2020届高考数学考前预测统计与概率(解析版)
2020届山东省新高考高三优质数学试卷分项解析 专题10 概率统计(解析版)

专题10 概率统计古典概率、离散型随机变量的分布列、均值与方差是高考的热点题型,去年竟有解答题作为压轴题,常与排列、组合、概率等知识综合命题.以实际问题为背景考查离散型随机变量的均值与方差在实际问题中的应用,注重与数列、不等式、函数、导数等知识的综合考查,是高考的主要命题方向.预测2020年会有一大一小或一大二小.客观题较易.主观题有三种可能,一是通过一题考查统计案例及概率(文理兼顾,偏重理科),难度控制在中等;二是只考查统计案例问题(文理一视同仁),难度中等;三是同去年一样,作为压轴题(偏重理科).考查考生分析问题、解决问题的能力以及数学的应用意识.一、单选题1.(2020届山东省日照市高三上期末联考)两个实习生每人加工一个零件.加工为一等品的概率分别为56和34,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为( )A.12B.13C.512D.16【答案】B【解析】记两个零件中恰好有一个一等品的事件为A,即仅第一个实习生加工一等品为事件1A,仅第二个实习生加工一等品为事件2A两种情况,则()()()1251131 64643P A P A P A=+=⨯+⨯=,故选:B.2.(2020届山东省潍坊市高三上期中)齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马;田忌的中等马优于齐王的下等马,劣于齐王的中等马;田忌的下等马劣于齐王的下等马.现齐王与田忌各出上等马、中等马、下等马一匹,共进行三场比赛,规定:每一场双方均任意选一匹马参赛,且每匹马仅参赛一次,胜两场或两场以上者获胜.则田忌获胜的概率为()A.13B.16C.19D.136【解析】设齐王的上等马、中等马、下等马分别为A ,B ,C , 设田忌的上等马、中等马、下等马分别为a ,b ,c ,每一场双方均任意选一匹马参赛,且每匹马仅参赛一次,胜两场或两场以上者获胜.基本事件有:(Aa ,Bb ,)Cc ,(Aa ,Bc ,)Cb ,(Ab ,Bc ,)Ca ,(Ab ,Bc ,)Ca ,(Ac ,Bb ,)Ca ,(Ac ,Ba ,)Cb ,共6个,田忌获胜包含的基本事件有:(Ac ,Ba ,)Cb ,只有1个,∴田忌获胜的概率为16p =. 故选:B.3.(2020届山东省德州市高三上期末)中国有十二生肖,又叫十二属相,每一个人的出生年份对应了十二种动物(鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪)的一种,现有十二生肖的吉祥物各一个,甲、乙、丙三位同学依次选一个作为礼物,甲同学喜欢牛、马和羊,乙同学喜欢牛、兔、狗和羊,丙同学哪个吉祥物都喜欢,则让三位同学选取的礼物都满意的概率是( ) A .166B .155C .566D .511【答案】C 【解析】若甲选牛或羊作礼物,则乙有3种选择,丙同学有10种选择,此时共有231060⨯⨯=种; 若甲选马作礼物,则乙有4种选择,丙同学有10种选择,此时共有141040⨯⨯=种. 因此,让三位同学选取的礼物都满意的概率为31260401005132066A +==. 故选:C.4.(2020·山东省淄博实验中学高三上期末)“总把新桃换旧符”(王安石)、“灯前小草写桃符”(陆游),春节是中华民族的传统节日,在宋代人们用写“桃符”的方式来祈福避祸,而现代人们通过贴“福”字、贴春联、挂灯笼等方式来表达对新年的美好祝愿,某商家在春节前开展商品促销活动,顾客凡购物金额满50元,则可以从“福”字、春联和灯笼这三类礼品中任意免费领取一件,若有4名顾客都领取一件礼品,则他们中有且仅有2人领取的礼品种类相同的概率是( ) A .59B .49C .716D .916【解析】从“福”字、春联和灯笼这三类礼品中任意免费领取一件, 有4名顾客都领取一件礼品,基本事件总数n =34=81,他们中有且仅有2人领取的礼品种类相同包含的基本事件个数m 2343C A ==36,则他们中有且仅有2人领取的礼品种类相同的概率是p 364819m n ===. 故选:B .5.(2020届山东省九校高三上学期联考)吸烟有害健康,小明为了帮助爸爸戒烟,在爸爸包里放一个小盒子,里面随机摆放三支香烟和三支跟香烟外形完全一样的“戒烟口香糖”,并且和爸爸约定,每次想吸烟时,从盒子里任取一支,若取到口香糖则吃一支口香糖,不吸烟;若取到香烟,则吸一支烟,不吃口香糖,假设每次香烟和口香糖被取到的可能性相同,则“口香糖吃完时还剩2支香烟”的概率为( ) A .15 B .815 C .35 D .320【答案】D 【解析】由题:“口香糖吃完时还剩2支香烟”说明:第四次取到的是口香糖,前三次中恰有两次口香糖一次香烟,记香烟为123,,A A A ,口香糖为123,,B B B ,进行四次取物, 基本事件总数为:6543360⨯⨯⨯=种事件“口香糖吃完时还剩2支香烟”前四次取物顺序分为以下三种情况: 烟、糖、糖、糖:332118⨯⨯⨯=种 糖、烟、糖、糖: 332118⨯⨯⨯=种 糖、糖、烟、糖:323118⨯⨯⨯=种 包含的基本事件个数为:54, 所以,其概率为54336020= 故选:D6.(2020届山东省潍坊市高三上期中)近年来,某市为促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱.为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1000t 生活垃圾.经分拣以后数据统计如下表(单位:t ):根据样本估计本市生活垃圾投放情况,下列说法错误的是( )A .厨余垃圾投放正确的概率为3B .居民生活垃圾投放错误的概率为310C .该市三类垃圾箱中投放正确的概率最高的是“可回收物”箱D .厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量的方差为20000 【答案】D 【解析】由表格可得:厨余垃圾投放正确的概率40024001001003==++;可回收物投放正确的概率240424030305==++;其他垃圾投放正确的概率6032020605==++. 