2018年高考数学分类汇编之三角函数和解三角形汇编(理)附详解
2018届高考数学(理)二轮专题复习课件:第一部分 专题三 三角函数及解三角形 1-3-2

3 (2)(2016· 高考全国卷Ⅲ)若tan α=4,则cos2α+2sin 2α=( A ) 64 A.25 C.1 48 B.25 16 D.25
3 解析:通解:弦化切tan α=4 ,
2 cos α+2sin 2α 1+4tan α 64 2 则cos α+2sin 2α= = = . cos2α+sin2α 1+tan2α 25
优解:猜想sin α及cos α的值. sin α 3 根据勾股数3,4,5及tan α=cos α=4 3 4 可猜得sin α= ,cos α= 5 5 ∴cos α+4sin αcos
∴tan
π β α=tan4+2
π π π β 又∵α∈0,2,β∈0,2,∴2∈0,4,
2
4 3 4 64 2 α=5 +4× × = ,故选A. 5 5 25
π π (3)设α α= cos β ,则( C )
π A.3α-β= 2 π C.2α-β=2
π B.3α+β= 2 π D.2α+β=2
4.在△ABC中,a>b⇔A>B⇔sin A>sin B.
π 5.(1)若△ABC为锐角三角形,则A+B> ,sin A>cos B, 2 cos A<sin B,a2+b2>c2; π (2)若△ABC为钝角三角形(假如C为钝角),则A+B< 2 ,sin A <cos B,cos A>sin B. 6.在△ABC中,ccos B+bcos C=a. B+C A 7.sin A=sin(B+C),sin 2 =cos 2 . a+b+c a b c 8.sin A=sin B=sin C= . sin A+sin B+sin C
2018高考数学(理)一轮复习课件 第三章 三角函数、解三角形 第1讲 课件

MP
有向线段 _________为余 弦线
OM
有向线段 _________为正 切线
AT
1.辨明四个易误点 (1)易混概念:第一象限角、锐角、小于 90°的角是概念不同 的三类角.第一类是象限角,第二、第三类是区间角. (2)角度制与弧度制可利用 180°=π rad 进行互化, 在同一个 式子中,采用的度量制度必须一致,不可混用.
2.规律与技巧 (1)三角函数值在各象限的符号规律概括为: 一全正、 二正弦、 三正切、四余弦. (2)在解简单的三角不等式时,利用单位圆及三角函数线是一 个小技巧.
1. 教材习题改编 单位圆中, 200 °的圆心角所对的弧长为 (
D
) B.9π 10 D. π 9
A.10π 9 C. π 10
第三章
三角函数、解三角形
知识点 任意角的概念 与弧度制、任 意角的三角函 数
考纲下载 1.了解任意角的概念. 2.了解弧度制的概念,能进行弧度与角度的 互化. 3.理解任意角三角函数(正弦、余弦、正切) 的定义.
第三章
三角函数、解三角形
知识点
考纲下载 1.理解同角三角函数的基本关系式:sin2x+
同角三角函数 cos2x=1, sin x =tan x. cos x 的基本关系式 与诱导公式
π 2.能利用单位圆中的三角函数线推导出 ± 2 α,π±α 的正弦、余弦、正切的诱导公式.
第三章
三角函数、解三角形
知识点
考纲下载 1.会用向量的数量积推导出两角差的余弦公 式.
两角和与差的 2.能利用两角差的余弦公式导出两角差的正 正弦、余弦及 弦、正切公式. 正切公式 3.能利用两角差的余弦公式导出两角和的正 弦、余弦、正切公式,导出二倍角的正弦、 余弦、正切公式,了解它们的内在联系.
2018高考数学文热点题型:三角函数与解三角形 全国通用 含解析 精品

三角函数与解三角形热点一 三角函数的图象和性质注意对基本三角函数y =sin x ,y =cos x 的图象与性质的理解与记忆,有关三角函数的五点作图、图象的平移、由图象求解析式、周期、单调区间、最值和奇偶性等问题的求解,通常先将给出的函数转化为y =A sin(ωx +φ)的形式,然后利用整体代换的方法求解.【例1】已知函数f (x )=sin x -23sin 2x 2.(1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,2π3上的最小值. (1)解 因为f (x )=sin x +3cos x - 3.=2sin ⎝ ⎛⎭⎪⎫x +π3- 3. 所以f (x )的最小正周期为2π.(2)解 因为0≤x ≤2π3,所以π3≤x +π3≤π.当x +π3=π,即x =2π3时,f (x )取得最小值.所以f (x )在区间⎣⎢⎡⎦⎥⎤0,2π3上的最小值为f ⎝ ⎛⎭⎪⎫2π3=- 3. 【类题通法】求函数y =A sin(ωx +φ)+B 周期与最值的模板第一步:三角函数式的化简,一般化成y =A sin(ωx +φ)+h 或y =A cos(ωx +φ)+h 的形式;第二步:由T =2π|ω|求最小正周期;第三步:确定f (x )的单调性;第四步:确定各单调区间端点处的函数值;第五步:明确规范地表达结论.【对点训练】设函数f (x )=32-3sin 2ωx -sin ωx cos ωx (ω>0),且y =f (x )的图象的一个对称中心到最近的对称轴的距离为π4.(1)求ω的值;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤π,3π2上的最大值和最小值. 解 (1)f (x )=32-3sin 2ωx -sin ωx cos ωx=32-3·1-cos 2ωx 2-12sin 2ωx =32cos 2ωx -12sin 2ωx =-sin ⎝ ⎛⎭⎪⎫2ωx -π3. 因为y =f (x )的图象的一个对称中心到最近的对称轴的距离为π4,故该函数的周期T=4×π4=π.又ω>0,所以2π2ω=π,因此ω=1.(2)由(1)知f (x )=-sin ⎝ ⎛⎭⎪⎫2x -π3.设t =2x -π3,则函数f (x )可转化为y =-sin t .当π≤x ≤3π2时,5π3≤t =2x -π3≤8π3,如图所示,作出函数y =sin t 在⎣⎢⎡⎦⎥⎤5π3,8π3 上的图象, 由图象可知,当t ∈⎣⎢⎡⎦⎥⎤5π3,8π3时,sin t ∈⎣⎢⎡⎦⎥⎤-32,1, 故-1≤-sin t ≤32,因此-1≤f (x )=-sin ⎝⎛⎭⎪⎫2x -π3≤32. 故f (x )在区间⎣⎢⎡⎦⎥⎤π,3π2上的最大值和最小值分别为32,-1. 热点二 解三角形高考对解三角形的考查,以正弦定理、余弦定理的综合运用为主.其命题规律可以从以下两方面看:(1)从内容上看,主要考查正弦定理、余弦定理以及三角函数公式,一般是以三角形或其他平面图形为背景,结合三角形的边角关系考查学生利用三角函数公式处理问题的能力;(2)从命题角度看,主要是在三角恒等变换的基础上融合正弦定理、余弦定理,在知识的交汇处命题.【例2】在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,f (x )=2sin(x -A )cos x+sin(B +C )(x ∈R ),函数f (x )的图象关于点⎝ ⎛⎭⎪⎫π6,0对称. (1)当x ∈⎝ ⎛⎭⎪⎫0,π2时,求函数f (x )的值域; (2)若a =7,且sin B +sin C =13314,求△ABC 的面积.解 (1)∵f (x )=2sin(x -A )cos x +sin(B +C )=2(sin x cos A -cos x sin A )cos x +sin A=2sin x cos A cos x -2cos 2x sin A +sin A=sin 2x cos A -cos 2x sin A =sin(2x -A ),又函数f (x )的图象关于点⎝ ⎛⎭⎪⎫π6,0对称,则f ⎝ ⎛⎭⎪⎫π6=0,即sin ⎝ ⎛⎭⎪⎫π3-A =0, 又A ∈(0,π),则A =π3,则f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3. 由于x ∈⎝ ⎛⎭⎪⎫0,π2, 则2x -π3∈⎝ ⎛⎭⎪⎫-π3,2π3, 即-32<sin ⎝ ⎛⎭⎪⎫2x -π3≤1, 则函数f (x )的值域为⎝ ⎛⎦⎥⎤-32,1. (2)由正弦定理,得a sin A =b sin B =c sin C =143, 则sin B =314b ,sin C =314c ,sin B +sin C =314(b +c )=13314,即b +c =13.由余弦定理,得a 2=c 2+b 2-2bc cos A ,即49=c 2+b 2-bc =(b +c )2-3bc ,即bc =40.则△ABC 的面积S =12bc sin A =12×40×32=10 3.【类题通法】三角函数和三角形的结合,一般可以利用正弦定理、余弦定理先确定三角形的边角,再代入到三角函数中,三角函数和(差)角公式的灵活运用是解决此类问题的关键.【对点训练】四边形ABCD 的内角A 与C 互补,且AB =1,BC =3,CD =DA =2.(1)求角C 的大小和线段BD 的长度;(2)求四边形ABCD 的面积.解 (1)设BD =x ,在△ABD 中,由余弦定理,得cos A =1+4-x 22×2×1, 在△BCD 中,由余弦定理,得cos C =9+4-x 22×2×3, ∵A +C =π,∴cos A +cos C =0.联立上式,解得x =7,cos C =12.由于C ∈(0,π).∴C =π3,BD =7.(2)∵A +C =π,C =π3,∴sin A =sin C =32.又四边形ABCD 的面积S ABCD =S △ABD +S △BCD =12AB ·AD sin A +12CB ·CD sin C =32×(1+3)=23,∴四边形ABCD 的面积为2 3.热点三 三角函数与平面向量结合三角函数、解三角形与平面向量的结合主要体现在以下两个方面:(1)以三角函数式作为向量的坐标,由两个向量共线、垂直、求模或求数量积获得三角函数解析式;(2)根据平面向量加法、减法的几何意义构造三角形,然后利用正、余弦定理解决问题.【例3】已知△ABC 的三内角A ,B ,C 所对的边分别是a ,b ,c ,向量m =(cos B ,cos C ),n =(2a +c ,b ),且m ⊥n .(1)求角B 的大小;(2)若b =3,求a +c 的范围.解 (1)∵m =(cos B ,cos C ),n =(2a +c ,b ),且m ⊥n ,∴(2a +c )cos B +b cos C =0,∴cos B (2sin A +sin C )+sin B cos C =0,∴2cos B sin A +cos B sin C +sin B cos C =0.即2cos B sin A =-sin(B +C )=-sin A .∵A ∈(0,π),∴sin A ≠0,∴cos B =-12.∵0<B <π,∴B =2π3.