高中数学 3.1.4课时同步练习 新人教A版选修2-1
新课标高中数学人教A版选修2-1全册配套完整教学课件

数学理论:否命题与逆否命题的知识
即在两个命题中,一个命题的条件和结 论分别是另一个命题的条件的否定和结 论的否定,这样的两个命题就叫做互否 命题,若把其中一个命题叫做原命题, 则另一个就叫做原命题的否命题.
否命题⑶同位角不相等,两直线不平行;
逆否命题 ⑷两直线不平行,同位角不相等.
数学理论:原命题与逆否命题的知识
问题1:下面的语句的表述形式有什么 特点?你能判断它们的真假吗? (1)若xy=1,则x、y互为倒数 ; (2)相似三角形的周长相等; (3)2+4=5 ; (4)如果b≤-1,那么x2-2bx+b2+b=0方程有实根;
(5)若A∪B=B,则 A B (6)3不能被2整除 .
我们把用语言、符号或式子表达的, 可以判断真假的陈述句称为命题.
(4)两个内角等于 45 的三角形是等腰直角三
角形.
3.设原命题:当c>0时,若a>b,则ac>bc;
写出它的逆命题、否命题与逆否命题,并分 别判断它们的真假.
小结.
本节重点研究了四种命题的概念与表示形式, 即如果原命题为:若p则q,则它的逆命题为: 若q则p,即交换原命题的条件和结论即得其逆 命题;否命题为:若p则q,即同时否定原命题 的条件和结论,即得其否命题;逆否命题为: 若q则p,即交换原命题的条件和结论,并且同 时否定,即得其逆否题;
两个互为逆否的命题同真或同假
四种命题
一.四种命题的概念
1.知识回顾
(1)同位角相等 , 两直线平行。 (2)两直线平行 , 同位角相等。 (3)同位角不相等,两直线不平行 (4)两直线不平行,同位角不相等
原命题 逆命题 否命题 逆否命题
请观察上面命题中条件和结论与命题(1)中的 条件和结论有什么区别?
人教A版高中数学选修第一册同步练习3.1.1 椭圆及其标准方程-B提高练(详细解析版)

3.1.1 椭圆的标准方程 -B 提高练一、选择题1.(202010=的化简结果为( )A .2212516x y +=B .2212516y x +=C .221259x y +=D .221259y x +=【正确答案】D10=,所以其几何意义是动点(),x y 到点()0,4-和点()0,4的距离之和等于10,符合椭圆的定义. 点()0,4-和点()0,4是椭圆的两个焦点.因此可得椭圆标准方程()222210y x a b a b +=>>,其中210a =,所以5a =,4c =,所以3b ==,所以曲线方程的化简结果为221259y x +=.故选D 项.2.如果方程x 24-m +y 2m -3=1表示焦点在y 轴上的椭圆,则m 的取值范围是( ) A.(3,4) B.(72,+∞) C.(3,72)D.(72,4)【正确答案】D【详细解析】因为方程x 24-m +y 2m -3=1表示焦点在y 轴上的椭圆,所以4-m>0,m -3>0且m -3>4-m , 解得72<m<4.3.(2020全国高二课时练习)“15m <<”是“方程22215x y m m+=--表示椭圆”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【正确答案】B【详细解析】若方程表示椭圆,则有10,50,15,m m m ->⎧⎪->⎨⎪-≠-⎩因此15m <<且3m ≠,故“15m <<”是“方程22215x y m m+=--表示椭圆”的必要不充分条件.故选:B4.(2020·东辽县第一高级中学校高二期中)已知在ABC ∆中,点()2,0A -,点()2,0B ,若tan tan 2CAB CBA ∠⋅∠=,则点C 的轨迹方程为( )A .22148x y +=B .22148x y +=(2x ≠±)C .22148x y -=D .22184x y +=(2x ≠±)【正确答案】B【详细解析】设(),C x y 由两点间斜率公式可得,22CA CB y yk k x x ==+- 由斜率与倾斜角关系,结合tan tan 2CAB CBA ∠⋅∠=可得222y y x x ⎛⎫⨯-= ⎪+-⎝⎭,变形可得22148x y +=,当2x =±时,C 与A 或B 重合,不合题意所以点C 的轨迹方程为22148x y +=(2x ≠±)故选:B5.(多选题)已知P 是椭圆22194x y +=上一点,椭圆的左、右焦点分别为12,F F ,且121cos 3F PF ∠=,则( )A .12PF F △的周长为12B .12PF F S ∆=C .点P 到xD .122PF PF ⋅= 【正确答案】BCD【详细解析】由椭圆方程知3,2a b ==,所以c =所以126PF PF +=,于是12PF F △的周长为226a c +=+,故A 选项错误;在12PF F △中,由余弦定理可得 222121212122cos F F PF PF PF PF F PF =+-∠()21212121222cos PF PF PF PF PF PF F PF =+--⋅∠,所以20=121223623PF PF PF PF -⋅-,解得126PF PF =,故1212121sin 2PF F S PF PF F PF =∠=162⨯=故B 选项正确;设点P 到x 轴的距离为d ,则121212PF F S F F d =⋅=12⨯=所以d =故C 选项正确;121212||||cos PF PF PF PF F PF ⋅=⋅∠=1623⨯=,故D 选项正确.故选:BCD.6.(多选题)设P 是椭圆C :x 22+y 2=1上任意一点,F 1,F 2是椭圆C 的左、右焦点,则( )A.|PF 1|+|PF 2|=2√2B.-2<|PF 1|-|PF 2|<2C.1≤|PF 1|·|PF 2|≤2D.0≤PF 1⃗⃗⃗⃗⃗⃗⃗ ·PF 2⃗⃗⃗⃗⃗⃗⃗ ≤1 【正确答案】ACD【详细解析】椭圆C :x 22+y 2=1,可得a=√2,b=c=1,P 是椭圆C :x 22+y 2=1上任意一点,F 1,F 2是椭圆C 的左、右焦点,所以|PF 1|+|PF 2|=2√2,A 正确;-2≤|PF 1|-|PF 2|≤2,所以B 错误; 设P 点坐标为(√2cos θ,sin θ),则|PF 1|·|PF 2|=√(√2cosθ-1)2+sin 2θ·√(√2cosθ+1)2+sin 2θ=√2+cos 2θ-2√2cosθ·√2+cos 2θ+2√2cosθ=√(2+cos 2θ)2-8cos 2θ=2-cos 2θ∈[1,2],所以C 正确;因为PF 1⃗⃗⃗⃗⃗⃗⃗ ·PF 2⃗⃗⃗⃗⃗⃗⃗ =(√2cos θ+1,sin θ)·(√2cos θ-1,sin θ)=2cos 2θ-1+sin 2θ=cos 2θ∈[0,1],所以D 正确.二、填空题7.(2020怀仁市高二月考)在平面直角坐标系xOy 中,已知ABC 顶点(3,0)A -和(3,0)C ,顶点B 在椭圆2212516x y +=上,则sin sin 2sin A C B+=_ _. 【正确答案】56【详细解析】由椭圆方程得:5a =,4b =,3c =.三角形ABC 顶点(3,0)A -和(3,0)C ,顶点B 在椭圆2212516x y +=上,210BC AB a ∴+==,∴由正弦定理可知sin sin 252sin 246A C BC BA a B AC c ++=== 8. (2020·九江市第三中学期中)已知圆221:(2)36F x y ++=,定点2(20)F ,,A 是圆1F 上的一动点,线段2F A 的垂直平分线交半径1F A 于P 点,则P 点的轨迹C 的方程是_ _.【正确答案】22195x y +=【详细解析】由已知,得2PF |PA |=,所以2111PF PF PA PF FA 6,+=+==又12FF 4,46=<,根据椭圆的定义,点P 的轨迹是12F F ,为焦点,以6为实轴长的椭圆,所以26a =,24c =,所以5b =,所以点P 的轨迹方程为:22195x y +=.9.(2020全国高二课时练)如图把椭圆2212516x y +=的长轴AB 分成8等分,过每个分点作x 轴的垂线交椭圆的上半部分于P 1,P 2,…,P 7七个点,F 是椭圆的焦点,则|P 1F|+|P 2F|+…+|P 7F|= .【正确答案】35【详细解析】由已知得5a =,如图,E 是椭圆的右焦点,由椭圆的对称性知17FP EP =,26FP EP =,35FP EP =,又45FP =,∴1234567FPFP FP FP FP FP FP ++++++7655675EP EP EP FP FP FP =++++++222535a a a =+++=.故正确答案为35.10.(2020·宁夏银川一中期中)已知椭圆C 的焦点为()11,0F -,()21,0F ,过2F 的直线与C 交于A ,B 两点.若2232AF BF =,122BF BF =,则椭圆C 的方程为 . 【正确答案】22154x y +=【详细解析】设2||2BF m =,则2||3AF m =,1||4BF m =,由椭圆定义知1212||||||||6BF BF AF AF m +=+=,所以1||633AF m m m =-=,所以12||||AF AF =,故点A 为椭圆的上(下)顶点,设()0,A b ±,由2232AF F B =,得52,33B b ⎛⎫± ⎪⎝⎭,点B 在椭圆上,故222254991b a b +=,解得25a =,又由1c =,可得2b =,故椭圆方程为22154x y +=.三、解答题11.(2020全国高二课时练)(2020全国高二课时练)已知椭圆M 与椭圆N :x 216+y 212=1有相同的焦点,且椭圆M 过点(-1,2√55). (1)求椭圆M 的标准方程;(2)设椭圆M 的左、右焦点分别为F 1,F 2,点P 在椭圆M 上,且△PF 1F 2的面积为1,求点P 的坐标. 【详细解析】 (1)由题意,知椭圆N 的焦点为(-2,0),(2,0),设椭圆M 的方程为x 2a 2+y 2b 2=1(a>b>0), 则{a 2-b 2=4,1a 2+45b 2=1,化简并整理得5b 4+11b 2-16=0, 故b 2=1或b 2=-165(舍),a 2=5, 故椭圆M 的标准方程为x 25+y 2=1.(2)由(1)知F 1(-2,0),F 2(2,0),设P (x 0,y 0),则△PF 1F 2的面积为12×4×|y 0|=1,得y 0=±12. 又x 025+y 02=1,所以x 02=154,x 0=±√152, 所以点P 有4个,它们的坐标分别为(√152,12),(-√152,12),(√152,-12),(-√152,-12). 12.如图,椭圆C :x 2a2+y 2b 2=1(a>b>0)经过点M (43,13),且点M 到椭圆的两焦点的距离之和为2√2.(1)求椭圆C 的标准方程;(2)若R ,S 是椭圆C 上的两个点,线段RS 的中垂线l 的斜率为12且直线l 与RS 交于点P ,O 为坐标原点,求证:P ,O ,M 三点共线.【详细解析】(1)∵点M 到椭圆的两焦点的距离之和为2√2,∴2a=2√2,解得a=√2.又椭圆C 经过点M (43,13), ∴(43)2a 2+(13)2b 2=1,解得b 2=1.∴椭圆C 的标准方程为x 22+y 2=1.(2)∵线段RS的中垂线l的斜率为12,∴直线RS的斜率为-2,∴可设直线RS的方程为y=-2x+m.联立{y=-2x+m,x22+y2=1,得9x2-8mx+2m2-2=0.设点R(x1,y1),S(x2,y2),P(x0,y0),∴x1+x2=8m9,y1+y2=-2x1+m-2x2+m=-2(x1+x2)+2m=-2·8m9+2m=2m9,则x0=x1+x22=4m9,y0=y1+y22=m9.∵y0x0=14,∴y0=14x0,∴点P在直线y=14x上,又点O(0,0),M(43,13)也在直线y=14x上,∴P,O,M三点共线.。
