七年级数学上册期中难点特训(二)数轴上的动点与整式加减相结合的压轴题(原卷版)
专题02数轴上的动点问题 期中专题复习(含解析)2023年秋人教版数学七年级上册

运动时间问题(1)求的值;a b ,点表示的数(1)请你在数轴上表示出A,B,C三点的位置;(1)一般地,数轴上表示数m和数n两点之间的距离我们可用│m-n│参考答案:1.A【分析】根据数轴,按题目叙述的移动方法即可得到点前五次移动后在数轴上表示的数;根据移动的规律即可得移动第158次后到达的点在数轴上表示的数.【详解】解:设向右为正,向左为负,则表示的数为+1,表示的数为+3表示的数为0表示的数为-4表示的数为+1……由以上规律可得,每移动四次相当于向左移动4个单位长度.所以当移动156次时,156=39×4相当于向左移动了39次四个单位长度.此时表示的数为.则第157次向右移动157个单位长度,;第158次还是向右,移动了158个单位长度,所以.故在数轴上表示的数为159.故选A .【点睛】本题考查了数轴上点的运动规律,正确理解题意,找出点在数轴上的运动次数与对应点所表示的数的规律是解题的关键.2.①②④【分析】“前进3步后退2步”这5秒组成一个循环结构,先根据题意列出几组数据,从数据找寻规律:第一个循环节结束的数即x 5=1,第二个循环节结束的数即x 10=2,第三个循环节结束的数即x 15=3,…,第m 个循环节结束的数就是第5m 个数,即x 5m =m .然后再根据“前进3步后退2步”的运动规律来求取对应的数值.【详解】根据题意可知:x 1=1,x 2=2,x 3=3,x 4=2,x 5=1,x 6=2,x 7=3,x 8=4,x 9=3,x 10=2,x 11=3,x 12=4,x 13=5,x 14=4,x 15=3,1P 2P 3P 4P 5P ()39-4156⨯=-1571P =1581+158=159P =158P②如图2所示,当N在A点左侧,M在A点右侧时,③(2)817 =1+(2)=33 CA--17。
2023-2024年人教版七年级上册数学期末动点问题压轴题专题训练(含答案)

2023-2024年人教版七年级上册数学期末动点问题压轴题专题训练(1) ______, ______(1)若点P 到A 、B 两点的距离都相等,请直接写出点P 对应的数(2)数轴上是否存在点P ,使点P 到点A ,点B 的距离之和为10=a b =(1)___________,___________.(2)若在数轴上有两动点、分别从同时出发向右运动,点的速度为2个单位长度/秒,点的速度为1个单位长度秒,当点在点追上了点,求点对应的数为多少?=a c =P Q A B ,P Q P D Q D(1)写出数轴上点B 表示的数 ;(2)表示5与3之差的绝对值,实际上也可理解为(1)求出线段的长度;(1)点表示的数为________,点|53|-AB A(1)请直接写出a 、b 、c 的值. ______,设点P 运动时间为t 秒.(1)若M ,N ,P 三点同时出发,=a(1)数轴上点B 表示的数是 ;当点P 运动到(1)则______,______. A =a b =(1)A 点所表示的数是___________,C 点所表示的数是___________;(2)若动点P 从点C 出发,以每秒3个单位长度的速度沿数轴向左移动,同时另一动点Q 恰好从点A 出发,以每秒2个单位长度的速度沿数轴向右移动,设点P 和点Q 在数轴上的点M 相遇,求点M所表示的数是多少?(3)若动点P 从C 点出发,以每秒3个单位长度的速度沿数轴向左运动,另一动点Q 恰好从A 点出发,以每秒2个单位长度的速度沿数轴也向左运动,是否存在时间t ,使得P ,Q 到原点的距离相等,并求出此时点P 和点Q 所表示的数.13.如图,点在线段上,,,动点从点出发,沿线段以每秒个单位长度的速度向终点匀速运动;同时,动点从点出发,沿线段以每秒个单位长度的速度向终点匀速运动.当点到达终点时,点也随之停止运动.设点的运动时间为秒.(1)线段的长为______.(2)当点与点相遇时,求的值.(3)当点与点之间的距离为个单位长度时,求的值.(4)当时,直接写出的值.14.如图,在数轴上点A 、C 、B 表示的数分别是、1、12.动点P 从点A 出发,沿数轴以每秒3个单位长度的速度向终点B 匀速运动;同时,点Q 从点B 出发,沿数轴以每秒2个单位长度的速度向终点A 匀速运动,设点Q 的运动时间为t 秒.C AB 3AC =11BC =P A AB 3B Q B BA 2A P Q P t AB P Q t P Q 9t 2.5PC QB +=t 8-(1)的长为________;AB(2)当点P与点Q相遇时,求t的值;(1)点A表示的数为___________,点B表示的数为(1)OA=__________cm,OB=__________cm参考答案:。
(压轴题)人教版初中七年级数学上册第二章《整式的加减》模拟测试卷(有答案解析)(1)

一、选择题1.(0分)[ID :68038]如图,是小刚在电脑中设计的一个电子跳蚤,每跳一次包括上升和下降,即由点A —B —C 为一个完整的动作.按照图中的规律,如果这个电子跳蚤落到9的位置,它需要跳的次数为 ( )A .5次B .6次C .7次D .8次2.(0分)[ID :68035]在代数式a 2+1,﹣3,x 2﹣2x ,π,1x中,是整式的有( ) A .2个B .3个C .4个D .5个3.(0分)[ID :68034]点 1A 、 2A 、 3A 、…… 、 n A (n 为正整数)都在数轴上.点 1A 在原点 O 的左边,且 1A O 1=;点 2A 在点 1A 的右边,且 21A A 2=;点 3A 在点 2A 的左边,且 32A A 3=;点 4A 在点 3A 的右边,且 43A A 4=;……,依照上述规律,点2008A 、 2009A 所表示的数分别为( )A .2008 、 2009-B .2008- 、 2009C .1004 、 1005-D .1004 、 1004-4.(0分)[ID :68025]观察下列单项式:223344191920202,2,2,2,,2,2,x x x x x x ---,则第n 个单项式是( ) A .2n n x B .(1)2n n n x -C .2n n x -D .1(1)2n n n x +-5.(0分)[ID :68020]如图,a ,b 在数轴上的位置如图所示:,那么||||a b a b -++的结果是( )A .2b -B .2bC .2a -D .2a6.(0分)[ID :68019]设a 是最小的非负数,b 是最小的正整数,c ,d 分别是单项式﹣x 3y 的系数和次数,则a ,b ,c ,d 四个数的和是( ) A .1B .2C .3D .47.(0分)[ID :68016]一列数123,,n a a a a ⋅⋅⋅,其中11a =-,2111a a =- ,3211a a =- ,……,111n n a a -=- ,则1232020a a a a ⨯⨯⋅⋅⋅⨯=( )A .1B .-1C .2020D .2020- 8.(0分)[ID :68001]已知 2x 6y 2和﹣3x 3m y n 是同类项,则9m 2﹣5mn ﹣17的值是( ) A .﹣1B .﹣2C .﹣3D .﹣49.(0分)[ID :68000]下列说法正确的是( ) A .单项式34xy -的系数是﹣3 B .单项式2πa 3的次数是4C .多项式x 2y 2﹣2x 2+3是四次三项式D .多项式x 2﹣2x +6的项分别是x 2、2x 、610.(0分)[ID :67998]若关于x 的多项式6x 2﹣7x +2mx 2+3不含x 的二次项,则m =( ) A .2 B .﹣2C .3D .﹣311.(0分)[ID :67994]下列同类项合并正确的是( )A .x 3+x 2=x 5B .2x ﹣3x =﹣1C .﹣a 2﹣2a 2=﹣a 2D .﹣y 3x 2+2x 2y 3=x 2y 312.(0分)[ID :67989]探索规律:根据下图中箭头指向的规律,从2013到2014再到2015,箭头的方向是( )A .B .C .D .13.(0分)[ID :67980]代数式21a b-的正确解释是( ) A .a 与b 的倒数的差的平方 B .a 与b 的差的平方的倒数C .a 的平方与b 的差的倒数D .a 的平方与b 的倒数的差14.(0分)[ID :67964]已知3a b -=-,2c d +=,则()()a d b c --+的值为( )A .﹣5B .1C .5D .﹣115.(0分)[ID :67961]一列数:0,1,2,3,6,7,14,15,30,___,___,___这串数是由小能按照一定规则写下来的,他第一次写下“0,1”,第二次按着写“2,3”,第三次接着写“6,7”第四次接着写“14,15”,就这样一直接着往下写,那么这串数的最后三个数可能是下面的 A .31,63,64B .31,32,33C .31,62,63D .31,45,46二、填空题16.(0分)[ID :68153]观察下列顺序排列的等式:9×0+1 = 1,9×1+2 = 11,9×2+3=21, 9×3+4=31, 9×4+5=41,……,猜想:第n 个等式(n 为正整数)用n 表示,可表示成_________.17.(0分)[ID :68146]已知123112113114,,,...,1232323438345415a a a =+==+==+=⨯⨯⨯⨯⨯⨯依据上述规律,则99a =________.18.(0分)[ID :68138]观察如图,发现第二个和第三个图形是怎样借助第一个图形得到的,概括其中的规律在第n 个图形中,它有n 个黑色六边形,有_______个白色六边形.19.(0分)[ID :68121]将代数式4a 2b +3ab 2﹣2b 3+a 3按a 的升幂排列的是_____. 20.(0分)[ID :68106]单项式20.8a h π-的系数是______. 21.(0分)[ID :68103]观察下面的单项式:234,2,4,8,,a a a a 根据你发现的规律,第8个式子是____.22.(0分)[ID :68097]在括号内填上恰当的项:22222x xy y -+-=-(_____________________).23.(0分)[ID :68093]若单项式322m x y -与3-x y 的差仍是单项式,则m 的值为__________.24.(0分)[ID :68090]由黑色和白色的正方形按一定规律组成的图形如图所示,从第二个图形开始,每个图形都比前一个图形多3个白色正方形,则第n 个图形中有白色正方形__________个 (用含n 的代数式表示).25.(0分)[ID :68089]王马虎同学在做有理数的加减法时,将一个100以内的含两位小数的数看错了,他将小数点前后的两位数看反了(比如56.78错看成了78.56),然后用看错的数字减3.5,发现差恰好就是原正确数字的2倍,则正确的结果应该是_____. 26.(0分)[ID :68067]图中阴影部分的面积为______.27.(0分)[ID :68059]如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7;则上图中m +n+p =_________;三、解答题28.(0分)[ID:67821]数a、b、c在数轴上对应的位置如图所示,化简+-++-.a c cb a b29.(0分)[ID:67794]如图,观察下列图形,可得它们是按一定规律排列的,依照此规律,解决下列问题.(1)第5个图形有_______颗五角星,第6个图形有_______颗五角星;(2)第2020个图形有_______颗五角星,第n个图形有_______颗五角星.30.