金刚石合成理论及工艺

合集下载

金刚石工艺流程

金刚石工艺流程

金刚石工艺流程
《金刚石工艺流程》
金刚石是一种非常硬的材料,常被用于工业制造领域。

金刚石工艺流程是指将金刚石材料进行加工和制作的过程,通常包括原料选择、加工工艺、成型和抛光等步骤。

首先,原料选择是金刚石工艺流程中非常关键的一步。

金刚石材料通常以金刚石粉末或人工合成的金刚石晶粒为原料,这些原料需要经过严格的筛选和检查,以确保其质量和纯度符合加工要求。

接下来是加工工艺,这是将原料进行成型的过程。

金刚石材料的加工工艺通常包括静压成型、热压成型和晶粒涂覆等多种工艺方法,这些工艺能够使金刚石材料具有所需的硬度、密度和结构。

成型完成后,金刚石材料还需要进行抛光处理,以提高其表面光洁度和平整度。

抛光是通过采用金刚石抛光片等工具,对金刚石材料进行摩擦和磨削,使其表面光滑并具有一定的光泽度。

金刚石工艺流程虽然是一个复杂而精细的过程,但其制成的金刚石制品却在工业生产、科学研究等领域具有非常重要的应用价值,成为现代工业制造的关键材料之一。

金刚石合成的方法和特点

金刚石合成的方法和特点

金刚石合成的方法和特点
金刚石合成的方法和特点如下:
方法:
1.高温高压法(HTHP):以石墨粉、金属触媒粉末为原料,通过电流加热和液压装置建立高温、高压环境从而模拟天然金刚石结晶和生长环境,使石墨发生相变形成金刚石晶体。

2.化学气相沉积法(CVD):在常压下,采用各种CVD技术(如微波辅助型、热丝型和直流型),将含碳气体(如甲烷)等渗入金刚石膜中,形成金刚石晶体。

特点:
1.高温高压法具有制造成本低、生产效率高的特点,是我国人造金刚石主要生产方法,但传压介质和原辅材料里的杂质会不断进入金刚石晶体中,形成各种缺陷,纯度不够理想,无法满足下游半导体和光学领域应用的高纯度要求。

同时受六面顶压机设备体积限制,金刚石的有效生长空间很难突破100mm,金刚石的晶体尺寸提升空间有限。

2.化学气相沉积法可以合成高质量的金刚石薄膜和自支撑型厚膜,克服了高温高压法合成金刚石晶体过程中原辅材料杂质对产品纯度的影响,同时可实现大面积合成金刚石薄膜,拓展了金刚石应用范围。

人造金刚石简介演示

人造金刚石简介演示

寻找更高效的合成方法
目前,人造金刚石的主要生产方法是 通过高温高压合成法。未来,可以探 索新的合成方法,如化学气相沉积 (CVD)等,以提高生产效率和降低成 本。
开发多功能应用领域
目前,人造金刚石主要用于制造切削 工具和磨料等。未来,可以开发其在 光学、电子学、生物医学等领域的应 用潜力,拓宽其应用范围。
航空航天领域
1 2 3
涡轮叶片
人造金刚石的耐高温性能使其成为制造航空发动 机和燃气轮机中的涡轮叶片的理想材料。
表面涂层ห้องสมุดไป่ตู้
在航空航天领域,人造金刚石可以用于制备耐磨 、耐腐蚀和抗氧化涂层,以提高飞机和火箭部件 的性能和寿命。
切割工具
在航空航天领域,人造金刚石可用于制造切割工 具,如钻头和铣刀,用于加工各种高强度材料。
光学性能
折射率
人造金刚石具有高的折射率,使 其在光学应用中表现出色。
色散
人造金刚石具有高的色散,意味 着它们可以用于制造高清晰度的
光学元件。
透明度
虽然大多数常见的人造金刚石不 是完全透明的,但它们在某些波 段上具有良好的透光性,可以用 于制造特定波段透射的光学元件