人教A版高中数学选修2-1 1.2课时同步练习 习题(含解析)

第1章 1.2一、选择题(每小题5分,共20分)1.“|x |=|y |”是“x =y ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析: |x |=|y |⇒x =y 或x =-y ,但x =y ⇒|x |=|y |.故|x |=|y |是x =y 的必要不充分条件.答案: B2.“x =2k π+π4(k ∈Z)”是“tan x =1”成立的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析: 当x =2k π+π4时,tan x =1,而tan x =1得x =k π+π4, 所以“x =2k π+π4”是“tan x =1”成立的充分不必要条件.故选A. 答案: A3.设x ,y ∈R ,则“x ≥2且y ≥2”是“x 2+y 2≥4”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件解析: ∵x ≥2且y ≥2,∴x 2+y 2≥4,∴x ≥2且y ≥2是x 2+y 2≥4的充分条件;而x 2+y 2≥4不一定得出x ≥2且y ≥2,例如当x ≤-2且y ≤-2时,x 2+y 2≥4亦成立,故x ≥2且y ≥2不是x 2+y 2≥4的必要条件.答案: A4.设A 是B 的充分不必要条件,C 是B 的必要不充分条件,D 是C 的充要条件,则D 是A 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件 解析: 由题意得:故D 是A 的必要不充分条件答案: B二、填空题(每小题5分,共10分)5.下列命题中是假命题的是________.(填序号)(1)x >2且y >3是x +y >5的充要条件(2)A ∩B ≠∅是A B 的充分条件(3)b 2-4ac <0是ax 2+bx +c <0的解集为R 的充要条件(4)三角形的三边满足勾股定理的充要条件是此三角形为直角三角形解析: (1)因x >2且y >3⇒x +y >5, x +y >5⇒/ x >2且y >3,故x >2且y >3是x +y >5的充分不必要条件.(2)因A ∩B ≠∅⇒/ A B, A B ⇒A ∩B ≠∅.故A ∩B ≠∅是A B 的必要不充分条件.(3)因b 2-4ac <0⇒/ ax 2+bx +c <0的解集为R , ax 2+bx +c <0的解集为R ⇒a <0且b 2-4ac <0,故b 2-4ac <0是ax 2+bx +c <0的解集为R 的既不必要也不充分条件.(4)三角形的三边满足勾股定理的充要条件是此三角形为直角三角形.答案: (1)(2)(3)6.设集合A =⎩⎨⎧⎭⎬⎫x |x x -1<0,B ={x |0<x <3},那么“m ∈A ”是“m ∈B ”的________条件. 解析: A =⎩⎨⎧⎭⎬⎫x |x x -1<0={x |0<x <1}. m ∈A ⇒m ∈B ,m ∈B ⇒/ m ∈A .∴“m ∈A ”是“m ∈B ”的充分不必要条件.答案: 充分不必要三、解答题(每小题10分,共20分)7.已知p :12≤x ≤1,q :a ≤x ≤a +1,若p 的必要不充分条件是q ,求实数a 的取值范围. 解析: q 是p 的必要不充分条件,则p ⇒q 但q ⇒/p .∵p :12≤x ≤1,q :a ≤x ≤a +1. ∴a +1≥1且a ≤12,即0≤a ≤12. ∴满足条件的a 的取值范围为⎣⎢⎡⎦⎥⎤0,12. 8.求证:0≤a <45是不等式ax 2-ax +1-a >0对一切实数x 都成立的充要条件. 证明: 充分性:∵0<a <45, ∴Δ=a 2-4a (1-a )=5a 2-4a =a (5a -4)<0,则ax 2-ax +1-a >0对一切实数x 都成立.而当a =0时,不等式ax 2-ax +1-a >0可变成1>0.显然当a =0时,不等式ax 2-ax +1-a >0对一切实数x 都成立.必要性:∵ax 2-ax +1-a >0对一切实数x 都成立,∴a =0或⎩⎪⎨⎪⎧ a >0,Δ=a 2-4a -a解得0≤a <45. 故0≤a <45是不等式ax 2-ax +1-a >0对一切实数x 都成立的充要条件. 尖子生题库☆☆☆9.(10分)已知条件p :A ={x |2a ≤x ≤a 2+1},条件q :B ={x |x 2-3(a +1)x +2(3a +1)≤0}.若p 是q 的充分条件,求实数a 的取值范围.解析: 先化简B ,B ={x |(x -2)[x -(3a +1)]≤0},①当a ≥13时,B ={x |2≤x ≤3a +1}; ②当a <13时,B ={x |3a +1≤x ≤2}. 因为p 是q 的充分条件,所以A ⊆B ,从而有⎩⎪⎨⎪⎧ a ≥13a 2+1≤3a +12a ≥2,解得1≤a ≤3.或⎩⎪⎨⎪⎧ a <13a 2+1≤22a ≥3a +1,解得a =-1.综上,所求a 的取值范围是{a |1≤a ≤3或a =-1}.。
高中数学人教版选修2-3同步练习册学生版

1.1 分类加法计数原理与分步乘法计数原理第1课时 分类加法计数原理与分步乘法计数原理一、讲解例题例题1、在所有的两位数中,个位数字大于十位数字的两位数共有多少个? [变问法]在本例条件下,个位数字小于十位数字且为偶数的两位数有多少个?变式训练、 某校高三共有三个班,各班人数如下表:(1)从三个班中选1名学生任学生会主席,有多少种不同的选法?(2)从高三(1)班、(2)班男生中或从高三(3)班女生中选1名学生任学生会生活部部长,有多少种不同的选法?从-2,-1,0,1,2,3这六个数字中任选3个不重复的数字作为二次函数y =ax 2+bx +c 的系数a ,b ,c ,则可以组成抛物线的条数为多少?1.[变问法]若本例中的二次函数图象开口向下,则可以组成多少条抛物线?2.[变条件、变问法]若从本例的六个数字中选2个作为椭圆x 2m +y 2n =1的参数m ,n ,则可以组成椭圆的个数是多少?变式训练、从1,2,3,4中选三个数字,组成无重复数字的整数,则满足下列条件的数有多少个? (1)三位数; (2)三位偶数.甲同学有5本不同的数学书、4本不同的物理书、3本不同的化学书,现在乙同学向甲同学借书,男生人数 女生人数 总人数 高三(1)班 30 20 50 高三(2)班 30 30 60 高三(3)班352055(1)若借1本书,则有多少种借法?(2)若每科各借1本书,则有多少种借法?(3)若任借2本不同学科的书,则有多少种借法?现有3名医生、5名护士、2名麻醉师.(1)从中选派1名去参加外出学习,有多少种不同的选法?(2)从这些人中选出1名医生、1名护士和1名麻醉师组成1个医疗小组,有多少种不同的选法?二、课后练习1.(2018·西安一中高二检测)完成一项工作,有两种方法,有5个人只会用第一种方法,另外有4个人只会用第二种方法,从这9个人中选1人完成这项工作,不同的选法种数是() A.5 B.4C.9 D.202.已知集合M={1,-2,3},N={-4,5,6,-7},从两个集合中各取一个元素作为点的坐标,可得直角坐标系中第一、二象限不同点的个数是()A.18 B.16C.14 D.103.现有4名同学去听同时进行的3个课外知识讲座,每名同学可自由选择其中的一个讲座,不同选法的种数是()A.81 B.64C.48 D.244.如果x,y∈N,且1≤x≤3,x+y<7,那么满足条件的不同的有序自然数对(x,y)的个数是()A.15 B.12C.5 D.45.十字路口来往的车辆,如果不允许回头,则不同的行车路线有()A.24种B.16种C.12种D.10种6.已知集合A={0,3,4},B={1,2,7,8},集合C={x|x∈A或x∈B},则当集合C中有且只有一个元素时,C的情况有________种.7.某班小张等4位同学报名参加A,B,C三个课外活动小组,每位同学限报其中一个小组,且小张不能报A小组,则不同的报名方法有________种.8.直线方程Ax+By=0,若从0,1,2,3,5,7这6个数字中每次取两个不同的数作为A,B的值,则可表示________条不同的直线.9.(2018·云南丽江测试)现有高二四个班学生34人,其中一、二、三、四班各7人、8人、9人、10人,他们自愿组成数学课外小组.(1)选其中一人为负责人,有多少种不同的选法?(2)每班选一名组长,有多少种不同的选法?(3)推选二人作中心发言,这二人需来自不同的班级,有多少种不同的选法?10.(1)如图,在由电键组A与B所组成的并联电路中,要接通电源且仅闭合其中一个电键,使电灯C发光的方法有多少种?(2)如图,由电键组A,B组成的电路中,要闭合两个电键接通电源,使电灯C发光的方法有几种?第2课时计数原理的综合应用一、讲解例题用0,1,2,3,4五个数字,(1)可以排出多少个三位数字的电话号码?(2)可以排成多少个三位数?(3)可以排成多少个能被2整除的无重复数字的三位数?1.[变问法]由本例中的五个数字可以组成多少个无重复数字的四位奇数?2.[变问法]在本例条件下,能组成多少个能被3整除的四位数?1.四张卡片上分别标有数字“2”“0”“1”“1”,则由这四张卡片可组成不同的四位数的个数为()A.6B.9C.12 D.242.若一个三位数的十位数字比个位数字和百位数字都大,则称这个数为“伞数”.现从1,2,3,4,5,6这六个数字中任取3个数,组成无重复数字的三位数,其中“伞数”有() A.120个B.80个C.40个D.20个高三年级的三个班到甲、乙、丙、丁四个工厂进行社会实践,其中工厂甲必须有班级去,每班去何工厂可自由选择,则不同的分配方案有()A.16种B.18种C.37种D.48种某班有3名学生准备参加校运会的100米、200米、跳高、跳远四项比赛,如果每班每项限报1人,则这3名学生的参赛的不同方法有()A.24种B.48种C.64种D.81种(1)如图,要给地图上A、B、C、D四个区域分别涂上4种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同的颜色,不同的涂色方案有多少种?(2)如图,一个地区分为5个行政区域,现给地图着色,要求相邻的区域不得使用同一种颜色,现有4种颜色可供选择,有不同的着色的方法?1、从五种不同的颜色中选出若干种涂在如图所示的①②③④各部分,若要求相邻的部分颜色不同,则不同的涂法共有多少种?2、用1,2,3三个数字组成一个四位数,规定三个数必须全部使用,且同一个数字不能相邻出现,这样的四位数有________种。
