概率论与数理统计第六章(最新版)
概率论与数理统计各章重点知识点汇总--最新版

第一章 概率论的基本概念一.基本概念随机试验E:(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现. 样本空间S: E 的所有可能结果组成的集合. 样本点(基本事件):E 的每个结果. 随机事件(事件):样本空间S 的子集.必然事件(S):每次试验中一定发生的事件. 不可能事件(Φ):每次试验中一定不会发生的事件. 二. 事件间的关系和运算1.A ⊂B(事件B 包含事件A )事件A 发生必然导致事件B 发生.2.A ∪B(和事件)事件A 与B 至少有一个发生.3. A ∩B=AB(积事件)事件A 与B 同时发生.4. A -B(差事件)事件A 发生而B 不发生.5. AB=Φ (A 与B 互不相容或互斥)事件A 与B 不能同时发生.6. AB=Φ且A ∪B=S (A 与B 互为逆事件或对立事件)表示一次试验中A 与B 必有一个且仅有一个发生. B=A, A=B .运算规则 交换律 结合律 分配律 德•摩根律 B A B A = B A B A = 三. 概率的定义与性质1.定义 对于E 的每一事件A 赋予一个实数,记为P(A),称为事件A 的概率. (1)非负性 P(A)≥0 ; (2)归一性或规范性 P(S)=1 ;(3)可列可加性 对于两两互不相容的事件A 1,A 2,…(A i A j =φ, i ≠j, i,j=1,2,…),P(A 1∪A 2∪…)=P( A 1)+P(A 2)+… 2.性质(1) P(Φ) = 0 , 注意: A 为不可能事件 P(A)=0 .(2)有限可加性 对于n 个两两互不相容的事件A 1,A 2,…,A n ,P(A 1∪A 2∪…∪A n )=P(A 1)+P(A 2)+…+P(A n ) (有限可加性与可列可加性合称加法定理) (3)若A ⊂B, 则P(A)≤P(B), P(B -A)=P(B)-P(A) . (4)对于任一事件A, P(A)≤1, P(A)=1-P(A) .(5)广义加法定理 对于任意二事件A,B ,P(A ∪B)=P(A)+P(B)-P(AB) . 对于任意n 个事件A 1,A 2,…,A n()()()()+∑+∑-∑=≤<<≤≤<≤=nk j i k j i nj i j i ni i n A A A P A A P A P A A A P 11121…+(-1)n-1P(A 1A 2…A n )四.等可能(古典)概型1.定义 如果试验E 满足:(1)样本空间的元素只有有限个,即S={e 1,e 2,…,e n };(2)每一个基本事件的概率相等,即P(e 1)=P(e 2)=…= P(e n ).则称试验E 所对应的概率模型为等可能(古典)概型.2.计算公式 P(A)=k / n 其中k 是A 中包含的基本事件数, n 是S 中包含的基本事件总数. 五.条件概率1.定义 事件A 发生的条件下事件B 发生的条件概率P(B|A)=P(AB) / P(A) ( P(A)>0).2.乘法定理 P(AB)=P(A) P (B|A) (P(A)>0); P(AB)=P(B) P (A|B) (P(B)>0).P(A 1A 2…A n )=P(A 1)P(A 2|A 1)P(A 3|A 1A 2)…P(A n |A 1A 2…A n-1) (n ≥2, P(A 1A 2…A n-1) > 0) 3. B 1,B 2,…,B n 是样本空间S 的一个划分(B i B j =φ,i ≠j,i,j=1,2,…,n, B 1∪B 2∪…∪B n =S) ,则 当P(B i )>0时,当P(A)>0, P(B i )>0时,. 六.事件的独立性1.两个事件A,B,满足P(AB) = P(A) P(B)时,称A,B 为相互独立的事件. (1)两个事件A,B 相互独立⇔ P(B)= P (B|A) .2.三个事件A,B,C 满足P(AB) =P(A) P(B), P(AC)= P(A) P(C), P(BC)= P(B) P(C),称A,B,C 三事件两两相互独立. 若再满足P(ABC) =P(A) P(B) P(C),则称A,B,C 三事件相互独立.3.n 个事件A 1,A 2,…,A n ,如果对任意k (1<k ≤n),任意1≤i 1<i 2<…<i k ≤n.有()()()()kki i i i i i A P A P A P A A A P 2121=,则称这n 个事件A 1,A 2,…,A n 相互独立.第二章 随机变量及其概率分布一.随机变量及其分布函数1.在随机试验E 的样本空间S={e}上定义的单值实值函数X=X (e)称为随机变量.2.随机变量X 的分布函数F(x)=P{X ≤x} , x 是任意实数. 其性质为:(1)0≤F(x)≤1 ,F(-∞)=0,F(∞)=1. (2)F(x)单调不减,即若x 1<x 2 ,则 F(x 1)≤F(x 2). (3)F(x)右连续,即F(x+0)=F(x). (4)P{x 1<X≤x 2}=F(x 2)-F(x 1). 二.离散型随机变量 (只能取有限个或可列无限多个值的随机变量)1.