生物柴油的制备

合集下载

生物柴油的制备实验报告

生物柴油的制备实验报告
过多的酸和甘油存在,会影响最终生物柴油的质量。所以,在制备生物柴油的时候,一定要先滴定菜油中脂肪酸的含量,并且要把产品中的甘油尽量分离开。通常酸的质量分数不超过15%,如果菜油中脂肪酸的含量小于0.5%就可以直接进行碱催化的酯交换反应;如果大于0.5%,就需要先进行酸的酯化反应(图 1)。我们可以简单地以油酸作为标准估算出酸的质量分数。通常在合格的生物柴油产品中,所含;各种形式甘油(游离和非游离)的质量分数要小于0.25%,游离的甘油质量分数要小于0.02%。
绿色能源——生物柴油的制备
一、实验目的
1、了解绿色能源的概念。
2、掌握生物柴油的制备方法。
二、实验原理
生物柴油(biodiesel)作为可再生生物质新能源,已经在世界范围内引起了广泛的关注,生物柴油是一种是有替代品。众所周知,普通柴油是从石油中提炼的,而“生物柴油”则可从动物、植物的脂肪中提取。
本实验采用化学方法制备生物柴油,与物理方法不改变油脂组成和性质不同,化学法生物柴油制备技术就是讲动植物油脂进行化学转化,改变其分子结构,是主要组成为脂肪酸甘油酯的油脂转化成为相对分子质量仅为其三分之一的脂肪酸低碳烷基酯,使其从根本上改变流动性和黏度,适合用作柴油内燃机的燃料。酯化和酯交换是生物柴油的主要生产方法,即用含或不含游离脂肪酸的动植物油脂和甲醇等低碳一元醇进行酯化或转酯化反应,生成相应的脂肪酸低碳烷基酯,再经分离甘油、水洗、干燥等适当后处理即得生物柴油。通过化学转化得到的脂肪酸低碳烷基酯具有与石化柴油几乎相同的流动性和黏度范围,同时具有与石化柴油的完全混溶性。是一种良好的柴油内燃机动力燃料。化学法生产的生物柴油完全改变了物理法生物柴油的物性状况,成为完全均匀的液态产品,黏度大幅降低,能与石化柴油以任意比例混溶形成单一均相体系,因此使用就方便多了。