(0分)[ID:67774]窗户的形状如图所示(图中长度单位:cm),其中上部是半圆形,下部是边长相同的四个小正方形. 已知下部小正方形的边长是acm.(1)计算窗户的面积(计算结果保留π).(2)计算窗户的外框的总长(计算结果保留π).(3)安装一种普通合金材料的窗户单价是175元/平方米,当a=50cm时,请你帮助计算这个窗户安装这种材料的费用(π≈3.14,窗户面积精确到0.1).【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.C2.C3.C4.B5.A6.D7.A8.A9.C10.D11.D12.D13.D14.A15.C二、填空题16.【分析】根据数据所显示的规律可知:第一数列都是9第2数列开始有顺序且都是所对序号的数减去1加号后的数据有顺序且与所在的序号项吻合等号右端是的规律所以第n 个等式(n为正整数)应为【详解】根据分析:即第17.【解析】试题18.【分析】发现规律下一个图形是在上一个图形的基础上加上1个黑色六边形和4个白色六边形【详解】解:第一个图形中有6个白色六边形第二个图形有6+4个白色六边形第三个图形有6+4+4个白色六边形根据发现的规19.﹣2b3+3ab2+4a2b+a3【分析】找出a的次数的高低后由低到高排列即可得出答案【详解】可得出﹣2b3+3ab2+4a2b+a3【点睛】本题考查了代数式中的次数熟悉掌握次数的概念和细心是解决本20.【分析】根据单项式系数的定义进行求解即可【详解】单项式的系数是故答案为:【点睛】本题考查了单项式的系数问题掌握单项式系数的定义是解题的关键21.【分析】根据题意给出的规律即可求出答案【详解】由题意可知:第n个式子为2n-1an∴第8个式子为:27a8=128a8故答案为:128a8【点睛】本题考查单项式解题的关键是正确找出题中的规律本题属于22.【分析】根据添括号的法则解答【详解】解:故答案是:【点睛】本题考查了去括号与添括号添括号法则:添括号时如果括号前面是正号括到括号里的各项都不变号如果括号前面是负号括号括号里的各项都改变符号添括号与去23.【分析】根据题意可知单项式与是同类项从而可求出m的值【详解】解:∵若单项式与的差仍是单项式∴这两个单项式是同类项∴m-2=1解得:m=3故答案为:3【点睛】本题考查合并同类项和单项式解题关键是能根据24.【分析】将每个图形中白色正方形的个数分别表示出来总结规律即可得到答案【详解】图①白色正方形:2个;图②白色正方形:5个;图③白色正方形:8个∴得到规律:第n个图形中白色正方形的个数为:(3n-1)个25.32【分析】根据用看错的数字减35发现差恰好就是原正确数字的2倍利用有理数的加减混合运算即可求解【详解】∵100以内的含两位小数的数看错了根据归纳猜想得:原数为1432看错的两位数为3214321426.【分析】图中阴影部分面积为半径为R的半圆面积减去直径为R的圆的面积进行计算即可【详解】解:【点睛】本题考查圆的面积计算公式熟记公式并根据题意找出阴影部分面积为半径为R的半圆面积减去直径为R的圆的面积27.4【分析】根据约定的方法求出mnp即可【详解】解:根据约定的方法可得:;∴;∴∴故答案为4【点睛】本题考查了列代数式和代数式求值解题的关键是掌握列代数式的约定方法三、解答题28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.C解析:C【分析】首先观察图形,得出一个完整的动作过后电子跳骚升高2个格,根据起始点为-5,终点为9,即可得出它需要跳的次数.【详解】解:由图形可得,一个完整的动作过后电子跳骚升高2个格,如果电子跳骚落到9的位置,则需要跳9(5)72--=次.故选C.此题考查数字的规律变化,关键是仔细观察图形,得出一个完整的动作过后电子跳骚升高2个格,难度一般.2.C解析:C【分析】单项式和多项式统称为整式,分母中含有字母的不是整式.【详解】解:a2+1和 x2﹣2x是多项式,-3和π是单项式,1x不是整式,∵单项式和多项式统称为整式,∴整式有4个.故选择C.【点睛】本题考查了整式的定义.3.C解析:C【分析】先找到特殊点,根据特殊点的下标与数值的关系找到规律,数较大时,利用规律解答.【详解】解:根据题意分析可得:点A₁, A₂,A₃, .. A n 表示的数为-1,1,-2,2,-3,3,...依照上述规律,可得出结论:点的下标为奇数时,点在原点的左侧,且为下标加1除以2的相反数;点的下标为偶数时,点在原点的右侧且表示的数为点的下标数除以2; 即:当n 为奇数时,n 1A 2n +=-, 当n 为偶数时,2n n A =所以点A 2008表示的数为: 2008÷2= 1004 A 2009表示的数为:- (2009+1) ÷2=-1005 故选: C . 【点睛】本题考查探索与表达规律.这类题型在中考中经常出现,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,然后找到规律.4.B解析:B 【分析】要看各单项式的系数和次数与该项的序号之间的变化规律.本题中,奇数项符号为负,偶数项符号为正,数字变化规律是(-1)n 2n ,字母变化规律是x n . 【详解】因为第一个单项式是1112(1)2x x -=-⨯; 第二个单项式是222222(1)2x x =-⨯; 第三个单项式是333332(1)2x x -=-⨯, …,所以第n 个单项式是(1)2n n n x -. 故选:B . 【点睛】本题考查了单项式的系数和次数的规律探索,确定单项式的系数和次数时,把一个单项式改写成数字因数和字母因式的积,是找准单项式的系数和次数的关键.分别找出单项式的系数和次数的规律也是解决此类问题的关键.5.A解析:A 【分析】根据数轴上点的位置判断出绝对值里边式子的正负,原式利用绝对值的代数意义化简,计算即可得到结果. 【详解】解:根据题意得:b <a <0,且|a |<|b |, ∴a -b >0,a +b <0, ∴原式=a -b -a -b =-2b .故选:A . 【点睛】此题主要考查了数轴以及绝对值,熟练掌握绝对值的性质是解本题的关键.6.D解析:D 【分析】根据题意求得a ,b ,c ,d 的值,代入求值即可. 【详解】∵a 是最小的非负数,b 是最小的正整数,c ,d 分别是单项式-x 3y 的系数和次数, ∴a=0,b=1,c=-1,d=4, ∴a ,b ,c ,d 四个数的和是4, 故选:D . 【点睛】本题考查了有理数、整式的加减以及单项式的系数和次数,,认真掌握有理数的分类是本题的关键;注意整数、0、正数之间的区别,0既不是正数也不是负数,但是整数.7.A解析:A 【分析】首先根据11a =-,可得()21111,1112a a ===---32112,1112a a ===--43111112a a ===---,…,所以这列数是-1、12、2、−1、12、2…,每3个数是一个循环;然后用2020除以3,求出一共有多少个循环,还剩下几个数,从而可得答案. 【详解】 解:11a =-,()21111,1112a a ===--- 32112,1112a a ===-- 43111112a a ===---, 所以这列数是-1、12、2、−1、12、2…,发现这列数每三个循环, 由202036731,÷= 且()1231121,2a a a ⨯⨯=-⨯⨯=-所以:()()123206732011 1.a a a a =-⨯-⨯⨯⋅⨯=⋅⋅故选A . 【点睛】本题主要考查了探寻数列规律问题,同时考查了有理数的加减乘除乘方的运算,注意观察总结规律,并能正确的应用规律,解答此题的关键是判断出:这列数是-1、12、2、−1、12、2…,每3个数是一个循环. 8.A解析:A 【分析】根据同类项是字母相同且相同字母的指数也相同,可得m ,n 的值,根据代数式求值,可得答案. 【详解】由题意,得3m =6,n =2. 解得m =2,n =2.9m 2﹣5mn ﹣17=9×4﹣5×2×2﹣17=﹣1, 故选:A . 【点睛】本题考查同类项的定义,同类项定义中的两个“相同”:所含字母相同;相同字母的指数相同,是易混点,还有注意同类项定义中隐含的两个“无关”:①与字母的顺序无关;②与系数无关.9.C解析:C 【分析】根据单项式的系数、次数:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数;几个单项式的和叫做多项式,每个单项式叫做多项式的项.多项式中次数最高的项的次数叫做多项式的次数进行分析即可. 【详解】 解:A 、单项式34xy -的系数是34-,此选项错误; B 、单项式2πa 3的次数是3,此选项错误; C 、多项式x 2y 2﹣2x 2+3是四次三项式,此选项正确; D 、多项式x 2﹣2x+6的项分别是x 2、﹣2x 、6,此选项错误; 故选:C . 【点睛】本题考查了单项式及多项式的定义,解题的关键是牢记单项式的系数、次数及多项式的次数、项数,难度不大.10.D解析:D【分析】先将多项式合并同类型,由不含x的二次项可列【详解】6x2﹣7x+2mx2+3=(6+2m)x2﹣7x+3,∵关于x的多项式6x2﹣7x+2mx2+3不含x的二次项,∴6+2m=0,解得m=﹣3,故选:D.【点睛】此题考查多项式不含项的计算,此类题需先将多项式合并同类型后,由所不含的项得到该项的系数等于0来求值.11.D解析:D【分析】根据合并同类项系数相加字母及指数不变,可得答案.【详解】解:A、x3与x2不是同类项,不能合并,故A错误;B、合并同类项错误,正确的是2x﹣3x=﹣x,故B错误;C、合并同类项错误,正确的是﹣a2﹣2a2=﹣3a2,故C错误;D、系数相加字母及指数不变,故D正确;故选:D.【点睛】本题考查了合并同类项,熟记合并同类项的法则,并根据合并同类项的法则计算是解题关键.12.D解析:D【分析】根据图中规律可得,每4个数为一个循环组依次循环,用2013除以4,根据商和余数的情况解答即可.【详解】解:由图可知,每4个数为一个循环组依次循环,2013÷4=503余1,即0到2011共2012个数,构成前面503个循环,∴2012是第504个循环的第1个数,2013是第504个循环组的第2个数,∴从2013到2014再到2015,箭头的方向是.故选:D.【点睛】本题考查了数字变化规律,仔细观察图形,发现每4个数为一个循环组依次循环是解题的关键.13.D解析:D【分析】说出代数式的意义,实际上就是把代数式用语言叙述出来.叙述时,要求既要表明运算的顺序,又要说出运算的最终结果.【详解】解:代数式21ab的正确解释是a的平方与b的倒数的差.故选:D.【点睛】用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序.具体说法没有统一规定,以简明而不引起误会为出发点.14.A解析:A【分析】先把所求代数式去掉括号,再化为已知形式把已知代入求解即可.【详解】解:根据题意:(a-d)-(b+c)=(a-b)-(c+d)=-3-2=-5,故选:A.【点睛】本题考查去括号、添括号的应用.先将其去括号化简后再重新组合,得出答案.15.C解析:C【分析】本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1.由此可写出最后的3个数.【详解】解:本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1,所以这串数最后的三个数为31,62,63.故选:C.【点睛】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.二、填空题16.