(2)由余弦定理得b 2=a 2+c 2-2ac cos 23π=a 2+c 2+ac =(a +c )2-ac ≥(a +c )2-⎝ ⎛⎭⎪⎫a +c 22=34(a +c )2,当且仅当a =c 时取等号.∴(a +c )2≤4,故a +c ≤2.又a +c >b =3,∴a +c ∈(3,2].即a +c 的取值范围是(3,2].【类题通法】向量是一种解决问题的工具,是一个载体,通常是用向量的数量积运算或性质转化成三角函数问题.【对点训练】已知向量a =(m ,cos 2x ),b =(sin 2x ,n ),函数f (x )=a·b ,且y =f (x )的图象过点⎝ ⎛⎭⎪⎫π12,3和点⎝ ⎛⎭⎪⎫2π3,-2. (1)求m ,n 的值;(2)将y =f (x )的图象向左平移φ(0<φ<π)个单位后得到函数y =g (x )的图象,若y =g (x )图象上各最高点到点(0,3)的距离的最小值为1,求y =g (x )的单调递增区间. 解 (1)由题意知f (x )=a·b =m sin 2x +n cos 2x .因为y =f (x )的图象过点⎝ ⎛⎭⎪⎫π12,3和⎝ ⎛⎭⎪⎫2π3,-2, 所以⎩⎪⎨⎪⎧3=m sin π6+n cos π6,-2=m sin 4π3+n cos 4π3, 即⎩⎪⎨⎪⎧3=12m +32n ,-2=-32m -12n ,解得⎩⎨⎧m =3,n =1. (2)由(1)知f (x )=3sin 2x +cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π6. 由题意知g (x )=f (x +φ)=2sin ⎝ ⎛⎭⎪⎫2x +2φ+π6. 设y =g (x )的图象上符合题意的最高点为(x 0,2),由题意知x 20+1=1,所以x 0=0,即到点(0,3)的距离为1的最高点为(0,2).将其代入y =g (x )得sin ⎝ ⎛⎭⎪⎫2φ+π6=1, 因为0<φ<π,所以φ=π6,因此g (x )=2sin ⎝ ⎛⎭⎪⎫2x +π2=2cos 2x . 由2k π-π≤2x ≤2k π,k ∈Z 得k π-π2≤x ≤k π,k ∈Z .所以函数y =g (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π2,k π,k ∈Z .。
2018年高考数学(理)一轮复习文档第三章三角函数、解三角形第2讲同角三角函数的基本关系与诱导公式Word版

第2讲 同角三角函数的基本关系与诱导公式1.同角三角函数的基本关系 (1)平方关系:sin 2α+cos 2α=1. (2)商数关系:tan α=sin αcos α.2.六组诱导公式简记口诀:把角统一表示为k π2±α(k ∈Z )的形式,奇变偶不变,符号看象限.1.辨明三个易误点(1)“同角”有两层含义:一是“角相同”,二是代表“任意”一个使三角函数有意义的角.“同角”的概念与角的表达形式有关,如:sin 23α+cos 23α=1,sinα2cosα2=tan α2.(2)在利用同角三角函数的平方关系时,若开方,要特别注意判断符号. (3)注意求值与化简后的结果一般要尽可能有理化、整式化. 2.三角函数求值与化简的三种常用方法(1)弦切互化法:主要利用公式tan α=sin αcos α化成正、余弦.(2)和积转换法:利用(sin θ±cos θ)2=1±2sin θcos θ的关系进行变形、转化. (3)巧用“1”的变换:1=sin 2θ+cos 2θ=cos 2θ(1+tan 2θ)=tan π4=….1.cos ⎝ ⎛⎭⎪⎫-20π3=( ) A.12 B.32 C .-12D .-32C2.已知sin ⎝ ⎛⎭⎪⎫π2+α=35,α∈⎝⎛⎭⎪⎫0,π2,则sin(π+α)等于( )A.35 B .-35C.45D .-45D 因为sin ⎝⎛⎭⎪⎫π2+α=35,α∈⎝ ⎛⎭⎪⎫0,π2, 所以cos α=35,所以sin α=45,所以sin(π+α)=-sin α=-45.3.若sin θcos θ=12,则tan θ+cos θsin θ的值是( )A .-2B .2C .±2D.12B tan θ+cos θsin θ=sin θcos θ+cos θsin θ=1cos θsin θ=2.4.若sin θ=-45,tan θ>0,则cos θ=________.由已知,θ在第三象限, 所以cos θ=-1-sin 2θ=-1-(-45)2=-35.-355.教材习题改编 已知tan θ=2,则sin θ·cos θ=________. sin θcos θ=sin θ·cos θsin 2θ+cos 2θ=tan θtan 2θ+1=222+1=25. 25同角三角函数的基本关系式(高频考点)同角三角函数的基本关系式的应用很广泛,也比较灵活.高考中常以选择题、填空题的形式出现.高考对同角三角函数基本关系式的考查主要有以下三个命题角度: (1)知弦求弦; (2)知弦求切; (3)知切求弦.(1)(2016·高考全国卷丙)若tan α=34,则cos 2α+2sin 2α=( )A.6425 B.4825C .1D.1625(2)已知sin α+2cos α=3,则tan α=( ) A.22 B. 2 C .-22D .- 2【解析】 (1)法一:由tan α=sin αcos α=34,cos 2α+sin 2α=1,得⎩⎪⎨⎪⎧sin α=35,cos α=45或⎩⎪⎨⎪⎧sin α=-35,cos α=-45,则sin 2α=2sin αcos α=2425,则cos 2α+2sin 2α=1625+4825=6425. 法二:cos 2α+2sin 2α=cos 2α+4sin αcos αcos 2α+sin 2α=1+4tan α1+tan 2α=1+31+916=6425. (2)因为sin α+2cos α=3, 所以(sin α+2cos α)2=3,所以sin 2α+22sin αcos α+2cos 2α=3, 所以sin 2α+22sin αcos α+2cos 2αsin 2α+cos 2α=3,所以tan 2α+22tan α+2tan 2α+1=3, 所以2tan 2α-22tan α+1=0,所以tan α=22. 【答案】 (1)A (2)A同角三角函数关系式及变形公式的应用(1)利用sin 2α+cos 2α=1可以实现角α的正弦、余弦的互化,利用sin αcos α=tan α可以实现角α的弦切互化.(2)应用公式时注意方程思想的应用:对于sin α+cos α,sin αcos α,sin α-cos α这三个式子,利用(sin α±cos α)2=1±2sin αcos α,可以知一求二.角度一 知弦求弦1.(2017·雅安模拟)已知sin θ+cos θ=43,θ∈(0,π4),则sin θ-cos θ的值为( )A.23 B.13 C .-23D .-13C (sin θ+cos θ)2=169,所以1+2sin θcos θ=169,所以2sin θcos θ=79,由(sin θ-cos θ)2=1-2sin θ·cos θ=1-79=29,可得sin θ-cos θ=±23.又因为θ∈(0,π4),sin θ<cos θ,所以sin θ-cos θ=-23.角度二 知弦求切2.已知cos ⎝ ⎛⎭⎪⎫π2+α=35,且α∈⎝ ⎛⎭⎪⎫π2,3π2,则tan α=( )A.43 B.34 C .-34D .±34B 因为cos ⎝⎛⎭⎪⎫π2+α=35,所以sin α=-35,显然α在第三象限,所以cos α=-45,故tan α=34.角度三 知切求弦3.若sin α=2sin β,tan α=3tan β,则cos α=________. 因为sin α=2sin β,① tan α=3tan β, tan 2α=9tan 2β.②由①2÷②得:9cos 2α=4cos 2β.③ 由①2+③得sin 2α+9cos 2α=4. 又sin 2α+cos 2α=1, 所以cos 2α=38,所以cos α=±64. ±64诱导公式的应用(1)sin(-1 200°)cos 1 290°+cos(-1 020°)·sin(-1 050°)=________.(2)已知cos α是方程3x 2-x -2=0的根,且α是第三象限角,则sin (-α+3π2)cos (3π2+α)tan 2(π-α)cos (π2+α)sin (π2-α)等于________.(3)已知cos(π6-α)=23,则sin(α-2π3)=________.【解析】 (1)原式=-sin 1 200°cos 1 290°-cos 1 020°·sin 1 050°=-sin(3×360°+120°)cos(3×360°+210°)-cos(2×360°+300°)sin(2×360°+330°)=-sin 120°cos 210°-cos 300°sin 330°=-sin(180°-60°)cos(180°+30°)-cos(360°-60°)·sin(360°-30°) =sin 60°cos 30°+cos 60°sin 30° =32×32+12×12=1. (2)因为方程3x 2-x -2=0的根为x 1=1,x 2=-23,由题知cos α=-23,所以sin α=-53,tan α=52. 所以原式=-cos αsin αtan 2α-sin αcos α=tan 2α=54.(3)因为⎝ ⎛⎭⎪⎫π6-α+⎝ ⎛⎭⎪⎫α-2π3=-π2,所以α-2π3=-π2-⎝ ⎛⎭⎪⎫π6-α,所以sin ⎝ ⎛⎭⎪⎫α-2π3=sin ⎣⎢⎡⎦⎥⎤-π2-⎝ ⎛⎭⎪⎫π6-α=-cos ⎝ ⎛⎭⎪⎫π6-α=-23.【答案】 (1)1 (2)54 (3)-23(1)诱导公式用法的一般思路 ①化大角为小角.②角中含有加减π2的整数倍时,用公式去掉π2的整数倍.(2)常见的互余和互补的角①常见的互余的角:π3-α与π6+α;π3+α与π6-α;π4+α与π4-α等.②常见的互补的角:π3+θ与2π3-θ;π4+θ与3π4-θ等.(3)三角函数式化简的方向 ①切化弦,统一名. ②用诱导公式,统一角.③用因式分解将式子变形,化为最简.1.(2017·福建省毕业班质量检测)若sin(π2+α)=-35,且α∈(π2,π),则sin(π-2α)=( )A.2425 B.1225C .-1225D .-2425D 由sin(π2+α)=cos α=-35,且α∈(π2,π),得sin α=45,所以sin(π-2α)=sin 2α=2sin αcos α=-2425,选项D 正确.2.sin(-1 071°)si n 99°+sin(-171°)sin(-261°)=________. 原式=(-sin 1 071°)·sin 99°+sin 171°·sin 261°=-sin (3×360°-9°)sin(90°+9°)+sin(180°-9°)·sin(270°-9°)=sin 9°cos 9°-sin 9°cos 9°=0.故填0.3.