05
人造金刚石的应用领域
工业领域
市场发展与竞争格局
全球市场增长趋势
随着科技的发展和应用的拓展,人造金刚石市场需求将持续增长。企业可以关注市场动态,抓住发展机遇。
国内企业竞争力提升
国内企业在人造金刚石领域具有较高的市场占有率,但与国际巨头相比,品牌影响力和技术水平仍有差距。国内 企业可以加大研发投入,提升产品品质和降低成本,提高市场竞争力。
的检测。
生产过程中的关键步骤和参数
合成反应
该步骤是整个生产过程中最为关键的 步骤之一,需要控制反应温度、压力 、催化剂等参数,以确保反应能够顺 利进行。

金刚石合成理论及工艺

金刚石合成理论及工艺

金刚石合成理论及工艺(总34页)本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March前言1.金刚石的性质和用途。

金刚石是一种在机械、热学、光学、化学、电子学等方面具有极限性能的特殊材料。

图1为金刚石的空间晶格的一个晶胞。

与其他材料相比,金刚石具有最大的原子密度(176 atoms/nm3),最大可能的单位原子共价键数目(4),极强的原子键合能(7.4eV)。

这使得金刚石具有许多极限性质:最高硬度,最高热导率,最高传声速度,最宽透光波段,抗强酸强碱腐蚀,抗辐射,击穿电压高,介电常数小,载流子迁移率大,既是电的绝缘体,又是热的良导体,而掺杂后又可成为卓越的P型或N型半导体。

人造金刚石的应用领域十分广泛,几乎涉及国计民生的各个领域,小到家庭装修,大到微电子及航空航天等高技术领域。

金刚石的推广应用在光学玻璃冷加工、地质钻探、陶瓷、汽车零件等机械加工,金属拉丝等方面引起了个革命性的工艺改革。

表1列出了金刚石的一些极限性能和用途。

表1 金刚石的一些极限性能和用途性能应用机械硬度(kg/mm2)金刚石 5700~10400cBN 4700用于所有非金属材料的超硬磨料图1 立方金刚石的晶胞空间结构示意图2.人造金刚石合成的历史由于金刚石的优越性质,长期以来它一直成为人们感兴趣的研究对象。

早在1772年,法国化学家Antoine L. Lavoisier发现金刚石燃烧的产物是CO2,1792年,S. Tennan发现金刚石是碳的一种结晶形态。

从此,人类开始了对人工合成金刚石的探索。

1880年,J. B.Hanney从锂、骨粉和矿物油在干燥的铁管中加热合成了金刚石,现陈列于大英博物馆。

1893年,诺贝尔奖获得者Henry Moissan发展了一种方法,用电加热炉加热糖、木炭和铁至熔融,然后用水急冷做了合成金刚石的尝试,后来经证实并未获得成功。

金刚石的人工合成

金刚石的人工合成

金刚石的人工合成摘要:简要介绍了常见的人工合成金刚石技术,以及合成过程中的一些影响因素。

关键词:金刚石人工合成合成工艺影响因素前言金刚石是一种稀有、贵重的非金属矿产,在国民经济中具有重要的作用。

为满足工业上的需求和缓解金刚石日益匮乏的现状,人类已经在合成金刚石方面作了许多的探索,并取得了许多有实用价值的阶段性成果。

金刚石中宝石级金刚石因其折射率大,在光下有火彩现象而用来制作精美的首饰。

人造金刚石具有诸多优异特性,已被广泛地应用于工业、科技、国防、医疗卫生等很多领域。

例如:利用金刚石硬度大制作精细研磨材料、高硬切割工具、各类钻头、拉丝模,还被作为很多精密仪器的部件;由于导热率高、电绝缘性好,可作为半导体装置的散热板。

因此,人造金刚石被誉为“21世纪的战略性材料”。

因此对于人造金刚石的合成的研究具有非常重要的意义[1].金刚石的人工合成工艺金刚石、石墨及无定型碳都是由纯碳元素组成,合成钻石就是人为地模拟天然钻石的形成条件,将其他晶体结构的碳质材料在一定条件下转化为具有SP3 共价键的金刚石型晶体结构。