最新人教A版高中数学选修1-2 3.2.2同步练习习题

高中数学人教A版选修1-2 同步练习1.(2011·高考课标全国卷)复数2+i1-2i地共轭复数是( )A.-35i B.35iC.-i D.i解析:选C.2+i1-2i =(2+i)(1+2i)(1-2i)(1+2i)=2-2+5i5=i,∴2+i1-2i地共轭复数是-i.2.已知a∈R,若(1-a i)(3+2i)为纯虚数,则a地值为( ) A .-32B.32 C .-23D.23解析:选A.∵(1-a i)(3+2i)=(3+2a )+(2-3a )i 为纯虚数,∴⎩⎪⎨⎪⎧3+2a =0,2-3a ≠0,解得a =-32.3.若复数z 满足z =i(2-z )(i 是虚数单位),则z =________.解析:∵z =i(2-z ), ∴z =2i -i z , ∴(1+i)z =2i ,∴z=1+i=1+i. 答案:1+i4.若z1=a+2i,z2=3-4i,且z1z2为纯虚数,则实数a地值为________.解析:z1z2=a+2i3-4i=(a+2i)(3+4i)25=3a-8+(4a+6)i25=3a-825+4a+625i.因为z1z2为纯虚数,所以3a-8=0且4a+6≠0,所以a=83 .答案:3[A级基础达标]1.已知复数z=1-2i,那么1z=( )A.55+255i B.55-255iC.15+25i D.15-25i解析:选D.1z=11+2i=1-2i(1+2i)(1-2i)=1-2i5=15-25i.2.若复数z满足方程z2+2=0,则z3等于( ) A.±2 2 B.-2 2C .-22iD .±22i解析:选D.∵z 2+2=0,∴z =±2i , ∴z 3=±22i.3.(2011·高考山东卷)复数z =2-i2+i (i 为虚数单位)在复平面内对应地点所在象限为( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:选D.z =2-i 2+i =(2-i )(2-i )(2+i )(2-i )=3-4i 5=35-45i ,所以z 在第四象限.4.若复数(1+a i)(2-i)地实部与虚部相等,则实数2za =__________.解析:∵(1+a i)(2-i)=(2+a )+(2a -1)i 地实部与虚部相等,∴2+a =2a -1.∴a =3. 答案:35.已知z 1=(1+2i )4(3-i )3,z 2=z 12-i ,则|z 2|=________. 解析:|z 2|=⎪⎪⎪⎪⎪⎪(1+2i )4(3-i )3(2-i )=|(1+2i )4||(3-i )3|·|2-i|=(5)4(10)3×5=122=24. 答案:24z6.已知复数z =1+i ,求实数a ,b ,使az +2b =(a +2z )2.解:因为z =1+i , 所以az +2b =(a +2b )+(a -2b )i , (a +2z )2=(a +2)2-4+4(a +2)i =(a 2+4a )+4(a +2)i. 因为a ,b 都是实数, 所以由az +2bz -=(a +2z )2,得⎩⎪⎨⎪⎧a +2b =a 2+4a ,a -2b =4(a +2).两式相加,整理得a 2+6a +8=0,解得a 1=-2,a 2=-4.对应求得b 1=-1,b 2=2.所以所求实数为a =-2,b =-1或a =-4,b =2.z[B级能力提升]7.已知=2+i,则复数z=( )A.-1+3i B.1-3iC.3+i D.3-i解析:选B.由题意知=(2+i)(1+i)=1+3i,∴z=1-3i.8.已知z1=-2-3i,z2=3-2i(2+i)2,则z1z2=( )A.-4+3i B.3+4i C.3-4i D.4-3i解析:选D.∵z1=-2-3i,z2=3-2i(2+i)2,∴z1z2=(-2-3i)(2+i)23-2i=z1zi-i (3-2i )(2+i )23-2i=-i(2+i)2=-(3+4i)i =4-3i.9.已知复数z 1=3+4i ,z 2=t +i ,且z 2地共轭复数与z 1地积是实数,则实数t 地值为________.解析:由题意知 =t -i(t ∈R), z 1=(t -i)(3+4i)=(3t +4)+(4t -3)i.∵ z 1∈R ,∴4t -3=0,∴t =34.答案:3410.已知1+i 是方程x 2+bx +c =0地一个根(b 、c 为实数). (1)求b ,c 地值;2z2z2z(2)试说明1-i 也是方程地根吗?解:(1)因为1+i 是方程x 2+bx +c =0地根, ∴(1+i)2+b (1+i)+c =0, 即(b +c )+(2+b )i =0.∴⎩⎪⎨⎪⎧b +c =02+b =0,得⎩⎪⎨⎪⎧b =-2c =2. ∴b 、c 地值为b =-2、c =2. (2)方程为x 2-2x +2=0.把1-i 代入方程左边得(1-i)2-2(1-i)+2=0,显然方程成立,∴1-i 也是方程地一个根. 11.(创新题)设复数z 满足|z |=5,且(3+4i)z 在复平面上对应地点在第二、四象限地平分线上,|2z -m |=52,求复数z 和实数m 地值.解:设z=x+y i(x,y∈R).∵|z|=5,∴x2+y2=25.又(3+4i)z=(3+4i)(x+y i)=(3x-4y)+(4x+3y)i,且对应地点在第二、四象限平分线上,∴3x-4y=-(4x+3y),化简得y=7x.将它代入x2+y2=25得,x=±22,y=±722,∴z=±(22+722i).当z=22+722i时,|2z-m|=|1+7i-m|=52,解得m=0或2;当z=-(22+722i)时,同理解得m=0或-2.。
人教a版高中数学选修2-3全册同步测控知能训练题集含答案

人教A版高中数学选修2-3全册知能训练目录第1章1.1知能优化训练第1章1.2.1第一课时知能优化训练第1章1.2.1第二课时知能优化训练第1章1.2.2第一课时知能优化训练第1章1.2.2第二课时知能优化训练第1章1.3.1知能优化训练第1章1.3.2知能优化训练第2章2.1.1知能优化训练第2章2.1.2知能优化训练第2章2.2.1知能优化训练第2章2.2.2知能优化训练第2章2.2.3知能优化训练第2章2.3.1知能优化训练第2章2.3.2知能优化训练第2章2.4知能优化训练第3章3.1知能优化训练第3章3.2知能优化训练1.从A 地到B 地要经过C 地和D 地,从A 地到C 地有3条路,从C 地到D 地有2条路,从D 地到B 地有4条路,则从A 地到B 地不同走法的种数是( )A .3+2+4=9B .1C .3×2×4=24D .1+1+1=3解析:选C.由题意从A 地到B 地需过C 、D 两地,实际就是分三步完成任务,用乘法原理.2.某学生去书店,发现3本好书,决定至少买其中一本,则购买方式共有( )A .3种B .6种C .7种D .9种解析:选C.分3类:买1本书,买2本书和买3本书,各类的购买方式依次有3种、3种和1种,故购买方式共有3+3+1=7(种).3.(2011年高考课标全国卷)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( )A.13B.12C.23D.34解析:选A.甲、乙两位同学参加3个小组的所有可能性有3×3=9(种),其中甲、乙两人参加同一个小组的情况有3(种).故甲、乙两位同学参加同一个兴趣小组的概率P =39=13. 4.将3封信投入6个信箱内,不同的投法有________种.解析:第1封信有6种投法,第2、第3封信也分别有6种投法,因此共有6×6×6=216种投法.答案:216一、选择题1.现有4件不同款式的上衣和3条不同颜色的长裤,如果一条长裤与一件上衣配成一套,则不同的配法种数为( )A .7B .12C .64D .81解析:选B.要完成配套,分两步:第1步,选上衣,从4件上衣中任选一件,有4种不同选法;第2步,选长裤,从3条长裤中任选一条,有3种不同选法.故共有4×3=12种不同的配法.2.从A 地到B 地,可乘汽车、火车、轮船三种交通工具,如果一天内汽车发3次,火车发4次,轮船发2次,那么一天内乘坐这三种交通工具的不同走法为( )A .1+1+1=3B .3+4+2=9C .3×4×2=24D .以上都不对答案:B3.十字路口来往的车辆,如果不允许回头,共有不同的行车路线( )A .24种B .16种C .12种D .10种解析:选C.完成该任务可分为四类,从每一个方向入口都可作为一类,如图:从第1个入口进入时,有3种行车路线;同理,从第2个,第3个,第4个入口进入时,都分别有3种行车路线,由分类加法计数原理可得共有3+3+3+3=12种不同的行车路线,故选C.4.从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a,b组成复数a+b i,其中虚数有() A.30个B.42个C.36个D.35个解析:选C.第一步取b的数,有6种方法,第二步取a的数,也有6种方法,根据乘法计数原理,共有6×6=36种方法.5.从集合{1,2,3,4,5}中任取2个不同的数,作为直线Ax+By=0的系数,则形成不同的直线最多有()A.18条B.20条C.25条D.10条解析:选A.第一步取A的值,有5种取法,第二步取B的值有4种取法,其中当A=1,B=2时,与A=2,B=4时是相同的;当A=2,B=1时,与A=4,B=2时是相同的,故共有5×4-2=18(条).6.用1,2,3三个数字组成一个四位数,规定这三个数必须全部使用,且同一数字不能相邻出现,这样的四位数有()A.36个B.18个C.9个D.6个解析:选B.分3步完成,1,2,3这三个数中必有某一个数字被使用2次.第1步,确定哪一个数字被使用2次,有3种方法;第2步,把这2个相同的数字排在四位数不相邻的两个位置上有3种方法;第3步,将余下的2个数字排在四位数余下的两个位置上,有2种方法.