已知cos(π+α)=-12,求sin[α+(2n +1)π]+sin (π+α)sin (π-α)·cos (α+2n π)(n ∈Z ).因为cos(π+α)=-12,所以-cos α=-12,cos α=12.sin[α+(2n +1)π]+sin (π+α)sin (π-α)cos (α+2n π)=sin (α+2n π+π)-sin αsin αcos α=sin (π+α)-sin αsin αcos α=-2sin αsin αcos α=-2cos α=-4.——方程思想求解三角函数值已知sin θ+cos θ=713,θ∈(0,π),则tan θ=________.【解析】 法一:因为sin θ+cos θ=713,θ∈(0,π),所以(sin θ+cos θ)2=1+2sin θcos θ=49169,所以sin θcos θ=-60169.由根与系数的关系,知sin θ,cos θ是方程x 2-713x -60169=0的两根,所以x 1=1213,x 2=-513.又sin θcos θ=-60169<0,所以sin θ>0,cos θ<0.所以sin θ=1213,cos θ=-513.所以tan θ=sin θcos θ=-125.法二:同法一,得sin θcos θ=-60169,所以sin θcos θsin 2θ+cos 2θ=-60169. 齐次化切,得tan θtan 2 θ+1=-60169,即60tan 2θ+169tan θ+60=0, 解得tan θ=-125或tan θ=-512.又θ∈(0,π),sin θ+cos θ=713>0,sin θcos θ=-60169<0.所以θ∈(π2,3π4),所以tan θ=-125.【答案】 -125(1)本题利用方程思想法一:由sin θ+cos θ、sin θcos θ的值构造一元二次方程,把sin θ与cos θ看作此方程的两根,即可求出sin θ与cos θ的值,便可求解.法二:利用三角函数的基本关系转化为关于tan θ的一元二次方程求解.(2)所谓方程思想就是在解决问题时,用事先设定的未知数沟通问题中所涉及的各量间的等量关系,建立方程或方程组,求出未知数及各量的值,或者用方程的性质去分析、转化问题,使问题获得解决.已知sin(3π-α)=-2sin(π2+α),则sin αcos α等于( )A .-25 B.25C.25或-25D .-15A 因为sin(3π-α)=sin(π-α)=-2sin(π2+α),所以sin α=-2cos α,所以tan α=-2,当α在第二象限时,⎩⎪⎨⎪⎧sin α=255cos α=-55,所以sin αcos α=-25;当α在第四象限时,⎩⎪⎨⎪⎧sin α=-255cos α=55,所以sin αcos α=-25,综上,sin αcosα=-25,故选A.1.tan(-233π)的值为( )A. 3 B .- 3 C.33D .-33A A tan(-233π)=tan(-8π+π3)=tan π3= 3.2.已知sin(π+θ)=-3cos(2π-θ),|θ|<π2,则θ等于( )A .-π6B .-π3C.π6D.π3D 因为sin(π+θ)=-3cos(2π-θ), 所以-sin θ=-3cos θ,所以tan θ= 3. 因为|θ|<π2,所以θ=π3.3.(2017·福建省毕业班质量检测)已知cos(α+π2)=13,则cos 2α的值等于( )A.79 B .-79C.89D .-89A 法一:因为cos(α+π2)=13,所以sin α=-13,所以cos α=±223,所以cos 2α=cos 2α-sin 2α=(±223)2-(-13)2=79,故选A.法二:因为cos(α+π2)=13,所以sin α=-13,所以cos 2α=1-2sin 2α=1-2×19=79,故选A.4.已知sin α+3cos α3cos α-sin α=5,则sin 2α-sin αcos α的值为( )A .-15B .-25C.15D.25D 依题意得tan α+33-tan α=5,所以tan α=2.所以sin 2α-sin αcos α=sin 2α-sin αcos αsin 2α+cos 2α=tan 2α-tan αtan 2α+1=22-222+1=25. 5.已知f (x )=a sin(πx +α)+b cos(πx +β)+4,若f (2 016)=5,则f (2 017)的值是( )A .2B .3C .4D .5B 因为f (2 016)=5.所以a sin(2 016π+α)+b cos(2 016π+β)+4=5, 即a sin α+b cos β=1.所以f (2 017)=a sin(2 017π+α)+b cos(2 017π+β)+4=-a sin α-b cos β+4=-1+4=3.6.已知sin α+3cos α+1=0,则tan α的值为( ) A.43或34 B .-34或-43C.34或-43D .-43或不存在D 由sin α=-3cos α-1,可得(-3cos α-1)2+cos 2α=1,即5cos 2α+3cos α=0,解得cos α=-35或cos α=0,当cos α=0时,tan α的值不存在,当cos α=-35时,sin α=-3cos α-1=45,tan α=sin αcos α=-43,故选D.7.化简sin (π2+α)cos (π2-α)cos (π+α)+sin (π-α)cos (π2+α)sin (π+α)=________. 原式=cos αsin α-cos α+sin α(-sin α)-sin α=-sin α+sin α=0. 08.在△ABC 中,若tan A =23,则sin A =________. 因为tan A =23>0,所以A 为锐角,于是1+tan 2A =1+29=119=1cos 2A ,cos 2A =911,cos A =31111,sin A =tan A cos A =2211. 2211 9.sin 43π·cos 56π·tan(-43π)的值是________. 原式=sin(π+π3)·cos(π-π6)·tan(-π-π3) =(-sin π3)·(-cos π6)·(-tan π3) =(-32)×(-32)×(-3)=-334. -33410.已知sin ⎝ ⎛⎭⎪⎫7π12+α=23,则cos ⎝⎛⎭⎪⎫α-11π12=________. cos ⎝ ⎛⎭⎪⎫α-11π12=cos ⎝ ⎛⎭⎪⎫11π12-α =cos ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π12+α=-cos ⎝ ⎛⎭⎪⎫π12+α, 而sin ⎝ ⎛⎭⎪⎫7π12+α=sin ⎣⎢⎡⎦⎥⎤π2+⎝ ⎛⎭⎪⎫π12+α =cos ⎝ ⎛⎭⎪⎫π12+α=23, 所以cos ⎝⎛⎭⎪⎫α-11π12=-23. -2311.已知sin θ=45,π2<θ<π. (1)求tan θ的值;(2)求sin 2θ+2sin θcos θ3sin 2θ+cos 2θ的值.(1)因为sin 2θ+cos 2θ=1,所以cos 2θ=925.又π2<θ<π,所以cos θ=-35.所以tan θ=sin θcos θ=-43.(2)由(1)知,sin 2θ+2sin θcos θ3sin 2θ+cos 2 θ=tan 2θ+2tan θ3tan 2θ+1=-857.12.已知α为第三象限角,f (α)=sin (α-π2)·cos (3π2+α)·tan (π-α)tan (-α-π)·sin (-α-π).(1)化简f (α);(2)若cos(α-3π2)=15,求f (α)的值.(1)f (α)=sin (α-π2)·cos (3π2+α)·tan (π-α)tan (-α-π)·sin (-α-π)=(-cos α)·sin α·(-tan α)(-tan α)· sin α=-cos α.(2)因为cos(α-3π2)=15,所以-sin α=15,从而sin α=-15.又α为第三象限角,所以cos α=-1-sin 2α=-265,所以f (α)=-cos α=265.13.已知sin αcos α=18,且5π4<α<3π2,则cos α-sin α的值为() A .-32 B.32C .-34 D.34B 因为5π4<α<3π2,所以cos α<0,sin α<0且|cos α|<|sin α|,所以cos α-sin α>0.又(cos α-sin α)2=1-2sin αcos α=1-2×18=34, 所以cos α-sin α=32. 14.化简1-2sin 40°cos 40°cos 40°-1-sin 250°=________. 原式=sin 240°+cos 240°-2sin 40°cos 40°cos 40°-cos 50°=|sin 40°-cos 40°|sin 50°-sin 40° =|sin 40°-sin 50°|sin 50°-sin 40° =sin 50°-sin 40°si n 50°-sin 40° =1.115.已知在△ABC 中,sin A +cos A =15. (1)求sin A cos A 的值;(2)判断△ABC 是锐角三角形还是钝角三角形;(3)求tan A 的值.(1)因为sin A +cos A =15,① 所以两边平方得1+2sin A cos A =125, 所以sin A cos A =-1225. (2)由sin A cos A =-1225<0,且0<A <π, 可知cos A <0,所以A 为钝角,所以△ABC 是钝角三角形.(3)因为(sin A -cos A )2=1-2sin A cos A =1+2425=4925, 又sin A >0,cos A <0,所以sin A -cos A >0,所以sin A -cos A =75,② 所以由①,②可得sin A =45,cos A =-35,所以tan A =sin A cos A =45-35=-43. 16.已知f (x )=cos 2(n π+x )·sin 2(n π-x )cos 2[(2n +1)π-x ](n ∈Z ). (1)化简f (x )的表达式; (2)求f ⎝ ⎛⎭⎪⎫π2 016+f ⎝ ⎛⎭⎪⎫1 007π2 016的值. (1)当n 为偶数,即n =2k (k ∈Z )时,f (x )=cos 2(2k π+x )·sin 2(2k π-x )cos 2[(2×2k +1)π-x ]=cos 2x ·sin 2(-x )cos 2(π-x )=cos 2x ·(-sin x )2(-cos x )2 =sin 2x (n =2k ,k ∈Z );当n 为奇数,即n =2k +1(k ∈Z )时,f (x )=cos 2[(2k +1)π+x ]·sin 2[(2k +1)π-x ]cos 2{[2×(2k +1)+1]π-x }=cos 2[2k π+(π+x )]·sin 2[2k π+(π-x )]cos 2[2×(2k +1)π+(π-x )]=cos 2(π+x )·sin 2(π-x )cos 2(π-x )=(-cos x )2sin 2x (-cos x )2 =sin 2x (n =2k +1,k ∈Z ).综上得f (x )=sin 2x . (2)由(1)得f ⎝ ⎛⎭⎪⎫π2 016+f ⎝ ⎛⎭⎪⎫1 007π2 016 =sin2π2 016+sin 21 007π2 016 =sin2π2 016+sin 2⎝ ⎛⎭⎪⎫π2-π2 016 =sin2π2 016+cos 2π2 016=1.。