对A ,厨余垃圾投放正确的概率为23,故A 正确;对B ,生活垃圾投放错误有200602020300+++=,故生活垃圾投放错误的概率为3003100010=,故B 正确;对C ,该市三类垃圾箱中投放正确的概率最高的是“可回收物”箱,故C 正确. 对D ,厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的的投放量的平均数600300100100033x ++==,可得方差22221100010001000[(600)(300)(100)]3333s =⨯-+-+-=380000200009≠,故D 错误; 故选:D .7.(2020届山东省潍坊市高三上期末)已知随机变量ξ服从正态分布()21,N σ,若(4)0.9P ξ<=,则1()2P ξ-<<=( )A .0.2B .0.3C .0.4D .0.6【答案】C由题意可知1μ=,正态分布曲线关于1x =对称, ()()4140.1P P ξξ>=-<=, 根据对称性可知,()()240.1P P ξξ<-=>=,()()210.520.50.10.4P P ξξ-<<=-<-=-=.故选:C 二、多选题8.(2020届山东省日照市高三上期末联考)某大学进行自主招生测试,需要对逻辑思维和阅读表达进行能力测试.学校对参加测试的200名学生的逻辑思维成绩、阅读表达成绩以及这两项的总成绩进行了排名.其中甲、乙、丙三位同学的排名情况如图所示,下列叙述正确的是( )A .甲同学的逻辑思维成绩排名比他的阅读表达成绩排名更靠前B .乙同学的逻辑思维成绩排名比他的阅读表达成绩排名更靠前C .甲、乙、丙三位同学的逻辑思维成绩排名中,甲同学更靠前D .甲同学的总成绩排名比丙同学的总成绩排名更靠前 【答案】AC 【解析】根据图示,可得甲、乙、丙三位同学的逻辑思维成绩排名中,甲同学更靠前, 他的阅读表达成绩排名靠后. 故选:AC.9.(2020届山东省德州市高三上期末)针对时下的“抖音热”,某校团委对“学生性别和喜欢抖音是否有关”作了一次调查,其中被调查的男女生人数相同,男生喜欢抖音的人数占男生人数的45,女生喜欢抖音的人数占女生人数35,若有95%的把握认为是否喜欢抖音和性别有关则调查人数中男生可能有( )人附:()()()()()22n ad bc K a b c d a c b d -=++++ A .25 B .45C .60D .75【答案】BC 【解析】设男生的人数为()5n n N *∈,根据题意列出22⨯列联表如下表所示:则()221042310557321n n n n n n K n n n n ⨯⨯-⨯==⨯⨯⨯,由于有95%的把握认为是否喜欢抖音和性别有关,则23.841 6.632K ≤<,即103.841 6.63221n≤<,得8.066113.9272n ≤<, n N *∈Q ,则n 的可能取值有9、10、11、12,因此,调查人数中男生人数的可能值为45或60. 故选:BC.10.(2020·山东省淄博实验中学高三上期末)由我国引领的5G 时代已经到来,5G 的发展将直接带动包括运营、制造、服务在内的通信行业整体的快速发展,进而对GDP 增长产生直接贡献,并通过产业间的关联效应和波及效应,间接带动国民经济各行业的发展,创造岀更多的经济增加值.如图是某单位结合近年数据,对今后几年的5G 经济产出所做的预测.结合下图,下列说法正确的是( )A.5G的发展带动今后几年的总经济产出逐年增加B.设备制造商的经济产出前期增长较快,后期放缓C.设备制造商在各年的总经济产出中一直处于领先地位D.信息服务商与运营商的经济产出的差距有逐步拉大的趋势【答案】ABD【解析】由图可知设备制造商在各年的总经济产出中在前期处于领先地位,而后期是信息服务商处于领先地位,故C项表达错误.故选:ABD.11.(2020届山东省枣庄、滕州市高三上期末)某特长班有男生和女生各10人,统计他们的身高,其数据(单位:cm)如下面的茎叶图所示,则下列结论正确的是()A.女生身高的极差为12 B.男生身高的均值较大C.女生身高的中位数为165 D.男生身高的方差较小【答案】AB【解析】女生的极差是173-161=12,A 正确;由茎叶图数据,女生数据偏小,男生平均值大于女生值,B 正确;女生身高中位数是166,C 错误;女生数据较集中,男生数据分散,应该是男生方差大,女生方差小,D 错.(也可实际计算均值和方差比较). 故选:AB.12.(2020届山东省潍坊市高三上学期统考)下列判断正确的是( ) A .若随机变量ξ服从正态分布()21,N σ,()40.79P ξ≤=,则()20.21P ξ≤-=;B .已知直线l ⊥平面α,直线//m 平面β,则“//αβ”是“l m ⊥”的充分不必要条件;C .若随机变量ξ服从二项分布:414,B ξ⎛⎫~ ⎪⎝⎭,则()1E ξ=; D .22am bm >是a b >的充分不必要条件. 【答案】ABCD 【解析】A .已知随机变量ξ服从正态分布N (1,σ2),P (ξ≤4)=0.79,则曲线关于x =1对称,可得P (ξ>4)=1﹣0.79=0.21,P (ξ≤﹣2)=P (ξ>4)=0.21,故A 正确;B .若α∥β,∵直线l ⊥平面α,∴直线l ⊥β,∵m ∥β,∴l ⊥m 成立. 若l ⊥m ,当m ∥β时,则l 与β的位置关系不确定,∴无法得到α∥β. ∴“α∥β”是“l ⊥m ”的充分不必要条件.故B 对;C .由于随机变量ξ服从二项分布:ξ~B (4,14),则Eξ=4×0.25=1,故C 对; D .“am 2>bm 2”可推出“a >b ”,但“a >b ”推不出“am 2>bm 2”,比如m =0,故D 对; 故选:ABCD .13.(2020届山东省临沂市高三上期末)为了了解运动健身减肥的效果,某健身房调查了20名肥胖者,健身之前他们的体重(单位:kg )情况如三维饼图(1)所示,经过四个月的健身后,他们的体重情况如三维饼图(2)所示.对比健身前后,关于这20名肥胖者,下面结论正确的是( ) A .他们健身后,体重在区间[)90,100内的人增加了2个 B .他们健身后,体重在区间[)100,110内的人数没有改变 C .他们健身后,20人的平均体重大约减少了8kgD .