【分析】根据数据所显示的规律可知:第一数列都是9第2数列开始有顺序且都是所对序号的数减去1加号后的数据有顺序且与所在的序号项吻合等号右端是的规律所以第n个等式(n 为正整数)应为【详解】根据分析:即第解析:109n -【分析】根据数据所显示的规律可知:第一数列都是9,第2数列开始有顺序且都是所对序号的数减去1,加号后的数据有顺序且与所在的序号项吻合,等号右端是()10?11n -+的规律,所以第n 个等式(n 为正整数)应为()()9110?11n n n -+=-+.【详解】根据分析:即第n 个式子是()()9110?11109n n n n -+=-+=-.故答案为:109n -.【点睛】本题主要考查了数字类规律探索题.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后直接利用规律求解. 17.【解析】试题 解析:1009999. 【解析】试题等号右边第一式子的第一个加数的分母是从1开始,三个连续的数的积,分子是1;第二个加数的分子是1,分母是2,结果的分子是2,分母是1×3=3;等号右边第二个式子的第一个加数的分母是从2开始,三个连续的数的积,分子是1;第二个加数的分子是1,分母是3,结果的分子是3,分母是2×4=8;等号右边第三个式子的第一个加数的分母是从3开始,三个连续的数的积,分子是1;第二个加数的分子是1,分母是4,结果的分子是4,分母是3×5=15.所以a 99=991100991019999+=⨯. 考点:规律型:数字的变化类.18.【分析】发现规律下一个图形是在上一个图形的基础上加上1个黑色六边形和4个白色六边形【详解】解:第一个图形中有6个白色六边形第二个图形有6+4个白色六边形第三个图形有6+4+4个白色六边形根据发现的规 解析:42n +【分析】发现规律,下一个图形是在上一个图形的基础上加上1个黑色六边形和4个白色六边形.【详解】解:第一个图形中有6个白色六边形,第二个图形有6+4个白色六边形,第三个图形有6+4+4个白色六边形,根据发现的规律,第n 个图形中有6+4(n -1)个白色四边形.故答案是:4n +2.【点睛】本题考查规律的探究,解题的关键是先发现图形之间的规律,再去归纳总结出公式. 19.﹣2b3+3ab2+4a2b+a3【分析】找出a 的次数的高低后由低到高排列即可得出答案【详解】可得出﹣2b3+3ab2+4a2b+a3【点睛】本题考查了代数式中的次数熟悉掌握次数的概念和细心是解决本解析:﹣2b 3+3ab 2+4a 2b+a 3.【分析】找出a 的次数的高低后,由低到高排列即可得出答案.【详解】可得出﹣2b 3+3ab 2+4a 2b+a 3.【点睛】本题考查了代数式中的次数,熟悉掌握次数的概念和细心是解决本题的关键.20.【分析】根据单项式系数的定义进行求解即可【详解】单项式的系数是故答案为:【点睛】本题考查了单项式的系数问题掌握单项式系数的定义是解题的关键解析:0.8π-【分析】根据单项式系数的定义进行求解即可.【详解】单项式20.8a h π-的系数是0.8π-故答案为:0.8π-.【点睛】本题考查了单项式的系数问题,掌握单项式系数的定义是解题的关键.21.【分析】根据题意给出的规律即可求出答案【详解】由题意可知:第n 个式子为2n-1an ∴第8个式子为:27a8=128a8故答案为:128a8【点睛】本题考查单项式解题的关键是正确找出题中的规律本题属于解析:8128a【分析】根据题意给出的规律即可求出答案.【详解】由题意可知:第n 个式子为2n-1a n ,∴第8个式子为:27a 8=128a 8,故答案为:128a 8.【点睛】本题考查单项式,解题的关键是正确找出题中的规律,本题属于基础题型.22.【分析】根据添括号的法则解答【详解】解:故答案是:【点睛】本题考查了去括号与添括号添括号法则:添括号时如果括号前面是正号括到括号里的各项都不变号如果括号前面是负号括号括号里的各项都改变符号添括号与去 解析:222x xy y -+【分析】根据添括号的法则解答.【详解】解:222222(2)x xy y x xy y -+-=--+.故答案是:222x xy y -+.【点睛】本题考查了去括号与添括号,添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.添括号与去括号可互相检验.23.【分析】根据题意可知单项式与是同类项从而可求出m 的值【详解】解:∵若单项式与的差仍是单项式∴这两个单项式是同类项∴m-2=1解得:m=3故答案为:3【点睛】本题考查合并同类项和单项式解题关键是能根据 解析:3【分析】根据题意可知单项式322m x y -与3-x y 是同类项,从而可求出m 的值.【详解】解:∵若单项式322m x y -与3-x y 的差仍是单项式,∴这两个单项式是同类项,∴m-2=1解得:m=3.故答案为:3.【点睛】本题考查合并同类项和单项式,解题关键是能根据题意得出m=3.24.【分析】将每个图形中白色正方形的个数分别表示出来总结规律即可得到答案【详解】图①白色正方形:2个;图②白色正方形:5个;图③白色正方形:8个∴得到规律:第n 个图形中白色正方形的个数为:(3n-1)个 解析:()31-n【分析】将每个图形中白色正方形的个数分别表示出来,总结规律即可得到答案.【详解】图①白色正方形:2个;图②白色正方形:5个;图③白色正方形:8个,∴得到规律:第n 个图形中白色正方形的个数为:(3n-1)个,故答案为:(3n-1).【点睛】此题考查图形类规律的探究,会观察图形的变化用代数式表示出规律是解题的关键. 25.32【分析】根据用看错的数字减35发现差恰好就是原正确数字的2倍利用有理数的加减混合运算即可求解【详解】∵100以内的含两位小数的数看错了根据归纳猜想得:原数为1432看错的两位数为32143214解析:32.【分析】根据用看错的数字减3.5,发现差恰好就是原正确数字的2倍,利用有理数的加减混合运算即可求解.【详解】∵100以内的含两位小数的数看错了,根据归纳猜想得:原数为14.32,看错的两位数为32.14,32.14﹣3.5=28.64,14.32×2=28.64.∴32.14﹣3.5=2×14.32.故答案为14.32.【点睛】本题考查有理数的加减混合运算,解题的关键是利用探究猜想的方法进行计算. 26.【分析】图中阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积进行计算即可【详解】解:【点睛】本题考查圆的面积计算公式熟记公式并根据题意找出阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积 解析:21π4R【分析】图中阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积,进行计算即可.【详解】 解:2221=()224R R S R πππ-=阴影 【点睛】本题考查圆的面积计算公式,熟记公式并根据题意找出阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积是解题关键. 27.4【分析】根据约定的方法求出mnp 即可【详解】解:根据约定的方法可得:;∴;∴∴故答案为4【点睛】本题考查了列代数式和代数式求值解题的关键是掌握列代数式的约定方法解析:4【分析】根据约定的方法求出m ,n ,p 即可.【详解】解:根据约定的方法可得:18n -+= ,81m +=- ;∴7n = ,9m =- ;∴()716p =+-=∴9764m n p ++=-++=故答案为4.【点睛】本题考查了列代数式和代数式求值,解题的关键是掌握列代数式的约定方法.三、解答题28.0;【分析】由数轴可得a >0>b >c ,并从数轴上可得出a ,b ,c 绝对值的大小,从而可以得出各项式子的正负,去绝对值可得出答案.【详解】解:由数轴得,c b 0a <<<,且c a b >>,a c cb a b +-++-a c cb a b =--+++-0=.【点睛】本题考查了数轴上数的大小,去绝对值,熟悉掌握定义是解决本题的关键.29.(1)16,19;(2)6061,31n +.【分析】(1)将每一个图案分成两部分,最下面位置处的一个不变,其它的分三条线,每一条线上后一个图形比前一个图形多一个,根据此规律找出第5、6个图形中★的个数; (2)利用(1)中所得规律可得.【详解】解:(1)观察发现,第1个图形★的颗数是134+=,第2个图形★的颗数是1327+⨯=,第3个图形★的颗数是13310+⨯=,第4个图形★的颗数是13413+⨯=,所以第5个图形★的颗数是13516+⨯=,第6个图形★的颗数是13619+⨯=.故答案为:16,19.(2)由(1)知,第2020个图形★的颗数是1320206061+⨯=,第n 个图形★的颗数是31n +.故答案为:6061,31n +.【点睛】本题考查了图形变化规律的问题,把★分成两部分进行考虑,并找出第n 个图形★的个数的表达式是解题的关键.30.(1)2214a +a 2π;(2)6a a π+;(3)245.【分析】(1)根据图示,窗户的面积等于4个小正方形的面积加上半径是a 的半圆的面积;(2)根据图示,窗户外框的总长就是用3条长度是2acm 的边的长度加上半径是acm 的半圆的长度;(3)根据窗户的总面积,代入求值即可.【详解】 解:(1)窗户的面积为:()()222214a a 422a a a cm ππ⎛⎫⨯+=+ ⎪⎝⎭ (2)窗户的外框的总长为:()()132a 262a a a cm ππ⨯+⨯=+ (3)当a=50cm ,即:a=0.5m 时, 窗户的总面积为:()2220.540.5128m ππ⎛⎫⨯+=+ ⎪⎝⎭取π≈3.14,原式=1+0.3925≈1.4(m 2)安装窗户的费用为:1.4×175=245(元).【点睛】 本题考查的知识点是求组合图形的面积与周长,将已知图形分解为所熟悉的简单图形是解此题的关键.。
苏科版七年级数学上册期末复习压轴题数轴上的动点(难题)训练

七上期末复习压轴题---数轴上的动点(难题)训练一、计算题1.如图,M是线段AB上一点,且AB=16cm,C、D两点分别从M、B同时出发,C点以1cm/s的速度向点A运动,D点以3cm/s的速度向点M运动,当一点到达终点时,另一点也停止运动.(1)当AM=6cm,点C、D运动了2s时,求这时AC与MD的数量关系;(2)若AM=6cm,请你求出点C、D运动了多少s时,点C、D的距离等于4cm;(3)若点C、D运动时,总有MD=3AC,求AM的长.2.如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数,点P表示的数(用含t的代数式表示);(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P追上点Q时,点P所表示的数是多少?(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;二、解答题3.探究题:如图①,已知线段AB=14cm,点C为AB上的一个动点,点D、E分别是AC和BC的中点.(1)若点C恰好是AB中点,则DE=______cm;(2)若AC=4cm,求DE的长;(3)试利用“字母代替数”的方法,设AC=a cm请说明不论a取何值(a不超过14cm),DE的长不变;(4)知识迁移:如图②,已知∠AOB=120°,过角的内部任一点C画射线OC,若OD、OE分别平分∠AOC和∠BOC,试说明∠DOE=60°与射线OC的位置无关.4.如图①点C在线段AB上,点M、N分别是AC、BC的中点,且满足AC=a,BC=b.(1)若a=4cm,b=6cm,求线段MN的长;(2)若点C为线段AB上任意一点,其它条件不变,你能猜想MN的长度吗?直接写出你的猜想结果;(3)若点C在线段AB的延长线上,其它条件不变,你能猜想MN的长度吗?