故有3×3×2=18个不同的四位数.二、填空题7.加工某个零件分三道工序,第一道工序有5人,第二道工序有6人,第三道工序有4人,从中选3人每人做一道工序,则选法有________种.解析:选第一、第二、第三道工序各一人的方法数依次为5、6、4,由分步乘法计数原理知,选法总数为N=5×6×4=120.答案:1208.如图是某校的校园设施平面图,现用不同的颜色作为各区域的底色,为了便于区分,要求相邻区域不能使用同一种颜色.若有6种不同的颜色可选,则有________种不同的着色方案.解析:操场可从6种颜色中任选1种着色;餐厅可从剩下的5种颜色中任选1种着色;宿舍区和操场、餐厅颜色都不能相同,故可从其余的4种颜色中任选1种着色;教学区和宿舍区、餐厅的颜色都不能相同,故可从其余的4种颜色中任选1种着色.根据分步乘法计数原理,共有6×5×4×4=480种着色方案.答案:4809.从1,2,3,4,7,9六个数中,任取两个数作对数的底数和真数,则所有不同的对数的值的个数为________.解析:(1)当取1时,1只能为真数,此时对数的值为0.(2)不取1时,分两步:①取底数,5种;②取真数,4种.其中log23=log49,log32=log94,log24=log39,log42=log93,∴N=1+5×4-4=17.答案:17三、解答题10.8张卡片上写着0,1,2,…,7共8个数字,取其中的三张卡片排放在一起,可组成多少个不同的三位数?解:先排放百位,从1,2,…,7共7个数中选一个有7种选法;再排十位,从除去百位的数外,剩余的7个数(包括0)中选一个,有7种选法;最后排个位,从除前两步选出的数外,剩余的6个数中选一个,有6种选法.由分步乘法计数原理,共可以组成7×7×6=294个不同的三位数.11.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,求有多少种不同的种植方法?解:若黄瓜种在第一块土地上,则有3×2×1=6种不同种植方法.同理,黄瓜种在第二块、第三块土地上,均有3×2×1=6(种).故不同的种植方法共有6×3=18(种).12.某校学生会由高一年级5人,高二年级6人,高三年级4人组成.(1)选其中一人为学生会主席,有多少种不同的选法?(2)若每年级选1人为校学生会常委成员,有多少种不同的选法?(3)若要选出不同年级的两人分别参加市里组织的两项活动,有多少种不同的选法?解:(1)分三类:第一类,从高一年级选一人,有5种选择;第二类,从高二年级选一人,有6种选择;第三类,从高三年级选一人,有4种选择.由分类加法计数原理,共有5+6+4=15种选法.(2)分三步完成:第一步,从高一年级选一人,有5种选择;第二步,从高二年级选一人,有6种选择;第三步,从高三年级选一人,有4种选择.由分步乘法计数原理,共有5×6×4=120种选法.(3)分三类:高一、高二各一人,共有5×6=30种选法;高一、高三各一人,共有5×4=20种选法;高二、高三各一人,共有6×4=24种选法;由分类加法计数原理,共有30+20+24=74种选法.1.用1,2,3,4,5这5个数字,组成无重复数字的三位数,其中奇数共有()A.30个B.36个C.40个D.60个解析:选B.分2步完成:个位必为奇数,有A13种选法;从余下的4个数中任选2个排在三位数的百位、十位上,有A24种选法.由分步乘法计数原理,共有A13×A24=36个无重复数字的三位奇数.2.6人站成一排,甲、乙、丙3个人不能都站在一起的排法种数为()A.720 B.144C.576 D.684解析:选C.(间接法)甲、乙、丙三人在一起的排法种数为A44×A33;不考虑任何限制,6人的全排列有A66.∴符合题意的排法种数为:A66-A44×A33=576.3.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目,如果将这两个节目插入原节目单中,那么不同插法种数为()A.42 B.30C.20 D.12解析:选A.分两类:①两个新节目相邻的插法有6A22种;②两个新节目不相邻的插法有A26种.故N=6×2+6×5=42.4.将红、黄、蓝、白、黑5种颜色的小球,分别放入红、黄、蓝、白、黑5种颜色的小口袋中,若不允有空袋,且红口袋中不能装入红球,则有______种不同的放法.解析:先装红球,且每袋一球,所以有A14×A44=96(种).答案:96一、选择题1.高三(1)班需要安排毕业晚会的4个音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求两个舞蹈节目不连排,则不同排法的种数是()A.1800 B.3600C.4320 D.5040解析:选B.利用插空法,先将4个音乐节目和1个曲艺节目全排列有A55种,然后从6个空中选出2个空将舞蹈节目全排列有A26种,所以共有A55A26=3600(种).故选B.2.某省有关部门从6人中选4人分别到A、B、C、D四个地区调研十二五规划的开局形势,要求每个地区只有一人,每人只去一个地区,且这6人中甲、乙两人不去A地区,则不同的安排方案有()A.300种B.240种C.144种D.96种解析:选B.A地区有A14种方法,其余地区有A35种方法,共有A14A35=240(种).3.用数字1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有() A.48个B.36个C.24个D.18个解析:选B.个位数字是2的有3A33=18(个),个位数字是4的有3A33=18(个),所以共有36个.4.8名学生和2位老师站成一排合影,2位老师不相邻的排法种数为()A.A88A29B.A88A210C.A88A27D.A88A26解析:选A.运用插空法,8名学生间共有9个空隙(加上边上空隙),先把老师排在9个空隙中,有A29种排法,再把8名学生排列,有A88种排法,共有A88×A29种排法.5.五名男生与两名女生排成一排照相,如果男生甲必须站在中间,两名女生必须相邻,符合条件的排法共有()A.48种B.192种C.240种D.288种解析:选B.(用排除法)将两名女生看作1人,与四名男生一起排队,有A55种排法,而女生可互换位置,所以共有A55×A22种排法,男生甲插入中间位置,只有一种插法;而4男2女排列中2名女生恰在中间的排法共有A22×A44(种),这时男生甲若插入中间位置不符合题意,故符合题意的排列总数为A55×A22-A44×A22=192.6.由1、2、3、4、5组成没有重复数字且1、2都不与5相邻的五位数的个数是() A.36 B.32C.28 D.24解析:选A.分类:①若5在首位或末位,共有2A12×A33=24(个);②若5在中间三位,共有A13×A22×A22=12(个).故共有24+12=36(个).二、填空题7.5人站成一排,甲必须站在排头或排尾的不同站法有________种.解析:2A44=48.答案:488.3个人坐8个位置,要求每人的左右都有空位,则有________种坐法.解析:第一步:摆5个空位置,○○○○○;第二步:3个人带上凳子插入5个位置之间的四个空,有A34=24(种),故有24种不同坐法.答案:249.5名大人要带两个小孩排队上山,小孩不排在一起也不排在头、尾,则共有________种排法(用数字作答).解析:先让5名大人全排列有A55种排法,两个小孩再依条件插空有A24种方法,故共有A55A24=1440种排法.答案:1440三、解答题10.7名班委中有A、B、C三人,有7种不同的职务,现对7名班委进行职务具体分工.(1)若正、副班长两职只能从A、B、C三人中选两人担任,有多少种分工方案?(2)若正、副班长两职至少要选A、B、C三人中的一人担任,有多少种分工方案?解:(1)先排正、副班长有A23种方法,再安排其余职务有A55种方法,依分步计数原理,共有A23A55=720种分工方案.(2)7人中任意分工方案有A77种,A、B、C三人中无一人任正、副班长的分工方案有A24 A55种,因此A、B、C三人中至少有一人任正、副班长的方案有A77-A24A55=3600(种).11.用0,1,2,3,4,5这六个数字:(1)能组成多少个无重复数字的四位偶数?(2)能组成多少个无重复数字且为5的倍数的五位数?(3)能组成多少个无重复数字的比1325大的四位数?解:(1)符合要求的四位偶数可分为三类:第一类:0在个位时,有A 35个;第二类:2在个位时,首位从1,3,4,5中选定1个有A 14种,十位和百位从余下的数字中选,有A 24种,于是有A 14×A 24(个);第三类:4在个位时,与第二类同理,也有A 14×A 24(个).由分类加法计数原理得:共有A 35+2A 14×A 24=156(个).(2)为5的倍数的五位数可分为两类:第一类:个位上为0的五位数有A 45个;第二类:个位上为5的五位数有A 14×A 34(个),故满足条件的五位数共有A 45+A 14×A 34=216(个).(3)比1325大的四位数可分为三类:第一类:形如2,3 ,4 ,5 ,共有A 14×A 35(个);第二类:形如14 ,15 ,共有A 12×A 24(个); 第三类:形如134 ,135 ,共有A 12×A 13(个).由分类加法计数原理可得,比1325大的四位数共有:A 14×A 35+A 12×A 24+A 12×A 13=270(个).12.7名师生站成一排照相留念,其中老师1人,男学生4人,女学生2人,在下列情况下,各有多少种不同站法?(1)两名女生必须相邻而站;(2)4名男生互不相邻;(3)若4名男生身高都不等,按从高到低的顺序站;(4)老师不站中间,女生不站两端.解:(1)2名女生站在一起有站法A 22种,视为一种元素与其余5人全排,有A 66种排法,所以有不同站法A 22×A 66=1440(种).(2)先站老师和女生,有站法A 33种,再在老师和女生站位的间隔(含两端)处插入男生,每空一人,则插入方法A 44种,所以共有不同站法A 33×A 44=144(种).(3)7人全排列中,4名男生不考虑身高顺序的站法有A 44种,而由高到低有从左到右和从右到左的不同,所以共有不同站法2×A 77A 44=420(种). (4)中间和两侧是特殊位置,可分类求解如下:①老师站在两侧之一,另一侧由男生站,有A 12×A 14×A 55种站法;②两侧全由男生站,老师站除两侧和正中的另外4个位置之一,有A 14×A 24×A 44种站法,所以共有不同站法A 12×A 14×A 55+A 14×A 24×A 44=960+1152=2112(种).1.5A35+4A24=()A.107B.323C.320 D.348解析:选D.原式=5×5×4×3+4×4×3=348.2.4×5×6×…·(n-1)·n等于()A.A4n B.A n-4nC.n!-4! D.A n-3n解析:选D.