离散型随机变量的分布律 P{X= x k }= p k (k=1,2,…) 也可以列表表示. 其性质为: (1)非负性 0≤P k ≤1 ; (2)归一性 11=∑∞=k k p .2.离散型随机变量的分布函数 F(x)=∑≤xX k k P 为阶梯函数,它在x=x k (k=1,2,…)处具有跳跃点,其跳跃值为p k =P{X=x k } .3.三种重要的离散型随机变量的分布(1)X~(0-1)分布 P{X=1}= p ,P{X=0}=1–p (0<p<1) .(2)X~b(n,p)参数为n,p 的二项分布P{X=k}=()kn k p p k n --⎪⎪⎭⎫ ⎝⎛1(k=0,1,2,…,n) (0<p<1) (3))X~π(λ)参数为λ的泊松分布 P{X=k}=λλ-e k k !(k=0,1,2,…) (λ>0)三.连续型随机变量1.定义 如果随机变量X 的分布函数F(x)可以表示成某一非负函数f(x)的积分F(x)=()dt t f x⎰∞-,-∞< x <∞,则称X 为连续型随机变量,其中f (x)称为X 的概率密度(函数).2.概率密度的性质(1)非负性 f(x)≥0 ; (2)归一性 ⎰∞∞-dx x f )(=1 ;(3) P{x 1<X ≤x 2}=⎰21)(x x dx x f ; (4)若f (x)在点x 处连续,则f (x)=F / (x) .注意:连续型随机变量X 取任一指定实数值a 的概率为零,即P{X= a}=0 . 3.三种重要的连续型随机变量的分布(1)X ~U (a,b) 区间(a,b)上的均匀分布 ⎩⎨⎧=-0)(1a b x f 其它b x a << .(2)X 服从参数为θ的指数分布.()⎩⎨⎧=-0/1θθx ex f 00≤>x x 若若 (θ>0).(3)X~N (μ,σ2)参数为μ,σ的正态分布 222)(21)(σμσπ--=x e x f -∞<x<∞, σ>0.特别, μ=0, σ2 =1时,称X 服从标准正态分布,记为X~N (0,1),其概率密度2221)(x e x -=πϕ , 标准正态分布函数 ⎰=Φ∞--xt dt e x 2221)(π, Φ(-x)=1-Φ(x) .若X ~N ((μ,σ2), 则Z=σμ-X ~N (0,1), P{x 1<X ≤x 2}=Φ(σμ-2x )-Φ(σμ-1x ).若P{Z>z α}= P{Z<-z α}= P{|Z|>z α/2}= α,则点z α,-z α, ±z α/ 2分别称为标准正态分布的上,下,双侧α分位点. 注意:Φ(z α)=1-α , z 1- α= -z α. 四.随机变量X 的函数Y= g (X)的分布 1.离散型随机变量的函数若g(x k ) (k=1,2,…)的值全不相等,则由上表立得Y=g(X)的分布律.若g(x k ) (k=1,2,…)的值有相等的,则应将相等的值的概率相加,才能得到Y=g(X)的分布律. 2.连续型随机变量的函数若X 的概率密度为f X (x),则求其函数Y=g(X)的概率密度f Y (y)常用两种方法: (1)分布函数法 先求Y 的分布函数F Y (y)=P{Y ≤y}=P{g(X)≤y}=()()dx x f ky X k∑⎰∆其中Δk (y)是与g(X)≤y 对应的X 的可能值x 所在的区间(可能不只一个),然后对y 求导即得f Y (y)=F Y /(y) .(2)公式法 若g(x)处处可导,且恒有g /(x)>0 (或g / (x)<0 ),则Y=g (X)是连续型随机变量,其概率密度为 ()()()()⎩⎨⎧'=0y h y h f y f X Y 其它βα<<y其中h(y)是g(x)的反函数 , α= min (g (-∞),g (∞)) β= max (g (-∞),g (∞)) .如果f (x)在有限区间[a,b]以外等于零,则 α= min (g (a),g (b)) β= max (g (a),g (b)) .第三章 二维随机变量及其概率分布一.二维随机变量与联合分布函数1.定义 若X 和Y 是定义在样本空间S 上的两个随机变量,则由它们所组成的向量(X,Y)称为二维随机向量或二维随机变量.对任意实数x,y,二元函数F(x,y)=P{X ≤x,Y ≤y}称为(X,Y)的(X 和Y 的联合)分布函数. 2.分布函数的性质(1)F(x,y)分别关于x 和y 单调不减.(2)0≤F(x,y)≤1 , F(x,- ∞)=0, F(-∞,y)=0, F(-∞,-∞)=0, F(∞,∞)=1 . (3) F(x,y)关于每个变量都是右连续的,即 F(x+0,y)= F(x,y), F(x,y+0)= F(x,y) . (4)对于任意实数x 1<x 2 , y 1<y 2P{x 1<X ≤x 2 , y 1<Y ≤y 2}= F(x 2,y 2)- F(x 2,y 1)- F(x 1,y 2)+ F(x 1,y 1)二.二维离散型随机变量及其联合分布律1.定义 若随机变量(X,Y)只能取有限对或可列无限多对值(x i ,y j ) (i ,j =1,2,… )称(X,Y)为二维离散型随机变量.并称P{X= x i ,Y= y j }= p i j 为(X,Y)的联合分布律.也可列表表示.2.