利用微生物制备生物柴油的研究方法

利用微生物制备生物柴油的研究方法

利用微生物制备生物柴油的研究方法1.引言利用微生物制备生物柴油是一种环保可持续的能源替代方案,具有广阔的应用前景。

本文将介绍几种常用的微生物制备生物柴油的研究方法。

2.微生物培养和筛选2.1 微生物菌种的培养首先,需要选择合适的微生物菌种进行生物柴油的制备。

通常使用脂肪酸产生能力较高的微生物,如菌株A、B和C。

这些菌株可在培养基中培养,并提供适宜的pH、温度和营养物质条件。

2.2 菌种的筛选通过混合培养基,并在适当的生长条件下进行培养,可以筛选出脂肪酸产量高的菌株。

根据菌株的生长情况、产酸能力和酸类产物的分析,可以评估菌株的潜力,并选择最合适的菌株用于生物柴油的制备。

3.底物的选择和预处理3.1 底物的选择生物柴油的生产通常使用油脂类底物,如食用油、动植物油和废油等。

选择适合的底物能够提高生物柴油的产量和质量。

3.2 底物的预处理底物的预处理是生物柴油制备过程中的一个重要环节。

包括底物的酯化处理、水分的去除以及杂质的去除等步骤。

这些预处理措施能够提高底物的可降解性和利用率。

4.生物柴油的发酵和提取4.1 生物柴油的发酵将预处理好的底物和选定的微生物菌株混合,进行发酵反应。

反应条件包括合适的温度、pH和反应时间等。

菌株通过代谢过程将底物转化为生物柴油。

4.2 生物柴油的提取将发酵液离心分离,得到沉淀物和上清液。

上清液中含有生物柴油,可以通过溶剂萃取、醇沉淀和蒸发等手段进行提取。

最终得到高纯度的生物柴油。

5.生物柴油的性能评价最后,对制备的生物柴油进行性能评价,包括密度、凝固点、闪点、黏度以及氧化安定性等指标的测试。

通过评价生物柴油的性能,可以确定其在实际应用中的可行性和可靠性。

6.结论本文介绍了利用微生物制备生物柴油的研究方法。

通过合适菌株的筛选、底物的选择和预处理、发酵反应和提取过程,可以高效地制备出高质量的生物柴油。

进一步的研究可以优化制备条件,提高生物柴油的产量和质量。

微生物制备生物柴油的研究对于能源替代和环境保护具有重要意义。

高效制备生物柴油的方法

高效制备生物柴油的方法

高效制备生物柴油的方法生物柴油是一种绿色可再生能源,可以直接替代传统柴油。

其制备利用生物质作为原料,通过酯化反应将生物质中的油脂酯化成酯化物,再通过转化反应制备成生物柴油。

本文将介绍一种高效制备生物柴油的方法。

1. 原料准备制备生物柴油的首要条件是原料选择,需要选择高含油量的农作物和林产品作为原材料。

在实际操作中,可以选择大豆、油菜籽、棕榈油、花生等作为油脂原料。

2. 酯化反应将原料中的油脂酯化成脂肪酸甲酯,这是制备生物柴油的关键步骤。

可以使用酸性催化剂或碱性催化剂催化酯化反应。

在碱性催化剂中,氢氧化钠是常用的碱性催化剂。

催化剂的选择和用量的优化可以促进反应的进行,提高反应的效率和产率。

3. 精馏与纯化经过酯化反应后,产生的产品中含有残留催化剂和杂质,需要进行精馏和纯化。

还可以使用活性炭和硅胶等吸附剂对生物柴油的pH值、水分和杂质进行调控与去除,提高生物柴油的品质。

4. 洗涤与降温制备生物柴油后,需要进行洗涤和降温。

洗涤可以去除生物柴油中的杂质和其他有害物质。

降温可以让生物柴油的温度降至室温。

在实际生产中,可以使用冷却器等设备进行降温处理。

5. 储存与运输制备出的生物柴油需要进行储存和运输。

在储存和运输过程中,需要避免水分和氧气的接触,以防止生物柴油的氧化和酸化。

同时,需要注意生物柴油的保存温度,存放环境的干燥程度、光照程度和空气质量等因素对生物柴油的品质也有很大的影响。

综上所述,高效制备生物柴油的方法是:通过选取合适的油脂原料、合适的催化剂、优化生产工艺,同时对生产过程中的洗涤、纯化、降温、储存和运输等环节加强管理和控制,制备出高品质、高效率的生物柴油。

生物柴油的制备工艺研究

生物柴油的制备工艺研究

生物柴油的制备工艺研究生物柴油是一种很重要的替代燃料,在目前世界能源危机日益严重的情况下,它是解决能源瓶颈问题的重要手段。

生物柴油的制备工艺研究是生产和应用生物柴油的重要前提,本文将简单介绍相关的制备工艺。

生物柴油的来源生物柴油以植物油为原料,或以动物脂肪和油脂为原料,是一种环保、可再生的二代清洁能源。

与石油燃料相比,生物柴油的优点在于能够减少二氧化碳的排放,且在生物柴油燃烧完全后生成的气体中,含有的二氧化碳并不会对大气环境造成进一步的影响,因此是非常环保的。

生物柴油的制备工艺研究生物柴油的制备工艺可以分为两种,分别是碱催化和酸催化。

1.碱催化法碱催化法是将植物油或动物脂肪与醇反应生成酯,其中的催化剂是氢氧化钠或氢氧化钾等强碱。

此法制备生物柴油成本低廉,反应速度快,可以在室温下、常压下完成,但在反应过程中容易产生大量的碱酸催化剂残留,使得产品合格率不高,影响了产品的质量;此外,反应过多久会影响产率,所以需要控制反应时间。

2.酸催化法酸催化法是将醇和油脂按一定的摩尔比在酸催化剂作用下进行酯化反应,其中的催化剂是硫酸、苯甲酸、过磷酸等。

此法反应过程温和、产率高、反应后的催化剂残留量小,但需要较高的反应温度和压力,容易产生过多的酸性催化剂残留,同样影响产品的质量。

现阶段的研究目前,国内外的研究人员在生物柴油的制备工艺研究方面取得了很多成果。

比如,中科院化学所的一位研究员在碱催化制备生物柴油过程中,采用了超声波振荡反应器,以更快的速度去酯化油脂,取得了良好的效果;此外还有一些新型催化剂的研制,如杨凌农业高新技术产业示范区的研究人员,就成功地将粗甘油转化为生物柴油的高效催化剂部分还原氧化石墨烯(rGO)上。