请在图②中画出图形,写出你的猜想并说明理由.5.如图,数轴上线段AB长为4个单位,线段CD长为6个单位,点A在数轴上表示的数是−12,点D在数轴上表示的数是22.(1)点B在数轴上表示的数是________,点C在数轴上表示的数是________;(2)若数轴上点P与A、B两点的距离和为5,求点P在数轴上表示的数;(3)若线段AB以6个单位/秒的速度向右匀速运动,同时线段CD以2个单位/秒的速度向左匀速运动,当运动到BC长为8个单位时,直接写出点B在数轴上表示的数.6.如图,在数轴上点A、B、C、D对应的数分别是a,b,c,d其中a,b满足|a+1|+(b−2)2=0.(1)求A,B两点之间的距离;BC,且满足c+d=0,求数d.(2)数轴上点A的左侧的点C,使AC=23(3)现在A、B两处分别放置一个小球,C、D两处分别放置一块挡板,已知小球以某一速度撞向另一静止小球时,这个小球停留在被撞小区的位置,被撞小球则以同样的速度向前运动,小球撞到左右挡板后以相同的速度反向运动,现A球以每秒1个单位长度的速度向右匀速运动,设运动的时间为t(秒);①t为何值时B球第二次撞向右侧挡板;②在这段时间内,A、B两小球的距离为4时,请直接写出此时处于运动状态下的小球所在位置表示的点的数值.7.【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合,研究数轴我们发现:若数轴上点A、点B表示的数分别为a、b,则A,B两点之间的距离AB=|a−b|,若a>b,则可简化为AB=a−b,线段AB的中点表示的数a+b.【问题情境】如图,数轴上点A表示的数为−2,点B表示的数为8,点P 2从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t>0).【综合运用】(1)①A、B两点间的距离AB=______;线段AB的中点表示的数为______;②用含t的代数式表示:t秒后,点P表示的数为______;点Q表示的数为______;(2)求当t为何值时,P、Q两点相遇,并写出相遇点所表示的数;(3)若点M为PA的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN的长.8.如图1,已知点M是线段AB上一点,点C在线段AM上,点D在线段BM上,C、D两点分别从M、B出发以1cm/s、3cm/s的速度沿直线BA向左运动,运动方向如箭头所示.(Ⅰ)若AB=10 cm,当点C、D运动了2 s时,求AC+MD的值;(Ⅱ)若点C、D运动时,总有MD=3AC,则AM=____AB;(Ⅲ)如图2,若AM=14AB,点N是直线AB上一点,且AN−BN=MN,求MNAB的值.9.如图,B是线段AD上一动点,沿A→D以2cm/s的速度运动,C是线段BD的中点,AD=10cm,设点B运动时间为t秒.(1)当t=2时,①AB=______cm.②求线段CD的长度.(2)在运动过程中,若AB的中点为E,则EC的长是否变化?若不变,求出EC的长;若发生变化,请说明理由.10.图,数轴上线段AB=2,CD=4,点A在数轴上表示的数是−10,点C在数轴上表示的数是16,若线段AB以6个单位/秒的速度向右匀速运动,同时线段CD以2个单位/秒的速度向左匀速运动。
数轴动点问题压轴专题(二)2021-2022学年人教版七年级数学上册第一章 有理数

第一章《有理数》——数轴动点问题压轴专题(二)1.如图,在数轴上的A点表示数a,B点表示数b,a、b满足(a+2)2+|b﹣4|=0.(1)点A表示的数为,点B表示的数为.(2)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒).①t=1时,甲小球到原点的距离=;乙小球到原点的距离=.当t=3时,甲小球到原点的距离=;乙小球到原点的距离=.②试探究:甲、乙两小球到原点的距离可能相等吗?若不能,请说明理由;若能,请举例说明.2.阅读下面的材料并解答问题:A点表示数a,B点表示数b,C点表示数c,且点A到点B的距离记为线段AB的长,线段AB的长可以用右边的数减去左边的数表示,即AB=b﹣a.若b是最小的正整数,且a、b满足(c﹣5)2+|a+b|=0.(1)b=,c=.(2)若将数轴折叠,使得A与C点重合:①点B与数表示的点重合;②若数轴上P、Q两点之间的距离为2018(P在Q的左侧),且P、Q两点经折叠后重合,则P、Q两点表示的数是、.(3)点A、B、C开始在数轴上运动,若点A以每秒2个单位长度的速度向左运动,同时点B和点C分别以每秒1个单位长度和3个单位长度的速度向右运动,设运动时间为t秒,试探索:3AC﹣5AB的值是否随着时间的变化而改变?若变化,请说明理由;若不变,请求出其值.3.在数轴上点A表示数a,点B表示数b,点C表示数c;a是最大的负整数,a、b、c满足|a+b|+(c﹣5)2=0.(1)填空:a=,b=,c=;(2)P为数轴上一动点,其对应的数是x,当P在线段AC上,且PA+PB+PC=7时,求x的值.(3)若点P,Q分别从A,C同时出发,匀速相向运动,点P的速度为3个单位/秒,点Q的速度为1个单位/秒.当点P运动到C后迅速以原速返回A;点Q运动至B点后停止运动,同时P点也停止运动.求在此运动过程中P,Q的相遇点在数轴上对应的数.4.已知点A在数轴上对应的数为a,点B在数轴上对应的数为b,且|a+2|+(b﹣5)2=0,规定A、B两点之间的距离记作AB=|a﹣b|.(1)求A、B两点之间的距离AB;(2)设点P在A、B之间,且在数轴上对应的数为x,通过计算说明是否存在x的值使PA+PB=10;(3)设点P不在A、B之间,且在数轴上对应的数为x,此时是否又存在x的值使PA+PB=10呢?5.如图:在数轴上点A表示数a,点B表示数b,点C表示数c,b是最大的负整数,且a、c满足|a+3|+(c﹣5)2=0.(1)a=,b=,c=.(2)若将数轴折叠,使得点A与点C重合,则点B与数表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C 分别以每秒2个单位长度和3个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点B与点C之间的距离表示为BC,则AB=,BC=.(用含t的代数式表示)(4)请问:3BC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.6.已知:数轴上的点A、B分别表示﹣1和3.5.(1)在数轴上画出A、B两点;(2)若点C与点A距离4个单位长度,则点C表示的数是.(3)若折叠纸面,使数轴上﹣1表示的点与3表示的点重合,则10表示的点与数表示的点重合.7.如图,在数轴上点A所表示的数是﹣5,点B在点A的右侧,AB=6;点C在AB之间,AC=2BC.(1)在数轴上描出点B;(2)求点C所表示的数,并在数轴上描出点C;(3)已知在数轴上存在点P,使PA+PC=PB,求点P所表示的数.8.如图,半径为1个单位的圆片上有一点Q与数轴上的原点重合.(提示:圆的周长C=2πr,结果保留π的形式)(1)把圆片沿数轴向右滚动1周,点Q到达数轴上点A的位置,点A表示的数是;(2)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,﹣1,+3,﹣5,﹣1①第几次滚动后,Q点距离原点最远?②当圆片结束运动时,Q点运动的路程共有多少?此时点Q所表示的数是多少?9.某巡警骑摩托车在一条东西大道上巡逻,某天他从岗亭出发,晚上停留在A处,规定向东方向为正,向西方向为负,当天行驶情况记录如下(单位:千米):+10,﹣8,+6,﹣14,+4,﹣2.(1)A处在岗亭何方?距离岗亭多远?(2)若摩托车每行驶1千米耗油0.5升,这一天共耗油多少升?10.我国著名数学家华罗庚说过“数缺形时少直观,形少数时难入微”,数形结合是解决数学问题的重要思想方法.例如,式子|x﹣2|的几何意义是数轴上x所对应的点与2所对应的点之间的距离;因为|x+1|=|x﹣(﹣1)|,所以|x+1|的几何意义就是数轴上x所对应的点与﹣1所对应的点之间的距离.(1)发现问题:代数式|x+1|+|x﹣2|的最小值是多少?(2)探究问题:如图,点A、B、P分别表示数﹣1、2、x,AB=3.∵|x+1|+|x﹣2|的几何意义是线段PA与PB的长度之和,∴当点P在线段AB上时,PA+PB=3,当点P在点A的左侧或点B的右侧时,PA+PB>3.∴|x+1|+|x﹣2|的最小值是3.(3)解决问题:①|x+3|+|x﹣1|的最小值是多少?并利用下面所给数轴说明理由;②填空:当a为时,代数式|x+a|+|x﹣3|的最小值是2.11.已知:|b|=1,b>0,且a,b,c满足(c﹣5)2+|a+b|=0,请回答问题:(1)请直接写出a,b,c的值(2)a,b,c在数轴上所对应的点分别为A、B、C,在上标出A、B、C(3)点P为一移动的点,其对应的数为x,点P在0到2之间运动时(即0≤x≤2时),请化简式子:|x+1|﹣|x﹣1|+2|x+5|(写出化简过程).12.点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.利用数形结合思想回答下列问题:(1)如果点A表示数5,将点A先向左移动4个单位长度,再向右移动7个单位长度,那么终点B表示的数是,A、B两点间的距离是;(2)数轴上表示x和﹣3的两点之间的距离可以表示为;(3)若x表示一个有理数,则|x﹣1|+|x+3|有无最小值,若有,最小值是?(4)若x表示有理数,则|x﹣1|+|x+3|=8时,x的值是?13.如图,数轴上每相邻两点的相距一个单位长度,点A、B、C、D是这些点中的四个,且对应的位置如图所示,它们对应的数分别是a,b,c,d.(1)当ab=﹣1,则d=.(2)若|d﹣2a|=7,求点C对应的数.(3)若abcd<0,a+b>0,化简|a﹣b|﹣|b+c﹣5|﹣|c﹣5|﹣|d﹣a|+|8﹣d|.14.如图,数轴上点A、B表示的有理数分别为﹣10、5,点P是射线AB上的一个动点(不与点A、B重合),点M是线段AP靠近点A的三等分点,点N是线段BP靠近点B的三等分点.(1)若点P表示的有理数是0,那么MN的长为;若点P表示的有理数是1,那么MN的长为.(2)点P在射线AB上运动(不与点A、B重合)的过程中,MN的长是否发生改变?若不改变,请求出MN的长;若改变,请说明理由.15.数轴上,点M表示﹣2,现从M点开始先向右移动3个单位到达P点,再从P点向左移动5个单位到达Q点.(1)点P、Q各表示什么数?(2)到达Q点后,再向哪个方向移动几个单位,才能回到原点?16.已知数轴上有A,B,C三点,它们分别表示数a,b,c,且|a+24|+|b+10|=0,又b,c互为相反数.(1)求a,b,c的值.(2)若有两只电子蚂蚁甲、乙分别从A,C两点同时出发相向而行,甲的速度为4个单位/秒,乙的速度为6个单位/秒,当两只蚂蚁在数轴上点m处相遇时,求点m表示的数.(3)若电子蚂蚁丙从A点出发以4个单位/秒的速度向右爬行,问多少秒后蚂蚁丙到A,B,C的距离和为40个单位?17.邮递员骑车从邮局出发,先向南骑行2km,到达A村,继续向南骑行3km到达B村,然后向北骑行9km 到达C村,最后回到邮局.(1)以邮局为原点,以向北为正方向,用0.5cm示1km,画出数轴,并在该数轴上表示出A,B,C三个村庄的位置.(2)C村离A村有多远?(3)邮递员一共骑了多少千米?18.已知数轴上三点M,O,N对应的数分别为﹣1,0,3,点P为数轴上任意一点,其对应的数为x.(1)MN的长为;(2)如果点P到点M、点N的距离相等,那么x的值是;(3)数轴上是否存在点P,使点P到点M、点N的距离之和是8?若存在,直接写出x的值;若不存在,请说明理由.(4)如果点P以每分钟1个单位长度的速度从点O向左运动,同时点M和点N分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动.设t分钟时点P到点M、点N的距离相等,求t的值.19.如图,一只蚂蚁从点A沿数轴向右爬了2个单位长度到达点B,点A表示,设点B所表示的数为m.(1)求m的值;(2)求|m﹣1|+(m﹣6)2的值.。