他们健身后,原来体重在区间[)110,120内的肥胖者体重都有减少 【答案】ABD 【解析】体重在区间[)90,100内的肥胖者由健身前的6人增加到健身后的8人,故人增加了2个,故A 正确; 他们健身后,体重在区间[)100,110内的百分比没有变,所以人数没有变,故B 正确; 他们健身后,20人的平均体重大约减少了()()0.3950.51050.21150.1850.4950.51055kg ⨯+⨯+⨯-⨯+⨯+⨯= ,故C 错误;因为图(2)中没有体重在区间[)110,120内的比例,所以原来体重在区间[)110,120内的肥胖者体重都有减少,故D 正确. 故选:ABD14.(2020届山东省潍坊市高三上学期统考)某市有A ,B ,C ,D 四个景点,一位游客来该市游览,已知该游客游览A 的概率为23,游览B ,C 和D 的概率都是12,且该游客是否游览这四个景点相互独立.用随机变量X 表示该游客游览的景点的个数,下列正确的( ) A .游客至多游览一个景点的概率14B .()328P X == C .()1424P X == D .()136E X =【答案】ABD 【解析】记该游客游览i 个景点为事件i A ,0,1i =, 则()0211111111322224P A ⎛⎫⎛⎫⎛⎫⎛⎫=----=⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭, ()3211321211511113232224P A C ⎛⎫⎛⎫⎛⎫⎛⎫=--+-⋅⋅-=⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 所以游客至多游览一个景点的概率为()()0115124244P A P A +=+=,故A 正确; 随机变量X 的可能取值为0,1,2,3,4;()01(0)24P X P A ===, ()15(1)24P X P A ===,213211(2)1322P X C ⎛⎫==⨯⨯⨯- ⎪⎝⎭2232113113228C ⎛⎫⎛⎫⎛⎫+-⨯⨯⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故B 正确;23211(3)1322P X C ⎛⎫==⨯⨯⨯- ⎪⎝⎭33311713224C ⎛⎫⎛⎫+-⨯⨯=⎪ ⎪⎝⎭⎝⎭, 3211(4)3212P X ⎛⎫==⨯= ⎪⎝⎭,故C 错误;数学期望为:1597()012324242424E X =⨯+⨯+⨯+⨯2134246+⨯=,故D 正确, 故选:ABD.15.(2019·山东高三月考)下列判断正确的是( ) A .若随机变量ξ服从正态分布()21,N σ,()40.79P ξ≤=,则()20.21P ξ≤-=;B .已知直线l ⊥平面α,直线//m 平面β,则“//αβ”是“l m ⊥”的充分不必要条件;C .若随机变量ξ服从二项分布:414,B ξ⎛⎫~ ⎪⎝⎭,则()1E ξ=; D .22am bm >是a b >的充分不必要条件. 【答案】ABCD 【解析】A .已知随机变量ξ服从正态分布N (1,σ2),P (ξ≤4)=0.79,则曲线关于x =1对称,可得P (ξ>4)=1﹣0.79=0.21,P (ξ≤﹣2)=P (ξ>4)=0.21,故A 正确;B .若α∥β,∵直线l ⊥平面α,∴直线l ⊥β,∵m ∥β,∴l ⊥m 成立. 若l ⊥m ,当m ∥β时,则l 与β的位置关系不确定,∴无法得到α∥β. ∴“α∥β”是“l ⊥m ”的充分不必要条件.故B 对;C .由于随机变量ξ服从二项分布:ξ~B (4,14),则Eξ=4×0.25=1,故C 对; D .“am 2>bm 2”可推出“a >b ”,但“a >b ”推不出“am 2>bm 2”,比如m =0,故D 对; 故选:ABCD .16.(2020届山东省烟台市高三上期末)某大学为了解学生对学校食堂服务的满意度,随机调查了50名男生和50名女生,每位学生对食堂的服务给出满意或不满意的评价,得到如图所示的列联表.经计算2K 的观测值 4.762k ≈,则可以推断出( )A .该学校男生对食堂服务满意的概率的估计值为35B .调研结果显示,该学校男生比女生对食堂服务更满意C .有95%的把握认为男、女生对该食堂服务的评价有差异D .有99%的把握认为男、女生对该食堂服务的评价有差异 【答案】AC 【解析】对于选项A,该学校男生对食堂服务满意的概率的估计值为30330205=+,故A 正确;对于选项B,该学校女生对食堂服务满意的概率的估计值为4043401055=>+,故B 错误; 因为 4.762 3.841k ≈>,所以有95%的把握认为男、女生对该食堂服务的评价有差异,故C 正确,D 错误 故选:AC 三、填空题17.(2020届山东省烟台市高三上期末)已知随机变量()21,X N σ:,()110.4P X -<<=,则()3P X ≥=__________.【答案】0.1 【解析】因为随机变量X 服从正态分布()21,N σ,所以曲线关于1x =对称, 因为()110.4P X -<<=,所以()()()310.5110.1P X P X P X ≥=≤-=--<<= 故答案为:0.118.(2020届山东省德州市高三上期末)随机变量X 的取值为0、1、2,()00.2P X ==,0.4DX =,则EX =______. 【答案】1 【解析】设()2P X x ==,其中00.8x ≤≤,可得出()10.8P X x ==-,()00.210.820.8EX x x x ∴=⨯+⨯-+=+,()()()()2220.80.20.20.8 1.20.4DX x x x x x =+⨯+-⨯-+-⨯=,解得0.2x =,因此,0.20.81EX =+=.故答案为:1. 四、解答题19.(2020届山东省潍坊市高三上期末)读书可以使人保持思想活力,让人得到智慧启发,让人滋养浩然正气书籍是文化的重要载体,读书是承继文化的重要方式某地区为了解学生课余时间的读书情况,随机抽取了n 名学生进行调查,根据调查得到的学生日均课余读书时间绘制成如图所示的频率分布直方图,将日均课余读书时间不低于40分钟的学生称为“读书之星”,日均课余读书时间低于40分钟的学生称为“非读书之星”:已知抽取的样本中日均课余读书时间低于10分钟的有10人(1)求,n p 的值;(2)根据已知条件完成下面的22⨯列联表,并判断是否有95%以上的把握认为“读书之星”与性别有关? 