这些新技术的出现,为生物柴油在生产和应用方面提供了新的思路和方法。

结论综上,生物柴油的制备工艺研究至关重要。

目前,生物柴油的研究仍处于初期阶段,需要加强各个环节的研究,以提高产品的质量和生产效率。

相信在科学家们的共同努力下,生物柴油将会越来越适用于人们的生产和生活,从而达到绿色低碳的目的。

简述制备生物柴油的主要方法

简述制备生物柴油的主要方法

简述制备生物柴油的主要方法
生物柴油的主要制备方法包括以下步骤:
1.植物油或动物脂肪的提取
提取植物油或动物脂肪是制备生物柴油的第一步。

一般来说,常用的
植物油包括油菜籽油、大豆油、棕榈油等,常用的动物脂肪包括猪油、牛油、鸡油等。

提取的原料中必须含有高含量的油脂。

2.预处理
植物油或动物脂肪在提取后需要进行预处理,主要是去除水分、杂质
和游离脂肪酸等。

这一步骤可以通过压榨、过滤、脱水和脱臭等方式
进行。

3.转化反应
将经过预处理的植物油或动物脂肪与醇类或甲醛等反应,生成脂肪酯。

这一步是制备生物柴油的关键,常用的反应方式包括碱催化法、酸催
化法、酯化法等。

4.分离和净化
经过转化反应后生成的脂肪酯需要进行分离和净化。

这一步可以通过
重力分离、离心分离和蒸馏分离等方式进行。

5.加工调配
分离和净化好的脂肪酯需要进行加工调配,主要是将不同类型的脂肪
酯混合,以满足各种不同的使用要求。

6.生物柴油储存和前置处理
加工调配好的生物柴油需要进行储存和前置处理。

前置处理包括过滤、脱水和脱氧等步骤,以去除水分、杂质和氧化物等。

7.生物柴油使用
生物柴油可以作为替代传统石油柴油的燃料使用,在汽车、船舶、发
电机等领域都有广泛应用。

其优点包括绿色环保、可再生等。

竹材制备生物柴油的方法

竹材制备生物柴油的方法

竹材制备生物柴油的方法
竹材制备生物柴油的方法如下:
1. 竹材的预处理:将竹材切碎并去除杂质,进行干燥和除水处理,降低竹材中的水分含量。

2. 竹材的裂解:将干燥的竹材放入反应器中,进行高温裂解处理,在高温和压力下将竹材分解成液体和气体产品。

3. 液体产品的分离:将液体产品通过分离装置进行分离,将生物柴油提取出来。

4. 生物柴油的精制:将提取得到的生物柴油进行精制,包括脱色、催化加氢等处理,确保生物柴油的质量和稳定性。

5. 生物柴油的储存和运输:将精制好的生物柴油装入储罐并进行储存,同时进行运输和销售。

总的来说,竹材制备生物柴油的方法需要对竹材进行预处理和高温裂解处理,通过分离和精制提取得到生物柴油。

这种方法可以有效利用竹材资源,减少化石燃料的使用,有利于环保和可持续发展。

生物柴油燃料的制备与应用

生物柴油燃料的制备与应用

生物柴油燃料的制备与应用一、引言生物柴油是一种新兴的可再生能源,具有环保、可持续等特点,因此在能源领域备受关注。

本文将从生物柴油燃料的制备和应用两个方面进行介绍和分析。

二、生物柴油的制备生物柴油可通过多种方法制备,如酯化法、酵母法等。

其中以酯化法最为常见。

1.酯化法酯化法是目前生物柴油主流的工业化生产方法。

该方法是将生物原料如植物油、动物脂肪等与甲醇在一定比例下进行酯化反应,即可得到生物柴油。

该方法在生产时要注重反应条件的控制,如反应温度、反应时间、催化剂种类和催化剂用量等,以提高转化率和产量。

2.酵母法酵母法是一种新的生物柴油制备方法。

该方法是利用酵母菌将生物原料进行酵解,形成甘油和脂肪酸,然后再进行酯化反应,得到生物柴油。

该方法有着独特的优势,如无需催化剂、无废水排放、反应时间短等。

目前,该方法仍在实验室阶段,尚未工业化生产。

3.其他方法生物柴油的制备还有其他的方法,如微藻制备、生物学降解、植物发酵等。

这些方法的特点各异,有些具有良好的环保性和可持续性,但目前尚未应用于大规模的生产中。

三、生物柴油的应用1.替代传统柴油生物柴油具有传统柴油相似的物理化学性质,因此可以替代传统柴油进行燃烧。

生物柴油在燃烧过程中产生的二氧化碳等有害物质比传统柴油少,从而降低了大气污染的程度并减少了温室气体的排放。

2.生物柴油混合燃料生物柴油与传统柴油可以混合使用,形成生物柴油混合燃料。

该混合燃料可以降低传统柴油的排放量,并且在使用过程中无需对现有的柴油发动机进行大的改造或升级,降低了使用成本。