七年级数学上学期期中考试压轴题集训班专题讲义二(无答案)

七年级上学期期中考试压轴题集训班专题讲义二数轴上的动点(2)【课前导读——知识要点】一、分析题意时分清三种点:已知点(定点)、未知可求点(单设)、动点(起点+方向+运动量:缺量设量),用数或含未知数的式子表达题中所有点;二、数轴两点对应线段的中点公式1.求中点,平均数(和的一半)2.已知中点,中点的2倍减一个(端点)三、数轴上两点间的距离公式:求距离,大减小,不知大小绝对值四、绝对值方程的解法:方法一:相等或相反;方法二:零点分段讨论法五、数轴上的动点问题拓展:1.不同时出发的两动点问题;2.动点的两次连续运动问题(第二次运动的方向或运动的速度发生改变);3.单动点的连续规律性运动问题(数列规律与求和技巧结合);4.单动点的连续无规律性运动问题(“疯狗”问题);5.线段的运动问题(两个动点同时同速同向运动).【课前自主练】一、等差数列1.数列:1,2,3,4,……,则第n个数为;2021是第个数.2.数列:1,3,5,7,……,则第n个数为;2021是第个数.3.数列:2,7,12,17,……,则第n个数为;2021是第个数.4.数列:1,5,9,13,……,则第n个数为;2021是第个数.5.数列:1,7,13,19,……,则第n个数为;2021是第个数.二、正负交替的等差数列求和:分组求和1.1-2+3-4+5……-2021+2021=;2.计算:-1+3-5+7- (2021)3.计算:+2-7+12-17+ (2021)4.计算:-1+5-9+13- (2021)5.计算:+1-7+13-19+ (2021)三、点A对应的数为5,动点P从A点出发第1次向右运动1个单位,第2次向左运动2个单位,第3次向右运动3个单位,第4次向左运动4个单位,……,求第100次运动后P点对应的数.四、点A 对应的数为12,B 点对应的数为-8,动点P 从A 点出发以每秒3单位的速度向左运动,同时动点Q 从B 点出发以2单位每秒的速度向右运动,动点M 跟动点P 从A 点同时出发以每秒10单位的速度向左运动,当动点M 遇到动点Q 时立即返回向右,当动点M 遇到动点P 时又立即返回向左,……,如此往复,求P 、Q 相遇时,动点M 所走的路程.【新知讲授】一、如图,在数轴上每相邻两点间的距离为一个单位长度,点A 、B 、C 、D 对应的数分别是a 、b 、c 、d ,且d -2a =14.(1)a =___________,b =___________;(2)动点P 从点A 开始以3个单位/秒的速度沿数轴正方向运动,1秒后动点Q 从点B 开始以一定的速度也沿数轴正方向运动.当点P 到达D 点处立刻返回,与点Q 在C 点处相遇,求动点Q 的速度;(3)如果P 、Q 两个动点以(2)中的速度分别从A 、B 两点出发同时向数轴的负方向运动,动点M从点C 的位置出发也向数轴的负方向运动,且始终保持PQ =23MC .当点M 运动到-6时,求点P 对应的数是多少?二、如图,A 、B 、C 三点在数轴上对应的数分别为a b c ,,,且a b ,满足210(5)0a b ++-=,c 是方程1322c c -=+的解. (1)直接写出:a = ,b = ,c = ;(2)已知动点P 从A 点出发以2单位/秒的速度向左运动,同时动点Q 从C 点出发,以1单位/秒的速度向左运动,当动点Q 到达B 时加快了速度,结果在-40对应的位置追上P ,求动点Q 加快以后的速度为多少?(3)动点P 从A 点出发,以2单位/秒的速度向右运动,动点Q 从B 点出发,以3单位/秒的速度向左运动,动点M 从C 点出发,以1单位/秒的速度向右运动,三个动点P 、Q 、M 同时出发,在运动过程中,当动点Q 遇到动点P 时,立即转向向右运动(转向时间忽略不计,动点P 、M 运动方向、速度不变),若PQ =MQ ,求动点P 运动的总时间.三、已知数轴上A 、B 两点对应的数分别为-8和10,P 点为数轴上的一点.(1)若A 为CP 的中点,B 为DP 的中点,试说明无论P 点在数轴的什么位置,AB CD恒为定值; (2)动点M 从A 点出发,以1单位/秒的速度向右运动,5秒后运动N 从B 点出发,以3单位/秒的速度也向右运动,当动点M 运动到原点时立即加快速度,同时动点N 立即掉头向左运动,速度减为2单位/秒,两个动点恰好在B 点相遇,求动点M 加快以后的速度;(3)已知动点Q 从A 点出发,第一次向左运动1个单位长度,第二次向右运动3个单位长度,第三次向左运动5个单位长度,第四次向右运动7个单位长度,……,按照这样的规律运动,试问:动点Q 能否到达B 点?若能,求第几次到达B 点.四、已知数轴上点A 、B 在数轴上分别表示有理数-20、7,若动点M 从点A 出发以4单位/秒的速度向右运动,动点N 从点B 出发以2单位/秒的速度也向右运动,动点P 从原点O 出发以2单位/秒的速度也向右运动,三个动点同时出发运动.(1)若C 为MN 的中点,D 为MP 的中点,求线段CD 的长度;(2)在运动过程中,当动点M 到达原点时速度增加到6个长度单位/秒(方向不变),同时动点N 掉头向左运动并减慢了速度(动点P 的运动方向和运动速度都保持不变),若三点恰好同时到达数轴上的T 点,求动点N 减慢以后的速度以及T 点对应的数.(3)已知动点Q 从O 点出发,第一次向右运动1个单位长度,第二次向左运动4个单位长度,第三次向右运动7个单位长度,第四次向左运动10个单位长度,……,按照这样的规律运动,试问:动点Q 能否到达A 点或B 点?若能,求第几次到达A 点或B 点.五、点A 、B 在数轴上对应的数字分别为a 、b ,其中a 、b 满足2(12)60a b ++-=.(1)点P 从A 点出发向左运动,P A 中点为M ,PB 中点为N ,当P 运动时,求PM PN -的值.(2)动点M 从A 点出发以4单位/秒的速度向左运动,3秒后动点N 从B 点出发以2单位/秒的速度向左运动,当动点N 到达原点时,两个动点同时反向都向右运动(速度不变),当动点M 追上动点N 时动点M 又立即反向向左运动(动点N 的速度、方向都不变),求当动点M 回到起点A 的位置时动点N 所在的位置;(3)动点P 从A 点出发,第一次向右运动2个单位长度,第二次向左运动4个单位长度,第三次向右运动6个单位长度,第四次向左运动8个单位长度,……,同时动点Q 从B 点出发,第一次向左运动1个单位长度,第二次向右运动4个单位长度,第三次向左运动7个单位长度,第四次向右运动10个单位长度,……,按照这样的规律运动,试问:动点P 、Q 能否在同一次同时到达同一个点?若能,求第几次同时到达,这个点对应的数是多少?。
七年级上册数轴上的动点压轴题专练

七年级上册数轴上的动点压轴题专练一、数轴上动点问题相关知识点回顾1. 数轴的三要素原点、正方向和单位长度。
在数轴上,数与点是一一对应的关系。
2. 两点间的距离公式设数轴上两点公式、公式所表示的数分别为公式、公式,则公式和公式两点间的距离公式。
例如,若公式表示公式,公式表示公式,则公式;若公式表示公式,公式表示公式,则公式。
3. 动点在数轴上的表示设动点公式从数轴上表示数公式的点出发,以速度公式沿数轴正方向运动,经过时间公式后,点公式所表示的数为公式;若沿数轴负方向运动,则点公式所表示的数为公式。
二、典型例题及解析1. 已知数轴上公式、公式两点对应的数分别为公式和公式,点公式为数轴上一动点,其对应的数为公式。
(1)若点公式到点公式、点公式的距离相等,求点公式对应的数。
解析:因为点公式到点公式、点公式的距离相等,根据两点间距离公式公式,公式。
又因为公式,所以公式。
当公式时,方程无解。
当公式时,公式,公式,解得公式。
所以点公式对应的数为公式。
(2)若点公式在点公式、点公式之间,且公式,求点公式对应的数。
解析:因为公式,公式,且公式,所以公式。
因为点公式在公式、公式之间,即公式,所以公式。
去括号得公式。
移项得公式。
合并同类项得公式,解得公式。
所以点公式对应的数为公式。
(3)点公式以每分钟公式个单位长度的速度从原点公式向左运动,同时点公式以每分钟公式个单位长度的速度向左运动,点公式以每分钟公式个单位长度的速度向左运动,设运动时间为公式分钟。
问公式为何值时,点公式到点公式、点公式的距离相等?解析:公式分钟后,点公式表示的数为公式,点公式表示的数为公式,点公式表示的数为公式。
根据公式,公式。
当公式时,即公式。
当公式时,公式,公式,解得公式。
当公式时,公式,公式,公式,解得公式。
2. 数轴上点公式表示的数为公式,点公式表示的数为公式。
(1)求线段公式的长。
解析:根据两点间距离公式公式。
(2)若点公式是线段公式的中点,则点公式表示的数为多少?解析:设点公式表示的数为公式,因为公式是公式中点,所以公式。
初中数学七年级数轴上的动点问题专题(压轴题练习)

数轴上的动点问题专题【例1】1.如图,已知数轴上点A表示的为8,B是数轴上一点,且AB=14,动点P从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数,点P表示的数(用含t的代数式表示);(2)动点H从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、H同时出发,问点P运动多少秒时追上点H?【练】2.已知:如图在数轴上有A,B两点,它们分别对应着﹣12和8.A、B两点同时出发,B点以每秒2个单位的速度向右运动,A点则已每秒4个单位的速度向右运动.(1)A点在多少秒后追上B点;(2)A点在什么坐标位置追上B点.3.已知a,b满足(a+2)2+|b﹣1|=0,请回答下列问题:(1)a=,b=;(2)a,b在数轴上对应的点分别为A,B,在所给的数轴上标出点A,点B;(3)若甲、乙两个动点分别从A,B两点同时出发沿x轴正方向运动,已知甲的速度为每秒2个单位长度,乙的速度为每秒1个单位长度,请问经过多少秒甲追上乙?4.如图A、B两点在数轴上分别表示﹣10和20,动点P从点A出发以10个单位每秒的速度向右运动,动点Q从点B出发以每秒5个单位的速度出向左运动.设运动时间为t.(1)当点P运动到B点时,求出t的值;(2)当t为何值时,P、Q两点相遇,并求出此时P点对应的数?(3)在此运动过程中,若P、Q相距10个单位,直接写出运动时间t?【练】5.如图,点P、Q在数轴上表示的数分别是﹣8、4,点P以每秒2个单位的速度运动,点Q 以每秒1个单位的速度运动.设点P、Q同时出发,运动时间为t秒.(1)若点P、Q同时向右运动2秒,则点P表示的数为,点P、Q之间的距离是个单位;(2)经过秒后,点P、Q重合;(3)试探究:经过多少秒后,点P、Q两点间的距离为14个单位.6.已知数轴上点A、B表示的数分别为﹣1、3、P为数轴上一动点,其表示的数为x.(1)若P到A、B的距离相等,则x=;(2)是否存在点P,使P A+PB=6?若存在,写出x的值;若不存在,请说明理由;(3)若点M、N分别从A、B同时出发,沿数轴正方向分别以2个单位/秒、1个单位/秒的速度运动,则经过多长时间,M、N两点相距1个单位长度?7.如图,数轴上点A,C对应的数分布是a,c,且a,c满足|a+4|+(c﹣1)2=0,点B对应的数是﹣3(1)求数a,c;(2)点A,B同时沿数轴向右匀速运动,点A的速度为每秒2个单位长度,点B的速度为每秒1个单位长度,若运动时间t秒,在运动过程中,点A,B到原点O的距离相等时,求t的值.