2018版高考数学理一轮复习文档:第四章 三角函数、解

1.用五点法作正弦函数和余弦函数的简图正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),(π2,1),(π,0),(3π2,-1),(2π,0).余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),(π2,0),(π,-1),(3π2,0),(2π,1).2.正弦函数、余弦函数、正切函数的图象与性质【知识拓展】 1.对称与周期(1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是14个周期.(2)正切曲线相邻两对称中心之间的距离是半个周期. 2.奇偶性若f (x )=A sin(ωx +φ)(A ,ω≠0),则(1)f (x )为偶函数的充要条件是φ=π2+k π(k ∈Z );(2)f (x )为奇函数的充要条件是φ=k π(k ∈Z ).【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)y =sin x 在第一、第四象限是增函数.( × )(2)常数函数f (x )=a 是周期函数,它没有最小正周期.( √ ) (3)正切函数y =tan x 在定义域内是增函数.( × ) (4)已知y =k sin x +1,x ∈R ,则y 的最大值为k +1.( × ) (5)y =sin |x |是偶函数.( √ ) (6)若sin x >22,则x >π4.( × )1.函数f (x )=cos(2x -π6)的最小正周期是( )A.π2B .πC .2πD .4π答案 B解析 最小正周期为T =2πω=2π2=π.故选B.2.(教材改编)函数f (x )=3sin(2x -π6)在区间[0,π2]上的值域为( )A .[-32,32]B .[-32,3]C .[-332,332]D .[-332,3]答案 B解析 当x ∈[0,π2]时,2x -π6∈[-π6,5π6],sin(2x -π6)∈[-12,1],故3sin(2x -π6)∈[-32,3],即f (x )的值域为[-32,3].3.函数y =tan 2x 的定义域是( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪ x ≠k π+π4,k ∈Z B.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠k π2+π8,k ∈Z C.⎩⎨⎧⎭⎬⎫x ⎪⎪ x ≠k π+π8,k ∈Z D.⎩⎨⎧⎭⎬⎫x ⎪⎪ x ≠k π2+π4,k ∈Z 答案 D解析 由2x ≠k π+π2,k ∈Z ,得x ≠k π2+π4,k ∈Z ,∴y =tan 2x 的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠k π2+π4,k ∈Z . 4.(2016·开封模拟)已知函数f (x )=4sin(π3-2x ),x ∈[-π,0],则f (x )的单调递减区间是( )A .[-712π,-π12]B .[-π,-π2]C .[-π,-712π],[-π12,0]D .[-π,-512π],[-π12,0]答案 C解析 f (x )=4sin(π3-2x )=-4sin(2x -π3).由-π2+2k π≤2x -π3≤π2+2k π(k ∈Z ),得-π12+k π≤x ≤512π+k π(k ∈Z ). 所以函数f (x )的递减区间是[-π12+k π,512π+k π](k ∈Z ). 因为x ∈[-π,0],所以函数f (x )的递减区间是[-π,-712π],[-π12,0].5.已知函数f (x )=2sin(ωx +φ),对于任意x 都有f ⎝⎛⎭⎫π6+x =f ⎝⎛⎭⎫π6-x ,则f ⎝⎛⎭⎫π6的值为________. 答案 2或-2解析 ∵f ⎝⎛⎭⎫π6+x =f ⎝⎛⎭⎫π6-x ,∴x =π6是函数f (x )=2sin(ωx +φ)的一条对称轴.∴f ⎝⎛⎭⎫π6=±2.题型一 三角函数的定义域和值域例1 (1)函数f (x )=-2tan(2x +π6)的定义域是____________.(2)(2017·郑州月考)已知函数f (x )=sin(x +π6),其中x ∈[-π3,a ],若f (x )的值域是[-12,1],则实数a 的取值范围是________. 答案 (1){x |x ≠k π2+π6,k ∈Z } (2)[π3,π]解析 (1)由2x +π6≠π2+k π,k ∈Z ,得x ≠k π2+π6,k ∈Z ,所以f (x )的定义域为{x |x ≠k π2+π6,k ∈Z }.(2)∵x ∈[-π3,a ],∴x +π6∈[-π6,a +π6],∵x +π6∈[-π6,π2]时,f (x )的值域为[-12,1],∴由函数的图象知π2≤a +π6≤7π6,∴π3≤a ≤π.思维升华 (1)三角函数定义域的求法求三角函数定义域实际上是构造简单的三角不等式(组),常借助三角函数线或三角函数图象来求解.(2)三角函数值域的不同求法 ①利用sin x 和cos x 的值域直接求;②把所给的三角函数式变换成y =A sin(ωx +φ)的形式求值域; ③通过换元,转换成二次函数求值域.(1)函数y =lg(sin x )+cos x -12的定义域为 .(2)函数y =2sin(πx 6-π3) (0≤x ≤9)的最大值与最小值的和为__________.答案 (1)⎩⎨⎧⎭⎬⎫x |2k π<x ≤π3+2k π,k ∈Z(2)2- 3解析 (1)要使函数有意义必须有⎩⎪⎨⎪⎧sin x >0,cos x -12≥0, 即⎩⎪⎨⎪⎧ sin x >0,cos x ≥12,解得⎩⎪⎨⎪⎧2k π<x <π+2k π(k ∈Z ),-π3+2k π≤x ≤π3+2k π(k ∈Z ), ∴2k π<x ≤π3+2k π(k ∈Z ),∴函数的定义域为⎩⎨⎧⎭⎬⎫x |2k π<x ≤π3+2k π,k ∈Z .(2)∵0≤x ≤9,∴-π3≤πx 6-π3≤7π6,∴-32≤sin(πx 6-π3)≤1, 故-3≤2sin(πx 6-π3)≤2.即函数y =2sin(πx 6-π3)(0≤x ≤9)的最大值为2,最小值为- 3.∴最大值与最小值的和为2- 3. 题型二 三角函数的单调性例2 (1)函数f (x )=tan ⎝⎛⎭⎫2x -π3的单调递增区间是( ) A.⎣⎡⎦⎤k π2-π12,k π2+5π12(k ∈Z ) B.⎝⎛⎭⎫k π2-π12,k π2+5π12(k ∈Z ) C.⎝⎛⎭⎫k π+π6,k π+2π3(k ∈Z ) D.⎣⎡⎦⎤k π-π12,k π+5π12(k ∈Z )(2)已知ω>0,函数f (x )=sin ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π上单调递减,则ω的取值范围是________. 答案 (1)B (2)⎣⎡⎦⎤12,54解析 (1)由k π-π2<2x -π3<k π+π2(k ∈Z ),得k π2-π12<x <k π2+5π12(k ∈Z ), 所以函数f (x )=tan ⎝⎛⎭⎫2x -π3的单调递增区间为⎝⎛⎭⎫k π2-π12,k π2+5π12(k ∈Z ),故选B. (2)由π2<x <π,ω>0,得ωπ2+π4<ωx +π4<ωπ+π4,又y =sin x 的单调递减区间为[2k π+π2,2k π+3π2],k ∈Z ,所以⎩⎨⎧ωπ2+π4≥π2+2k π,ωπ+π4≤3π2+2k π,k ∈Z ,解得4k +12≤ω≤2k +54,k ∈Z .又由4k +12-(2k +54)≤0,k ∈Z 且2k +54>0,k ∈Z ,得k =0,所以ω∈[12,54].引申探究本例(2)中,若已知ω>0,函数f (x )=cos(ωx +π4)在(π2,π)上单调递增,则ω的取值范围是____________. 答案 [32,74]解析 函数y =cos x 的单调递增区间为[-π+2k π,2k π],k ∈Z ,则⎩⎨⎧ωπ2+π4≥-π+2k π,ωπ+π4≤2k π,k ∈Z ,解得4k -52≤ω≤2k -14,k ∈Z ,又由4k -52-⎝⎛⎭⎫2k -14≤0,k ∈Z 且2k -14>0,k ∈Z , 得k =1,所以ω∈⎣⎡⎦⎤32,74.思维升华 (1)已知三角函数解析式求单调区间:①求函数的单调区间应遵循简单化原则,将解析式先化简,并注意复合函数单调性规律“同增异减”;②求形如y =A sin(ωx +φ)或y=A cos(ωx +φ)(其中ω>0)的单调区间时,要视“ωx +φ”为一个整体,通过解不等式求解.但如果ω<0,那么一定先借助诱导公式将ω化为正数,防止把单调性弄错.(2)已知三角函数的单调区间求参数.先求出函数的单调区间,然后利用集合间的关系求解.(1)函数f (x )=sin ⎝⎛⎭⎫-2x +π3的单调减区间为________. (2)若函数f (x )=sin ωx (ω>0)在区间[0,π3]上单调递增,在区间[π3,π2]上单调递减,则ω等于( ) A.23 B.32 C .2D .3答案 (1)⎣⎡⎦⎤k π-π12,k π+512π,k ∈Z (2)B 解析 (1)已知函数可化为f (x )=-sin ⎝⎛⎭⎫2x -π3, 欲求函数的单调减区间,只需求f (x )=sin ⎝⎛⎭⎫2x -π3的单调增区间. 由2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .故所给函数的单调减区间为⎣⎡⎦⎤k π-π12,k π+5π12(k ∈Z ). (2)∵f (x )=sin ωx (ω>0)过原点, ∴当0≤ωx ≤π2,即0≤x ≤π2ω时,y =sin ωx 是增函数;当π2≤ωx ≤3π2,即π2ω≤x ≤3π2ω时, y =sin ωx 是减函数.由f (x )=sin ωx (ω>0)在⎣⎡⎦⎤0,π3上单调递增, 在⎣⎡⎦⎤π3,π2上单调递减,知π2ω=π3, ∴ω=32.