原式可写成n·(n-1)·…×6×5×4,故选D.3.6名学生排成两排,每排3人,则不同的排法种数为()A.36 B.120C.720 D.240解析:选C.排法种数为A66=720.4.下列问题属于排列问题的是________.①从10个人中选2人分别去种树和扫地;②从10个人中选2人去扫地;③从班上30名男生中选出5人组成一个篮球队;④从数字5,6,7,8中任取两个不同的数作幂运算.解析:①选出的2人有不同的劳动内容,相当于有顺序.②选出的2人劳动内容相同,无顺序.③5人一组无顺序.④选出的两个数作为底数或指数其结果不同,有顺序.答案:①④一、选择题1.甲、乙、丙三地客运站,需要准备在甲、乙、丙三地之间运行的车票种数是() A.1 B.2C.3 D.6解析:选D.A23=6.2.已知A2n+1-A2n=10,则n的值为()A.4 B.5C.6 D.7解析:选B.由A2n+1-A2n=10,得(n+1)n-n(n-1)=10,解得n=5.3.从5本不同的书中选两本送给2名同学,每人一本,则不同的送法种数是() A.5 B.10C.20 D.60解析:选C.A25=20.4.将3张不同的电影票分给10人中的3人,每人一张,则不同的分法种数是() A.2160 B.720C.240 D.120解析:选B.A310=10×9×8=720.5.某段铁路所有车站共发行132种普通车票,那么这段铁路共有车站数是()A.8 B.12C.16 D.24解析:选B.设车站数为n,则A2n=132,n(n-1)=132,∴n =12.6.S =1!+2!+3!+…+99!,则S 的个位数字为( )A .0B .3C .5D .7解析:选B.∵1!=1,2!=2,3!=6,4!=24,5!=120,6!=720,…∴S =1!+2!+3!+…+99!的个位数字是3.二、填空题7.若A m 10=10×9×…×5,则m =________.解析:10-m +1=5,得m =6.答案:68.A n +32n +A n +14=________.解析:由⎩⎪⎨⎪⎧ n +3≤2n ,n +1≤4,n ∈N *,得n =3, ∴A n +32n +A n +14=6!+4!=744. 答案:7449.甲、乙、丙、丁四人轮读同一本书,则甲首先读的安排方法有________种. 解析:甲在首位,相当于乙、丙、丁全排,即3!=3×2×1=6.答案:6三、解答题10.解不等式:A x 9>6A x -29.解:原不等式可化为9!(9-x )!>6·9!(9-x +2)!, 其中2≤x ≤9,x ∈N *,∴(11-x )(10-x )>6,即x 2-21x +104>0,∴(x -8)(x -13)>0,∴x <8或x >13.又∵2≤x ≤9,x ∈N *,∴2≤x <8,x ∈N *.故x =2,3,4,5,6,7.11.解方程3A x 8=4A x -19.解:由3A x 8=4A x -19得3×8!(8-x )!=4×9!(10-x )!. ∴3×8!(8-x )!=4×9×8!(10-x )(9-x )(8-x )!. 化简得:x 2-19x +78=0,解得x 1=6,x 2=13.∵x ≤8,且x -1≤9,∴原方程的解是x =6.12.判断下列问题是否为排列问题.(1)北京、上海、天津三个民航站之间的直达航线的飞机票的价格(假设来回的票价相同);(2)选2个小组分别去植树和种菜;(3)选2个小组去种菜;(4)选10人组成一个学习小组;(5)选3个人分别担任班长、学习委员、生活委员;(6)某班40名学生在假期相互通信.解:(1)中票价只有三种,虽然机票是不同的,但票价是一样的,不存在顺序问题,所以不是排列问题;(2)植树和种菜是不同的,存在顺序问题,属于排列问题;(3)、(4)不存在顺序问题,不属于排列问题;(5)中每个人的职务不同,例如甲当班长或当学习委员是不同的,存在顺序问题,属于排列问题;(6)A给B写信与B给A写信是不同的,所以存在着顺序问题,属于排列问题.所以在上述各题中(2)、(5)、(6)属于排列问题.1.编号为1、2、3、4、5、6、7的七盏路灯,晚上用时只亮三盏灯,且任意两盏亮灯不相邻,则不同的开灯方案有( )A .60种B .20种C .10种D .8种解析:选C.四盏熄灭的灯产生的5个空档中放入3盏亮灯,即C 35=10.2.某中学要从4名男生和3名女生中选4人参加公益劳动,若男生甲和女生乙不能同时参加,则不同的选派方案共有( )A .25种B .35种C .820种D .840种解析:选A.分3类完成:男生甲参加,女生乙不参加,有C 35种选法;男生甲不参加,女生乙参加,有C 35种选法;两人都不参加,有C 45种选法.所以共有2C 35+C 45=25(种)不同的选派方案.3.(2010年高考大纲全国卷Ⅰ)某校开设A 类选修课3门,B 类选修课4门,一位同学从中共选3门.若要求两类课程中各至少选一门,则不同的选法共有( )A .30种B .35种C .42种D .48种解析:选A.法一:可分两种互斥情况:A 类选1门,B 类选2门或A 类选2门,B 类选1门,共有C 13C 24+C 23C 14=18+12=30种选法.法二:总共有C 37=35种选法,减去只选A 类的C 33=1(种),再减去只选B 类的C 34=4(种),故有30种选法.4.(2011年高考江苏卷)从1,2,3,4这四个数中一次随机地取两个数,则其中一个数是另一个数的两倍的概率是________.解析:从1,2,3,4中任取两个数的组合个数为C 24=6,满足一个数是另一个数两倍的组合为{1,2},{2,4},故P =26=13.答案:13一、选择题1.9名会员分成三组讨论问题,每组3人,共有不同的分组方法种数为( )A .C 39C 36B .A 39A 36C.C 39C 36A 33 D .A 39A 36A 33 解析:选C.此为平均分组问题,要在分组后除以三组的排列数A 33.2.5本不同的书全部分给4个学生,每个学生至少1本,不同的分法种数有( ) A .480 B .240 C .120 D .96 解析:选B.先把5本书中两本捆起来,再分成4份即可,∴分法数为C 25A 44=240.3.某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为( )A .14B .24C .28D .48解析:选A.6人中选4人的方案有C 46=15(种),没有女生的方案只有一种,所以满足要求的方案总数有14种.4.已知圆上9个点,每两点连一线段,所有线段在圆内的交点有( ) A .36个 B .72个 C .63个 D .126个解析:选D.此题可化归为:圆上9个点可组成多少个四边形,每个四边形的对角线的交点即为所求,所以,交点有C 49=126(个).5.(2010年高考大纲全国卷Ⅱ)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的放法共有( )A .12种B .18种C .36种D .54种解析:选B.先将1,2捆绑后放入信封中,有C 13种方法,再将剩余的4张卡片放入另外两个信封中,有C 24C 22种方法,所以共有C 13C 24C 22=18种方法.6.如图所示的四棱锥中,顶点为P ,从其他的顶点和各棱中点中取3个,使它们和点P 在同一平面内,不同的取法种数为( )A .40B .48C .56D .62解析:选C.满足要求的点的取法可分为3类:第1类,在四棱锥的每个侧面上除点P 外任取3点,有4C 35种取法; 第2类,在两个对角面上除点P 外任取3点,有2C 34种取法;第3类,过点P 的四条棱中,每一条棱上的两点和与这条棱异面的两条棱的中点也共面,有4C 12种取法.所以,满足题意的不同取法共有4C 35+2C 34+4C 12=56(种). 二、填空题7.在50件产品中有4件是次品,从中任意抽出5件,至少有三件是次品的抽法共有________种.解析:分两类,有4件次品的抽法为C 44C 146(种);有三件次品的抽法有C 34C 246(种),所以共有C 44C 146+C 34C 246=4186种不同的抽法.答案:41868.某运动队有5对老搭档运动员,现抽派4个运动员参加比赛,则这4人都不是老搭档的抽派方法数为________.解析:先抽取4对老搭档运动员,再从每对老搭档运动员中各抽1人,故有C 45C 12C 12C 12C 12=80(种). 答案:809.2011年3月10日是第六届世界肾脏日,某社区服务站将5位志愿者分成3组,其中两组各2人,另一组1人,分别去三个不同的社区宣传这届肾脏日的主题:“保护肾脏,拯救心脏”,不同的分配方案有________种.(用数字作答)解析:分配方案有C 25C 23C 11A 22×A 33=10×3×62=90(种). 答案:90三、解答题 10.四个不同的小球放入编号为1,2,3,4的四个盒子中,恰有一个空盒的放法有多少种? 解:恰有一个空盒,则另外三个盒子中小球数分别为1,1,2,实际上可转化为先将四个不同的小球分为三组,两组各1个,另一组2个,分组方法有C 14C 13C 22A 22(种),然后将这三组再加上一个空盒进行全排列,即共有C 14C 13C 22A 22·A 44=144(种). 11.要从7个班中选10人参加数学竞赛,每班至少1人,共有多少种不同的选法?解:法一:共分三类:第一类:一个班出4人,其余6个班各出1人,有C 17种;第二类:有2个班分别出2人,3人,其余5个班各出1人,有A 27种;第三类:有3个班各出2人,其余4个班各出1人,有C 37种,故共有C 17+A 27+C 37=84(种).法二:将10人看成10个元素,这样元素之间共有9个空(两端不计),从这9个空中任选6个(即这6个位置放入隔板,将其分为七部分),有C 69=84种放法.故共有84种不同的选法.12.如图,在以AB 为直径的半圆周上,有异于A 、B 的六个点C 1、C 2、C 3、C 4、C 5、C 6,直径AB 上有异于A 、B 的四个点D 1、D 2、D 3、D 4.(1)以这10个点中的3个点为顶点作三角形可作出多少个?其中含C 1点的有多少个? (2)以图中的12个点(包括A 、B )中的4个点为顶点,可作出多少个四边形?解:(1)可分三种情况处理:①C 1、C 2、…、C 6这六个点任取三点可构成一个三角形;②C 1、C 2、…、C 6中任取一点,D 1、D 2、D 3、D 4中任取两点可构成一个三角形; ③C 1、C 2、…、C 6中任取两点,D 1、D 2、D 3、D 4中任取一点可构成一个三角形.∴C 36+C 16C 24+C 26C 14=116(个).其中含C 1点的三角形有C 25+C 15·C 14+C 24=36(个). (2)构成一个四边形,需要四个点,且无三点共线,∴共有C 46+C 36C 16+C 26C 26=360(个).1.