从理论上讲,各种形式的碳均可以转化为金刚石,但研究表明,不同的碳素材料对生长金刚石的数量、质量和颗粒大小均有相当大的影响,石墨转化为金刚石的自由能较低,因此石墨是合成钻石的最主要原料之一。

目前,人类已掌握了多种合成钻石方法。

人造金刚石的合成技术形成了静态高温高压法、动态超高压高温合成法、低压气相沉积法等[2]。

一般石墨在10GPa、3000℃左右可以转变成金刚石,如果加有金属触媒则所需要的条件将大为降低,通常在压力约为5.4GPa和温度约为1400℃的条件下就能发生转化。

常用的方法为合成条件较低的添加触媒催化的高温高压合成,即静态高温高压法。

这种方法中有生长磨料级金同q石(粒径小于1B)的膜生长法和合成宝石级金刚石(粒径大于lmm)的温度梯度法。

(1)膜生长法(FGM)金刚石膜生长法就是指在有金属触媒的参与下,石墨通过高温高压的作用透过金属膜沉积在金刚石核上使之长大[3]。

金刚石的合成机理

金刚石的合成机理

两合成片中间的石墨 a 合成温度稍低,大的片状 b 合成温度适中,适中片状 c 合成温度稍高,细小片状
3.催化剂合金中碳的浓度梯度

石墨电阻 0.1Ω•cm,合金电阻 10-6 Ω•cm 石墨是发热体,石墨局部温度高于合金片 温度,局部的温度梯度 在石墨和合金的界面有温度陡降,这导致 在合金中碳的浓度梯度。 M C
3.靠近金属膜的石墨形貌


高温高压下石墨相变成金刚石的过程中, 实验现象之一是:金刚石晶体外面有一层 厚度为几微米的金属膜,石墨通过金属膜 长到金刚石晶体上。 将金刚石去掉,金属膜用HNO3腐蚀掉,露 出靠近金属膜石墨形貌,如图。
靠近金属膜的石墨的形貌 a 靠近金属膜的石墨 b、 c、 d 是该石墨的逐渐放大像
区分:

高温高压下石墨在熔化的合金中再结晶的 形态

石墨在熔化合金中呈原子分散态,或很小 的碳原子集团的分布态,在合金冷却后, 由于碳过饱和结晶而析出的石墨形态。过 饱和析出的石墨呈单个球形。
合金中渗碳后的碳化物形貌 a 类奥氏体 b 类莱氏体
高温高压卸压后导致合金冷凝,石墨析出并结晶成球形, 生长位置在合金中靠近碳化物处,属温度较低位置
第五节 液晶态逐层转化说

自学
第六节 石墨再结晶与金刚石生 长
1. 2. 3. 4.
高温高压条件下石墨的再结晶 温度、压力对结晶石墨的影响 石墨-合金界面 金刚石的石墨再结晶生长模式
一、 高温高压条件下石墨的再结晶
1. 2. 3. 4.
多晶石墨的微结构 石墨未进入催化剂中的再结晶 催化剂合金中碳的浓度梯度 多晶石墨在催化剂合金内的再结晶
μ3
化 学 位
μ2
造成过饱和的原因是石 墨与金刚石在热力学上 的势差。解释如下:

高温高压合成金刚石的工艺

高温高压合成金刚石的工艺

高温高压合成金刚石的工艺高温高压合成金刚石的工艺引言:金刚石是一种非常重要且广泛应用的超硬材料,具有出色的物理和化学性质。

高温高压合成金刚石工艺是目前制备金刚石的主要方法之一。

本文将介绍高温高压合成金刚石的基本原理、工艺流程以及对其进行的改进。

一、高温高压合成金刚石的基本原理高温高压合成金刚石是利用静压装置和高温炉对碳源和金属催化剂进行加热和压制,通过超高压和高温下,使碳与金属反应从而形成金刚石。

该过程主要依靠碳源的高温高压下的热学和动力学条件以及金属催化剂的催化作用。

二、高温高压合成金刚石的工艺流程1. 材料准备:准备金刚石合成所需的原料,主要包括碳源(例如石墨)、金属催化剂(如铁、钴)以及溶剂(如钴、霓虹气体)等。

2. 压制装备搭建:搭建静压装置,将所需材料置于高压容器中,并将容器密封。

3. 进行高温高压处理:通过扩散法和液相法制备金刚石,利用高温高压,将碳和金属催化剂反应生成金刚石。

4. 降温和压力释放:待金刚石合成完成后,将高温高压装置自然冷却,降温至室温,并释放容器内部压力。

5. 金刚石材料处理与加工:取出合成的金刚石材料,进行后续的形状修整、切割、抛光等处理。

三、高温高压合成金刚石的工艺改进1. 压制条件优化:通过改变压力、温度、时间等参数,优化合成金刚石的质量和产率。

2. 添加助熔剂:在高温高压过程中,添加助熔剂可以降低石墨结构中的晶界能量,从而促进金刚石的形成。

3. 催化剂设计:改进金属催化剂的种类和组成,提高合成金刚石的效率和质量。

4. 新型杂质控制:通过控制合成过程中的杂质含量和分布,减少合成金刚石中的缺陷和不纯物质。

5. 辅助技术应用:引入电磁场、超声波等辅助技术,提高金刚石合成的效果和速度。

四、高温高压合成金刚石的应用1. 工具领域:高速切削工具、磨料、磨具等。

2. 光学领域:窗口材料、透镜、激光器元件等。

3. 电子领域:半导体材料、电子器件、芯片加工等。

4. 超硬材料领域:用于加工高硬度材料的切削工具、磨料工具等。

金刚石工艺流程

金刚石工艺流程

金刚石工艺流程金刚石是一种非常硬的材料,被广泛用于工业领域的切割、打磨和抛光等工艺。

金刚石工艺流程是将金刚石原料加工成最终产品的过程,包括原料选购、切割、成型、加工和抛光等步骤。

首先,金刚石工艺的第一步是原料选购。

金刚石原料通常是由天然金刚石矿石经过加工而得,或者是合成金刚石。

选购原料时,需要根据产品的要求选择相应的原料,比如要确定金刚石颗粒的大小、形状和质量等。

接下来是切割和成型的步骤。

首先,将选购好的金刚石原料根据需要进行切割,得到所需尺寸的块状材料。

然后,使用专业的成型工具和设备,对金刚石材料进行成型,将其打磨成特定的形状和尺寸。

这一步需要高度的技术和经验,以确保金刚石的精度和质量。

接下来是加工的步骤。

加工是指对金刚石进行切削或磨削,使其达到特定的平整度和光洁度。

这一步通常使用专业的金刚石刀具或磨具,与金刚石材料相互摩擦,通过高速旋转或线性运动来实现加工作用。

加工过程中,需要根据不同的加工要求和金刚石材料的硬度来调整加工参数和加工时间,以获得理想的加工效果。

最后,是抛光步骤。

抛光是为了使金刚石表面更加光滑、平整和美观。

通过使用特殊的抛光工具和材料,可以将金刚石表面的微小瑕疵或不平整处进行修复和处理,使其达到最终的要求。

抛光的过程需要耗费较长的时间和精力,以确保金刚石表面的质量和光洁度。

总结起来,金刚石工艺流程包括原料选购、切割、成型、加工和抛光等步骤。

这些步骤需要高度的技术和经验,以确保金刚石制品的质量和性能。

金刚石工艺的发展不仅推动了工业生产的进步,也为各行各业提供了更好的材料和工具。

随着技术的不断进步,金刚石工艺也在不断发展,为更多的应用领域提供了更多的可能性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