3.其他应用生物柴油的应用不仅仅局限于燃烧。

生物柴油还可以用于制备其他化合物,如涂料、胶粘剂等,具有一定的应用前景。

此外,生物柴油本身在一些行业中也得到了应用,如农业、林业、渔业等领域。

四、生物柴油的发展前景未来,生物柴油将成为新型的低碳环保能源,具有广阔的应用前景。

生物柴油在能源领域的普及和应用,将有力促进可持续发展,改善环境,减少大气污染,保护生态环境。

生物柴油生产方法

生物柴油生产方法

生物柴油生产方法
生物柴油的生产方法主要有以下几种:
1. 转酯化法:将动植物油脂与醇(如甲醇、乙醇)在催化剂(如碱催化剂、酸催化剂)的作用下反应,生成酯类化合物(即生物柴油)和副产物甘油。

2. 转糖化发酵法:将植物纤维素通过预处理(如挤压、研磨、酶解等)获得糖类,再将糖类通过发酵反应转化为生物柴油。

3. 脂肪酸酯化法:将动植物油脂中的游离脂肪酸与醇进行酯化反应,生成生物柴油。

4. 亚氧化脱硫法:将动植物油脂与氢气在催化剂(如铜铅等)的作用下进行加氢反应,生成生物柴油。

5. 热压法:将植物油脂经过高温高压处理,使其分解为生物柴油和其他副产物。

以上方法中,转酯化法是生产生物柴油最常用的方法,具有操作简便、产量高、质量稳定等优点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

漳州师范学院毕业论文(设计)菜籽油制备生物柴油Preparation of Biodieselfrom vegetable oil姓名:李晓华学号:020*******系别:化学与环境科学系专业:化学教育年级:02级指导教师:钟长庚(教授)2006年 6 月 5 日菜籽油制备生物柴油摘要研究了植物油(菜籽油)在KOH催化作用下与甲醇反应制备生物柴油的工艺条件,考察了醇油摩尔比、催化剂用量、反应时间和反应温度等条件对反应的影响,实验结果表明该反应最佳条件为:醇油摩尔比4:1、催化剂用量为原料油质量的1.5%、反应时间0.5h.、反应温度55℃,并对所制得产品的主要性能指标与O#柴油的性能指标进行比较。

关键词:生物柴油;酯交换反应;脂肪酸甲酯Preparation of Biodiesel from vegetable oilAbstractThe technical processes to produce biodiesel from vegetable oil(vegetable seed oil)by esterification with methanol under the catalysis of KOH were investigated.The experimental results showed that the optimum ratio of methanol to oil is 4:1, reaction time is 0.5h., and reaction temperature is 55℃.The main properties of biodiesel obtained in this experiment were compared with that of No.0 diesel oil.Key words: biodiesel;transesterification;fatty acid methyl ester目录中文摘要 (I)英文摘要 (I)1.前言 (1)2.实验 (2)2.1仪器和试剂 (2)2.2生物柴油的制备 (2)2.2.1预备实验 (2)2.2.2设计正交实验表 (3)2.3性能测试 (3)3.结果与讨论 (3)3.1 实验原理及流程图 (3)3.2 正交实验结果 (4)3.2.1催化剂的用量对甘油产量的影响 (5)3.2.2反应物配比对甘油的产量的影响 (5)3.3.3反应时间对甘油的产量的影响 (5)3.3.4反应温度对甘油产量的影响 (6)3.3.5主要影响因素的确定及最佳反应条件 (6)3.3 产品主要性能与0#柴油的对比 (6)3.4生物柴油商品化生产的可行性 (7)4.结论 (8)参考文献 (9)致谢 (10)1 前言所谓生物柴油就是利用动植物油脂为原料,经反应改性成为可供内燃机使用的一种燃料。