非读书之星 读书之星 总计 男女 1055总计(3)将上述调查所得到的频率视为概率,现从该地区大量学生中,随机抽取3名学生,每次抽取1名,已知每个人是否被抽到互不影响,记被抽取的“读书之星”人数为随机变量X ,求X 的分布列和期望()E X附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.()20P K k ≥ 0.10 0.05 0.025 0.010 0.005 0.001 0k2.7063.8415.0246.6357.87910.828【答案】(1)0.01P =,n =100,(2)表见解析,没有95%以上的把握认为“读书之星”与性别有关(3)分布列见解析,()34E X = 【解析】 【分析】(1)首先根据频率和为1求P ,再根据频率,频数和样本容量的关系求n ;(2)首先计算“读书之星”的人数,然后再依次填写22⨯列联表;并根据公式计算2K 和3.841比较大小,做出判断;(3)从该地区学生中抽取一名学生是“读书之星”的概率为14,由题意可知1~3,4X B ⎛⎫ ⎪⎝⎭并求分布列和数学期望. 【详解】(1)()0.0050.0180.0200.0220.025101P +++++⨯= 解得:0.01P =, 所以100.1010n ==. (2)因为100n =,所以“读书之星”有1000.2525⨯= 从而22⨯列联表如下图所示:将22⨯列联表中的数据代入公式计算得()2210030101545100 3.0304555752533K ⨯⨯-⨯==≈⨯⨯⨯因为3.030 3.841<,所以没有95%以上的把握认为“读书之星”与性别有关 (3)将频率视为概率,即从该地区学生中抽取一名学生是“读书之星”的概率为14.由题意可知1~3,4X B ⎛⎫ ⎪⎝⎭所以()30301127041464P X C ⎛⎫⎛⎫⨯ ⎪ ⎪⎝⎭-=⎝⎭== ()3211271146414P X C ⎛==-=⎫⨯ ⎪⎝⎭, ()223192146414P X C ⎛⎫⎛⎫⨯ ⎪ ⎪⎝⎭⎝⎭==-=()333413641P X C ⎛⎫ ⎪⎭=⎝== 所以X 的分布列为故()13344E X =⨯=. 20.(2020·山东省淄博实验中学高三上期末)近年来,国资委.党委高度重视扶贫开发工作,坚决贯彻落实中央扶贫工作重大决策部署,在各个贫困县全力推进定点扶贫各项工作,取得了积极成效,某贫困县为了响应国家精准扶贫的号召,特地承包了一块土地,已知土地的使用面积以及相应的管理时间的关系如下表所示:并调查了某村300名村民参与管理的意愿,得到的部分数据如下表所示:(1)求出相关系数r 的大小,并判断管理时间y 与土地使用面积x 是否线性相关? (2)是否有99.9%的把握认为村民的性别与参与管理的意愿具有相关性?(3)若以该村的村民的性别与参与管理意愿的情况估计贫困县的情况,则从该贫困县中任取3人,记取到不愿意参与管理的男性村民的人数为x ,求x 的分布列及数学期望. 参考公式:1()()nix x y y r --=∑22(),()()()()n ad bc k a b c d a c b d -=++++其中n a b c d =+++.临界值表:25.2≈【答案】(1)线性相关;(2)有;(3)详见解析. 【解析】 (1)依题意:123458101325243,1655x y ++++++++====故51()()(2)(8)(1)(6)192847i x x y y =--=-⨯-÷-⨯-+⨯+⨯=∑552211()411410,()643698164254i i x x y y ==-=+++=-=++++=∑∑则5()()0.933x x y y r --===≈∑,故管理时间y 与土地使用面积x 线性相关. (2)依题意,完善表格如下:计算得2k 的观测值为22300(150505050)3005000500018.7510.828200100200100200100200100k ⨯⨯-⨯⨯⨯===>⨯⨯⨯⨯⨯⨯故有99.9%的把握认为村民的性别与参与管理的意愿具有相关性.(3)依题意,x 的可能取值为0,1,2,3,从该贫困县中随机抽取一名,则取到不愿意参与管理的男性村民的概率为16, 故35125(0)(),6216P X===1235125(1)(),6672P X C ==⨯⨯=233332515(2)(11(3)62),721666P P X X C C ⎛⎫=== ⎪⎭⨯⎝==⨯= 故x 的分布列为则数学期望为12525511()012321672722162E X =⨯+⨯+⨯+⨯= (或由1(3,)6X B ~,得11()362E X =⨯=21.(2020届山东省烟台市高三上期末)某企业拥有3条相同的生产线,每条生产线每月至多出现一次故障.各条生产线是否出现故障相互独立,且出现故障的概率为13. (1)求该企业每月有且只有1条生产线出现故障的概率;(2)为提高生产效益,该企业决定招聘名维修工人及时对出现故障的生产线进行维修.已知每名维修工人每月只有及时维修1条生产线的能力,且每月固定工资为1万元.此外,统计表明,每月在不出故障的情况下,每条生产线创造12万元的利润;如果出现故障能及时维修,每条生产线创造8万元的利润;如果出现故障不能及时维修,该生产线将不创造利润,以该企业每月实际获利的期望值为决策依据,在1n =与2n =之中选其一,应选用哪个?(实际获利=生产线创造利润-维修工人工资) 【答案】(1)49(2)应选用2n = 【解析】(1)设3条生产线中出现故障的条数为X ,则13,3X B ⎛⎫ ⎪⎝⎭:,因此()1213121241=33279P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭(2)①当1n =时,设该企业每月的实际获利为1Y 万元, 若X 0=,则1123135Y =⨯-=; 若1X =,则1122+81131Y =⨯⨯-=; 若2X =,则1121+81+01119Y =⨯⨯⨯-=; 若3X =,则1120+81+0217Y =⨯⨯⨯-=;又()030312803327P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,()212312623327P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, ()33312133327P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, 此时,实际获利1Y 的均值1812617733531197=2727272727EY =⨯+⨯+⨯+⨯ ②当2n =时,设该企业每月的实际获利为2Y 万元, 若X 0=,则2123234Y =⨯-=; 若1X =,则2122+81230Y =⨯⨯-=; 若2X =,则2121+82226Y =⨯⨯-=; 若3X =,则2120+82+01214Y =⨯⨯⨯-=;28126180234302614=2727272727EY =⨯+⨯+⨯+⨯因为12EY EY <,于是以该企业每月实际获利的期望值为决策依据,在1n =与2n =之中选其一,应选用2n = 22.