前言1.金刚石的性质和用途。

金刚石是一种在机械、热学、光学、化学、电子学等方面具有极限性能的特殊材料。

图1为金刚石的空间晶格的一个晶胞。

与其他材料相比,金刚石具有最大的原子密度(176 atoms/nm3),最大可能的单位原子共价键数目(4),极强的原子键合能(7.4eV)。

这使得金刚石具有许多极限性质:最高硬度,最高热导率,最高传声速度,最宽透光波段,抗强酸强碱腐蚀,抗辐射,击穿电压高,介电常数小,载流子迁移率大,既是电的绝缘体,又是热的良导体,而掺杂后又可成为卓越的P型或N型半导体。

人造金刚石的应用领域十分广泛,几乎涉及国计民生的各个领域,小到家庭装修,大到微电子及航空航天等高技术领域。

金刚石的推广应用在光学玻璃冷加工、地质钻探、瓷、汽车零件等机械加工,金属拉丝等方面引起了个革命性的工艺改革。

表1列出了金刚石的一些极限性能和用途。

表1 金刚石的一些极限性能和用途性能应用机械硬度(kg/mm2)金刚石 5700~10400cBN 4700SiC 1875~3980用于所有非金属材料的超硬磨料图1 立方金刚石的晶胞空间结构示意图2.人造金刚石合成的历史由于金刚石的优越性质,长期以来它一直成为人们感兴趣的研究对象。

早在1772年,法国化学家Antoine L. Lavoisier发现金刚石燃烧的产物是CO2,1792年,S. Tennan发现金刚石是碳的一种结晶形态。

从此,人类开始了对人工合成金刚石的探索。

1880年,J. B.Hanney从锂、骨粉和矿物油在干燥的铁管中加热合成了金刚石,现列于大英博物馆。

1893年,诺贝尔奖获得者Henry Moissan 发展了一种方法,用电加热炉加热糖、木炭和铁至熔融,然后用水急冷做了合成金刚石的尝试,后来经证实并未获得成功。

二十世纪四十年代,另一个诺贝尔奖获得者哈佛大学的Percy Bridgman设计了许多优秀的高压设备(有的压力超过了5GPa),并指出可以用电加热结合高压来合成高质量金刚石。

虽然因为没有使用触媒导致未能合成金刚石,但是他的热力学的计算为高温高压(HTHP)合成金刚石提供了理论依据。

1953年2月15日瑞典ASEA(General Electric Company of Sweden)的科学家宣称合成出人造金刚石,但由于其工作没有正式发表,没能获得广泛的承认,他们使用的是六面顶压机,样品由Fe3C和石墨组成。

人类首次真正合成金刚石是1954年12月16日美国GE公司的H.T.Hall, F.P.Bundy, H.M.Strong, R.H.Wentorf四位科学家率先完成,他们使用两面顶压机合成了金刚石,样品由FeS和石墨组成。

GE公司的科学家继续研究使用金属触媒合成金刚石,金属触媒主要由九种Ⅷa族原子(Fe,Co,Ni,Ru,Th,Pd,Os,Ir,Pt)和三种过渡族金属(Mn,Cr,Ta)。

1961年,有人使用爆炸法使石墨直接转换成金刚石,1963年,GE公司首次在静态高压12Gpa下不使用任何触媒把石墨直接合成了金刚石。

1970年,GE公司的Strong和Wentorf首次合成出了宝石级大颗粒金刚石,压力和温度得到了精确的控制,碳源使用小颗粒金刚石晶体以防止石墨金刚石转化中的压力降低,晶种放在热区使碳源扩散到冷区形成新的金刚石核。