生物柴油是典型“绿色能源”,大力发展生物柴油对经济可持续发展,推进能源替代,减轻环境压力,控制城市大气污染具有重要的战略意义。

早在100多年前,Rudolf Diesel就进行了植物油作为发动机燃料的实验,并取得了成功。

但是由于价格的原因,20世纪30~40年代植物油作为柴油机燃料仅应用于紧急情况。

自20世纪70年代,尤其是1991年海湾战争以来,一方面石油价格不断上涨,石油资源逐渐枯竭,全世界都面临着能源短缺的危机;另一方面,随着人们生活水平的提高和环境保护意识的增强,人们逐渐认识到石油作为燃料所造成的空气污染的严重性,特别是光化学烟雾、酸雨的频繁出现,对产生的温室效应严重破坏了生态平衡。

因此,国际石油组织认为人体健康造成极大的危害,CO2开发一种新的能源来代替石油燃料已迫在眉睫,生物柴油是最重要的清洁燃料之一,是最有发展前途的柴油机替代燃料。

生物柴油的研究最早是从20世纪70年代开始的。

美国、法国、意大利等相继成立了专门的生物柴油研究机构,投入大量的人力物力。

到了20世纪90年代,随着环境保护和石油资源枯竭两大难题越来越被关注,尤其在美国,生物柴油已成为新能源研制和开发的热点,引起西方先进国家的高度重视,政府通过政策优惠手段,使生物柴油迅速成为新经济产业的亮点。

生物柴油有许多优点,首先它可以从可再生的本土资源中得到,因此可以减少对于石油燃料进口的依赖;其次它是可生物降解的,且无毒。

与石化柴油相比,生物柴油在燃烧排放方面也有很多优点,如一氧化碳、颗粒物及未燃碳氢化合物的排放量较低;燃烧时产生的二氧化碳比石化柴油少,因此可以把生物柴油燃烧对温室效应的影响减到最小;具有相当高的闪点,使得它比石化柴油具有低挥发性,在储存运输过程中比较安全;其所具有的润滑特性可以减少发动机的磨损,从而延长发动机的使用寿命。

总之,生物柴油的这些优点使得它成为一种石化柴油的很好替代品,并且已经在很多国家使用,尤其是对环境比较重视的国家和地区。

目前,生物柴油的制备通常采用化学反应法[1]、物理处理法和生物合成法等技术。

其中化学反应法又可分为高温裂解法、酯化法和酯交换法等。

酯交换法是生产生物柴油最常用的方法,所谓酯交换反应是指油脂与醇反应生成脂肪酸单酯(也称生物柴油)和甘油的一个催化化学反应。

甘三酯作为油脂的主要组分,是由三个长链脂肪酸与一个甘油基经酯化形成的。

当甘三酯与醇(如甲醇)反应时,三个脂肪酸链与甘油基断开,与醇结合生成脂肪酸烷基酯(如脂肪酸甲酯FAME),生成的甘油作为一种副产品。

本文对菜籽油在KOH作催化剂作用下与甲醇经转酯化反应合成生物柴油,并将制得的产品与O#柴油的主要指标进行比较。

2 实验2.1 仪器和试剂DF-101S集热式恒温加热磁力搅拌器(巩义市英峪予华仪器厂),电子分析天平(北京赛多利斯天平有限公司),DHG-9030A型电热恒温鼓风干燥器(上海精宏实验设备有限公司),KOH(A.R),甲醇(A.R),菜籽油(市售),盐酸(A.R),乌氏粘度计。

2.2 生物柴油的制备2.2.1 预备实验以菜籽油为原料油,通过酯交换反应制取生物柴油。

为了得到合成产品的最佳反应条件和进一步考察影响产品质量的各种因素,本实验采用正交试验的方法,根据预实验及有关文献[2].[3] 得到影响酯交换反应因素主要有4个:甲醇和原料油的摩尔比、催化剂(KOH)的用量、反应温度、反应时间。

各因素选取的三个水平分别为甲醇和原料油的摩尔比4:1,5:1,6:1;反应温度25℃, 40℃,55℃;催化剂(KOH)的用量0.5%,1.0%,1.5%;反应时间0.5h.,1.0h.,1.5h.;具体如表1:表1 实验因素和水平的设计水平醇油比(k) 反应温度(t) 催化剂用量(%) 反应时间(h.)1 4:1 25 0.5 0.52 5:1 40 1.0 1.03 6:1 55 1.5 1.52.2.2 设计正交实验表通过四个因素:甲醇和原料油的摩尔比、催化剂(KOH)的用量、反应温度、反应时间,各因素选取的三个水平,设计4个因素3个水平的正交实验(L9(43)),以甘油产量作为评分标准,进行九次实验,以期得到最佳反应条件。