计算C 28+C 38+C 29等于() A .120 B .240C .60D .480解析:选A.原式=C 39+C 29=C 310=120.2.若C 7n +1-C 7n =C 8n ,则n 等于( ) A .12 B .13 C .14 D .15解析:选C.C 7n +1-C 7n =C 8n ,即C 7n +1=C 8n +C 7n =C 8n +1,所以n +1=7+8,即n =14. 3.某校一年级有5个班,二年级有8个班,三年级有3个班,分年级举行班与班之间的篮球单循环赛,总共需进行比赛的场数是( )A .C 25+C 28+C 23B .C 25C 28C 23C .A 25+A 28+A 23 D .C 216解析:选A.分三类:一年级比赛的场数是C 25,二年级比赛的场数是C 28,三年级比赛的场数是C 23,再由分类加法计数原理可求.4.把8名同学分成两组,一组5人学习电脑,一组3人做生物实验,则不同的安排方法有________种.解析:C 38=56. 答案:56一、选择题1.下面几个问题中属于组合问题的是( )①由1,2,3,4构成的双元素集合;②5个队进行单循环足球比赛的分组情况;③由1,2,3构成两位数的方法;④由1,2,3组成无重复数字的两位数的方法.A .①③B .②④C .①②D .①②④ 答案:C2.已知平面内A 、B 、C 、D 这4个点中任何3点均不共线,则由其中任意3个点为顶点的所有三角形的个数为( )A .3B .4C .12D .24解析:选B.C 34=4.3.C 03+C 14+C 25+C 36+…+C 1720的值为( ) A .C 321 B .C 320C .C 420 D .C 421 解析:选D.原式=()C 04+C 14+C 25+C 36+…+C 1720 =()C 15+C 25+C 36+…+C 1720=(C 26+C 36)+…+C 1720=C 1721=C 21-1721=C 421. 4.若A 3n =12C 2n ,则n 等于( ) A .8 B .5或6 C .3或4 D .4解析:选A.A 3n =n (n -1)(n -2),C 2n =12n (n -1),∴n (n -1)(n -2)=6n (n -1),又n ∈N *,且n ≥3.解得n =8.5.从6位同学中选出4位参加一个座谈会,要求张、王两人中至多有一个人参加,则不同选法的种数为( )A .9B .14C .12D .15解析:选A.法一:直接法:分两类,第一类张、王两人都不参加,有C 44=1种选法;第二类张、王两人只有1人参加,有C 12C 34=8种选法.故共有C 44+C 12×C 34=9种选法.法二:间接法:C 46-C 24=9(种).6.把三张游园票分给10个人中的3人,分法有( ) A .A 310种 B .C 310种C .C 310A 310种D .30种 解析:选B.三张票没区别,从10人中选3人即可,即C 310. 二、填空题7.若C 13n =C 7n ,则C 18n =________.解析:∵C 13n =C 7n ,∴13=n -7,∴n =20, ∴C 1820=C 220=190. 答案:1908.C 22+C 23+C 24+…+C 210=________. 解析:原式=C 33+C 23+C 24+…+C 210=C 34+C 24+…+C 210=C 35+C 25+…+C 210=C 311=165. 答案:1659.从4名男生和3名女生中选出4人担任奥运志愿者,若选出的4人中既有男生又有女生,则不同的选法共有________________________________________________________________________种.解析:(间接法)共有C 47-C 44=34种不同的选法. 答案:34 三、解答题10.若C 4n >C 6n ,求n 的取值集合. 解:∵C 4n >C 6n ,∴⎩⎪⎨⎪⎧C 4n >C 6n n ≥6⇒⎩⎨⎧n !4!(n -4)!>n !6!(n -6)!n ≥6⇒⎩⎨⎧ n 2-9n -10<0n ≥6⇒⎩⎨⎧-1<n <10,n ≥6.∵n ∈N *,∴n =6、7、8、9,∴n 的集合为{6,7,8,9}.11.要从6男4女中选出5人参加一项活动,按下列要求,各有多少种不同的选法? (1)甲当选且乙不当选;(2)至少有1女且至多有3男当选.解:(1)甲当选且乙不当选,∴只需从余下的8人中任选4人,有C 48=70种选法.(2)至少有1女且至多有3男时,应分三类:第一类是3男2女,有C 36C 24种选法; 第二类是2男3女,有C 26C 34种选法; 第三类是1男4女,有C 16C 44种选法.由分类计数原理知,共有C 36C 24+C 26C 34+C 16C 44=186种选法. 12.现有10件产品,其中有2件次品,任意抽出3件检查. (1)正品A 被抽到有多少种不同的抽法? (2)恰有一件是次品的抽法有多少种? (3)至少一件是次品的抽法有多少种?解:(1)C 29=9×82=36(种).(2)从2件次品中任取1件有C 12种方法,从8件正品中取2件有C 28种方法,由分步乘法计数原理,不同的抽法共有C 12×C 28=2×8×72=56(种). (3)法一:含1件次品的抽法有C 12C 28种,含2件次品的抽法有C 22×C 18种,由分类加法计数原理,不同的抽法共有C 12×C 28+C 22×C 18=56+8=64(种).法二:从10件产品中任取3件的抽法为C 310种,不含次品的抽法有C 38种,所以至少1件次品的抽法为C 310-C 38=64(种).1.(x +2)6的展开式中x 3的系数是( ) A .20 B .40 C .80 D .160解析:选D.法一:设含x 3的为第r +1项,则T r +1=C r n x6-r ·2r,令6-r =3,得r =3,故展开式中x 3的系数为C 36×23=160.法二:根据二项展开式的通项公式的特点:二项展开式每一项中所含的x 与2分得的次数和为6,则根据条件满足条件x 3的项按3与3分配即可,则展开式中x 3的系数为C 36×23=160.2.(2x -12x)6的展开式的常数项是( )A .20B .-20C .40D .-40解析:选B.由题知(2x -12x )6的通项为T r +1=(-1)r C r 626-2r x 6-2r,令6-2r =0得r =3,故常数项为(-1)3C 36=-20.3.1.056的计算结果精确到0.01的近似值是( ) A .1.23 B .1.24 C .1.33 D .1.34解析:选 D.1.056=(1+0.05)6=C 06+C 16×0.05+C 26×0.052+C 36×0.053+…=1+0.3+0.0375+0.0025+…≈1.34.4.(2011年高考浙江卷)设二项式⎝⎛⎭⎫x -a x 6(a >0)的展开式中x 3的系数是A ,常数项为B ,若B =4A ,则a 的值是________.解析:A =C 26(-a )2,B =C 46(-a )4, 由B =4A 知,4C 26(-a )2=C 46(-a )4,解得a =±2. 又∵a >0,∴a =2. 答案:2一、选择题1.在(1-x )5-(1-x )6的展开式中,含x 3的项的系数是( ) A .-5 B .5 C .-10 D .10解析:选D.(1-x )5中x 3的系数-C 35=-10,-(1-x )6中x 3的系数为-C 36·(-1)3=20,故(1-x )5-(1-x )6的展开式中x 3的系数为10.2.(x -2y )10的展开式中x 6y 4项的系数是( ) A .840 B .-840 C .210 D .-210解析:选A.在通项公式T r +1=C r 10(-2y )r x10-r 中,令r =4,即得(x -2y )10的展开式中x 6y 4项的系数为C 410·(-2)4=840.3.(2010年高考陕西卷)⎝⎛⎭⎫x +ax 5(x ∈R )展开式中x 3的系数为10,则实数a 等于( ) A .-1 B.12 C .1D .2解析:选D.由二项式定理,得T r +1=C r 5x 5-r ·⎝⎛⎭⎫a x r =C r 5·x 5-2r ·a r ,∴5-2r =3,∴r =1,∴C 15·a =10,∴a =2.4.若C 1n x +C 2n x 2+…+C n n x n能被7整除,则x ,n 的值可能为( ) A .x =4,n =3 B .x =4,n =4 C .x =5,n =4 D .x =6,n =5解析:选C.由C 1n x +C 2n x 2+…+C n n x n =(1+x )n-1,分别将选项A 、B 、C 、D 代入检验知,仅有C 适合.5.⎝⎛⎭⎫x -13x 10的展开式中含x 的正整数指数幂的项数是( ) A .0 B .2 C .4 D .6解析:选B.T r +1=C r 10x 10-r 2·⎝⎛⎭⎫-13r ·x -r =C r 10⎝⎛⎭⎫-13r ·x 10-3r2.若是正整数指数幂,则有10-3r2为正整数,∴r 可以取0,2,∴项数为2.6.(1+2x )3(1-3x )5的展开式中x 的系数是( ) A .-4 B .-2 C .2 D .4解析:选C.(1+2x )3(1-3x )5=(1+6x 12+12x +8x 32)·(1-5x 13+10x 23-10x +5x 43-x 53),x的系数是-10+12=2.二、填空题 7.⎝⎛⎭⎪⎫2-13x 6的展开式中的第四项是________.解析:T 4=C 3623⎝⎛⎭⎪⎫-13x 3=-160x .答案:-160x8.若(x +a )5的展开式中的第四项是10a 2(a 为大于0的常数),则x =________.解析:∵T 4=C 35(x )2·a 3=10x ·a 3. ∴10xa 3=10a 2(a >0),∴x =1a.答案:1a9.(2010年高考辽宁卷)(1+x +x 2)⎝⎛⎭⎫x -1x 6的展开式中的常数项为__________. 解析:(1+x +x 2)⎝⎛⎭⎫x -1x 6=(1+x +x 2)[ C 06x 6⎝⎛⎭⎫-1x 0+C 16x 5⎝⎛⎭⎫-1x 1+C 26x 4⎝⎛⎭⎫-1x 2+C 36x 3⎝⎛⎭⎫-1x 3。
高中数学 3-2-1 空间向量与平行关系课件 新人教A版选修2-1
(3)①∵u=(2,2,-1),a=(-3,4,2), ∴u·a=-6+8-2=0, ∴u⊥a,∴l⊂α 或 l∥α. ②∵u=(0,2,-3),a=(0,-8,12),u=-14a, ∴u∥a,∴l⊥α. ③∵u=(4,1,5),a=(2,-1,0),∴u 与 a 不共 线,也不垂直,∴l 与 α 斜交.