题型三 三角函数的周期性、对称性 命题点1 周期性例3 (1)在函数①y =cos|2x |,②y =|cos x |,③y =cos ⎝⎛⎭⎫2x +π6,④y =tan ⎝⎛⎭⎫2x -π4中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③(2)若函数f (x )=2tan(kx +π3)的最小正周期T 满足1<T <2,则自然数k 的值为________.答案 (1)A (2)2或3解析 (1)①y =cos|2x |=cos 2x ,最小正周期为π; ②由图象知y =|cos x |的最小正周期为π; ③y =cos ⎝⎛⎭⎫2x +π6的最小正周期T =2π2=π; ④y =tan ⎝⎛⎭⎫2x -π4的最小正周期T =π2,因此选A. (2)由题意得,1<πk <2,∴k <π<2k ,即π2<k <π,又k ∈Z ,∴k =2或3. 命题点2 对称性例4 (2016·西安模拟)当x =π4时,函数f (x )=sin(x +φ)取得最小值,则函数y =f (3π4-x )( )A .是奇函数且图象关于点(π2,0)对称B .是偶函数且图象关于点(π,0)对称C .是奇函数且图象关于直线x =π2对称D .是偶函数且图象关于直线x =π对称 答案 C解析 ∵当x =π4时,函数f (x )取得最小值,∴sin(π4+φ)=-1,∴φ=2k π-3π4(k ∈Z ),∴f (x )=sin(x +2k π-3π4)=sin(x -3π4),∴y =f (3π4-x )=sin(-x )=-sin x,∴y =f (3π4-x )是奇函数,且图象关于直线x =π2对称.命题点3 对称性的应用例5 (1)已知函数y =2sin ⎝⎛⎭⎫2x +π3的图象关于点P (x 0,0)对称,若x 0∈⎣⎡⎦⎤-π2,0,则x 0=________.(2)若函数y =cos(ωx +π6) (ω∈N *)图象的一个对称中心是(π6,0),则ω的最小值为( )A .1B .2C .4D .8答案 (1)-π6(2)B解析 (1)由题意可知2x 0+π3=k π,k ∈Z ,故x 0=k π2-π6,k ∈Z ,又x 0∈⎣⎡⎦⎤-π2,0,∴-23≤k ≤13,k ∈Z , ∴k =0,则x 0=-π6.(2)由题意知ω6π+π6=k π+π2 (k ∈Z ),∴ω=6k +2(k ∈Z ),又ω∈N *,∴ωmin =2.思维升华 (1)对于函数y =A sin(ωx +φ),其对称轴一定经过图象的最高点或最低点,对称中心一定是函数的零点,因此在判断直线x =x 0或点(x 0,0)是不是函数的对称轴或对称中心时,可通过检验f (x 0)的值进行判断. (2)求三角函数周期的方法: ①利用周期函数的定义.②利用公式:y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|,y =tan(ωx +φ)的最小正周期为π|ω|.(1)(2016·朝阳模拟)已知函数f (x )=2sin(π2x +π5),若对任意的实数x ,总有f (x 1)≤f (x )≤f (x 2),则|x 1-x 2|的最小值是( ) A .2 B .4 C .πD .2π (2)如果函数y =3cos(2x +φ)的图象关于点(4π3,0)中心对称,那么|φ|的最小值为( )A.π6B.π4C.π3D.π2答案 (1)A (2)A解析 (1)由题意可得|x 1-x 2|的最小值为半个周期,即T 2=πω=2. (2)由题意得3cos(2×4π3+φ)=3cos(2π3+φ+2π)=3cos(2π3+φ)=0,∴2π3+φ=k π+π2,k ∈Z , ∴φ=k π-π6,k ∈Z ,取k =0,得|φ|的最小值为π6.5.三角函数的性质考点分析 纵观近年高考中三角函数的试题,其有关性质几乎每年必考,题目较为简单,综合性的知识多数为三角函数本章内的知识,通过有效地复习完全可以对此类题型及解法有效攻破,并在高考中拿全分.典例 (1)(2015·课标全国Ⅰ)函数f (x )=cos(ωx +φ)的部分图象如图所示,则f (x )的单调递减区间为( )A.⎝⎛⎭⎫k π-14,k π+34,k ∈Z B.⎝⎛⎭⎫2k π-14,2k π+34,k ∈Z C.⎝⎛⎭⎫k -14,k +34,k ∈Z D.⎝⎛⎭⎫2k -14,2k +34,k ∈Z (2)已知函数f (x )=2cos(ωx +φ)+b 对任意实数x 有f (x +π4)=f (-x )恒成立,且f (π8)=1,则实数b 的值为( ) A .-1 B .3 C .-1或3D .-3(3)已知函数f (x )=2sin ωx (ω>0)在区间⎣⎡⎦⎤-π3,π4上的最小值是-2,则ω的最小值等于________.解析 (1)由图象知,周期T =2×⎝⎛⎭⎫54-14=2, ∴2πω=2,∴ω=π. 由π×14+φ=π2+2k π,k ∈Z ,不妨取φ=π4,∴f (x )=cos ⎝⎛⎭⎫πx +π4. 由2k π<πx +π4<2k π+π,k ∈Z ,得2k -14<x <2k +34,k ∈Z ,∴f (x )的单调递减区间为⎝⎛⎭⎫2k -14,2k +34,k ∈Z .故选D.(2)由f (x +π4)=f (-x )可知函数f (x )=2cos(ωx +φ)+b 关于直线x =π8对称,又函数f (x )在对称轴处取得最值,故±2+b =1,∴b =-1或b =3. (3)∵ω>0,-π3≤x ≤π4,∴-ωπ3≤ωx ≤ωπ4.由已知条件知-ωπ3≤-π2,∴ω≥32.答案 (1)D (2)C (3)321.已知函数f (x )=sin(ωx +π4) (ω>0)的最小正周期为π,则f (π8)等于( )A .1 B.12 C .-1 D .-12答案 A解析 ∵T =π,∴ω=2, ∴f (π8)=sin(2×π8+π4)=sin π2=1.2.若函数f (x )=-cos 2x ,则f (x )的一个递增区间为( ) A .(-π4,0)B .(0,π2)C .(π2,3π4)D .(3π4,π)答案 B解析 由f (x )=-cos 2x 知递增区间为[k π,k π+π2],k ∈Z ,故只有B 项满足.3.关于函数y =tan(2x -π3),下列说法正确的是( )A .是奇函数B .在区间(0,π3)上单调递减C .(π6,0)为其图象的一个对称中心D .最小正周期为π 答案 C解析 函数y =tan(2x -π3)是非奇非偶函数,A 错误;在区间(0,π3)上单调递增,B 错误;最小正周期为π2,D 错误.∵当x =π6时,tan(2×π6-π3)=0,∴(π6,0)为其图象的一个对称中心,故选C. 4.(2016·潍坊模拟)已知函数f (x )=2sin(ωx -π6)+1(x ∈R )的图象的一条对称轴为x =π,其中ω为常数,且ω∈(1,2),则函数f (x )的最小正周期为( ) A.3π5 B.6π5 C.9π5 D.12π5答案 B解析 由函数f (x )=2sin(ωx -π6)+1 (x ∈R )的图象的一条对称轴为x =π,可得ωπ-π6=k π+π2,k ∈Z ,∴ω=k +23,∴ω=53,从而得函数f (x )的最小正周期为2π53=6π5.5.已知函数f (x )=-2sin(2x +φ)(|φ|<π),若f (π8)=-2,则f (x )的一个单调递减区间是( )A .[-π8,3π8]B .[π8,9π8]C .[-3π8,π8]D .[π8,5π8]答案 C解析 由f (π8)=-2,得f (π8)=-2sin(2×π8+φ)=-2sin(π4+φ)=-2, 所以sin(π4+φ)=1.因为|φ|<π,所以φ=π4.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,解得k π-3π8≤x ≤k π+π8,k ∈Z .当k =0时,-3π8≤x ≤π8,故选C.6.若函数f (x )=sin(ωx +φ)(ω>0且|φ|<π2)在区间[π6,2π3]上是单调减函数,且函数值从1减少到-1,则f (π4)等于( )A.12B.22C.32D .1答案 C解析 由题意得函数f (x )的周期T =2(2π3-π6)=π,所以ω=2,此时f (x )=sin(2x +φ),将点(π6,1)代入上式得sin(π3+φ)=1 (|φ|<π2),所以φ=π6,所以f (x )=sin(2x +π6),于是f (π4)=sin(π2+π6)=cos π6=32.7.函数y =2sin x -1的定义域为______________. 答案 [2k π+π6,2k π+56π],k ∈Z解析 由2sin x -1≥0,得sin x ≥12,∴2k π+π6≤x ≤2k π+56π,k ∈Z .8.函数y =cos 2x +sin x (|x |≤π4)的最小值为___________________.答案1-22解析 令t =sin x ,∵|x |≤π4,∴t ∈⎣⎡⎦⎤-22,22. ∴y =-t 2+t +1=-⎝⎛⎭⎫t -122+54, ∴当t =-22时,y min =1-22. 9.函数y =cos(π4-2x )的单调减区间为______________.答案 [k π+π8,k π+5π8](k ∈Z )解析 由y =cos(π4-2x )=cos(2x -π4),得2k π≤2x -π4≤2k π+π (k ∈Z ),解得k π+π8≤x ≤k π+5π8(k ∈Z ),所以函数的单调减区间为[k π+π8,k π+5π8](k ∈Z ).10.(2016·威海模拟)若f (x )=2sin ωx +1 (ω>0)在区间[-π2,2π3]上是增函数,则ω的取值范围是__________. 答案 (0,34]解析 方法一 由2k π-π2≤ωx ≤2k π+π2,k ∈Z ,得f (x )的增区间是[2k πω-π2ω,2k πω+π2ω],k ∈Z .因为f (x )在[-π2,2π3]上是增函数,所以[-π2,2π3]⊆[-π2ω,π2ω].所以-π2≥-π2ω且2π3≤π2ω,所以ω∈(0,34].方法二 因为x ∈[-π2,2π3],ω>0.所以ωx ∈[-ωπ2,2πω3],又f (x )在区间[-π2,2π3]上是增函数,所以[-ωπ2,2πω3]⊆[-π2,π2],则⎩⎨⎧-ωπ2≥-π2,2πω3≤π2,又ω>0,得0<ω≤34.11.已知函数f (x )=sin(ωx +φ)(0<φ<2π3)的最小正周期为π.(1)求当f (x )为偶函数时φ的值;(2)若f (x )的图象过点(π6,32),求f (x )的单调递增区间.解 (1)∵f (x )的最小正周期为π, 则T =2πω=π,∴ω=2,∴f (x )=sin(2x +φ). 当f (x )为偶函数时,f (-x )=f (x ), ∴sin(2x +φ)=sin(-2x +φ), 将上式展开整理得sin 2x cos φ=0, 由已知上式对∀x ∈R 都成立, ∴cos φ=0,∵0<φ<2π3,∴φ=π2.(2)f (x )的图象过点(π6,32)时,sin(2×π6+φ)=32,即sin(π3+φ)=32.