【练】8.已知点P、Q是数轴上的两个动点,且P、Q两点的速度比是1:3.(速度单位:单位长度/秒)(1)动点P从原点出发向数轴负方向运动,同时,动点Q也从原点出发向数轴正方向运动,4秒时,两点相距16个单位长度.求两个动点的速度,并在数轴上标出P、Q两点从原点出发运动4秒时的位置.(2)如果P、Q两点从(1)中4秒时的位置同时向数轴负方向运动,那么再经过几秒,点P、Q到原点的距离相等?9.已知点P,Q是数轴上的两个动点,且P,Q两点的速度比是3:5.(速度单位:单位长度/秒)(1)动点P从原点出发向数轴正方向运动,同时,动点Q也从原点出发向数轴负方向运动,6秒时,两点相距96个单位长度.则动点P的速度是,此时点Q表示的有理数是;(2)如果P,Q两点从(1)中6秒时的位置同时向数轴正方向运动,那么再经过秒,点P,Q到数轴上表示有理数20的点的距离相等.10.如图,点A从原点出发沿数轴向左运动,同时,点B也从原点出发沿数轴向右运动,2秒后,两点相距16个单位长度.已知点B的速度是点A的速度的3倍.(速度单位:单位长度/秒)(1)求出点A、B运动的速度,并在数轴上标出A、B两点从原点出发运动2秒时的位置;(2)若A、B两点从(1)中标出的位置开始,仍以原来的速度同时沿数轴向左运动,经过几秒,点A、B之间相距4个单位长度?(3)若表示数0的点记为O,A、B两点分别从(1)中标出的位置同时沿数轴向左运动,经过多长时间,OB=2O A.【练】11.已知在数轴上有两个动点A、B,动点A从﹣1位置出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,4秒后两点相距25个单位长度,已知动点A、B的速度比是1:5(速度单位:1单位长度/秒).(1)求A、B两点从起始位置出发运动4秒后在数轴上分别对应的数是多少;(2)若A、B两点分别从(1)中所在的位置同时向数轴负方向运动,保持原来的速度不变,问经过几秒,点B到原点的距离恰好是点A到原点的距离的2倍?12.已知数轴上三点M,O,N对应的数分别为﹣3,0,1,点P为数轴上任意一点,其对应的数为x.(1)如果点P到点M、点N的距离相等,那么x的值是;(2)当x=时,使点P到点M、点N的距离之和是5;(3)如果点P以每秒钟3个单位长度的速度从点O向左运动时,点M和点N分别以每秒钟1个单位长度和每秒钟4个单位长度的速度也向左运动,且三点同时出发,那么秒钟时点P到点M,点N的距离相等.【练】13.数轴上两点A、B对应的数分别为﹣1,4,点P为数轴上一动点,其对应的数为x(1)如点P到点A,点B的距离相等,求点P在数轴上对应的数?(2)数轴上是否存在点P,使P到点A,点B的距离之和为7?若存在,请求出来x的值;若不存在,说明理由;(3)当点P以每分钟1个单位长度的速度从O点向左运动时点A以每分钟4个单位长度的速度向左运动,点B以每分钟12个单位的长度的速度向左运动,问它们同时出发,几分钟时点P到点A,点B的距离相等?14.如图:数轴上有A、B两点,分别对应的数为a,b,已知(a+1)2与|b﹣3|互为相反数.点P为数轴上一动点,对应为x.(1)若点P到点A和点B的距离相等,求点P对应的数;(2)数轴上是否存在点P,使点P到点A和点B的距离之和为5?若存在,请求出x的值;若不存在,说明理由;(3)当点P以每分钟一个单位长度的速度从O点向左运动,点A以每分钟5各单位长度向左运动,问几分钟时点P到点A、点B的距离相等?15.已知A、B、C是数轴上从左至右的三点,点C表示的数是6,BC=4,AB=12,点P为数轴上一动点,其对应的数为x.(1)数轴上是否存在一点P,使点P到A、B的距离和为13?若存在,请求出x的值.若不存在,请说明理由;(2)当点P以每分钟1个长度单位的速度从C点向左运动时,点Q以每分钟2个长度单位的速度从点给A出发向左运动,点R从B点出发以每分钟5个长度单位的速度向右运动,向它们同时出发,几分钟后P点到点Q,点R的距离相等?16.已知数轴上两个点A、B所对应的数为a、b,且a、b满足|a+3|+(b﹣4)2=0.(1)求AB的长;(2)若甲、乙分别从A、B两点同时在数轴上运动,甲的速度是2个单位/秒,乙的速度比甲的速度快3个单位/秒,求甲乙相遇点所表示的数;(3)若点C对应的数为﹣1,在数轴上A点的左侧是否存在一点P,使P A+PB=3PC?若存在,求出点P所对应的数;若不存在,请说明理由.17.如图,数轴上A,B,C,D四点,分别对应的数为a、b、c、d,且满足a、b是|x+5|=1的两个解(a<b),(c﹣6)2与|d﹣10|互为相反数.(1)直接写出a,b,c,d的值;(2)若A,B两点以4个单位长度/秒的速度向右匀速运动,设运动时间为t秒,问t为时,点B运动到点C,D的中点上;(3)在(2)中,A,B继续运动,当B运动到D的右侧时,问是否存在时间t,使B与C 的距离是A与D的距离的2倍?若存在,求时间t;若不存在,请说明理由.18.已知数轴上两点A,B对应的数分别用a和b表示,且a,b满足|a+1|+(b﹣3)2=0,点P为数轴上一动点,其对应的数为x.(1)请直接写出求a和b的值;(2)若点P到点A,点B的距离相等,请直接写出点P对应的数x;(3)数轴上是否存在点P,使点P到点A,点B的距离之和为6?若存在,请求出x的值;若不存在,说明理由;(4)当点P以每分钟1个单位长的速度从O点向左运动时,点A以每分钟5个单位长的速度向左运动,点B以每分钟20个单位长的速度向左运动,问它们同时出发,几分钟后P点到点A、点B的距离相等?【例6】19.如图,数轴上有两点A,B,点A表示的数为4,点B在点A的左侧,且AB=10,动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0).(1)写出数轴上点B表示的数,点P表示的数用含t的代数式表示:.(2)设点M是AP的中点,点N是PB的中点.点P在线段AB上运动过程中,线段MN的长度是否发生变化?若变化,请说出理由;若不变,求线段MN的长度.(3)动点R从点B出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P,R同时出发,问点P运动多少秒与点R距离为2个单位长度.【练】20.已知数轴上A,B两点所表示的数分别为a,b,且满足ab<0,|a|=2,|b|=7,(1)求线段AB的长度;(2)若a<b,P为射线上的一点(点P不与A、B两点重合),M为P A的中点,N为PB 的中点,当点P在射线BA上运动时,线段MN的长度是否发生改变?若不变,请求出线段MN的长;若改变,请说明理由.21.已知点A在数轴上对应的数为a,点B对应的数为b,且|a+4|+(b﹣1)2=0,A,B之间的距离记作|AB|.(1)设点P在数轴上对应的数为x,当|P A|﹣|PB|=2时,求x的值;(2)若点P在A的左侧,M,N分别是P A,PB的中点,当点P在A的左侧移动时,式子|PN|﹣|PM|的值是否发生改变?若不变,请求其值;若发生变化,请说明理由.22.如图,已知数轴上有A、B、C三个点,它们表示的数分别是﹣24,﹣10,10.(1)填空:AB=,BC=;(2)若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒3个单位长度和7个单位长度的速度向右运动.设运动时间为t,用含t的代数式表示BC和AB的长,试探索:BC﹣AB的值是否随着时间t的变化而改变?请说明理由.(3)现有动点P、Q都从A点出发,点P以每秒1个单位长度的速度向终点C移动;当点P移动到B点时,点Q才从A点出发,并以每秒3个单位长度的速度向右移动,且当点P 到达C点时,点Q就停止移动.设点P移动的时间为t秒,问:当t为多少时P、Q两点相距6个单位长度?23.已知:A、B、C为数轴上三个运动的点,速度分别为a个单位/秒、b个单位/秒和c个单位/秒(a、b、c为正整数),且满足|5﹣a|+(b﹣3)2=1﹣c.(1)求A、B、C三点运动的速度;(2)若A、B两点分别从原点出发,向数轴正方向运动,C从表示+20的点出发同时向数轴的负方向运动,几秒后,C点恰好为AB的中点?(3)如图,若一把长16cm的直尺一端始终与C重合(另一端D在C的右边),且M、N 分别为OD、OC的中点,在C点运动过程中,试问:MN的值是否变化?若变化,求出其取值范围;若不变,请求出其值.24.阅读下面的内容并用此结论(或变形式)解答下面题目的三个问题: (1)若点P 为线段MN 的中点,则MP =PN =12MN(2)若点P 为线段MN 上任一点,则:MP =MN ﹣PN如图①,已知数轴上有三点A ,B ,C ,点B 为AC 的中点,C 对应的数为200. ①若BC =300,求点A 对应的数.②在①的条件下,如图②,动点P 、Q 分别从两点同时出发向左运动,同时动点R 从A 点出发向右运动,点P 、Q 、R 的速度分别为10个单位长度每秒,5个单位长度每秒,2个单位长度每秒,点M 为线段PR 的中点,点N 为RQ 的中点,多少秒时恰好满足MR =4RN (不考虑点R 和点Q 相遇之后的情形).③在①的条件下,如图③,若点E 、D 对应的数分别为﹣800,0,动点P 、Q 分别从E 、D 两点同时出发向左运动,点P 、Q 的速度分别为10个单位长度每秒,5个单位长度每秒,点M 为线段PQ 的中点,点Q 在从点D 运动到点A 的过程中,32QC ﹣AM 的值是否发生变化?若不变,求其值,若变,请说明理由.25.如图1,已知数轴上两点A 、B 对应的数分别为﹣1、3,点P 为数轴上的一动点,其对应的数为x .(1)P A = ;PB = (用含x 的式子表示)(2)在数轴上是否存在点P ,使P A +PB =5?若存在,请求出x 的值;若不存在,请说明理由.(3)如图2,点P 以1个单位/s 的速度从点D 向右运动,同时点A 以5个单位/s 的速度向左运动,点B 以20个单位/s 的速度向右运动,在运动过程中,M 、N 分别是AP 、OB 的中点,问:AB -OPMN的值是否发生变化?请说明理由.26.(2014秋•江岸区期中)如图,在数轴上A 点表示数a ,B 点表示数b ,AB 表示A 点和B 点之间的距离,C 是AB 的中点,且a 、b 满足|a +3|+(b +3a )2=0. (1)求点C 表示的数;(2)点P 从A 点以3个单位每秒向右运动,点Q 同时从B 点以2个单位每秒向左运动,若AP +BQ =2PQ ,求时间t ;(3)若点P 从A 向右运动,点M 为AP 中点,在P 点到达点B 之前:①P A +PBPC 的值不变;②2BM ﹣BP 的值不变,其中只有一个正确,请你找出正确的结论并求出其值.27.如图1,点A 、B 分别在数轴原点O 的左右两侧,且13OA +50=OB ,点B 对应数是90.(1)求A 点对应的数;(2)如图2,动点M 、N 、P 分别从原点O 、A 、B 同时出发,其中M 、N 均向右运动,速度分别为2个单位长度/秒,7个单位长度/秒,点P 向左运动,速度为8个单位长度/秒,设它们运动时间为t 秒,问当t 为何值时,点M 、N 之间的距离等于P 、M 之间的距离; (3)如图3,将(2)中的三动点M 、N 、P 的运动方向改为与原来相反的方向,其余条件不变,设Q 为线段MN 的中点,R 为线段OP 的中点,求22RQ ﹣28RO ﹣5PN 的值.28.如图,在数轴上有A ,B 两点,所表示的数分别为a ,a +4,A 点以每秒32个单位长度的速度向正方向运动,同时B 点以每秒1个单位的速度也向正方向运动,设运动时间为t 秒.(1)运动前线段AB 的长为_____,t 秒后,A 点运动的距离可表示为_____,B 点运动距离可表示为_____; (2)当t 为何值时,A 、B 两点重合,并求出此时A 点所表示的数(用含a 与t 的式子表示); (3)在上述运动的过程中,若P 为线段AB 的中点,O 为数轴的原点,当a =﹣8时,是否存在这样的t 值,使得线段PO =5?