图2
证明:方法一:以D为原点,DA,DC,DD1所在 直线分别为x,y,z轴建立如图2所示的空间直角坐标 系.
设正方体的棱长为2, 则A(2,0,0),D1(0,0,2),C(0,2,0), B(2,2,0),O1(1,1,2),
∴A→D1= (- 2, 0,2),C→D1 =(0,- 2,2), B→O1= (- 1,- 1,2), ∴B→O1=12A→D1+12C→D1, ∴B→O1与A→D1、C→D1共面, ∴B→O1∥平面 ACD1.又 BO1⊄平面 ACD1, ∴BO1∥平面 ACD1.
[点评] 用向量法证明线面平行常用三种方法:一 是证明直线上某个向量与平面内某一向量共线;二是 证明直线上的某个向量与平面内的两个不共线向量共 面,且不在平面内;三是证明直线上某个向量与平面 的法向量垂直.
迁移体验3 如图6,在长方体OAEB-O1A1E1B1中, OA=3,OB=4,OO1=2,点P在棱AA1上,且AP= 2PA1,点S在棱BB1上,且SB1=2BS,点Q、R分别是 O1B1、AE的中点,求证:PQ∥RS.
图3
解析:∵AD、AB、AS 是两两垂直的线段, ∴以 A 为原点,以射线 AD、AB、AS 所在直 线为 x 轴、y 轴、z 轴的正方向建立坐标系, 则 A(0,0,0)、D(12,0,0)、C(1,1,0),S(0,0,1), A→D=(12,0,0)是平面 SAB 的法向量,
【红对勾】高中数学 1-1-1 命题课时作业 新人教A版选修2-1(1)
课时作业1 命题时刻:45分钟 分值:100分一、选择题(每题6分,共36分)1.以下语句是命题的是( )A .偶函数的和是偶函数吗?B .sin 45°= 3.C .求证:两条相交直线必交于一点.D .x 2-4x -3=0.答案:B2.已知直线m ,n 及平面α,β,那么以下命题正确的选项是( )A . ⎭⎪⎬⎪⎫m∥αn∥β⇒α∥βB . ⎭⎪⎬⎪⎫m∥αm∥n ⇒n∥α C . ⎭⎪⎬⎪⎫m⊥αα⊥β⇒m∥β D . ⎭⎪⎬⎪⎫m⊥αn∥α⇒m⊥n 解析:假设m ⊆β,n ⊆α,有可能α与β相交,应选项A 错;选项B 中,n 有可能在平面α内;选项C 中,m 有可能在平面β内.应选D .答案:D3.假设A 、B 是两个集合,那么以下命题中是真命题的是( )A .若是A ⊆B ,那么A∩B=AB .若是A∩B=A ,那么(∁U A)∩B=ØC .若是A ⊆B ,那么A∪B=AD .若是A∪B=A ,那么A ⊆B图1解析:用集合的Venn 图处置此题,从图1可知,选项A 正确;选项B ,(∁U A)∩B≠Ø;选项C 中,A∪B =B.而选项D 应该是A ⊇B.答案:A4.以下命题是真命题的是( )A .假设1x =1y,那么x =y B .假设x 2=1,那么x =1 C .假设x =y ,那么x =y D .假设x<y ,那么x 2<y 2解析:选项A ,由1x =1y,得x =y ;选项B ,由x 2=1,得x =±1;选项C ,当x =y =-1时,x ,y 没成心义;选项D ,当x =-3,y =1时,x<y ,但x 2=9>1=y 2.应选A .答案:A5.给出以下三个命题:①四个非零实数a ,b ,c ,d 知足ad =bc ,那么a ,b ,c ,d 成等比数列;②假设整数a 能被2整除,那么a 是偶数;③△ABC 中,假设A>30°,那么sin A>12. 其中为假命题的序号是( ) A .② B .①②C .②③D .①③解析:①中,假设a =-1,b =52,c =2,d =-5知足ad =bc ,但a ,b ,c ,d 不成等比数列,故是假命题;③中,假设150°<A<180°时,sin A<12,故是假命题. 答案:D6.下面的命题中是真命题的是( )A .y =sin 2x 的最小正周期为2πB .假设方程ax 2+bx +c =0(a≠0)的两根同号,那么c a >0C .若是M ⊆N ,那么M∪N=MD .在△ABC 中,假设AB →·BC →>0,那么B 为锐角解析:y =sin 2x =1-cos 2x 2,T =2π2=π,故A 为假命题; 当M ⊆N 时,M∪N=N ,故C 为假命题;当AB →·BC →>0时,向量AB →与BC →的夹角为锐角,B 为钝角,故D 为假命题.答案:B二、填空题(每题8分,共24分)7.命题“末位数字是4的整数必然能被2整除”,写成“假设p ,那么q”的形式为__________________________________________.答案:假设一个整数的末位数字是4,那么它必然能被2整除8.有以下四个命题:①22340能被3或5整除;②不存在x ∈R ,使得x 2+x +1<0;③对任何的实数x ,均有x +1>x ;④方程x 2-2x +3=0有两个不等的实根.其中假命题有________.(只填序号)解析:可易知①②③为真命题;④中Δ=4-12<0,方程x 2-2x +3=0无实根,因此④为假命题. 答案:④9.把下面不完整的命题补充完整,并使之成为真命题:假设函数f (x )=3+log 2x 的图象与g (x )的图象关于________对称,那么函数g (x )=________.(注:填上你以为能够成为真命题的一种情形即可,没必要考虑所有可能的情形)答案:①关于x 轴对称时,g (x )=-3-log 2x ;②关于y 轴对称时,g (x )=3+log 2(-x );③关于(0,0)对称时,g (x )=-3-log 2(-x ).三、解答题(共40分)10.(10分)将以下命题改写成“假设p ,那么q ”的形式,并判定其真假.(1)末位数字是0或5的整数,能被5整除;(2)方程x 2-x +1=0有两个实数根.解:(1)假设一个整数的末位数字是0或5,那么那个数能被5整除.真命题.(2)假设一个方程是x 2-x +1=0,那么它有两个实数根.假命题.11.(15分)命题“ax 2-2ax -3>0不成立”是真命题,求实数a 的取值范围. 解:因为ax 2-2ax -3>0不成立, 因此ax 2-2ax -3≤0恒成立.(1)当a =0时,-3≤0成立;(2)当a ≠0时,应知足:⎩⎪⎨⎪⎧ a <0,Δ≤0, 解之得-3≤a <0.由(1)(2)得a 的取值范围为[-3,0].12.(15分)已知集合A ={x|x 2-4mx +2m +6=0},B ={x|x<0}.假设A∩B=Ø是假命题,求实数m 的取值范围.解:设全集U ={m|Δ=(-4m)2-4(2m +6)≥0}={m|m≤-1或m≥32}. 假设设方程x 2-4mx +(2m +6)=0的两根别离为x 1、x 2,当两根均为非负实根时,有 ⎩⎪⎨⎪⎧ m∈U,x 1+x 2≥0,x 1x 2≥0,解得m≥32. 而{m|m≥32}关于U 的补集是{m|m≤-1}. ∴实数m 的取值范围是{m|m≤-1}.。
高中数学(人教A)选修2-1课件:3.2.1直线的方向向量和平面的法向量
人教A版 ·选修2-1
路漫漫其修远兮 吾将上下而求索
第三章 空间向量与立体几何
第三章 3.2 立体几何中的向量方法
第1课时 直线的方向向量和平面的法向量
1 自主预习学案 2 典例探究学案 3 巩固提高学案
自主预习学案
• 1.理解直线的方向向量,平面的法向量.
• 2.能够利用直线的方向向量和平面的法向量 处理线面的位置关系.
量来讨论直线的位置关系,那么在空间向量 中我们能否用直线的方向向量与平面的法向 量来讨论空间线面的位置关系呢?
• 新知导学
• 4.空间直线与平面的位置关系可以用直线的 方向向量与平面的法向量的位置关系来研究 .
Байду номын сангаас
• 设直线l、m的方向向量分别为a、b,平面α
、β的法向量分别为u、v,当l,m不重合,α
• 重点:平面的法向量. • 难点:利用向量知识处理立体几何问题.
直线的方向向量与平面的法向量
• 温故知新 • 1.回想在平面向量中,怎样求一条直线的方
向向量.
• 思维导航 • 1.怎样确定空间一条直线的方向向量? • 2.一点A和一个方向可以确定一条直线吗?
类似的,一点A和一个方向能确定一个平面 吗?这个方向对平面有何特殊意义?
• (4)l⊥α⇔_a∥_u______存⇔在k_∈_R,_使_a_=_ku____________
_.
u∥v
存在k∈R,使u=kv
• (5)α∥β⇔__u_⊥_v____⇔u·_v=_0________________ ___;
• (6)α⊥β⇔________⇔__________. • 注:①由前提知la⊄α,b,u,v都是非零向量.
