概率与统计第六章测验答案——概率论课件PPT
概率论与数理统计第2版教学课件第6章

随机样本与统计量
6.1.2
样本统计量
定义4 (极差) 设X1,X2,…,Xn是来自总体X的样本,则称统计量
R=X(n)-X(1)
为样本的极差。
极差反映了样本观测值的波动幅度。它同方差一样是反映观察值离散程度的数量指标。
(6-8)
6.1
随机样本与统计量
6.1.2
样本统计量
例 从某工厂生产的轴承中随机地抽取10只,测得其重量(以kg计)为
从一个总体X抽取n个个体,由于抽样的独立性与随机性,每个个体都是一个随机变量
Xi(i=1,2,…,n)。这里X1,X2,…,Xn相互独立,并且Xi与X具有相同分布。这样的n个随机变量称为总体X的
一个容量为n的样本。但是在具体抽样后,它们就有了具体的数值
x1,x2,…,xn,
称为样本观察值。
6.1
随机样本与统计量
有钢筋视为一个总体,则这一天生产的每一根钢筋为个体。又如,要检验一批灯泡的质量,这一批灯
泡可看成是一个总体,每一个灯泡则为个体。
在数理统计中,我们往往对表征总体性质的某一个或某n个数量指标感兴趣。如灯泡的使用寿命X
就是灯泡质量的一个重要的数量指标;钢筋的抗拉强度Y1,抗剪切力的大小Y2是表征钢筋质量的两个
一些带有严重破坏性的自然灾害进行必要的估计与预测。如在建造桥梁时,为了防止洪水冲塌桥梁这
类事故发生,设计时就必须事先考虑到在使用期间该河流可能爆发的最高水位;在建造高大建筑物时,
也要考虑到今后若干年内的最大风压、地震的最大震级等。了解这些随机变量的概率分布,就是极值
的分布。
6.2
抽样分布
6.2.2
6.1.1
总体、个体与样本
定义1 设X1,X2,…,Xn是来自总体X的容量为n的样本,若X1,X2,…,Xn相互独立,且每个
(精选)概率与数理统计第六章

常用的统计量的分布为:N (0,1), t 分 布 , 2 分 布 , F 分 布 3)确定拒绝域: 根据小概率原理确定拒绝原假设的区域.
即确定满足 P (拒 绝 H 0|H 0 为 真 )拒绝域W.
4)作出统计推断:计算检验统计量的观测值. 若检验统计量的值落入拒绝域,则拒绝原假设 若检验统计量的值未落入拒绝域,则接受原假设
(2)在原假设 H 0 为真的前提下,确定统计量
UX X30390~N(0,1)
n
25
(3)确定拒绝域 W{Uu0.05}{U1.645}
6.2.2 单个正态总体方差的假设检验
6.1 假设检验的基本概念
例 用某种动物作试验材料,要求动物的平均体重 100g,若 100g 需要再饲养;若 100g则应淘汰.又知动物体重服从正态分布,且由 以往经验知 1.5g ,现从一批待试验的动物中,随机抽取8只,称 得体重(g)为:99.3 98.9 101.5 101.0 99.6 98.7 102.2 100.8
所以
X
~
N
(0,1)
n
6.2.1 单个正态总体均值的假设检验
y 对于给定的显著性水平 ,确定拒绝域W
① H 0 : 0 , H 1 : 0
W{|U|u}
2
2
u
y
2
2
u
2
x
② H 0 : 0 , H 1 : 0
W{Uu}
③ H 0 : 0 , H 1 : 0
W{Uu}
x y
x
6.2.1 单个正态总体均值的假设检验
H0:0100, H1:100
在原假设为真时选统计量
概率论与数理统计教程第二版茆诗松课件PPT第六章

ˆ 与样本值 x1 , x2 ,, xn 有关, 记为 这样得到的 ˆ ( x1 , x2 ,, xn ), 参数 的最大似然估计值 ,
ˆ ( X 1 , X 2 , , X n ) 参数 的最大似然估计量 .
12 April 2016
L( ) 1
n
I
i 1
n
{0 xi }
1
n
I{ x
( n ) }
要使L( )达到最大,首先一点是示性函数取值 n n 应该为1,其次是1/ 尽可能大。由于1/ 是 的单调减函数,所以 的取值应尽可能小,但 示性函数为1决定了 不能小于x(n),由此给出 的极大似然估计 ˆ x( n ) 。
经计算有
x 28.695,
2 sn 0.9185,源自m0.5 28.6由此给出总体均值、方差和中位数的估计分别 为: 28.695, 0.9185 和 28.6。 矩法估计的实质是用经验分布函数去替换总体 分布,其理论基础是格里纹科定理。
12 April 2016
第六章 参数估计
第6页
二、概率函数P(x,θ)已知时未知参数的矩法估计 设总体具有已知的概率函数 P(x, 1, …, k), x1, x2 , …, xn 是样本,假定总体的k阶原点矩k 存在,若1, …, k 能够表示成 1, …, k 的函数 j = j(1, …,k),则可给出诸j 的矩法估计为
数作出估计。
参数估计的形式有两种:点估计与区间估计。
12 April 2016
第六章 参数估计
第3页
设 x1, x2,…, xn 是来自总体 X 的一个样本,
ˆ ˆ( x ,, x ) 我们用一个统计量 的 1 n ˆ 取值作为 的估计值, 称为 的点估计 ˆ (量),简称估计。在这里如何构造统计量 并没有明确的规定,只要它满足一定的合理 性即可。这就涉及到两个问题:
第六单元 统计与概率六年级下学期数学同步课件(人教版) (共18张PPT)