若存在,求出符合条件的t 值;若不存在,请说明理由.动点问题补充训练1、(2016江岸区期中)已知数轴上有A 、B 、C 三个点对应的数分别是a 、b 、c ,且满足0)10(10242=-++++c b a ;动点P 从A 出发,以每秒1个单位的速度向终点C 移动,设移动时间为t 秒. (1)求a 、b 、c 的值;(2)若点P 到A 点距离是到B 点距离的2倍,求点P 的对应的数;(3)当点P 运动到B 点时,点Q 从A 点出发,以每秒3个单位的速度向C 点运动,Q 点到达C 点后,再立即以同样的速度返回,运动到终点A .在点Q 开始运动后第几秒时,P 、Q 两点之间的距离为4?请说明理由.2、(2016二十五中期中)已知:数轴上A 、B 两点表示的有理数为a 、b ,且(a -1)2+|b +2|=0(1) 求a 、b 的值(2) 点C 在数轴上表示的数是c ,且与A 、B 两点的距离和为9,求值:a (bc +3)-|3(a -31b 2)-b 2|(3) 蚂蚁甲以2个单位长度/秒的速度从点B 出发向其左边30个单位长度处的食物M 爬去,10秒后位于点A 的蚂蚁乙收到它的信号,以3个单位长度/秒的速度也迅速爬向食物.蚂蚁甲到达M 后用了2秒时间背上食物,立即返回,速度降为1个单位长度/秒,与蚂蚁乙在数轴上D 点相遇,求点D 表示的有理数是多少?从出发到此时,蚂蚁甲共用去时间为多少?3、(2016东湖高新区期中)如图,若数轴上的A 、B 两点对应的数分别为a 、b ,且a 、b 满足|a +3|+(b +3a )2=0,请回答下列问题: (1)求a 和b 的值.(2)若数轴上有一点C ,满足点C 到点B 的距离为点C 到点A 的距离的2倍,求点C 在数轴上所对应的数.(3)若数轴上有一点P 从A 点向B 点运动(只在A 、B 两点之间运动),同时,数轴上的点M 是线段AP 的中点,数轴上的点N 是线段BP 的中点,请问:当点P 运动时,点M 、N 之间的距离是否发生变化,若不变化,求出该距离;若变化,说明理由.4、(2016外校期中)已知点A 、点B 在数轴上分别对应有理数a ,b ,其中a ,b 满足:()2112602a b -++=. (1)求a ,b 的值;(2)如图所示,在点A 、点B 之间存在一点C (点C 不与A 、B 重合),现有一个小球从A 出发向左匀速运动,经过一秒到达AC 的中点,又经过三秒之后到达BC 的中点,试求点C 所对应的有理数;OCAB(3)在(2)的条件下,现在我们在C 、A 两个位置各放一块挡板,有两个小球P 和Q 分别从点C 出发,P 以2个单位长度每秒的速度向右运动,Q 以4个单位长度每秒的速度向左运动,其中,小球P 在运动的过程中会碰到挡板,每次碰到挡板后按照原速度反弹(不考虑碰撞中能量的损失),按照此规律运动下去,试问:是否存在一个时间t ,使得PB =2QB ?若存在,求出所有满足条件的时间t ;若不存在,请说明理由.5、(2016武珞路期中)已知点A 、B 在数轴上表示的数分别为a ,b ,且满足()22900a b -+-=.(1) a 的值为_______,b 的值为________;(2) 一只电子狗P 从点A 出发,向右匀速运动,速度为每秒1个单位长度,另一电子狗Q 从点B 出发,向左匀速运动,速度为每秒3个单位长度,且Q 比P 先运动2秒,已知在原点O 处有病毒,若电子狗遇到病毒则停止运动,未遇到病毒则继续运动,问电子狗P 经过多长时间,有P 、Q 两只电子狗相距70个单位长度?(3) 求()()2222221912716189362114910329b x a x a x x ⎛⎫⎛⎫--+++--++ ⎪ ⎪⎝⎭⎝⎭的最大值.AB6、(2016洪山区期中)已知多项式2234x xy --的常数项是a ,次数是b .(1)直接写出a =________,b =________;并将这两数在数轴上所对应的点A 、B 表示出来;(2)数轴上A 、B 之间的距离定义记作AB,定义AB =a b -,设P 在数轴上对应的数为x ,当PA +PB =13时,直接写出x 的值_______________________;(3)若点A ,点B 同时沿数轴向正方向运动.点A 的速度是点B 的2倍,且3秒后,32OA=OB ,求点B 的速度.点为===秒或秒时,(2010秋•武昌区期末)如图,数轴上线段AB=2(单位长度),CD=4(单位长度),点A 在数轴上表示的数是﹣10,点C在数轴上表示的数是16.若线段AB以6个单位长度/秒的速度向右匀速运动,同时线段CD以2个单位长度/秒的速度向左匀速运动.(1)问运动多少时BC=8(单位长度)?(2)当运动到BC=8(单位长度)时,点B在数轴上表示的数是4或16;(3)P是线段AB上一点,当B点运动到线段CD上时,是否存在关系式=3,若存在,求线段PD的长;若不存在,请说明理由.)存在关系式,即<,即时,有==时,有=当时,时,有=参考答案与试题解析一.解答题(共27小题)1.(2014秋•滕州市期末)如图,已知数轴上点A表示的为8,B是数轴上一点,且AB=14,动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t >0)秒.(1)写出数轴上点B表示的数﹣6,点P表示的数8﹣5t(用含t的代数式表示);(2)动点H从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、H同时出发,问点P运动多少秒时追上点H?2.(2014秋•宝安区校级期末)已知:如图在数轴上有A,B两点,它们分别对应着﹣12和8.A、B两点同时出发,B点以每秒2个单位的速度向右运动,A点则已每秒4个单位的速度向右运动.(1)A点在多少秒后追上B点;(2)A点在什么坐标位置追上B点.3.(2013秋•江北区校级月考)已知a,b满足(a+2)2+|b﹣1|=0,请回答下列问题:(1)a=﹣2,b=1;(2)a,b在数轴上对应的点分别为A,B,在所给的数轴上标出点A,点B;(3)若甲、乙两个动点分别从A,B两点同时出发沿x轴正方向运动,已知甲的速度为每秒2个单位长度,乙的速度为每秒1个单位长度,请问经过多少秒甲追上乙?4.(2013秋•泰兴市校级期中)如图A、B两点在数轴上分别表示﹣10和20,动点P从点A 出发以10个单位每秒的速度向右运动,动点Q从点B出发以每秒5个单位的速度出向右运动.设运动时间为t.(1)当点P运动到B点时,求出t的值;(2)当t为何值时,P、Q两点相遇,并求出此时P点对应的数?(3)在此运动过程中,若P、Q相距10个单位,直接写出运动时间t?,,为秒或5.(2014秋•滨湖区期中)如图,点P、Q在数轴上表示的数分别是﹣8、4,点P以每秒2个单位的速度运动,点Q以每秒1个单位的速度运动.设点P、Q同时出发,运动时间为t 秒.(1)若点P、Q同时向右运动2秒,则点P表示的数为﹣4,点P、Q之间的距离是10个单位;(2)经过4或12秒后,点P、Q重合;(3)试探究:经过多少秒后,点P、Q两点间的距离为14个单位.;,,秒时,6.(2014秋•徐州期末)已知数轴上点A、B表示的数分别为﹣1、3、p为数轴上一动点,其表示的数为x.(1)若P到A、B的距离相等,则x=1;(2)是否存在点P,使P A+PB=6?若存在,写出x的值;若不存在,请说明理由;(3)若点M、N分别从A、B同时出发,沿数轴正方向分别以2个单位/秒、1个单位/秒的速度运动,则经过多长时间,M、N两点相距1个单位长度?7.(2014秋•成都期末)如图,数轴上点A,C对应的数分布是a,c,且a,c满足|a+4|+(c﹣1)2=0,点B对应的数是﹣3(1)求数a,c;(2)点A,B同时沿数轴向右匀速运动,点A的速度为每秒2个单位长度,点B的速度为每秒1个单位长度,若运动时间t秒,在运动过程中,点A,B到原点O的距离相等时,求t的值.;.8.已知点P、Q是数轴上的两个动点,且P、Q两点的速度比是1:3.(速度单位:单位长度/秒)(1)动点P从原点出发向数轴负方向运动,同时,动点Q也从原点出发向数轴正方向运动,4秒时,两点相距16个单位长度.求两个动点的速度,并在数轴上标出P、Q两点从原点出发运动4秒时的位置.(2)如果P、Q两点从(1)中4秒时的位置同时向数轴负方向运动,那么再经过几秒,点P、Q到原点的距离相等?.9.(2014秋•西城区校级期中)已知点P,Q是数轴上的两个动点,且P,Q两点的速度比是3:5.(速度单位:单位长度/秒)(1)动点P从原点出发向数轴正方向运动,同时,动点Q也从原点出发向数轴负方向运动,6秒时,两点相距96个单位长度.则动点P的速度是6单位长度/秒,此时点Q表示的有理数是60;(2)如果P,Q两点从(1)中6秒时的位置同时向数轴正方向运动,那么再经过1秒,点P,Q到数轴上表示有理数20的点的距离相等.×=10.(2013秋•江都市期末)如图,点A从原点出发沿数轴向左运动,同时,点B也从原点出发沿数轴向右运动,2秒后,两点相距16个单位长度.已知点B的速度是点A的速度的3倍.(速度单位:单位长度/秒)(1)求出点A、B运动的速度,并在数轴上标出A、B两点从原点出发运动2秒时的位置;(2)若A、B两点从(1)中标出的位置开始,仍以原来的速度同时沿数轴向左运动,经过几秒,点A、B之间相距4个单位长度?(3)若表示数0的点记为O,A、B两点分别从(1)中标出的位置同时沿数轴向左运动,经过多长时间,OB=2O A.=综上,运动s11.已知在数轴上有两个动点A、B,动点A从﹣1位置出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,4秒后两点相距25个单位长度,已知动点A、B的速度比是1:5(速度单位:1单位长度/秒).(1)求A、B两点从起始位置出发运动4秒后在数轴上分别对应的数是多少;(2)若A、B两点分别从(1)中所在的位置同时向数轴负方向运动,保持原来的速度不变,问经过几秒,点B到原点的距离恰好是点A到原点的距离的2倍?;答:经过12.(2014秋•商丘期末)已知数轴上三点M,O,N对应的数分别为﹣3,0,1,点P为数轴上任意一点,其对应的数为x.(1)如果点P到点M、点N的距离相等,那么x的值是﹣1;(2)当x=﹣3.5或1.5时,使点P到点M、点N的距离之和是5;(3)如果点P以每秒钟3个单位长度的速度从点O向左运动时,点M和点N分别以每秒钟1个单位长度和每秒钟4个单位长度的速度也向左运动,且三点同时出发,那么或2秒钟时点P到点M,点N的距离相等.或)13.数轴上两点A、B对应的数分别为﹣1,4,点P为数轴上一动点,其对应的数为x(1)如点P到点A,点B的距离相等,求点P在数轴上对应的数?(2)数轴上是否存在点P,使P到点A,点B的距离之和为7?若存在,请求出来x的值;若不存在,说明理由;(3)当点P以每分钟1个单位长度的速度从O点向左运动时点A以每分钟4个单位长度的速度向左运动,点B以每分钟12个单位的长度的速度向左运动,问它们同时出发,几分钟时点P到点A,点B的距离相等?=分钟时点=分钟时点分钟或分钟时点14.(2014春•万州区校级期中)如图:数轴上有A、B两点,分别对应的数为a,b,已知(a+1)2与|b﹣3|互为相反数.点P为数轴上一动点,对应为x.(1)若点P到点A和点B的距离相等,求点P对应的数;(2)数轴上是否存在点P,使点P到点A和点B的距离之和为5?若存在,请求出x的值;若不存在,说明理由;(3)当点P以每分钟一个单位长度的速度从O点向左运动,点A以每分钟5各单位长度向左运动,问几分钟时点P到点A、点B的距离相等?=分钟时点15.已知A、B、C是数轴上的三点,点C表示的数是6,BC=4,AB=12,点P为数轴上一动点,其对应的数为x.(1)数轴上是否存在一点P,使点P到A、B的距离和为13?若存在,请求出x的值.若不存在,请说明理由;(2)当点P以每分钟1个长度单位的速度从C点向左运动时,点Q以每分钟2个长度单位的速度从点给A出发向左运动,点R从B点出发以每分钟5个长度单位的速度向右运动,向它们同时出发,几分钟后P点到点Q,点R的距离相等?=答:经过16.已知数轴上两个点A、B所对应的数为a、b,且a、b满足|a+3|+(b﹣4)2=0.(1)求AB的长;(2)若甲、乙分别从A、B两点同时在数轴上运动,甲的速度是2个单位/秒,乙的速度比甲的速度快3个单位/秒,求甲乙相遇点所表示的数;(3)若点C对应的数为﹣1,在数轴上A点的左侧是否存在一点P,使P A+PB=3PC?若存在,求出点P所对应的数;若不存在,请说明理由.=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