(2020届山东省日照市高三上期末联考)某公司准备投产一种新产品,经测算,已知每年生产()515x x ≤≤万件的该种产品所需要的总成本()32231630910x C x x x =-++(万元),依据产品尺寸,产品的品质可能出现优、中、差三种情况,随机抽取了1000件产品测量尺寸,尺寸分别在[)25.26,25.30,[)25.30,25.34,[)25.34,25.38,[)25.38,25.42,[)25.42,25.46,[)25.46,25.50,[]25.50,25.54(单位:mm )中,经统计得到的频率分布直方图如图所示.产品的品质情况和相应的价格m (元/件)与年产量x 之间的函数关系如下表所示. 产品品质 立品尺寸的范围价格m 与产量x 的函数关系式优[)25.34,25.46 34m x =-+中[)25.26,25.34 3255m x =-+差 []25.46,25.543205m x =-+以频率作为概率解决如下问题: (1)求实数a 的值;(2)当产量x 确定时,设不同品质的产品价格为随机变量ξ,求随机变量ξ的分布列; (3)估计当年产量x 为何值时,该公司年利润最大,并求出最大值.【答案】(1)6a =;(2)见解析(3)年产量12x =时,该公司年利润取得最大值,最大利润为138万. 【解析】(1)由题意得()0.04234 2.5 4.531a ⨯++++++=,解得6a =;(2)当产品品质为优时频率为()10.0446 2.50.5p =⨯++=,此时价格为34x -+;当产品品质为中时频率为()20.04230.2p =⨯+=,此时价格为3255x -+; 当产品品质为差时频率为()30.04 4.530.3p =⨯+=,此时价格为3205x -+;以频率作为概率,可得随机变量ξ的分布列为:(3)设公司年利润为()f x ,则()()323323340.5250.2200.3163055910x f x x x x x x x ⎛⎫⎡⎤⎛⎫⎛⎫=-+⨯+-+⨯+-+⨯--++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⎝⎭整理得()323123092x f x x x =-++-,()()()21131231233f x x x x x '=-++=-+-显然当[]5,12x ∈时,()0f x '≥,[]12,15x ∈时,()0f x '≤, ∴当年产量12x =时,()f x 取得最大值.()12138f =估计当年产量12x =时,该公司年利润取得最大值,最大利润为138万.23.(2020届山东省九校高三上学期联考)学生考试中答对但得不了满分的原因多为答题不规范,具体表现为:解题结果正确,无明显推理错误,但语言不规范、缺少必要文字说明、卷面字迹不清、得分要点缺失等,记此类解答为“B 类解答”.为评估此类解答导致的失分情况,某市教研室做了一项试验:从某次考试的数学试卷中随机抽取若干属于“B 类解答”的题目,扫描后由近百名数学老师集体评阅,统计发现,满分12分的题,阅卷老师所评分数及各分数所占比例大约如下表:某次数学考试试卷评阅采用“双评+仲裁”的方式,规则如下:两名老师独立评分,称为一评和二评,当两者所评分数之差的绝对值小于等于1分时,取两者平均分为该题得分;当两者所评分数之差的绝对值大于1分时,再由第三位老师评分,称之为仲裁,取仲裁分数和一、二评中与之接近的分数的平均分为该题得分;当一、二评分数和仲裁分数差值的绝对值相同时,取仲裁分数和前两评中较高的分数的平均分为该题得分.(假设本次考试阅卷老师对满分为12分的题目中的“B 类解答”所评分数及比例均如上表所示,比例视为概率,且一、二评与仲裁三位老师评分互不影响).(1)本次数学考试中甲同学某题(满分12分)的解答属于“B 类解答”,求甲同学此题得分X 的分布列及数学期望()E X ;(2)本次数学考试有6个解答题,每题满分均为12分,同学乙6个题的解答均为“B 类解答”,记该同学6个题中得分为()12345i x x x x x x <<<<的题目个数为i a ,()1,2,3,4,5i a N i ==,516ii a==∑,计算事件“1454a a a ++=”的概率.【答案】(1)分布列见解析,()32132E X =分; (2)1564. 【解析】(1)随机变量X 的可能取值为9、9.5、10、10.5、11, 设一评、二评、仲裁所打分数分别为x ,y ,z ,()()()99,99,11,9P X P x y P x y z ====+===()11,9,9P x y z +===11111324444432=⨯+⨯⨯⨯=, ()()()9.59,1010,9P X P x y P x y ====+==1112424=⨯⨯=,()()1111010,10224P X P x y =====⨯=,()()()10.510,1111,10P X P x y P x y ====+==()()9,11,1011,9,10P x y z P x y z +===+===111115222444216=⨯⨯+⨯⨯⨯=,()()1111,11P X P x y ====()()11,9,119,11,11P x y z P x y z +===+===11111324444432=⨯+⨯⨯⨯=. 