高中数学 3.1.5 空间向量运算的坐标表示优秀教案 新人教A版选修2-1
空间向量运算的坐标表示学习目标:1、 掌握空间向量加减、数乘、数量积运算的坐标表示。
2、 会根据向量的坐标,判断两个向量共线或垂直。
3、 掌握向量的长度公式、两向量夹角公式、空间两点间距离公式;并会应用这些知识解决简单的立体几何问题。
学习重点:1、 利用空间向量的坐标运算证明线线垂直或平行。
2、 利用空间向量的坐标运算求两点间的距离。
学习难点:利用空间向量的坐标运算求两条异面直线所成的角。
学习方法:类比法和启发探究 学习过程: 一、复习回顾 平面向量坐标运算a =(1x ,1y ),b =(2x ,2y ),写出以下向量的坐标表示 a +b =(1x +2x ,1y +2y ) a -b =(1x -2x ,1y -2y )λa =(1x λ,1y λ)a •b =1212x x y y + a //b ⇔1221x y x y -=0a ⊥b ⇔1212x x y y +=0设(,)x y =a ,那么222||a x y =+或2||a x y =+如果表示向量a 的有向线段的起点和终点的坐标分别为),(11y x 、),(22y x ,那么1||(a x =-平面内两点间的距离公式)co s θ =||||a ba b ⋅⋅222221212121y x y x y y x x +++=〔πθ≤≤0〕二、新授:我们知道,向量a 在平面上可用有序实数对(x ,y)表示,在空间那么可用有序实数组{},,x y z 表示。
类似平面向量的坐标运算,我们可以得出空间向量的加法、减法、数乘及数量积运算的坐标表示。
空间向量的直角坐标运算:1.设a =123(,,)a a a ,b =123(,,)b b b ,那么 ⑴a +b =112233(,,)a b a b a b +++; ⑵a -b =112233(,,)a b a b a b ---; ⑶λa =123(,,)a a a λλλ()R λ∈; ⑷a ·b =112233a b a b a b ++.上述运算法那么怎样证明呢?〔将a =1a i +2a j +3a k 和b =1b i +2b j +3b k 代入即可〕2.两个向量共线或垂直的判定:设a =123(,,)a a a ,b =123(,,)b b b ,那么 ⑴a //b⇔a =λb ⇔112233,,a b a b a b λλλ===,()R λ∈⇔312123a a ab b b ==;⑵a ⊥b ⇔a ·b =0⇔1122330a b a b a b ++=练习1:()()3,2,5,1,5,1a b =-=-,求:⑴a +b . ⑵3a -b ;⑶6a . ; ⑷a ·b . 练习2:()()2,1,3,4,2,a b x =-=-,且a b ⊥,那么x =.练习3: ()()1,2,,,1,2a y b x =-=, 且(2)//(2)a b a b +-,那么〔 〕A. 1,13x y == B. 1,42x y ==-C. 12,4x y ==- D. 1,1x y ==-3.向量的模:设a =123(,,)a a a ,那么|a 222123a a a ++利用向量的长度公式,我们还可以得出空间两点间的距离公式:4.空间两点间的距离公式:在空间直角坐标系中,点111222(,,),(,,)A a b c B a b c ,那么A ,B 两点间的距离222212121()()()AB d AB a a b b c c ==-+-+-5、两个向量夹角公式cos ,||||⋅<>=⋅a b a b a b 112233222222123123=++⋅++a a a b b b这个公式成为两个向量的夹角公式.利用这个公式,我们可以求出两个向量的夹角,并可以进一步得出两个向量的某些特殊位置关系:当cos <a 、b >=1时,a 与b 同向; 当cos <a 、b >=-1时,a 与b 反向; 当cos <a 、b >=0时,a ⊥b .练习:()()3,5,7,2,4,3A B =-=-,求,,AB BA 线段AB 的中点坐标及线段AB 的长度.三、典型例题例5. 如图,在正方体1111ABCD A B C D -中,点11,E F 分别是1111,A B C D 的一个四等分点,求1BE 与1DF 所成的角的余弦值.分析:如何建系? → 点的坐标? → 如何用向量运算求夹角? 解:设正方体的棱长为1,如图建 立空间直角坐标系O-xyz ,那么13(1,1,0),1,,1,4⎛⎫⎪⎝⎭B E11(0,0,0),0, 1.4⎛⎫⎪⎝⎭,D F1311,,1(1,1,0)0,,1,44⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭BE1110, 1(0,0,0)0, 1.44⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,,DF1111150011,4416⎛⎫=⨯+-⨯+⨯= ⎪⎝⎭BE DF111717||,||.4==BE DF 111111151516cos ,.17||||1717<>===⋅⨯BE DF BE DF BE DF因此1BE 与1DF 所成的角的余弦值是1517。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
- 1 -
第3章 3.1.4
一、选择题(每小题5分,共20分)
1.已知A、B、C、D、E是空间五点,若{AB→,AC→,AD→}、{AB→,AC→,AE→}均不能构成空间
的一个基底,则在下列各结论中,正确的结论共有( )
①{AB→,AD→,AE→}不构成空间的一个基底;
②{AC→,AD→,AE→}不构成空间的一个基底;
③{BC→,CD→,DE→}不构成空间的一个基底;
④{AB→,CD→,EA→}构成空间的一个基底.
A.4个 B.3个
C.2个 D.1个
解析: 由AB→、AC→、AD→与AB→、AC→、AE→均不能构成空间的一个基底可知AB→、AC→、
AD→、AE→为共面向量,即A、B、C、D、E
五点共面,故①②③为真命题.
答案: B
2.给出下列命题:
①空间任意三个不共面的向量都可以作为一个基底;
②若a∥b,则a,b与任一个向量都不能构成空间的一个基底;
③A、B、C、D是空间四点,若BA→,BM→,BN→不能构成空间的一个基底,则A,B,M,
N
共面.
其中正确命题的个数是( )
A.0 B.1
C.2 D.3
解析: ①②③都是真命题.
答案: D
3.若a=e1+e2+e3,b=e1+e2-e3,c=e1-e2+e3,d=e1+2e2+3e3,d=αa+βb+γc,
则α,β,γ分别为( )
A.52,-1,-12 B.52,1,12
C.-52,1,-12 D.52,1,-12
解析: d=α(e1+e2+e3)+β(e1+e2-e3)+γ(e1-e2+e3)
- 2 -
=(α+β+γ)e1+(α+β-γ)e2+(α-β+γ)e3
又∵d=e1+2e2+3e3,
∴ α+β+γ=1α+β-γ=2α-β+γ=3,
∴ α=52,β=-1,γ=-12.
答案: A
4.如图所示,已知平行六面体OABC-O′A′B′C′,OA→=a,OC→=c,OO→′=b,D是四边
形OABC的中心,则( )
A.O′D→=-a+b+
c
B.O′D→=-b-12a-12c
C.O′D→=12a-b-
1
2
c
D.O′D→=12a-b+12c
解析: O′D→=O′O→+OD→
=O′O→+12OB→
=O′O→+12(OA→+OC→)
=12a-b+12c.
答案: D
二、填空题(每小题5分,共10分)
5.已知向量{a,b,c}是空间的一个基底,则从以下各向量a、b、c、a+b、a-b、a+c、
a-c、b+c、b-c
中选出三个向量,有些可构成空间的基底,请你写出三个基底:____________.
答案: ①{c,a+b,a-b} ②{b,a+c,a-c}
③{a,b+c,b-c}
6.正方体ABCD-A1B1C1D1中,点E、F分别是底面A1C1和侧面CD1的中心,若EF→+λA1D→=
0(λ∈R),则λ=________.
- 3 -
解析: 如图,连结A1C1,C1D,则E在A1C1上,F在C1D上,
易知EF綊12A1D,
∴EF→=12A1D→,
即EF→-12A1D→=0,
∴λ=-12.
答案: -12
三、解答题(每小题10分,共20分)
7.如图所示,四棱锥P-OABC的底面为一矩形,PO⊥平面OABC,设OA→=a,OC→=b,
OP
→
=c,E、F分别是PC和PB的中点,试用a,b,c表示:BF→、BE→、AE→、EF→.
解析: 连结BO,则BF→=12BP→=12(BO→+OP→)=12(c-b-a)=-12a-12b+12c.
BE→=BC→+CE→=-a+12CP→=-a+12(CO→+OP
→
)
=-a-12b+12c.
AE→=AP→+PE→=AO→+OP→+12(PO→+OC
→
)
=-a+c+12(-c+b)=-a+12b+12c.
EF→=12CB→=12OA→=12a
.
8.已知正四面体ABCD棱长为a,试建立恰当的坐标系并表示出各个顶点的坐标.
解析: 过A作AG垂直于平面BCD,
由于AB=AC=AD,所以G为△BCD的中心,
- 4 -
过G作GF∥CD,E为CD的中点,
以G为原点,GA→,GE→,GF→分别为x轴,y轴,z轴,建立如图所示的空间直角坐标系.
因为△BCD的边长为a,
则BE=32a,GE=36a,
又GFCE=23,
所以GF=23×12a=13a,
又BG=33a,
所以AG=a2-a23=63a,
所以A0,0,63a,B0,-33a,0,Ca2,36a,0,
D
-a2,36a,0
.
尖子生题库☆☆☆
9.(10分)如图所示,平行六面体ABCD-A1B1C1D1中,E、F分别在B1B和D1D上,
且BE=13BB1,DF=23DD1.
(1)证明:A、E、C1、F四点共面;
(2)若EF→=xAB→+yAD→+zAA1→,
求x+y+z.
解析: (1)证明:∵AC1→=AB→+AD→+AA1→
- 5 -
=AB→+AD→+13AA1→+23AA1→
=AB→+13AA1→+AD→+23AA1→
=AB→+BE→+AD→+DF→=AE→+AF→,
∴A、E、C1、F四点共面.
(2)∵EF→=AF→-AE→=AD→+DF→-(AB→+BE→)
=AD→+23DD1→-AB→-13BB1→
=-AB→+AD→+13AA1→,
∴x=-1,y=1,z=13,
∴x+y+z=13.