期中难点特训(二)数轴上的动点与整式加减相结合的压轴题1.已知:b是最小的正整数,且a、b、c满足(c﹣5)2+|a+b|=0,请回答问题:(1)请直接写出a、b、c的值.a=_____ ,b=______ ,c=______(2)a、b、c所对应的点分别为A、B、C,点P为一动点,其对应的数为x,点P在0到2之间运动时(即0≤x≤2时),请化简式子:|x+1|﹣|x﹣1|+2|x+5|(请写出化简过程)(3)在(1)(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC﹣AB 的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值2.已知:b是最小的正整数,且a、b满足(c-5)2+|a+b|=0,请回答问题:(Ⅰ)请直接写出a、b、c的值:a=_______;b=______;c=_______.(Ⅰ)a、b、c所对应的点分别为A、B、C,已知数轴上两点间的距离为这两点所表示的数的差的绝对值(或用这两点所表示数中较大的数减去较小的数),若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB,试计算此时BC-AB的值.(Ⅰ)在(Ⅰ)(Ⅰ)的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒3个单位长度和7个单位长度的速度向右运动,则经过t 秒钟时,请问:BC-AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请直接写出它的值.3.探究与发现:|a﹣b|表示a 与b 之差的绝对值,实际上也可理解为a 与b 两数在数轴上所对应的两点之间的距离.如|x﹣3|的几何意义是数轴上表示有理数x 的点与表示有理数3 的点之间的距离.(1)如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且AB=20,则数轴上点B 表示的数;(2)若|x﹣8|=2,则x=.拓展与延伸:在(1)的基础上,解决下列问题:(3)动点P 从O 点出发,以每秒5 个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t >0)秒.求当t 为多少秒时?A,P 两点之间的距离为2;(4)数轴上还有一点C 所对应的数为30,动点P 和Q 同时从点O 和点B 出发分别以每秒5 个单位长度和每秒10 个单位长度的速度向C 点运动,点Q 到达C 点后,再立即以同样的速度返回,点P 到达点C 后,运动停止.设运动时间为t(t>0)秒.问当t 为多少秒时?P,Q 之间的距离为4.4.如图:在数轴上A点表示数a,B点表示数b,C点表示数c,且a,c满足|a+3|+(c﹣9)2=0,b=1.(1)a=,c=;(2)若将数轴折叠,使得A点与点C重合,则点B与数表示的点重合.(3)在(1)的条件下,若点P为数轴上一动点,其对应的数为x,求当x取何值时代数式|x﹣a|﹣|x﹣c|取得最大值,并求此最大值.(4)点P从点A处以1个单位/秒的速度向左运动;同时点Q从点C处以2个单位/秒的速度也向左运动,在点Q到达点B后,以原来的速度向相反的方向运动,设运动的时间为t(秒),求第几秒时,点P、Q之间的距离是点C、Q之间距离的2倍?5.已知代数式M=(a﹣16)x3+20x2+10x+9是关于x的二次多项式,且二次项系数为b.如图,在数轴上有A、B、C三个点,且A、B、C三点所表示的数分别是a、b、c,已知AC=6AB.(1)直接依次写出a、b、c的值:,,;(2)若动点P、Q分别从C、O两点同时出发,向右运动,且点Q不超过点A.在运动过程中,E 为线段AP的中点,F为线段BQ的中点,若动点P的速度为每秒2个单位长度,动点Q的速度为每秒3个单位长度,则BP AQEF的值是;(3)若动点P、Q分别从A、B两点同时出发,都以每秒2个单位长度的速度向左运动,动点M从点C出发,以每秒6个单位长度的速度沿数轴向右运动,设运动时间为t秒,若动点P、Q分别从C、O两点同时出发,3<t72<时,数轴上有一点N与点M的距离始终为2个单位长度,且点N在点M的左侧,T为线段MN上的一点(点T不与M、N重合),在运动的过程中,若满足MQ﹣NT =3PT(点T不与点P重合),求出此时线段PT的长度.6.新规定:点C为线段AB上一点,当CA=3CB或CB=3CA时,我们就规定C为线段AB的“三倍距点”.如图,在数轴上,点A 所表示的数为﹣3,点B 所表示的数为5.(1)确定点C 所表示的数为 ;(2)若动点P 从点B 出发,沿射线BA 方向以每秒2个单位长度的速度运动,设运动时间为t 秒. ①当点P 与点A 重合时,则t 的值为 ;②求AP 的长度(用含t 的代数式表示);③当点A 为线段BP 的“三倍距点”时,直接写出t 的值.7.【背景知识】数轴上A 点、B 点表示的数为a 、b ,则A ,B 两点之间的距离AB =|a ﹣b |,若a >b ,则可简化为AB =a ﹣b :线段AB 的中点M 表示的数为2a b . 【问题情境】已知数轴上有A 、B 两点,分别表示的数为﹣10,8,点P ,Q 分别从A ,B 同时出发,点P 以每秒5个单位长度的速度沿数轴向右匀速运动,点Q 以每秒3个单位长度的速度沿数轴向左匀速运动,设运动时间为t 秒(t >0).【综合运用】(1)A 、B 两点的距离为 ,线段AB 的中点C 所表示的数 ;(2)点P 所在的位置的点表示的数为 ,点Q 所在位置的点表示的数为 (用含t 的代数式表示);(3)P 、Q 两点经过多少秒会相遇?8.如图,以O 为原点的数轴上有A ,B 两点,它们对应的数分别为a ,b ,且(a ﹣10)2+(2b +8)2=0.(1)直接写出结果:a = ,b = .(2)设点P ,Q 分别从点A ,B 同时出发,在数轴上相向运动,且在原点O 处相遇.设它们运动的时间为t 秒,点P 运动的速度为每秒2.5个单位长度.①用含t 的式子表示:t 秒后,点P ,Q 在数轴上所对应的数(直接写出结果),点P 对应的数是 ,点Q 对应的数是 .②当P ,Q 两点间的距离恰好等于A ,B 两点间距离的一半时,求t 的值.9.数轴上,把点A表示的数记为a,点B表示的数记为b.在学习绝对值时,我们知道了绝对值的几何含义:数轴上点A,B之间的距离记作|AB|.例如:当a=1,b=3时,点A,B之间的距离|AB|=|1﹣3|=2;当a=﹣1,b=﹣3时,点A,B之间的距离|AB|=|﹣1﹣(﹣3)|=2;当a=﹣1,b =3时,点A,B之间的距离|AB|=|﹣1﹣3|=4;由此我们知道,一般情况下,点A,B之间的距离|AB|=|a﹣b|.已知a=﹣6,b=2.(1)直接写出|AB|的值为;(2)若点M从点A出发,以4个单位/秒的速度沿数轴向右移动,同时点N从点B出发,以2个单位/秒的速度向右移动,设移动时间为t秒.①移动过程中点M表示的数为,点N表示的数为,点M,N之间的距离|MN|为(用含t的式子表示);②在移动过程中,若点M,N之间相距3个单位长度,求t的值;(3)在的(2)条件下,在点M,N移动的同时点P从点O出发,以1个单位/秒的速度沿数轴向右移动,在三个点移动的过程中,|MN|+2|PN|或|MN|﹣2|PN|在某种条件下是否会为定值,请分析并说明理由.10.已知数轴上A、B两点对应的数分别为a、b,且|a+1|+|b﹣3|=0(1)求点A、B两点对应的有理数是、;A、B两点之间的距离是.(2)若点C到点A的距离刚好是6,求点C所表示的数应该是多少?(3)若点P所表示的数为8,现有一只电子蚂蚁从点P出发,以2个单位每秒的速度向左运动,经过多少秒时,P到A的距离刚好等于P到B的距离的2倍?(4)若点P所表示的数为8,现有一只电子蚂蚁从点P出发,以2个单位每秒的速度向右运动,若运动的时间为t秒,2P A﹣mPB的值不随时间t的变化而改变,求m的值.11.如图,数轴上有两条可以左右移动的线段OB和CD.已知OB=m,CD=n,且m,n满足|m﹣4|+(n﹣8)2=0.(1)m=,n=;(2)如图1,线段OB的中点为M,线段CD中点为N,线段OB以每秒4个单位长度向右运动,同时线段CD以每秒1个单位长度也向右运动,若运动6秒后,MN=8,求线段CD在向右运动前,点C 在数轴上所对应的数;(3)如图2,已知BC =24,线段CD 固定不动,M ,N 分别为OB ,CD 中点,线段OB 以每秒4个单位长度向右运动t 秒,若始终有MN +OD 为定值.求出这个定值,并直接写出对应t 的取值范围.12.在数轴上,点A 表示的数为a ,点B 表示的数为b ,且a 、b 满足()2570a b ++-=,其中O 为原点,如图:(1)直接写出:=a _____,b =______,A ,B 两点之间的距离为______.(2)在数轴上有一动点M ,若点M 到点A 的距离是点M 到点B 的距离的2倍,求点M 对应的数.(3)在数轴上有一动点P ,动点P 从点A 出发第一次向左运动1个单位长度;然后在此位置进行第二次运动,向右运动2个单位长度;然后在此位置进行第三次运动,向左运动3个单位长度……;按照如此规律不断地进行左右运动,当运动到2021次时,求此时点P 所对应的有理数. 13.点A 对应数a ,点B 对应数b ,点C 对应数c .(1)已知6c a x y 与202b x y +-的和是106x y -,那么=a ,b = ,c = ;(2)点P 为数轴上一点,且满足31PA PB =+,请求出点P 所表示的数;(3)点M 为数轴上点A 右侧一点,甲、乙两点分别从A 、M 出发,相向而行,2分钟后在途中相遇,相遇后,两点的速度都提高了l 单位长度/分,当甲到达M 点后立刻按原路向A 返行,当乙到达A 点后也立刻按原路向M 点返行.甲、乙两点在第一次相遇后3分36秒又再次相遇,则A 、M 两点的距离是 单位长度.(4)当甲以4单位长度/分的速度从A 出发,向右运动,乙同时从点C 出发,以6单位长度/分的速度向左运动,当甲到A 、B 、C 的距离之和为40个单位长度时,甲立即掉头返行,请问甲、乙还能碰面吗?若能,求出碰面的地点对应的数;若不能,请说明理由.14.如图,点A和点B在数轴上分别对应数a和b,其中a和b满足(a+4)2=﹣|8﹣b|,原点记作O.(1)求a和b;(2)数轴有一对动点A1和B1分别从点A和B出发沿数轴正方向运动,速度分别为1个单位长度/秒和2个单位长度/秒.①经过多少秒后满足AB1=3A1B?②另有一动点O1从原点O以某一速度出发沿数轴正方向运动,始终保持在1A与1B之间,且满足11 111 2A OB O,运动过程中对于确定的m值有且只有一个时刻t满足等式:AO1+BO1=m,请直接写出符合条件m的取值范围.。