所以X 分布列如下表:数学期望()3115399.51010.51132441632E X ⨯+⨯+⨯+⨯+⨯=32132=(分). (2)∵516ii a==∑,∴()()145234""2""P a a a P a a ++==+=,∵()()2323"2""0,2"P a a P a a +====()()2323"2,0""1,1"P a a P a a +==+==,()346222114",2"20P a a C ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝=⎭==,()346222114",0"22P a a C ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝=⎭==,()411236511142"41,1"P a C a C ⎛⎫⋅⋅⋅⋅= ⎝=⎪⎭=,()23"2"P a a +=242442211666511111114242442C C C C ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++⋅⋅⋅⋅ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 1515301525625625664=++=, ∴()145154""64P a a a ++==. 24.(2020届山东省枣庄、滕州市高三上期末)2017年11月河南省三门峡市成功入围“十佳魅力中国城市”,吸引了大批投资商的目光,一些投资商积极准备投入到“魅力城市”的建设之中.某投资公司准备在2018年年初将四百万元投资到三门峡下列两个项目中的一个之中.项目一:天坑院是黄土高原地域独具特色的民居形式,是人类“穴居”发展史演变的实物见证.现准备投资建设20个天坑院,每个天坑院投资0.2百万元,假设每个天坑院是否盈利是相互独立的,据市场调研,到2020年底每个天坑院盈利的概率为p (01)p <<,若盈利则盈利投资额的40%,否则盈利额为0.项目二:天鹅湖国家湿地公园是一处融生态、文化和人文地理于一体的自然山水景区.据市场调研,投资到该项目上,到2020年底可能盈利投资额的50%,也可能亏损投资额的30%,且这两种情况发生的概率分别为p 和1p -.(1)若投资项目一,记1X 为盈利的天坑院的个数,求()1E X (用p 表示); (2)若投资项目二,记投资项目二的盈利为2X 百万元,求()2E X (用p 表示);(3)在(1)(2)两个条件下,针对以上两个投资项目,请你为投资公司选择一个项目,并说明理由. 【答案】(1)()120E X p = (2)()2 3.2 1.2E X p =- (3)见解析 【解析】(1)解:由题意1~(20,)X B p 则盈利的天坑院数的均值()120E X p =. (2)若投资项目二,则2X 的分布列为盈利的均值()22 1.2(1) 3.2 1.2E X p p p =--=-.(3)若盈利,则每个天坑院盈利0.240%0.08⨯=(百万元), 所以投资建设20个天坑院,盈利的均值为()10.08E X ()10.08E X =0.0820p =⨯ 1.6p =(百万元). ()()2110.080.08D X D X =20.0820(1)p p =⨯-0.128(1)p p =- ()222(2 3.2 1.2)(1.2 3.2 1.2)(1)D X p p p p =-++--+-10.24(1)p p =-①当()()120.08E X E X =时,1.6 3.2 1.2p p =-, 解得34p =. ()()120.08D X D X <.故选择项目一.②当()()120.08E X E X >时,1.6 3.2 1.2p p >-, 解得304p <<. 此时选择项一.③当()()120.08E X E X <时,1.6 3.2 1.2p p <-,解得34p >. 此时选择项二.25.(2020届山东省潍坊市高三上学期统考)班主任为了对本班学生的考试成绩进行分析,决定从本班24名女同学,18名男同学中随机抽取一个容量为7的样本进行分析.(1)如果按照性别比例分层抽样,可以得到多少个不同的样本?(写出算式即可,不必计算出结果) (2)如果随机抽取的7名同学的数学,物理成绩(单位:分)对应如下表:①若规定85分以上(包括85分)为优秀,从这7名同学中抽取3名同学,记3名同学中数学和物理成绩均为优秀的人数为ξ,求ξ的分布列和数学期望;②根据上表数据,求物理成绩y 关于数学成绩x 的线性回归方程(系数精确到0.01);若班上某位同学的数学成绩为96分,预测该同学的物理成绩为多少分? 附:线性回归方程$y bx a =+,其中121()()()niii nii x x y y b x x ==--=-∑∑,a y bx =-.。
2020年高考数学(理)名师提分专题: 概率与统计(全国版含解析)

【答案】C 【解析】必然事件的概率为 1,不可能事件的概率为 0,不确定事件的概率在 [0,1] .故 A,B 错误;概 率为 0 的事件可能是随机事件,如在任意实数中任取一个数,恰好为 2,概率为 0,可能发生,是随机 事件;又如在圆上任取一点,恰好为圆心,概率是 0,可能发生,是随机事件,故 D 错误.故选 C.
6.某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图、90 后从事互 联网行业者岗位分布条形图,则下列结论中不一定正确的是
1
(3)树状图法:树状图是进行列举的一种常用方法,适用于有顺序的问题及较复杂问题中基本事件数 的探求. (4)运用排列组合知识计算.
2.将一根长为 6m 的绳子剪为二段,则其中一段大于另一段 2 倍的概率为( )
A.1
3
B.2
3
C.2
5
D.3
5
【答案】B
【解答】:绳子的长度为 6m,折成两段后,设其中一段长度为 x,则另一段长度 6﹣x,
提分专题:概率与统计
1.从分别写有 1,2,3 的 3 张卡片中随机抽取 1 张.放回后再随机抽取 1 张.则抽得的第一张卡片上的数
不小于第二张卡片上的数的概率为( )
A.2
3
【答案】B
B.1
3
C.5
9
D.4
9
【解答】:从分别写有 1,2,3 的 3 张卡片中随机抽取 1 张.放回后再随机抽取 1 张.
P(X=0)=(1)2(1)2= 1 ,
2
3
2020届山东省高三高考数学预测试题(解析版)

(1 cos )(1 2 cos ) 2sin 2 2 cos 2 cos 1 2sin 2 1 cos 2 .
当 ,即 P 1, 0 时等号成立.
故选: D .
第 3 页 共 21 页
【点睛】
本题考查了向量的计算,建立直角坐标系利用坐标计算是解题的关键.