继美国、瑞典、前联和日本之后,我国在1963年成功地合成出了人造金刚石,成为早期能够合成金刚石的少数国家之一。

目前,磨料级金刚石的生产已经形成为一个庞大的产业,我国金刚石的生产总量已经超过世界其他国家的生产总和。

在低压合成金刚石方面,碳化物联合公司(Union Carbide Corp.)的W.G.Eversole于1952-1953年在低压下在金刚石籽晶上成功地生长了金刚石,并得到了重复结果。

几乎同时,瑞典人H.Liander于1953年合成了低压金刚石。

自 1956 年起,联人 B.Deryagin在低压合成金刚石方面进行了长期大量的工作。

开始于1974年的日本国立无机材料研究所的亚稳态金刚石生长研究开辟了金刚石低压合成的新时代。

其主要人员有N.Setaka、S.Matsumoto、M.Kamo、Y.Sato等。

自1982年始,他们发表了一系列文章,报道了用微波等离子体法(MPCVD)、直流放电等离子体法(dc-PACVD)、射频辉光放电等离子体法(rf-PACVD)和热丝分解气体法(HFCVD)合成金刚石,速率达几μm/h,而且不需用金刚石籽晶;其反应气体由碳氢化合物及过量的氢气组成,并强烈依赖原子氢的产生。

这使得金刚石薄膜的制备技术进入了一个新阶段,并开始了金刚石作为功能性新材料应用的新时期。

3.人造金刚石的主要合成方法。

人造金刚石的合成方法有高压高温法和低压法,高压高温法分为间接静压法和直接动态法,低压法包括气象沉积法或亚稳定生长法。

其中间接静压法是一项成熟的制造技术,大约有90%的工业用金刚石采用这种方法合成,因为这种方法能够保证产品有可重复的尺寸、形状和韧性(或脆性)。

高压高温间接静压法合成金刚石用的触媒在形态上有两种,一种是片状触媒,一种是粉末触媒,它们与石墨碳源的形态相匹配。

使用片状触媒,相应的石墨也制成片状。

粉状触媒适用的石墨也是粉状的,二者经充分混合,压制成型后进行高压高温之合成。

4.金刚石中氮元素的存在状态。

由于碳、氮原子半径极为相近,所以氮很容易占据金刚石的晶体格点位置,取代碳原子,形成色心,所以大多数人造金刚石显黄色。

根据氮原子在金刚石中含量和取代形式,把金刚石分为:1)Ia型金刚石氮以聚集态形式存在。

大部分(98%)天然金刚石都属于Ia型。

根据氮的取代位置不同又分为:IaA型:金刚石中氮杂质主要以替代式原子对存在;IaB型:金刚石中氮杂质四面体形式存在;2)Ib型:氮杂质以单一替代原子形式存在,金刚石含弥散的氮,呈黄色,人造金刚石主要属于此类。

3)IIa型:含极微量的氮4)IIb型:含硼。

5.氮元素对金刚石的影响和引入意义。

金刚石中氮是最常见的微量杂质,而氮杂质作为天然金刚石和人造金刚石中的最主要的缺陷,直接决定着金刚石的大多光学性质,并对晶体本身的热学,电学和机械性质也有重要影响,从而影响到金刚石在工业发展和科学技术中的潜在用途。

在天然金刚石和高温高压合成金刚石中,杂质氮在晶格中的存在状态有明显不同,所以它们的某些物理化学性质也有较大差异,尤其是在颜色,硬度,热导率等方面差别显著,在天然金刚石合成机理方面,还存在一些争议,而对杂质氮更深层次的研究会有助于理解天然金刚石的合成机理。

在天然金刚石中,氮含量从小于1ppm到几千ppm之间都会存在,目前已知氮杂质最高含量可达3000~5000ppm,而用金属触媒人工合成出的金刚石中,杂质氮的最高含量大约800ppm。

H.Kanda 等在1999年利用非金属触媒硫酸钠在7.7GPa,2000℃合成出IaA 型金刚石,其氮含量在1200~1900ppm,这在当时是人工合成的含氮量最高的金刚石。