又∵0<φ<2π3,∴π3<π3+φ<π,∴π3+φ=2π3,φ=π3, ∴f (x )=sin(2x +π3).令2k π-π2≤2x +π3≤2k π+π2,k ∈Z ,得k π-5π12≤x ≤k π+π12,k ∈Z ,∴f (x )的单调递增区间为[k π-5π12,k π+π12],k ∈Z . 12.(2015·北京)已知函数f (x )=sin x -23sin 2x2.(1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤0,2π3上的最小值. 解 (1)因为f (x )=sin x +3cos x -3=2sin ⎝⎛⎭⎫x +π3-3, 所以f (x )的最小正周期为2π.(2)因为0≤x ≤2π3,所以π3≤x +π3≤π.当x +π3=π,即x =2π3时,f (x )取得最小值.所以f (x )在区间⎣⎡⎦⎤0,2π3上的最小值为f ⎝⎛⎭⎫2π3=- 3. *13.已知a >0,函数f (x )=-2a sin ⎝⎛⎭⎫2x +π6+2a +b ,当x ∈⎣⎡⎦⎤0,π2时,-5≤f (x )≤1. (1)求常数a ,b 的值;(2)设g (x )=f ⎝⎛⎭⎫x +π2且lg g (x )>0,求g (x )的单调区间. 解 (1)∵x ∈⎣⎡⎦⎤0,π2,∴2x +π6∈⎣⎡⎦⎤π6,7π6, ∴sin ⎝⎛⎭⎫2x +π6∈⎣⎡⎦⎤-12,1, ∴-2a sin ⎝⎛⎭⎫2x +π6∈[-2a ,a ], ∴f (x )∈[b,3a +b ],又∵-5≤f (x )≤1, ∴b =-5,3a +b =1,因此a =2,b =-5. (2)由(1)得f (x )=-4sin ⎝⎛⎭⎫2x +π6-1, g (x )=f ⎝⎛⎭⎫x +π2=-4sin ⎝⎛⎭⎫2x +7π6-1=4sin ⎝⎛⎭⎫2x +π6-1, 又由lg g (x )>0,得g (x )>1,∴4sin ⎝⎛⎭⎫2x +π6-1>1,∴sin ⎝⎛⎭⎫2x +π6>12, ∴2k π+π6<2x +π6<2k π+5π6,k ∈Z ,其中当2k π+π6<2x +π6≤2k π+π2,k ∈Z 时,g (x )单调递增,即k π<x ≤k π+π6,k ∈Z ,∴g (x )的单调增区间为⎝⎛⎦⎤k π,k π+π6,k ∈Z . 又∵当2k π+π2<2x +π6<2k π+5π6,k ∈Z 时,g (x )单调递减,即k π+π6<x <k π+π3,k ∈Z .∴g (x )的单调减区间为⎝⎛⎭⎫k π+π6,k π+π3,k ∈Z .。
2018届高三数学(理)三轮复习高考大题专攻练 三角函数与解三角形 含解析

高考大题专攻练三角函数与解三角形(A组)大题集训练,练就慧眼和规范,占领高考制胜点!1.已知a,b,c分别为△ABC三个内角A,B,C的对边,且==.(1)求角A的大小.(2)若△ABC的面积为3,求a的值.【解题导引】(1)由已知条件可求出三个角的正切的关系,然后利用正切公式可求出tanA的值,从而求出角A的大小.(2)由(1)可求出三个角的正切值,结合正弦定理和面积公式可求解.【解析】(1)因为==,所以==,即tanA==,则tanB=2tanA,tanC=3tanA.又在△ABC中,tanA=-tan(B+C)=-,则tanA=-,解得tan2A=1.所以tanA=-1或tanA=1,当tanA=-1时,tanB=-2,则A,B均为钝角,与A+B+C=π矛盾,故舍去,故tanA=1,则A=.(2)由tanA=1可得tanB=2,tanC=3,则sinB=,sinC=.在△ABC中,由正弦定理可得b==a=a,则S△ABC=absinC=a×a×==3,得a2=5,所以a=.2.已知向量a=,b=(cosx,-1).(1)当a∥b时,求cos2x-sin2x的值.(2)设函数f(x)=2(a+b)·b,已知在△ABC中,内角A,B,C的对边分别为a,b,c.若a=,b=2,sinB=,求f(x)+4cos的取值范围.【解析】(1)因为a∥b,所以cosx+sinx=0,所以tanx=-.cos2x-sin2x===.(2)f(x)=2(a+b)·b=2·(cosx,-1)=sin2x+cos2x+=sin+.由正弦定理=得sinA===,所以A=或A=.因为b>a,所以A=.所以f(x)+4cos=sin-,因为x∈,所以2x+∈,所以-1≤f(x)+4cos≤-.所以f(x)+4cos的取值范围是.三角函数与解三角形(B组)大题集训练,练就慧眼和规范,占领高考制胜点!1.在△ABC中,B=,点D在边AB上,BD=1,且DA=DC.(1)若△BCD的面积为,求CD.(2)若AC=,求∠DCA.【解题导引】(1)根据面积公式结合余弦定理可求解.(2)分别在△ADC和△BDC中用正弦定理,结合角的范围可求解.【解析】(1)因为△BCD的面积为,所以BC·BD·sinB=,又B=,BD=1,所以BC=4.在△BCD中,由余弦定理得CD2=BC2+BD2-2BC·BD·cosB,即CD2=16+1-2×4×1×=13,解得CD=.(2)在△ADC中,DA=DC,可设∠A=∠DCA=θ,则∠ADC=π-2θ,又AC=,由正弦定理,有=,所以CD=.在△BDC中,∠BDC=2θ,∠BCD=-2θ,由正弦定理得,=,代入化简可得cosθ=sin,于是sin=sin,因为0<θ<,所以0<-θ<,-<-2θ<,所以-θ=-2θ或-θ+-2θ=π,解得θ=或θ=,故∠DCA=或∠DCA=.2.设a∈R,函数f(x)=cosx(asinx-cosx)+cos2(+x)满足f=f(0). (1)求f(x)的单调递减区间.(2)设锐角△ABC的内角A,B,C所对的边分别为a,b,c,且=,求f(A)的取值范围.【解题导引】(1)根据f=f(0),求出a的值.然后进行三角函数化简即可.(2)先用余弦定理,再用正弦定理化简即可求解.【解析】(1)f(x)=cosx(asinx-cosx)+cos2(+x)=sin2x-cos2x,由f =f(0),得-+=-1,所以a=2,所以f(x)=sin2x-cos2x=2sin.由2k π+≤2x-≤2k π+,k ∈Z ,得k π+≤x ≤k π+,k∈Z ,所以f(x)的单调递减区间为,k ∈Z.(2)因为=,由余弦定理得==,即2acosB-ccosB=bcosC ,由正弦定理可得2sinAcosB-sinCcosB=sinBcosC ,即2sinAcosB=sin(B+C)=sinA ,所以cosB=,因为0<B<,所以B=.因为△ABC为锐角三角形,所以<A<,<2A-<,所以f(A)=2sin的取值范围为(1,2].。
2018年高考数学(理)一轮复习文档第三章三角函数、解三角形第1讲任意角和弧度制及任意角的三角函数Word版

第1讲 任意角和弧度制及任意角的三角函数1.角的有关概念(1)从运动的角度看,角可分为正角、负角和零角. (2)从终边位置来看,角可分为象限角与轴线角.(3)若β与α是终边相同的角,则β用α表示为β=2k π+α,k ∈Z . 2.弧度制(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,正角的弧度数是正数,负角的弧度数是负数,零角的弧度数是零.(2)角度制和弧度制的互化:180°=π rad ,1°=π180 rad ,1 rad = ⎛⎭⎪⎫180π°.(3)扇形的弧长公式:l =|α|·r ,扇形的面积公式:S =12lr =12|α|·r 2.3.任意角的三角函数有向线1.辨明四个易误点(1)易混概念:第一象限角、锐角、小于90°的角是概念不同的三类角.第一类是象限角,第二、第三类是区间角.(2)角度制与弧度制可利用180°=π rad 进行互化,在同一个式子中,采用的度量制度必须一致,不可混用.(3)三角函数的定义中,当P (x ,y )是单位圆上的点时有sin α=y ,cos α=x ,tan α=y x ,但若不是单位圆时,如圆的半径为r ,则sin α=y r ,cos α=x r ,tan α=y x.(4)已知三角函数值的符号确定角的终边位置不要遗漏终边在坐标轴上的情况. 2.规律与技巧(1)三角函数值在各象限的符号规律概括为:一全正、二正弦、三正切、四余弦. (2)在解简单的三角不等式时,利用单位圆及三角函数线是一个小技巧.1.教材习题改编 单位圆中,200°的圆心角所对的弧长为( ) A .10π B .9π C.910π D.109π D2.教材习题改编 若角θ满足tan θ>0,sin θ<0,则角θ所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限C3.已知角α的终边经过点M (-3,-1),则下列结论不正确的是( ) A .sin α=-1010B .cos α=-31010C .tan α=13D .tan α=3 D4.3 900°是第________象限角,-1 000°是第________象限角. 四 一5.若角α终边上有一点P (x ,5),且cos α=x13(x ≠0),则sin α=________.513象限角及终边相同的角(1)写出终边在直线y =3x 上的角的集合;(2)已知角α为第三象限角,试确定2α的终边所在的象限. 【解】 (1)因为在(0,π)内终边在直线y =3x 上的角是π3,所以终边在直线y =3x 上的角的集合为⎩⎨⎧⎭⎬⎫α⎪⎪⎪α=π3+k π,k ∈Z . (2)由α是第三象限角,得π+2k π<α<3π2+2k π(k ∈Z ),所以2π+4k π<2α<3π+4k π(k ∈Z ).所以角2α的终边在第一、二象限及y 轴的非负半轴.在本例(2)的条件下,判断α2为第几象限角? 因为π+2k π<α<3π2+2k π(k ∈Z ),所以π2+k π<α2<3π4+k π(k ∈Z ).当k =2n (n ∈Z )时,π2+2n π<α2<3π4+2n π,当k =2n +1(n ∈Z )时,3π2+2n π<α2<7π4+2n π,所以α2为第二或第四象限角.1.在-720°~0°范围内找出所有与45°终边相同的角为________. 所有与45°有相同终边的角可表示为: β=45°+k ×360°(k ∈Z ), 则令-720°≤45°+k ×360°<0°,得-765°≤k ×360°<-45°,解得-765360≤k <-45360,从而k =-2或k =-1,代入得β=-675°或β=-315°. -675°或-315°2.若sin α·tan α<0,且cos αtan α<0,则α是第________象限角.由sin α·tan α<0可知sin α,tan α异号,从而α为第二或第三象限角;由cos αtan α<0,可知cos α,tan α异号,从而α为第三或第四象限角.综上,α为第三象限角.三扇形的弧长、面积公式已知扇形的圆心角是α ,半径为R ,弧长为l . (1)若α=60°,R =10 cm ,求扇形的弧长l ;(2)若扇形的周长为20 cm ,当扇形的圆心角α为多少弧度时,这个扇形的面积最大? 