探究点 利用统计图表分析和解决问题
六(1)班同学的几项数据用统计表和统计图表示如下。
六(1)班男、女生人数统计表 (1)从统计表中可以
性别 男生 女生 合计 看出六(1)班男、女
人数 22
18
40 人数以及全班人数。
六(1)班男、女生人数统计图
(2)从扇形统计图中 可以知道六(1)班男、 女生人数各占全班人数
。
探究点 可能性
可能性是指事物发生的概率。是包含在事物之中并 预示着事物发展趋势的量化指标。 必然事件:100%。即一定会发生的事件。如:今天 是星期一,明天一定是星期二。 不确定事件:x%。即在主观或客观条件下都不能确 定是否会发生的事件,常用“不一定”“经 常”“可能”“偶尔”等词语来描述。如:今天下 雨,明天不一定也要下雨。 不可能事件:0%。即在逻辑思维下不会发生的事件。 如:太阳不可能从西边升起。
求平均数的方法: 数据总和÷数据个数=平均数。
平均数有什么用处? 用平均数作为一组数据的代表,比较可靠和稳定,但 它容易受到极端数据(偏大或偏小的数据)的影响。
下面是一个居民楼的家庭人口情况统计表.这
90
C.
叫做这个组数楼据内的平平均均数。每户有多少人?
(3)六(1)班体育成绩达到优秀的有15人,占全班人数的25%,制成扇形统计图时所对应的圆心角是(
叫做这组数据的平均数。
运动项目⑤,其整中理喜欢和足描球的述男数生比据女;生多,喜欢跳绳的女生比男生多,喜欢乒乓球的男生和女生同样多……
可能性是指事物发生的概率。
条形统计⑥图表根示据六(统1)计班图男生表和分女生析最数喜欢据的,作出判断和决策。
即在逻辑思维下不会发生的事件。 一组数据只有一个平均数。 用折线的起伏表示数量的增减变化。
东华大学《概率论与数理统计》课件 第6章样本与抽样分布

X
的
n
一
个
样
本的
观察
值
,
则g( x1 , x2 , xn )是统计量g( X1 , X 2 , X n )的观察值.
例1 设总体X 服从两点分布b(1, p) ,其中p 是未知参数,
X1,
,
X
是
5
来自X的简
单
随机样本.试指出
X1
X
,
2
max
1 i 5
X
i
,
X5 2 p,
( X5 X1)2
哪些是统计量,哪些不是统计量,为什么?
从国产轿车中抽5辆进行耗 油量试验
样本容量为5 抽到哪5辆是随机的
对总体X在相同条件下,进行n次重复、独立观察,其结果依次记 为 X1,X2,…,Xn.这样得到的随机变量X1,X2,…,Xn.是来自总体的一个简单 随机样本,其特点是:
1. 代表性:X1,X2,…,Xn中每一个与所考察的总体X有相同的分布. 2. 独立性:X1,X2,…,Xn相互独立.
k同分布,
E(
X
k i
)
k
k 1, 2, , n 再由辛钦大数定律可得上述结论.
再由依概率收敛性质知,可将上述性质推广为
g( A1 , A2 , , Ak ) P g(1, 2 , , k )
其中g为连续函数.
矩估计法的理论依据
2. 经验分布函数
设X1, X2,
,
X
是
n
总
体
F的
一
个Hale Waihona Puke 本,用S(
x
则称变量
t X Yn
所服从的分布为自由度为 n的 t 分布.
《概率统计第六章》PPT课件