7.已知函数 f(x)=sin2x+sin2(x ),则 f(x)的最小值为( ) 3
a2
x2
y1
y2 y1
b2
y2
,
kPB
y1 y2 x1 x2
b2 a2
x1 x2 y1 y2
,k AD
k AB
,即
y1 4 x1
y1 y2 x1 x2
,kPA
y1 x1
4
y1 y2 x1 x2
,
PA
PB ,故 kPA kPB
1,即
4
b2 a2
1 ,故 3a2
4c2 ,故 e
2x
3
,
因为
cos
2x
3
1,1
,
1
所以 f(x)的最小值为 .
2
故选:A
【点睛】
本题主要考查倍角公式及两角和与差的三角函数的逆用,还考查了运算求解的能力,属
第 4 页 共 21 页
于中档题.
8.已知点
P
在椭圆τ:
x a
2 2
y2 b2
=1(a>b>0)上,点
P 在第一象限,点
P 关于原点 O
D.2
【答案】D
【解析】如图所示建立直角坐标系,设
Pcosθ,sin θ
,则 PA (PB
PC )
2020高考数学(理)专项复习《概率统计》含答案解析

概率统计统计是研究如何合理收集、整理、分析数据的学科,为人们制定决策提供依据.概率是研究随机现象规律的学科,为人们认识客观世界提供重要的思维模式和解决问题的方法. 统计一章介绍随机抽样、样本估计总体、线性回归的基本方法,通过对典型案例的讨论,了解和使用一些常用的统计方法,进一步体会运用统计方法解决实际问题的基本思想,认识统计方法在决策中的作用.概率一章介绍随机现象与概率的意义、古典概型及几何概型,学习某些离散型随机变量分布列及其期望、方差等内容,初步学会利用离散型随机变量思想描述和分析某些随机现象的方法,并能用所学知识解决一些简单的实际问题,进一步体会概率模型的作用及运用概率思考问题的特点,初步形成用随机观念观察、分析问题的意识.§11-1 概率(一)【知识要点】1.事件与基本事件空间:随机事件:当我们在同样的条件下重复进行试验时,有的结果始终不会发生,它称为不可能事件;有的结果在每次试验中一定会发生,它称为必然事件;在试验中可能发生也可能不发生的结果称为随机事件,随机事件简称为事件.基本事件与基本事件空间:在一次试验中我们常常要关心的是所有可能发生的基本结果,它们是试验中不能再分的最简单的随机事件,其他事件可以用它们来描述,这样的事件称为基本事件.所有基本事件构成的集合叫做基本事件空间,常用 表示.2.频率与概率频率:在相同的条件S 下,重复n 次试验,观察某个事件A 是否出现,称n 次试验中事件A 的出现次数m 为事件A 出现的频数,称事件A 出现的比例nm 为事件A 出现的频率. 概率:一般的,在n 次重复进行的试验中,事件A 发生的频率nm ,当n 很大时总是在某个常数附近摆动,随着n 的增加,摆动幅度越来越小,这时就把这个常数叫做事件A 的概率,记做P (A ).显然有0≤P (A )≤1.不可能事件的概率为0,必然事件的概率为1,随机事件的概率在(0,1)之间.3.互斥事件的概率加法公式事件的并:由事件A 或B 至少有一个发生构成的事件C 称为事件A 与B 的并,记做C =A ∪B .互斥事件:不可能同时发生的两个事件称为互斥事件.互斥事件加法公式:如果事件A 、B 互斥,则事件A ∪B 发生的概率等于这两个事件分别发生的概率和,即P (A ∪B )=P (A )+P (B ).如果A 1,A 2,…,A n 两两互斥,那么事件A 1∪A 2∪…∪A n 发生的概率,等于这n 个事件分别发生的概率和,即P (A 1∪A 2∪…∪A n )=P (A 1)+P (A 2)+…+P (A n ).对立事件:不能同时发生且必有一个发生的两个事件叫做互为对立事件.事件A 的对立事件记作A ,满足P (A )=1-P (A ).概率的一般加法公式(选学):事件A 和B 同时发生构成的事件D ,称为事件A 与B 的交(积),记作D =A ∩B .在古典概型中,P (A ∪B )=P (A )+P (B )-P (A ∩B ).4.古典概型古典概型:一次试验有下面两个特征:(1)有限性,在一次试验中可能出现的结果只有有限个,即只有有限个不同的基本事件;(2)等可能性,每个基本事件发生的可能性是均等的,则称这个试验为古典概型.古典概型的性质:对于古典概型,如果试验的n 个基本事件为A 1,A 2,…,A n ,则有P (A 1∪A 2∪…∪A n )=1且⋅=nA P i 1)( 概率的古典定义:在古典概型中,如果试验的基本事件总数为n (Ω ),随机事件A 包含的基本事件数为n (A),则p (A)=试验的基本事件总数包含的基本事件数事件A ,即⋅=)()()(Ωn A n A P 5.几何概型几何概型:一次试验具有这样的特征:事件A 理解为区域Ω的一个子区域A ,A 的概率只与子区域A 的几何度量(长度、面积或体积)成正比,而与A 的位置和形状无关,这样的试验称为几何概型.几何概型的特点:(1)无限性:一次试验中可能出现的结果有无穷多个;(2)等可能性,每个基本事件发生的可能性相等.几何概型中事件A 的概率定义:ΩA A P μμ=)(,其中μ Ω 表示区域Ω 的几何度量,μ A 表示子区域A 的几何度量.随机数:就是在一定范围内随机产生的数,并且得到这个范围内的每一个数的机会均等.计算机随机模拟法(蒙特卡罗方法)是利用模型来研究某种现象的性质的一种有效方法,可以节约大量的人力物力.6.条件概率与事件的独立性条件概率:一般的,设A 、B 为两个事件,且P (A )>0,称P (B |A )=)()(A P B A P I 为在事件A 发生的条件下,事件B 发生的概率.一般把P (B |A )读作“A 发生的条件下B 发生的概率”.在古典概型中,用n (A )表示事件A 中基本事件的个数,则有P (B |A )=)()(A n B A n I .事件的独立性:设A 、B 为两个事件,如果P (B |A )=P (B ),则称事件A 与事件B 相互独立,并称事件A 、B 为相互独立事件.