到2002年,Y.Borzdov 等利用非金属触媒Fe 3N 在7GPa,1550~1850℃合成出IaA/Ib 混合型金刚石,氮含量在3300ppm 左右,已经接近自然界氮含量最高的天然金刚石。

第一章 金刚石合成的溶剂理论自美国G.E.公司的科学家于1955年首次用金属催化剂与石墨在高温高压条件下(溶剂法)成功地合成出金刚石以来,人们又相继找到了一些其他的金刚石合成方法,如:爆炸法、气相合成等方法。

在经历了近半个世纪的关于金刚石合成的研究与探索中,人们发现:能够成功地造福于人类、可以进行大规模工业化生产的金刚石合成方法仍然是G.E.公司早期发明的溶剂法。

因此,有必要深入地研究溶剂法的合成机理,加深理论认识,以便进一步指导具体的生产实践。

在解释石墨如何向金刚石转化的机理问题中,曾出现过很多的理论。

其中具有代表性的有结构对应原理和溶剂理论。

由于溶剂说可以成功地解释为什么石墨在高温高压条件下的熔融金属中可以实现向金刚石的转化、金刚石的成核与生长等诸多的其他理论难以统一解释的机理性问题,因此溶剂学说在国际上获得了普遍的认可与接受。

1.1纯碳素体系中的石墨和金刚石的相平衡金刚石与石墨是碳的同素异形体, 常压下石墨是稳定相(图-1.1)。

根据热力学理论,相的稳定与否可以由其所处的化学势的高低予以判定,处于化学势低的相是稳定相。

在碳的P-T 相图(图-1.1)的不同区域,金刚石与石墨的化学势成如下关系:d g c c μμ<(D 区) (1)d g c c μμ>(G 区) (2)d g c c μμ= (两相交界线) (3)(1)-(3)式表明,在石墨与金刚石两相平衡的条件下,石墨的化学势g c μ和金刚石的化学势d c μ相等,不存在相变的驱动力;在偏离平衡的条件、存在化学势差时,化学势高的相向化学势低的相转化。

石墨向金刚石转化的驱动力可由金刚石与石墨的化学势差表示为:(,)(,)(,)d g cc T P T P T P μμμ∆=- (4)''0(,)(,0)(,)PT P T T P dP μμυ∆=∆+∆⎰………………………….(5) (,)(,)(,)d g c c T P T P T P υυυ∆=-…………….………………….(6) (,),(,)d g c c T P T P μμ分别为金刚石和石墨的化学势。

(5)式表明,即使常压下石墨是稳定相((,0)0T μ∆>),由于(,0)0T υ∆< (常压下石墨和金刚石的摩尔体积分别为5.3 cm 3/ mol 和3.4 cm 3/mol)。

在足够高的压力和温度条件下可使(,)0T P μ∆<,发生石墨向金刚石的转化。

在平衡条件附近,(5)式可改写为'''(,)(,)(,)()eo Peo P T P T P dP T P P P μυυ∆=∆=∆-⎰…………………….(7) eo P 表示平衡压力,eo P P P δ=-被称之为过剩压力。

即:石墨向金刚石转化的驱动力与过剩压成正比。

经过计算可知,在1500-2000K 的温度围,平衡压力与温度成如下关系:0.0032()eo P T GPa = (8)图-1.1 碳素的P-T 相图1.2溶剂-碳素系中的石墨和金刚石的平衡当今金刚石的工业化生产仍然依靠的是溶剂法。

Ni 及其它的3d 族金属或者由它们构成的合金,在高温高压条件下与碳素共融、形成溶解碳素的溶液。

在溶液-碳素系中,相平衡关系可以表示为公式(9)的形式。

d l g c c c μμμ== (9)其中,l c μ为溶液中碳素的化学势。

Strong 和Hanneman 出色地论证了Ni 作为溶剂存在时碳素的平衡问题。

相关文档
最新文档