性质 (1)非负性 0≤p i j ≤1 .(2)归一性 ∑∑=i jij p 1 .3. (X,Y)的(X 和Y 的联合)分布函数F(x,y)=∑∑≤≤x x yy ij i j p三.二维连续型随机变量及其联合概率密度1.定义 如果存在非负的函数f (x,y),使对任意的x 和y,有F(x,y)=⎰⎰∞-∞-y xdudv v u f ),( 则称(X,Y)为二维连续型随机变量,称f(x,y)为(X,Y)的(X 和Y 的联合)概率密度. 2.性质 (1)非负性 f (x,y)≥0 . (2)归一性 1),(=⎰⎰∞∞-∞∞-dxdy y x f .(3)若f (x,y)在点(x,y)连续,则yx y x F y x f ∂∂∂=),(),(2(4)若G 为xoy 平面上一个区域,则⎰⎰=∈Gdxdy y x f G y x P ),(}),{(.四.边缘分布1. (X,Y)关于X 的边缘分布函数 F X (x) = P{X ≤x , Y<∞}= F (x , ∞) . (X,Y)关于Y 的边缘分布函数 F Y (y) = P{X<∞, Y ≤y}= F (∞,y)2.二维离散型随机变量(X,Y)关于X 的边缘分布律 P{X= x i }= ∑∞=1j ij p = p i · ( i =1,2,…) 归一性 11=∑∞=•i i p .关于Y 的边缘分布律 P{Y= y j }= ∑∞=1i ij p = p ·j ( j =1,2,…) 归一性 11=∑∞=•j j p .3.二维连续型随机变量(X,Y)关于X 的边缘概率密度f X (x)=⎰∞∞-dy y x f ),( 归一性1)(=⎰∞∞-dx x f X 关于Y 的边缘概率密度f Y (y)=x d y x f ⎰∞∞-),( 归一性1)(=⎰∞∞-dy y f Y五.相互独立的随机变量1.定义 若对一切实数x,y,均有F(x,y)= F X (x) F Y (y) ,则称X 和Y 相互独立.2.离散型随机变量X 和Y 相互独立⇔p i j = p i ··p ·j ( i ,j =1,2,…)对一切x i ,y j 成立.3.连续型随机变量X 和Y 相互独立⇔f (x,y)=f X (x)f Y (y)对(X,Y)所有可能取值(x,y)都成立. 六.条件分布1.二维离散型随机变量的条件分布定义 设(X,Y)是二维离散型随机变量,对于固定的j,若P{Y=y j }>0,则称P{X=x i |Y=y j } 为在Y= y j 条件下随机变量X 的条件分布律. 同样,对于固定的i,若P{X=x i }>0,则称 P{Y=y j |X=x i }为在X=x i 条件下随机变量Y 的条件分布律.第四章 随机变量的数字特征一.数学期望和方差的定义随机变量X 离散型随机变量连续型随机变量分布律P{X=x i }= p i ( i =1,2,…) 概率密度f (x)数学期望(均值)E(X) ∑∞=1i i i p x (级数绝对收敛)⎰∞∞-dx x xf )((积分绝对收敛)方差D(X)=E{[X-E(X)]2} []∑-∞=12)(i i i p X E x ⎰-∞∞-dx x f X E x )()]([2=E(X 2)-[E(X)]2 (级数绝对收敛) (积分绝对收敛) 函数数学期望E(Y)=E[g(X)] i i i p x g ∑∞=1)((级数绝对收敛) ⎰∞∞-dx x f x g )()((积分绝对收敛)标准差σ(X)=√D(X) .,}{},{jji j j i p p y Y P y Y x X P •=====,}{},{•=====i j i i j i p p x X P y Y x X P二.数学期望与方差的性质1. c 为为任意常数时, E(c) = c , E(cX) = cE(X) , D(c) = 0 , D (cX) = c 2 D(X) .2.X,Y 为任意随机变量时, E (X ±Y)=E(X)±E(Y) .3. X 与Y 相互独立时, E(XY)=E(X)E(Y) , D(X ±Y)=D(X)+D(Y) .4. D(X) = 0⇔ P{X = C}=1 ,C 为常数.三.六种重要分布的数学期望和方差 E(X) D(X) 1.X~ (0-1)分布P{X=1}= p (0<p<1) p p (1- p) 2.X~ b (n,p) (0<p<1) n pn p (1- p)3.X~ π(λ) λ λ4.X~ U(a,b) (a+b)/2 (b-a) 2/125.X 服从参数为θ的指数分布 θ θ26.X~ N (μ,σ2) μ σ2 四.矩的概念随机变量X 的k 阶(原点)矩E(X k ) k=1,2,… 随机变量X 的k 阶中心矩E{[X-E(X)] k }随机变量X 和Y 的k+l 阶混合矩E(X k Y l ) l=1,2,…随机变量X 和Y 的k+l 阶混合中心矩E{[X-E(X)] k [Y-E(Y)] l }第六章 样本和抽样分布一.基本概念总体X 即随机变量X ; 样本X 1 ,X 2 ,…,X n 是与总体同分布且相互独立的随机变量;样本值x 1 ,x 2 ,…,x n 为实数;n 是样本容量.统计量是指样本的不含任何未知参数的连续函数.