[t ,) (,t ]
[t ,)
2
H0 H0
2. 检验 (1)
2 1
2 2
H : 2
所机以器接处受于正常Z工作,1状即00态..14。58
10.5 / 15
下可0以.5认16为4
R
H0
0.05
例2 (习题六第9题)设总体
是 的样本,检验 X ~ N (,32 )
(给X出1,判X别规2 ,则:,显X著性25水) 平 X
下
当 C。
H0 : 0时拒绝 H1 。: 试确定常0 数
通常
P{U 1orU 2}
的取值由范临围界,值称确其定为使P拒小{绝概U域率,事记件作发3}生R的 , P{U 4}
(Rejection Region) 0 0.1
U
(4)计算由样本观测值得到的统计量的 值。 若统计量值属于拒绝域,则拒绝原 假设 ; 若统计量值不属于拒绝域,则接受 原假设 。
H0 : p 0.9 H1 : p 0.9
注意
原假设与备择假设的地位不对等:
是受保护的,没有足够的理由不能
否定 ;
拒绝 是有说服力的,而接受 仅是
没有H足0够理由否定
。
H0
H0
H0
H0
3. 假设检验的方法及原理
1)反证法
为了判断 是否真,先假设 真。在
此假设下如果出现不合理结果,则否定
真;若未出现不合理结果,则可认为
H1 : 1 2
2
1 2
成立时
T
X Y
(m
1) S12
(n
1)S
2 2
1 1
mn2
mn
H0
T ~ t(m n 2)
《概率论与数理统计》习题及答案 第六章

《概率论与数理统计》习题及答案第 六 章1.某厂生产玻璃板,以每块玻璃上的泡疵点个数为数量指标,已知它服从均值为λ的泊松分布,从产品中抽一个容量为n 的样本12,,,n X X X L ,求样本的分布.解 样本12(,,,)n X X X L 的分量独立且均服从与总体相同的分布,故样本的分布为11221(,,,)()nn n ii i P X k X k X k P Xk ======∏L 1!ikni i e k λλ-==∏112!!!ni i n k n e k k k λλ=-∑=L 0,1,i k =L ,1,2,,,i n =L 2.加工某种零件时,每一件需要的时间服从均值为1/λ的指数分布,今以加工时间为零件的数量指标,任取n 件零件构成一个容量为n 的样本,求样本分布。
解 零件的加工时间为总体X ,则~()X E λ,其概率密度为,0,()0,0.x e x f x x λλ-⎧>=⎨≤⎩于是样本12(,,,)n X X X L 的密度为1121,0(,,,)0,.nii ix nnx i n i e x f x x x e λλλλ=--=⎧∑⎪>==⎨⎪⎩∏K 其它 1,2,,i n =L 3.一批产品中有成品L 个,次品M 个,总计N L M =+个。
今从中取容量为2的样本(非简单样本),求样本分布,并验证:当,/N M N p →∞→时样本分布为(6.1)式中2n =的情况。
解 总体~(01)X -,即(0),(1)L MP X P X N N==== 于是样本12(,)X X 的分布如下 121(0,0)1L L P X X N N -===⋅-,12(0,1)1L M P X X N N ===⋅-12(1,0)1M L P X X N N ===⋅-,121(1,1)1M M P X X N N -===⋅- 若N →∞时M p N →,则1Lp N→-,所以2002012(0,0)(1)(1)P X X p p p +-==→-=-012112(0,1)(1)(1)P X X p p p p +-==→-=-102112(1,0)(1)(1)P X X p p p p +-==→-=-2112212(1,1)(1)P X X p p p +-==→=-以上恰好是(6.1)式中2n =的情况.4.设总体X 的容量为100的样本观察值如下:15 20 15 20 25 25 30 15 30 25 15 30 25 35 30 35 20 35 30 25 20 30 20 25 35 30 25 20 30 25 35 25 15 25 35 25 25 30 35 25 35 20 30 30 15 30 40 30 40 15 25 40 20 25 20 15 20 25 25 40 25 25 40 35 25 30 20 35 20 15 35 25 25 30 25 30 25 30 43 25 43 22 20 23 20 25 15 25 20 25 30433545304530454535作总体X 的直方图解 样本值的最小值为15,最大值为45取14.5a =,45.5b =,为保证每个小区间内都包含若干个观察值,将区间[14.5,45.5]分成8个相等的区间。
《概率论与数理统计》第六章样本及抽样分析共67页PPT

•
46、寓形宇内复几时,曷不委心任去 留。
•
47、采菊东篱下,悠然见南山。•Biblioteka 48、啸傲东轩下,聊复得此生。
•
49、勤学如春起之苗,不见其增,日 有所长 。
•
50、环堵萧然,不蔽风日;短褐穿结 ,箪瓢 屡空, 晏如也 。
谢谢
11、越是没有本领的就越加自命不凡。——邓拓 12、越是无能的人,越喜欢挑剔别人的错儿。——爱尔兰 13、知人者智,自知者明。胜人者有力,自胜者强。——老子 14、意志坚强的人能把世界放在手中像泥块一样任意揉捏。——歌德 15、最具挑战性的挑战莫过于提升自我。——迈克尔·F·斯特利