2.2.3 制备过程将一定量的菜籽油置于100ml圆底烧瓶中,水浴加热至一定温度后恒温,并加入预先配置好的不同比例的氢氧化钾-甲醇溶液,开动搅拌,开始计时。

待反应完成后,冷却、分层,取上层溶液经蒸馏(回收甲醇)、中和(加酸)洗涤、干燥、过滤,得到黄色澄清透明的产品,即生物柴油。

2.4 性能测试动力粘度测定:测出运动粘度除以产品密度得到[4]。

闪点测定:用开口杯法进行测定[4]。

密度测定:使用比重瓶通过已知密度的醋酸的体积和质量来求算相同条件和相同体积下的产品的密度。

3 结果与讨论3.1 实验原理及流程图本实验采用甲醇作酯化剂,以菜籽油为原料,通过酯交换反应生产脂肪酸甲酯即生物柴油。

所谓酯交换,即利用甲醇等醇类物质,将甘油三酸酯中的甘油基取代下来,将甘油三酸酯转化为长链脂肪酸的甲酯,从而减短碳链长度,提高植物油的燃料性能。

其反应式如下:CH2-OCO-R CH2-OH∣∣CH2-OCO-R + 3CH3OH 3R-COOCH3+ CH2-OH∣∣CH2-OCO-R CH2-OH图1 反应流程图3.2 正交实验结果本实验设计了如下的正交实验,期望找到较适宜的反应条件。

正交实验表如下:表2 正交实验数据及分析表备注:表2中Ⅰ、Ⅱ、Ⅲ分别表示某一水平值参与的实验次数的得分之和。

如表2中反应醇油比为4:1时,参与的三次试验得分分别是:5.6519、6.1441、5.6746,因此Ⅰ=5.6519+6.1441+5.6746=17.4778;以此类推反醇油比为5:1时Ⅱ=16.0023;醇油比为6:1时Ⅲ= 13.9019。

同理,可分别计算反应温度、催化剂用量、反应时间的Ⅰ、Ⅱ、Ⅲ填入表2中。

R表示某一因素的三个水平中得分总和的最大值与最小值之差。

如表2中醇油比总和最大值为17.4778,最小值为13.9019,R = 17.4778-13.9019 =3.5759。

则同理可计算出反应温度、催化剂用量、反应时间的Ⅰ、Ⅱ、Ⅲ填入表2中。

选用L(43)正交表进行试验,影响因素的各水平如表2所列。

以甘油的产量来评价反应进行的9程度,同时进行极差分析[5],结果如表2。

在所选的试验影响因素各水平下,酯交换反应都基本能够很好的进行,静置后混合液都有明显的分层,甘油的产量在3.9828g~6.6862g之间。

菜籽油的主要成分是甘油三酸酯,经转酯化反应后可产10%左右的甘油[6],本试验的甘油产出约占菜籽油的8.8%~14.7%,说明酯交换反应基本完全,菜籽油中的主要成分甘油三酸酯经过酯交换反应,基本上已完全转化为脂肪酸甲酯。

3.2.1 催化剂的用量对甘油产量的影响催化剂K0H加入量对反应有较显著影响[7]。

随着催化剂用量的增加,甘油产量增多,但也不是越多越好。

当催化剂的用量较少时,催化剂被游离的脂肪酸中和掉了,因而没有起到催化剂的作用,适当增加催化剂的用量,其催化作用开始明显,有利于催化作用的进行。

然而,当催化剂过量时,会增加反应液中乳胶状物质的生成,使反应物粘度加大甚至最终形成凝胶[6],从而使甘油的分离更加困难。

因此,在本试验所选水平中,认为催化剂的用量为1.5g/50mL菜籽油时,最有利于酯交换反应的进行。

3.2.2 反应物配比对甘油的产出的影响根据反应式醇油比为3:1,但在本试验所选水平下,认为当反应物配比为4:1,即可以得到接近于最多量的甘油产出,再增大甲醇用量,几乎不能带来更多的甘油产出,因为甲醇的沸点比较低,反应过程中部分损失。

根据化学平衡原理,采用过量的甲醇可以推动反应朝正反应方向进行。

从理论上讲,在达到计量比之前,甲醇用量越多,菜籽油反应越完全,生成的甘油也就越多,但当甲醇过量时,其用量的增多只能推动平衡很小的移动,只会使甘油有少量的增加。

相关文档
最新文档