如:样本均值∑==n i i X n X 11 样本方差()∑--==n i i X X n S 12211 样本标准差S样本k 阶矩∑==n i k i k X n A 11( k=1,2,…) 样本k 阶中心矩∑-==ni k i k X X n B 1)(1( k=1,2,…)二.抽样分布 即统计量的分布1.X 的分布 不论总体X 服从什么分布, E (X ) = E(X) , D (X ) = D(X) / n . 特别,若X~ N (μ,σ2 ) ,则X ~ N (μ, σ2 /n) .2.χ2分布 (1)定义 若X ~N (0,1) ,则Y =∑=ni i X 12~ χ2(n)自由度为n 的χ2分布.(2)性质 ①若Y~ χ2(n),则E(Y) = n , D(Y) = 2n .②若Y 1~ χ2(n 1) Y 2~ χ2(n 2) ,则Y 1+Y 2~ χ2(n 1 + n 2). ③若X~ N (μ,σ2 ), 则22)1(σS n -~ χ2(n-1),且X 与S 2相互独立.(3)分位点 若Y~ χ2(n),0< α <1 ,则满足αχχχχαααα=<>=<=>--))}(())({()}({)}({22/122/212n Y n Y P n Y P n Y P 的点)()(),(),(22/122/212n n n n ααααχχχχ--和分别称为χ2分布的上、下、双侧α分位点.3. t 分布(1)定义 若X~N (0,1 ),Y~ χ2 (n),且X,Y 相互独立,则t=nY X~t(n)自由度为n 的t 分布. (2)性质①n →∞时,t 分布的极限为标准正态分布.②X ~N (μ,σ2 )时, nS X μ-~ t (n-1) . ③两个正态总体相互独立的样本 样本均值 样本方差X~ N (μ1,σ12 ) 且σ12=σ22=σ2 X 1 ,X 2 ,…,X n1X S 12Y~ N (μ2,σ22 ) Y 1 ,Y 2 ,…,Y n2 Y S 22则 212111)()(n n S Y X w +---μμ~ t (n 1+n 2-2) , 其中 2)1()1(212222112-+-+-=n n S n S n S w(3)分位点 若t ~ t (n) ,0 < α<1 , 则满足αααα=>=-<=>)}({)}({)}({2/n t t P n t t P n t t P的点)(),(),(2/n t n t n t ααα±-分别称t 分布的上、下、双侧α分位点. 注意: t 1- α (n) = - t α (n).4.F 分布 (1)定义 若U~χ2(n 1), V~ χ2(n 2), 且U,V 相互独立,则F =21n V n U ~F(n 1,n 2)自由度为(n 1,n 2)的F 分布.(2)性质(条件同3.(2)③)22212221σσS S ~F(n 1-1,n 2-1)(3)分位点 若F~ F(n 1,n 2) ,0< α <1,则满足)},({)},({21121n n F F P n n F F P αα-<=>ααα=<>=-))},(()),({(212/1212/n n F F n n F F P的点),(),(),,(),,(212/1212/21121n n F n n F n n F n n F αααα--和分别称为F 分布的上、下、双侧α分位点. 注意: .).(1),(12211n n F n n F αα=-第七章 参数估计一.点估计 总体X 的分布中有k 个待估参数θ1, θ2,…, θk .X 1 ,X 2 ,…,X n 是X 的一个样本, x 1 ,x 2 ,…,x n 是样本值.1.矩估计法先求总体矩⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k θθθμμθθθμμθθθμμ 解此方程组,得到⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111kk k k k μμμθθμμμθθμμμθθ ,以样本矩A l 取代总体矩μ l ( l=1,2,…,k)得到矩估计量⎪⎪⎩⎪⎪⎨⎧===∧∧∧),,,(),,,(),,,(2121222111k k k k k A A A A A A A A A θθθθθθ,若代入样本值则得到矩估计值. 2.最大似然估计法若总体分布形式(可以是分布律或概率密度)为p(x, θ1, θ2,…, θk ),称样本X 1 ,X 2 ,…,X n 的联合分布∏==ni k i k x p L 12121),,,,(),,,(θθθθθθ 为似然函数.取使似然函数达到最大值的∧∧∧k θθθ,,,21 ,称为参数θ1, θ2,…,θk 的最大似然估计值,代入样本得到最大似然估计量.若L(θ1, θ2,…, θk )关于θ1, θ2,…, θk 可微,则一般可由似然方程组 0=∂∂i L θ 或 对数似然方程组 0ln =∂∂iLθ (i =1,2,…,k) 求出最大似然估计. 3.估计量的标准(1) 无偏性 若E(∧θ)=θ,则估计量∧θ称为参数θ的无偏估计量.