(wcodemat(X,192)),colormap(map);title('原始图像');subplot(222);image(codx),colormap(map);title('一层分解后各层系数图像');subplot(223);image(wcodemat(rx,192)),colormap(map);title('压缩图像');subplot(224);image(codrx),colormap(map);title('处理后各层系数图像');%求压缩信号的能量成分per=norm(rx)/norm(X)per=1.0000%求压缩信号与原信号的标准差err=norm(rx-X)二维小波分析用于图像是小波分析应用的一个重要方面。
他的特点是压缩比高、压缩速度快、压缩后能保持图像的特征基本不变且在传递过程中可以抗干扰。
利用二维小波分析进行图像压缩。
2.二维小波分析的图像压缩,MATLAB代码设置如下:%装入图像load tire%显示图像subplot (221);image (X);colormap(map)title ('原始图像');axis squaredisp ('压缩前图像X的大小:');whos('X')%对图像用bior3.7小波进行2层小波分解[c,s]=wavedec2(X,2,'bior3.7');%提取小波分解结构中第一层低频系数贺高频系数ca1=appcoef2(c,s,'bior3.7',1);ch1=detcoef2('h',c,s,1);cv1=detcoef2('v',c,s,1);cd1=detcoef2('d',c,s,1);%分别对各频成分进行重构a1=wrcoef2('a',c,s,'bior3.7',1);h1=wrcoef2('h',c,s,'bior3.7',1);v1=wrcoef2('v',c,s,'bior3.7',1);d1=wrcoef2('d',c,s,'bior3.7',1);c1=[a1,h1;v1,d1];%显示分解后各频率成分的信息subplot(222);image(c1);axis squaretitle('分解后低频和高频信息');%下面进行图像压缩处理%保留小波分解第一层低频信息,进行图像的压缩%第一层的低频信息即为ca1,显示第一层的低频信息%首先对第一层信息进项量化编码ca1=appcoef2(c,s,'bior3.7',1);ca1=wcodemat(ca1,440,'mat',0);%改变图像的高度ca1=0.5*ca1;subplot(223);image(ca1);colormap(map);axis squaretitle('第一次压缩');disp('第一次压缩图像的大小为:');whos('ca1')%保留小波分解第二层低频信息,进行图像的压缩,此时压缩比更大%保留第二层的低频信息即为ca2,显示第二层的低频信息ca2=appcoef2(c,s,'bior3.7',2);%首先对第二层信息进行量化编码ca2=wcodemat(ca2,440,'mat',0);%改变图像的高度ca2=0.25*ca2;subplot(224);image(ca2);colormap(map);axis squaretitle('第二次压缩');disp('第二次压缩图像的大小为:');whos('ca2')3.二维小波变换对图像进行压缩,MA TLAB代码设置如下:%装入一个二维信号load wbarb%显示图像subplot(221);image(X);colormap(map)title('原始图像');axis square%下面进行图像压缩%对图像用db3小波进行2层小波分解[c,s]=wavedec2(X,2,'db3');[thr,sorh, keepapp]=ddencmp('cmp','wv',X);%输入参数中选择了全局阀值选项‘gb1’,用来对所有高频系数进行相同的阀值量化处理[Xcomp,cxc,lxc,perf0,perf12]=wdencmp('gbl',c,s,'db3',2,th r,sorh,keepapp);%将压缩后的图像与原始图像相比较,并显示出来subplot(222);image(Xcomp);colormap(map)title('压缩图像');axis squaredisp('小波分解系数中置0的系数个数百分比:');perf0disp('压缩后图像剩余能量百分比:');perf12由于阀值处理只关心系数的绝对值,并不关心系数的位置,所以二维小波变换系数阀值化方法同一维情况大同小异。