【解】 (1)α=60°=π3,l =10×π3=10π3(cm). (2)由已知得,l +2R =20,所以S =12lR =12(20-2R )R =10R -R 2=-(R -5)2+25,所以当R =5时,S 取得最大值25, 此时l =10 cm ,α=2 rad.弧度制下有关弧长、扇形面积问题的解题策略(1)明确弧度制下弧长公式l =|α|r ,扇形的面积公式是S =12lr =12|α|r 2(其中l 是扇形的弧长,α是扇形的圆心角).(2)求扇形面积的关键是求扇形的圆心角、半径、弧长三个量中的任意两个量. 运用弧度制下有关弧长、扇形面积公式的前提是角的度量单位为弧度制.1.在半径为8 cm 的圆中,5π3的圆心角所对的弧长是( ) A.400π3 cm B.20π3 cm C.200π3cm D.40π3cm D 扇形的弧长为l ,圆心角大小为α=5π3,半径为r =8 cm ,则l =αr =5π3×8=40π3(cm).2.已知扇形的周长是6,面积是2,则扇形的圆心角的弧度数是( ) A .1 B .4 C .1或4D .2或4C 设此扇形的半径为r ,弧长为l , 则⎩⎪⎨⎪⎧2r +l =6,12rl =2,解得⎩⎪⎨⎪⎧r =1,l =4或⎩⎪⎨⎪⎧r =2,l =2.从而α=l r =41=4或α=l r =22=1.三角函数的定义(高频考点)三角函数的定义是高考的常考内容,多以选择题、填空题的形式考查,难度较小,主要有以下三个命题角度:(1)根据三角函数的定义求三角函数值; (2)根据三角函数的定义求点的坐标;(3)判断三角函数值的符号.(1)若tan α>0,则( )A .sin α>0B .cos α>0C .sin 2α>0D .cos 2α>0(2)已知角θ的顶点与原点重合,始边与x 轴的非负半轴重合,终边在直线y =-2x 上,则cos 2θ=( )A .-45B .-35C.35D.45【解析】 (1)因为tan α>0,所以α∈⎝ ⎛⎭⎪⎫k π,k π+π2(k ∈Z )是第一、三象限角. 所以sin α,cos α都可正、可负,排除A ,B. 而2α∈(2k π,2k π+π)(k ∈Z ), 结合正、余弦函数图象可知,C 正确.取α=π4,则tan α=1>0,而cos 2α=0,故D 不正确.(2)取终边上一点(a ,-2a ),a ≠0,根据任意角的三角函数定义,由tan θ=-2,可得cos θ=±55,故cos 2θ=2cos 2θ-1=-35. 【答案】 (1)C (2)B用定义法求三角函数值的三种情况(1)已知角α终边上一点P 的坐标,可求角α的三角函数值.先求P 到原点的距离,再用三角函数的定义求解.(2)已知角α的某三角函数值,可求角α终边上一点P 的坐标中的参数值,可根据定义中的两个量列方程求参数值.(3)已知角α的终边所在的直线方程或角α的大小,根据三角函数的定义可求角α终边上某特定点的坐标.角度一 根据三角函数的定义求三角函数值1.设角α终边上一点P (-4a ,3a )(a <0),则sin α的值为________.设点P 与原点间的距离为r , 因为P (-4a ,3a ),a <0,所以r =(-4a )2+(3a )2=|5a |=-5a . 所以sin α=3a r =-35.故填-35.-35角度二 根据三角函数的定义求点的坐标2.设α是第二象限角,P (x ,4)为其终边上的一点,且cos α=15x ,则x =( )A .4B .-4C .3D .-3D 因为α是第二象限角,所以x <0. 又由题意知xx 2+16=15x ,解得x =-3.角度三 判断三角函数值的符号3.已知角α的终边经过点P (-3,m ),且sin α=34m (m ≠0),判断角α是第几象限角,并求tan α的值.依题意,点P 到原点O 的距离为r = (-3)2+m 2=3+m 2,所以sin α=m3+m2,又因为sin α=34m ,m ≠0,所以m 3+m2=34m , 所以m 2=73,所以m =±213. 所以点P 在第二或第三象限. 故角α 是第二象限角或第三象限角. 当α是第二象限角时,m =213,tan α=213-3=-73,当α 是第三象限角时,m =-213, tan α=-213-3=73.——三角函数定义下的创新(2017·南昌质检)如图所示,质点P 在半径为2的圆周上逆时针运动,其初始位置为P 0(2,-2),角速度为1,那么点P 到x 轴的距离d 关于时间t 的函数图象大致为( )【解析】 因为P 0(2,-2),所以∠P 0Ox =-π4.因为角速度为1,所以按逆时针旋转时间t 后,得∠POP 0=t ,所以∠POx =t -π4.由三角函数定义,知点P 的纵坐标为2sin ⎝ ⎛⎭⎪⎫t -π4,因此d =2⎪⎪⎪⎪⎪⎪sin ⎝⎛⎭⎪⎫t -π4.令t =0,则d =2⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫-π4= 2. 当t =π4时,d =0,故选C.【答案】 C(1)本题是三角函数与圆的结合,用时间t 表示角POx ,利用三角函数定义得出P点的纵坐标,从而得出d 和t 的关系,即可判断出结果,此类问题见证了数学中的“以静制动”.(2)近年来高考注重了由“静态数学”向“动态数学”的引导.一般以简单几何图形的平移、转动、滚动等形式,运用三角知识考查学生分析问题解决问题的能力.如图,设点A 是单位圆上的一定点,动点P 从A 出发在圆上按逆时针方向转一周,点P 所旋转过的弧AP ︵的长为l ,弦AP 的长为d ,则函数d =f (l )的图象大致为( )C 如图,取AP 的中点为D ,连接OD ,连接OP .设∠DOA =θ,则d =2sin θ,l =2θ,故d =2sin l2.1.将表的分针拨快10分钟,则分针旋转过程中形成的角的弧度数是( ) A.π3 B.π6C .-π3D .-π6C 将表的分针拨快应按顺时针方向旋转,为负角.故A 、B 不正确,又因为拨快10分钟,故应转过的角为圆周的16.即为-16×2π=-π3.2.下列与9π4的终边相同的角的表达式中正确的是( )A .2k π+45°(k∈Z )B .k ·360°+94π(k ∈Z )C .k ·360°-315°(k ∈Z )D .k π+5π4(k ∈Z ) C 与9π4的终边相同的角可以写成2k π+9π4(k ∈Z ),但是角度制与弧度制不能混用,所以只有答案C 正确.3.角α的终边过点P (3a ,4),若cos α=-35,则a 的值为( ) A .1B .-1C .±1D .±5 B x =3a ,y =4,r =9a 2+16,由cos α=-35得3a 9a 2+16=-35,且a <0. 解得a =-1.选B.4.若角α与β的终边相同,则角α-β的终边( )A .在x 轴的正半轴上B .在x 轴的负半轴上C .在y 轴的负半轴上D .在y 轴的正半轴上A 由于角α与β的终边相同,所以α=k ·360°+β(k ∈Z ),从而α-β=k·360°(k∈Z ),此时角α-β的终边在x 轴正半轴上.5.已知角α=2k π-π5(k ∈Z ),若角θ与角α的终边相同,则y =sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|的值为( ) A .1B .-1C .3D .-3B 由α=2k π-π5(k ∈Z )及终边相同的概念知,角α的终边在第四象限, 又角θ与角α的终边相同,所以角θ是第四象限角,所以sin θ<0,cos θ>0,tan θ<0.所以y =-1+1-1=-1.故选B.6.设θ是第三象限角,且|cos θ2|=-cos θ2,则θ2是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角B 由于θ是第三象限角,所以2k π+π<θ<2k π+3π2(k ∈Z ),k π+π2<θ2<k π+3π4(k ∈Z ); 又|cos θ2|=-cos θ2,所以cos θ2≤0,从而2k π+π2≤θ2≤2k π+3π2(k ∈Z ),综上可知2k π+π2<θ2<2k π+3π4(k ∈Z ),即θ2是第二象限角.7.如图所示,在平面直角坐标系xOy 中,角α的终边与单位圆交于点A ,点A 的纵坐标为45,则cos α=________. 因为A 点纵坐标y A =45,且A 点在第二象限,又因为圆O 为单位圆,所以A 点横坐标x A =-35,由三角函数的定义可得cos α=-35. -358.已知点P (sin θcos θ,2cos θ)位于第三象限,则角θ是第________象限角. 因为点P (sin θcos θ,2cos θ)位于第三象限,所以sin θcos θ<0,2cos θ<0,即⎩⎪⎨⎪⎧sin θ>0,cos θ<0,所以θ为第二象限角. 二9.在直角坐标系中,O 是原点,A (3,1),将点A 绕O 逆时针旋转90°到点B ,则点B 的坐标为________.依题意知OA =OB =2,∠AOx =30°,∠BOx =120°,设点B 的坐标为(x ,y ),则x =2cos 120°=-1,y =2sin 120°=3,即B (-1,3).(-1,3)10.已知x ∈R ,则使sin x >cos x 成立的x 的取值范围是________.在区间内,由三角函数线可知,当x ∈(π4,5π4)时,sin x >cos x ,所以使sin x >cos x 成立的x 的取值范围是(2k π+π4,2k π+5π4),k ∈Z . (2k π+π4,2k π+5π4),k ∈Z 11.已知角θ的终边上有一点P (x ,-1)(x ≠0),且tan θ=-x ,求sin θ+cos θ的值.因为θ的终边过点(x ,-1)(x ≠0),所以tan θ=-1x. 又tan θ=-x ,所以x 2=1,即x =±1.当x =1时,sin θ=-22,cos θ=22. 因此sin θ+cos θ=0;当x =-1时,sin θ=-22,cos θ=-22, 因此sin θ+cos θ=- 2.故sin θ+cos θ的值为0或- 2.12.已知半径为10的圆O 中,弦AB 的长为10.(1)求弦AB 所对的圆心角α的大小;(2)求α所在的扇形弧长l 及弧所在的弓形的面积S .(1)在△AOB 中,AB =OA =OB =10,所以△AOB 为等边三角形.因此弦AB 所对的圆心角α=π3. (2)由扇形的弧长与扇形面积公式,得l =α·R =π3×10=10π3, S 扇形=12R ·l =12α·R 2=50π3. 又S △AOB =12OA ·OB ·sin π3=25 3. 所以弓形的面积S =S 扇形-S △AOB =50(π3-32).。
最新-2018年高考数学试题分类汇编三角函数精品

(满
c2
a2
b2
2ab cosC
1 14 4
4
解:(Ⅰ)
4
c 2.