不论总体X 服从什么分布, E (X )= E(X) , E(S 2)=D(X), E(A k )=μk =E(X k ),即样本均值X , 样本方差S 2,样本k 阶矩A k 分别是总体均值E(X),方差D(X),总体k 阶矩μk 的无偏估计,(2)有效性 若E(∧θ1 )=E(∧θ2)= θ, 而D(∧θ1)< D(∧θ2), 则称估计量∧θ1比∧θ2有效. (3)一致性(相合性) 若n →∞时,θθP →∧,则称估计量∧θ是参数θ的相合估计量. 二.区间估计1.求参数θ的置信水平为1-α的双侧置信区间的步骤(1)寻找样本函数W=W(X 1 ,X 2 ,…,X n ,θ),其中只有一个待估参数θ未知,且其分布完全确定. (2)利用双侧α分位点找出W 的区间(a,b),使P{a<W <b}=1-α. (3)由不等式a<W<b 解出θθθ<<则区间(θθ,)为所求. 2.单个正态总体待估参数 其它参数 W 及其分布 置信区间μ σ2已知 nX σμ-~N (0,1) (2/ασz n X ±) μ σ2未知 nS X μ-~ t (n-1) )1((2/-±n t n S X α σ2 μ未知 22)1(σS n -~ χ2(n-1) ))1()1(,)1()1((22/1222/2-----n Sn n S n ααχχ 3.两个正态总体 (1)均值差μ 1-μ 2其它参数 W 及其分布 置信区间已知2221,σσ22212121)(n n Y X σσμμ+--- ~ N(0,1) )(2221212n n z Y X σσα+±-未知22221σσσ== 212111)(n n S Y X w +---μμ~t(n 1+n 2-2) )11)2((21212n n S n n t Y X w+-+±-α 其中S w 等符号的意义见第六章二. 3 (2)③.(2) μ 1,μ 2未知, W=22212221σσS S ~ F(n 1-1,n 2-1),方差比σ12/σ22的置信区间为))1,1(1,)1,1(1(212/12221212/2221----⋅-n n F S S n n F S S αα注意:对于单侧置信区间,只需将以上所列的双侧置信区间中的上(下)限中的下标α/2改为α,另外的下(上)限取为-∞ (∞)即可.。
概率论与数理统计(06)第6章 统计量及其抽样分布

σx =
σ
n
当样本容量足够 大时( 大时(n ≥ 30) , 样本均值的抽样 分布逐渐趋于正 态分布
6 - 11
µx = µ
xቤተ መጻሕፍቲ ባይዱ
x 的分布趋 于正态分布 的过程
6 - 12
6.4 正态总体 6.3.1 χ2分布 6.3.2 t 分布 6.3.3 F 分布
6 - 13
χ2 分布
第六章 样本与统计量
6.1引言 6.1引言
数理统计学: 运用概率论的基础知识,对要研究的随机现象进行 多次观察或试验,研究如何合理地获得数据资料, 建立有效的数学方法,根据所获得的数据资料,对 所关心的问题作出估计与检验。
6-1
§6.2总体与样本 6.2总体与样本
对某一问题的研究对象全体称为总体。 组成总体的某个基本单元,称为个体。 总体可以是具体事物的集合,如一批产品。 也可以是关于事物的度量数据集合,如长度测量。 总体可以包含有限个个体,也可以包含无限个个体。 有限总体在个体相当多的情况下,可以作为无限 总体进行研究。 总体中的个体,应当有共同的可观察的特征。该 特征与研究目的有关。
6 - 16
χ2分布
(图示) 图示)
n=1 n=4 n=10
n=20
6 - 17 不同容量样本的抽样分布
χ2
t 分布
6 - 18
t 分布
1. 高 塞 特 (W.S.Gosset) 于 1908 年 在 一 篇 以 (W. “Student”(学生)为笔名的论文中首次提出 Student”(学生)
X ~ N(µ,σ ) ,则
2
χ2分布
2. 3.
z=
X −µ
Y=z
概率论与数理统计第6章(公共数学版)

Xi
1 n (X1
X2
Xn)
S 2
1 n
n i 1
(Xi
X )2
显然
S 2
1 n
n
[
X
2 i
i 1
2Xi
X
(X )2]
1n [
n i1
X
2 i
2X
n i 1
Xi
n( X )2 ]
1 n
n i 1
X
2 i
2X
X
(X )2
S 2
1 n
n i 1
X
2 i
(X )2
16
样本均方差
样本标准差
4
Yi 2
i 1
4
Yi
2
i1 4
4
Yi
2
4
i1 2
32
T 4( X 2) 4 Yi 2 i 1
X 2
4
Yi
2
i1 4
X 2
~ t(4),
4
Yi
2
4
i1 2
即 T 服从自由度为 4 的 t 分布: T ~ t(4). 由 P{| T | t0 } 0.01.
t0 t0.995 (4) 4.6041.
设( X1, X2,, Xn )为来自总体X的一个样本
则( X1, X2,, Xn )为一个随机向量 X为一个随机变量 X1, X2,, Xn相互独立,且具有和总体X同样的分布
样本的同分布性和相互独立性
11
三、统计量 对所研究的对象收集了有关样本的数据
后,还要对数据进行加工和提炼,将样本的有关 信息,利用数学的工具进行加工.
S
S2
概率论与数理统计第六章

概率论与数理统计第六章一、估计及其性质“估计”在中文里既可以作名词,也可以作动词。
用英文的话,可以表示成不同的单词:estimate:所谓的“估计”(动词)就是根据样本预测总体分布中的未知参数。
例如,已知总体服从正态分布[公式] ,但总体均值[公式] 未知,我们通过某个函数“估计”总体均值,[公式] 。
estimator:“估计量”(名词)[公式] 实际上是一个统计量,它是通过一个不含未知参数的样本函数计算出来的结果。
一般使用[公式] 表示总体的参数,[公式] 表示参数的估计量。
estimation:“估计法”(名词)表示寻找函数[公式] 的过程,可以理解为一种估计方法。
例如:Maximum Likelihood Estimation,最大似然估计法。
随着样本不同,同一估计法得到的结果可能是不一样的,因此“估计量”也是一个随机变量。
对于同一个参数,有不同的估计方法,而且看起来都是合理的。
如何比较它们的优劣呢?(1)均方误差MSE Mean Square Error评价一个估计量的好坏,很自然地会想到:衡量“估计量”与“真实值”之间的距离,距离越小表示估计量的性能越好。
也就是所谓的“均方误差”函数:[公式] 也就是距离平方的期望值,如果将其进一步展开:[公式]注意:[公式] 和[公式] 均为数值,[公式] 表示参数的真实值,[公式] 表示估计量的数学期望。
由此看见,均方误差由两部分组成:一是估计量的方差(Variances),即[公式] ;二是估计量的系统偏差(Bias)的平方,即[公式] 。
从“马同学”处借来此图,它可以帮助理解“方差”与“偏差”:备注:靶心表示“真实值”,红叉表示“估计值”“方差”衡量估计值的分散程度,“偏差”衡量估计值的期望与真实值的距离。
左上图:估计值落在靶心四周,此时“方差”较大但“偏差”较小;右上图:估计值落在靶心邻近,此时“方差”、“偏差”均较小;左下图:估计值离靶心较远,呈分散状,此时“方差”、“偏差”均较大;右下图:估计值离靶心较远,落点集中,此时“偏差”较大但“方差”较小。
概率论与数理统计图文课件最新版-第六章-第八章知识结构图-数理统计的客观背景

总体
…
概率统计
注 ▲ 研究对象的某项数量指标 X 是一个随机变量 因此,X 所有可能取的值的分布为总体 X 的 分布,记为F( x ),称其为总体 X 的分布函数。 这是由于每个个体的出现是随机的,所以相 应的数量指标的出现也带有随机性。从而可 以把这种数量指标看作一个随机变量,因此 随机变量的分布就是该数量指标在总体中的 分布。
例如 在几何学中要证明“等腰三角形底角相等”, 则只须从“等腰”这个前提出发,运用几何 公理,逐步推出这个结论. 而一个习惯于统计思想的人,就可能会应用 如下的方法:
做很多大小形状不一的等腰三角形,实际测量 其底角,看其差距如何,然后根据所得资料判 断可否作出“底角相等”的结论。 这样的方法 即为归纳式的方法.
概率统计
随机抽样法: 是一种从局部推断整体的方法.
要较好地反映所研究和讨论的随机变量整体的特
性,就必须研究: (1) 如何抽样,抽多少,怎么抽
抽样方法问题
(2) 如何对抽样的结果进行合理分析,作出科学
的判断.
统计推断问题
今后所讨论的统计问题主要属于下面这种类型:
从所研究的随机变量的某个集合中抽取一部分元素, 对这部分元素的某些数量指标进行试验与观察,根 据试验与观察获得的数据来推断这集合中全体元素 的数量指标的分布情况或数字特征。
▲ 由于是从一部分样本观察值去推断该全体对象 (总体)情况,即,由部分推断全体. 所以在数理统计中使用的推理方法是:
归纳推理法
概率统计
▲ 但这种“归纳推理”不同于数学中的“演绎推理”
因为它在作出结论时,是根据所观察到的大量个别 情况 “归纳” 起来所得,而不是从一些假设、命题、 已知的事实等出发,按一定的逻辑推理去得出来的
【精品】概率论与数理统计PPT课件第六章 描述性统计

5
• 数理统计
收集数据、整理数据、分析数据并对数 据分析结果做出解释
• 应用领域
➢精算 ➢金融 ➢生物 ➢工程技术 ➢质量控制 ➢可靠性…
6
第六章 描述性统计
统计学的做法分为两种: 描述性统计 推断性统计
7
§6.1 总体和参数
A. 总体、个体和均值 所要调查的对象全体叫做总体(population), 总体中每个成员叫做个体。 总体一般用随机变量作为数学模型。 总体参数是描述总体特性的指标,简称参数。
和样本方差
1 n
x n i1 xi
s2 1 n n 1 i1
2
xi x
s= s2 称为样本标准差。
12
§6.2 抽样调查方法
A. 抽样调查的可行性和必要性 抽样的可行性:汤的例子 样本的随机性(代表性) 适当的样本量。 样本量不必随总体增大而增大。
13
为了从样本推断总体的情况,样本的代表性是最关键 的问题。 调查全部总体不现实或不必要,如: 寿命试验。 抽样调查因为工作量较小所以有时比普查可以更准确
2
到了十九世纪末二十世纪初,随 着近代数学和概率论的发展,才真正 诞生了数理统计学这门学科
3
数理统计研究的任务 对随机现象进行试验或观测,以
有效的方式收集、 整理和分析带有 随机性的数据,以便对所考察的问 题作出推断和预测,直至为采取一 定的决策和行动提供依据和建议.
4
概率论是数理统计的基础,而 数理统计是概率论的重要应用.