ABC 的周长为 a b c 1 2 2 5.
1 cosC , sin C
1 cos2 C
1
(
1 )
2
15 .
(Ⅱ)
4
4
4
15
a sin C sin A
4
15
c
2
8
a c, A C ,故 A 为锐角,
cos A
1 sin2 A
1 ( 15)2
)
解:( 1) 4
34 6
) 的值.
2sin
2
4
;
10 f3
1
2sin
3
2sin ,
( 2) 13
2
3
26
6
1
f (3 2 ) 2sin (3 2 )
2sin
5
3
6
5
3
sin
,cos
,
13
5
cos
1 sin 2
2
5
12
1
,
13 13
2
sin
1 cos2
3
4
1
,
5
5
2cos , 2
cos(
故
) cos cos sin sin
.
解:( I )设 l1 ,l 2 , ,l n 2 构成等比数列,其中 t1 1, tn 2 100, 则
Tn t1 t 2
tn 1 tn 2,
①
Tn tn 1 t n 2
t2 t1, ②
①×②并利用 t1tn 3 i t1t n 2 102 (1 i n 2), 得
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年高考数学分类汇编之三角函数和解三角形汇编(理)附详解 II
2018年高考数学分类汇编之三角函数和解三角形 一、选择题 1.【2018全国二卷6】在中,,,,则 A. B. C. D. 2.【2018全国二卷10】若在是减函数,则的最大值是 A. B. C. D. 3.【2018全国三卷4】若,则 A. B. C. D. 4.【2018全国三卷9】的内角的对边分别为,,,若的面积为, 则 A. B. C. D. 5.【2018北京卷7】在平面直角坐标系中,记d为点P(cosθ,sinθ)到直线20xmy的距离,
当θ,m变化时,d的最大值为 A. 1 B. 2 C. 3 D.4
6.【2018天津卷6】将函数sin(2)5yx的图象向右平移10个单位长度,所得图象对应的函数
A在区间35[,]44上单调递增 B在区间3[,]4上单调递减 C在区间53[,]42上单调递增 D在区间3[,2]2上单调递减 7.【2018浙江卷5】函数y=||2xsin2x的图象可能是
ABC△5cos25C1BC5ACAB
42302925()cossinfxxx[,]aaaπ4π23π
4π
1sin3cos2
8979798
9
ABC△ABC,,abc
ABC△
222
4abc
Cπ2π3π4π6 III IV
1.【2018全国一卷17】在平面四边形ABCD中,90ADC,45A,2AB,5BD. (1)求cosADB; (2)若22DC,求BC. 2.【2018北京卷15】在△ABC中,a=7,b=8,cosB=–17. (Ⅰ)求∠A; (Ⅱ)求AC边上的高.
3.【2018天津卷15】在ABC△中,内角A,B,C所对的边分别为a,b,c.已知sincos()6bAaB. (I)求角B的大小; (II)设a=2,c=3,求b和sin(2)AB的值.
4.【2018江苏卷16】已知,为锐角,4tan3,5cos()5. (1)求cos2的值; (2)求tan()的值.
5.【2018江苏卷17】某农场有一块农田,如图所示,它的边界由圆O的一段圆弧MPN(P为此圆弧的中点)和线段MN构成.已知圆O的半径为40米,点P到MN的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD,大棚Ⅱ内的地块形状为CDP△,要求,AB均在线段MN上,,CD均在圆弧上.设OC与MN所成的角为.
(1)用分别表示矩形ABCD和CDP△的面积,并确定sin的取值范围;
(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为43∶.求当为何值时,能使甲、乙两种蔬菜的年总产值最大. V
6.【2018浙江卷18】已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P(3455,-).
(Ⅰ)求sin(α+π)的值; (Ⅱ)若角β满足sin(α+β)=513,求cosβ的值.
7.【2018上海卷18】设常数aR,函数fx()xxa2cos22sin (1)若fx()为偶函数,求a的值;(2)若4f〔〕31,求方程12fx()在区间[,]上的解.
参考答案 一、选择题 1.A 2.A 3.B 4.C 5.C 6.A 7.D
二、填空题 1. 332 2. 3. 3 4.23 5.π6 6. 9 7.3721; 三.解答题 1.解:(1)在ABD△中,由正弦定理得sinsinBDABAADB. 由题设知,52sin45sinADB,所以2sin5ADB. 由题设知,90ADB,所以223cos1255ADB. (2)由题设及(1)知,2cossin5BDCADB.在BCD△中,由余弦定理得
12 VI
2222cosBCBDDCBDDCBDC
22582522525.
所以5BC. 2.解:(Ⅰ)在△ABC中,∵cosB=–17,∴B∈(π2,π),∴sinB=2431cos7B.
由正弦定理得sinsinabAB7sinA=8437,∴sinA=32.∵B∈(π2,π),∴A∈(0,π2),∴∠A=π3. (Ⅱ)在△ABC中,∵sinC=sin(A+B)=sinAcosB+sinBcosA=31143()2727=3314. 如图所示,在△ABC中,∵sinC=hBC,∴h=sinBCC=33337142,
∴AC边上的高为332. 3.解:在△ABC中,由正弦定理sinsinabAB,可得sinsinbAaB, 又由πsincos()6bAaB,得πsincos()6aBaB, 即πsincos()6BB,可得tan3B.又因为(0π)B,,可得B=π3. (Ⅱ)解:在△ABC中,由余弦定理及a=2,c=3,B=π3, 有2222cos7bacacB,故b=7.由πsincos()6bAaB,可得3sin7A. 因为a所以,sin(2)sin2coscos2sinABABAB4311333727214. VII
4.解:(1)因为,,所以. 因为,所以,因此,. (2)因为为锐角,所以. 又因为,所以,因此. 因为,所以, 因此,. 5.解:(1)连结PO并延长交MN于H,则PH⊥MN,所以OH=10. 过O作OE⊥BC于E,则OE∥MN,所以∠COE=θ, 故OE=40cosθ,EC=40sinθ,则矩形ABCD的面积为2×40cosθ(40sinθ+10)=800(4sinθcosθ+cosθ),
△CDP的面积为12×2×40cosθ(40–40sinθ)=1600(cosθ–sinθcosθ).
过N作GN⊥MN,分别交圆弧和OE的延长线于G和K,则GK=KN=10. 令∠GOK=θ0,则sinθ0=14,θ0∈(0,π6). 当θ∈[θ0,π2)时,才能作出满足条件的矩形ABCD, 所以sinθ的取值范围是[14,1). 答:矩形ABCD的面积为800(4sinθcosθ+cosθ)平方米,△CDP的面积为 1600(cosθ–sinθcosθ),sinθ的取值范围是[14,1). (2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3, 设甲的单位面积的年产值为4k,乙的单位面积的年产值为3k(k>0),
4tan3sintancos4sincos3
22sincos1
29cos252
7cos22cos125
,(0,π)5cos()5225sin()1cos()5tan()2
4tan322tan24tan21tan7
tan2tan()2tan()tan[2()]1+tan2tan()11
VIII
则年总产值为4k×800(4sinθcosθ+cosθ)+3k×1600(cosθ–sinθcosθ) =8000k(sinθcosθ+cosθ),θ∈[θ0,π2). 设f(θ)=sinθcosθ+cosθ,θ∈[θ0,π2), 则222()cossinsin(2sinsin1)(2sin1)(sin1)f′. 令()=0f′,得θ=π6, 当θ∈(θ0,π6)时,()>0f′,所以f(θ)为增函数; 当θ∈(π6,π2)时,()<0f′,所以f(θ)为减函数, 因此,当θ=π6时,f(θ)取到最大值. 答:当θ=π6时,能使甲、乙两种蔬菜的年总产值最大.[来源:学§科§网] 6.(Ⅰ)由角的终边过点34(,)55P得4sin5, 所以4sin(π)sin5.
(Ⅱ)由角的终边过点34(,)55P得3cos5, 由5sin()13得12cos()13.
由()得coscos()cossin()sin, 所以56cos65或16cos65.
7. 解:(1)11cos22sin)(2xxaxf=12cos2sinxxa, 1)2cos()2sin()(xxaxf12cos2sinxxa 当)(xf为偶函数时:)()(xfxf,则aa,解得0a。