从总体 X 中等可能地随机抽取,不论是有放回还是 无放回,得到的 X1, X2, …, Xn看成随机变量,都可以
证明 EX 。
概率论与数理统计课程电子版教材

第六章 数理统计的基本概念第一节 基本概念1、概念网络图正态总体下的四大分布统计量样本函数样本个体总体数理统计的基本概念→⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧ 2、重要公式和结论例6.1:从正态总体)6,4.3(2N 中抽取容量为n 的样本,如果要求其样本均值位于区间(1.4, 5.4)内的概率不小于0.95,问样本容量n 至少应取多大?第二节 重点考核点统计量的分布第三节 常见题型1、统计量的性质例6.2:设),,,(721X X X 取自总体)5.0,0(~2N X ,则=⎪⎭⎫⎝⎛>∑=7124i i X P。
例6.3:设总体X 服从正态分布),(21σμN ,总体Y 服从正态分布),(22σμN ,1,,21n X X X 和 2,,21n Y Y Y 分别是来自总体X 和Y 的简单随机样本, 则=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-+-+-∑∑==2)()(21212121n n Y Y X X E n j j n i i .2、统计量的分布例6.4:设),,,(21n X X X 是来自正态总体),(2σμN 的简单随机样本,X 是样本均值,记,)(111221∑=--=ni i X X n S,)(11222∑=-=ni i X X n S,)(111223∑=--=ni i X n S μ,)(11224∑=-=ni i X n S μ则服从自由度为n-1的t 分布的随机变量是 (A ).1/1--=n S X t μ(B ).1/2--=n S X t μ(C )./3nS X t μ-=(D )./4nS X t μ-=[ ]例6.5:设总体X ~N (0,12),从总体中取一个容量为6的样本),,,(621X X X ,设26542321)()(X X X X X X Y +++++=,试确定常数C ,使随机变量CY 服从2χ分布。
第四节 历年真题数学一:1(98,4分) 从正态总体)6,4.3(2N 中抽取容量为n 的样本,如果要求其样本均值位于区间(1.4, 5.4)内的概率不小于0.95,问样本容量n 至少应取多大? [附表]:dt eZ t Z2221)(-∞-⎰=Φπ990.0975.0950.0900.0)(33.296.1645.128.1Z Z Φ2(01,7分) 设总体)0)(,(~2>σσμN X ,从该总体中抽取简单随机样本)2(,,,221≥n X X X n ,其样本的均值∑==ni i X n X 21,21求统计量∑=+-+=ni i n i X X X Y 12)2(的数学期望E (Y )。
概率论与数理统计-第六章

这200人的年龄数据。
总体:北京市民的年龄 随机变量:年龄X
个体:张三28岁;李四5岁;
样本:{ 28;5;14;56;23;2;39;…;69} 样本容量:200
抽样:随机抽取200人进行调查的过程
6
例2:为了确定工厂生产的电池电量分布情况,在
产品中随机抽取500个,测量其电量。记录了
x
0
F n1 , n2
F分布的分位数
x
F分布的上α分位点
对于给定的 , 0 1, 称满足条件
F n1 , n2
f x; n1 , n2 dx 的点F n1 , n2
为F n1 , n2 分布的上 分位数。F n1 , n2 的值可查F 分布表
17
不易计算!
18
抽样分布 —— 任意统计量 Q = g (X1, X2, …, Xn ) 的分布函数 抽样分布的计算: 多维随机变量(独立、同分布)的函数的分布 函数的计算问题。
得到统计量 Q 的抽样分布,就可以用来解决
关于总体 X 的统计推断问题。
19
关于随机变量独立性的两个定理
解:(1)作变换 Yi
显然Y1 , Y2 ,
2 n i 1
Xi
, Yn相互独立,且Yi N 0,1 i 1, 2,
Xi
i 1, 2,
,n
,n
于是 (
) Yi 2 2 n
2 i 1
28
n
(2)
2 ( X X ) X1 X 2 ~ N (0, 2 2 ), 1 2 2 ~ 2 (1) 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例如:研究某批灯泡的寿命时,关心的数
量指标就是寿命,那么,此总体就可以用随
机变量X表示,或用其分布函数F(x)表示.
寿命X可用一概 F(x)
总体
率分布来刻划
某批 灯泡的寿命
鉴于此,常用随机变量的记号 或用其分布函数表示总体. 如 说总体X或总体F(x) .
9
类似地,在研究某地区中学生的营养状 况时,若关心的数量指标是身高和体重,我 们用X和Y分别表示身高和体重,那么此总体 就可用二维随机变量(X,Y)或其联合分布函数 F(x,y)来表示.
进行次数不多的观察试验 ,我们只
能获得局部观察资料.
3
数理统计是以概率论为理论基础, 根据抽 样信息, 对研究对象(总体)作出合理的估计 和判断的学科.
数理统计的步骤: (1) 收集、整理数据资料; (2) 对所得数据资料进行分析、研究; (3) 对所研究对象的性质、特点作出估计 或判断.
4
一、总体和样本 1.总体
从国产轿车中抽5辆 进行耗油量试验 样本容量为5
抽到哪5辆是随机的
11
对总体X在相同的条件下,进行n次重复、独立 观察,其结果依次记为X1,X2, ,Xn .
这样得到的随机变量X1, X2 , Xn是来自总体X 的一个简单随机样本,与总体随机变量具有相同的
分布. n称为这个样本的容量.
一旦取定一组样本X1,… ,Xn ,得到n个具体的数 (x1,x2,…,xn),称为样本的一次观察值,简称样本值 .
第一二节 随机样本与抽样分布
教学内容 1 总体和样本 2 统计量与经验分布函数 3 统计三大抽样分布 4 几个重要的抽样分布定理
教学重点 统计量,几个重要的抽样分布定理
1
概率论与数理统计是研究和揭示随机现象 统计规律性的一门学科,是重要的一个数学 分支。概率论是研究随机现象发生可能性的 大小的一门学科,而数理统计则是研究大量 随机现象数量规律的一门学科。它们之间联 系密切但也有根本差别,数理统计的方法在 自然科学、工程技术研究及社会科学领域中 应用极其广泛。
f *( x, x2, , xn ) =f(x1) f(x2) … f(xn)
简单随机样本是应用中最常见的情形,今后, 当说到“X1,X2,…,Xn是取自某总体的样本”时,若
不特别说明,就指简单随机样本.
15
3. 总体、样本、样本值的关系
事实上我们抽样后得到的资料都是具体的、确 定的值. 如我们从某班大学生中抽取10人测量身高, 得到10个数,它们是样本取到的值而不是样本. 我 们只能观察到随机变量取的值而见不到随机变量.
12
最常用的一种抽样叫作“简单随机抽样”,其特点: 1. 代表性: X1,X2,…,Xn中每一个与所考察的总体有
相同的分布.
2. 独立性: X1,X2,…,Xn是相互独立的随机变量.
3.同分布: 样本与总体服从同一分布.
13
定义:
设X是具有分布函数F的随机变量,若X1, X2 , , Xn是具有同一分布函数F的、相互独立的随机 变量,则称X1, X2 , , Xn为从分布函数F(或总体 F、或总体X)得到的容量n为的简单随机样本, 简称样本,它们的观察值x1, x2 , , xn称为样本值, 又称为X的n个独立的观察值.
由简单随机抽样得到的样本称为简单随机样本, 它可以用与总体独立同分布的n个相互独立的随机
变量X1,X2,…,Xn表示.
14
若总体的分布函数为F(x)、概率密度函数为 f(x),则其简单随机样本的联合分布函数为
F *( x, x2, , xn ) =F(x1) F(x2) … F(xn) 其简单随机样本的联合概率密度函数为
统计中,总体这个概念 的要旨是:总体就是一个 概率分布.
10
2. 样本
总体分布一般是未知,或只知道是包含未知 参数的分布,为推断总体分布及各种特征,按一 定规则从总体中抽取若干个体进行观察试验,以 获得有关总体的信息 ,这一抽取过程称为 “抽 样”,所抽取的部分个体称为样本. 样本中所包 含的个体数目称为样本容量.
7
从另一方面看 统计的任务,是根据从总体中抽取的 样本,去推断总体的性质. 由于我们关心的是总体中的个体的某 项指标(如人的身高、体重,灯泡的寿命, 汽车的耗油量…) ,所谓总体的性质, 无非就是这些指标值的集体的性质.
而概率分布正是刻划这种集体性质 的适当工具. 因此在理论上可以把总体 与概率分布等同起来.
一个统计问题总有它明确的研究对象.
研究对象的所构成的一个集合全体称为总体, 是一维随机变量(或多维随机变量), 记为X.
总体中每个成员称为个体,
总体中所包含的个体的个数称为总体的容量.
总体
有限总体 总体
…
无限总体
研究某批灯泡的质量
5
在数理统计研究中,人们往往研究有关对象的 某一项(或几项)数量指标和为此,对这一指标进行 随机试验,观察试验结果全部观察值,从而考察该 数量指标的分布情况.这时,每个具有的数量指标的 全体就是总体.每个数量指标就是个体.
不是直接使用样本,需要对样本值进行“加工”, 这就要构造一些依赖于样本的函数,它把样本中 所含的(某一方面)的信息集中起来.
某批 灯泡的寿命
国产轿车每公里 的耗油量
该批灯泡寿命的全
国产轿车每公里耗油量
体就是总体
ቤተ መጻሕፍቲ ባይዱ
的全体就是总体
6
由于每个个体的出现是随机的,所以相 应的数量指标的出现也带有随机性. 从而可 以把这种数量指标看作一个随机变量,因此 随机变量的分布就是该数量指标在总体中的 分布.
这样,总体就可以用一个随机变量 及其分布来描述.
2
数理统计学是一门应用性很强的学科. 它是研究 怎样以有效的方式收集、 整理和分析带有随机性的 数据,以便对所考察的问题作出推断和预测,甚至 为采取一定的决策和行动提供依据和建议。
由于大量随机现象必然呈现它规 律性,只要对随机现象进行足够多次 观察,被研究的规律性一定能清楚地 呈现出来.
客观上, 只允许我们对随机现象
16
总体(理论分布) ?
样本
样本值
统计是从手中已有的资料--样本值,去推断总 体的情况---总体分布F(x)的性质.
样本是联系二者的桥梁
总体分布决定了样本取值的概率规律,也就是 样本取到样本值的规律,因而可以由样本值去推断 总体.
17
二、统计量与经验分布函数
1. 统计量 由样本值去推断总体情况,在应用时, 往往