若A 、B 为两个相互独立事件,则A 与A 、A 与B 、A 与B 也都相互独立.若事件A 与事件B 相互独立,则P (A ∩B )=P (A )·P (B ).【复习要求】1.了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别.2.了解两个互斥事件的概率加法公式.3.理解古典概型及其概率计算公式,会计算一些随机事件所含的基本事件数及事件发生的概率.4.了解随机数的意义,了解几何概型的意义.5.在具体情境中,了解条件概率,了解两个事件相互独立的概念及独立事件的概率乘法公式,并能解决一些简单的实际问题.【例题分析】例1(1)射中9环或10环的概率;(2)至少命中8环的概率;(3)命中不足8环的概率.【分析】射击运动员一次射击只能命中1个环数,命中不同的环数是互斥事件,射中9环或10环的概率等于射中9环与射中10环的概率和.命中不足8环所包含的事件较多,而其对立事件为“至少命中8环”,可先求其对立事件的概率,再通过P (A )=1-P (A )求解.解:设事件“射击一次,命中k 环”为事件A k (k ∈N ,k ≤10),则事件A k 彼此互斥.(1)记“射击一次,射中9环或10环”为事件A ,则P (A )=P (A 10)+P (A 9)=0.60.(2)记“射击一次,至少命中8环”为事件B ,则P (B )=P (A 10)+P (A 9)+P (A 8)=0.78.(3)“射击一次,命中不足8环”为事件B 的对立事件,则P (B )=1-P (B )=0.22.【评析】解决概率问题时,要先分清所求事件由哪些事件组成,分析是否是互斥事件,再决定用哪个公式.当用互斥事件的概率加法公式解题时,要学会不重不漏的将事件拆为几个互斥事件,要善于用对立事件解题.例2 现有8名奥运会志愿者,其中志愿者A 1,A 2,A 3通晓日语,B 1,B 2,B 3通晓俄语,C 1,C 2通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.(Ⅰ)求A 1被选中的概率;(Ⅱ)求B 1和C 1不全被选中的概率.【分析】本题是一个古典概型的问题,可以直接用概率公式)()()(Ωn A n A P =求解. 解:(Ⅰ)从8人中选出日语、俄语和韩语志愿者各1名,其一切可能的结果组成的基本事件空间Ω={(A 1,B 1,C 1),(A 1,B 1,C 2),(A 1,B 2,C 1),(A 1,B 2,C 2),(A 1,B 3,C 1),(A 1,B 3,C 2),(A 2,B 1,C 1),(A 2,B 1,C 2),(A 2,B 2,C 1),(A 2,B 2,C 2),(A 2,B 3,C 1),(A 2,B 3,C 2),(A 3,B 1,C 1),(A 3,B 1,C 2),(A 3,B 2,C 1),(A 3,B 2,C 2),(A 3,B 3,C 1),(A 3,B 3,C 2)} 由18个基本事件组成.由于每一个基本事件被抽取的机会均等,因此这些基本事件的发生是等可能的.用M 表示“A 1恰被选中”这一事件,则M ={(A 1,B 1,C 1),(A 1,B 1,C 2),(A 1,B 2,C 1),(A 1,B 2,C 2),(A 1,B 3,C 1),(A 1,B 3,C 2)}事件M 由6个基本事件组成,因而⋅==31186)(M P(Ⅱ)用N 表示“B 1,C 1不全被选中”这一事件,则其对立事件N 表示“B 1,C 1全被选中”这一事件, 由于N ={(A 1,B 1,C 1),(A 2,B 1,C 1),(A 3,B 1,C 1)},事件N 由3个基本事件组成, 所以61183)(==N P ,由对立事件的概率公式得⋅=-=-=65611)(1)(N P N P 【评析】古典概型解决概率问题时,选定基本事件空间并计算其所含基本事件的个数是重要的一步.本题中选定“从8人中选出日语、俄语和韩语志愿者各1名,其一切可能的结果”为基本事件空间,计算时采用列举法,也可以利用乘法计数原理计算3×3×2=18.本题第一问还可以选定“从通晓日语的3人中选出1人的可能结果”为基本事件空间,共有3个基本事件,选出A 1只有一种可能,故所求概率为⋅31例3 一个口袋中装有大小相同的2个红球,3个黑球和4个白球,从口袋中一次摸出一个球,摸出的球不再放回.(1)连续摸球2次,求第一次摸出黑球,第二次摸出白球的概率;(2)连续摸球2次,在第一次摸到黑球的条件下,求第二次摸到白球的概率;(3)如果摸出红球,则停止摸球,求摸球次数不超过3次的概率.【分析】本题是一个古典概型问题,因为基本事件空间中所含基本事件的个数较多,宜用排列组合公式计算,当然也可利用两个计数原理计数.本题第二问是条件概率问题.做第三问时,要分为三个事件:“第一次摸到红球”,“第一次摸到不是红球,第二次摸到红球”,“前两次摸到不是红球,第三次摸到红球”,显然三个事件是互斥事件.解:(1)从袋中依次摸出2个球共有29A 种结果,第一次摸出黑球、第二次摸出白球有3×4=12种结果,则所求概率6112291==A P (或6184931=⨯=P ). (2)设“第一次摸到黑球”为事件A ,“第二次摸到白球”为事件B ,则“第一次摸到黑球,且第二次摸到白球”为事件A ∩B ,又31)(=A P ,P (A ∩B )61=,所以或⋅==213161)|(A B P (或2184)|(==A B P ). (3)第一次摸出红球的概率为1912A A ,第二次摸出红球的概率为291217A A A ,第三次摸出红球的概率为391227A A A ,则摸球次数不超过3次的概率为⋅=++=12739122729121719122A A A A A A A A P 【评析】利用古典概型求解时,求基本事件的个数和事件发生的总数时求法要一致,若无序则都无序,若有序则都有序,分子和分母的标准要相同.在求事件个数时常用列举法(画树状图、列表、坐标系法),有时也与排列组合联系紧密,计算时灵活多变,但要注意分类讨论,做到不重不漏.要正确识别条件概率问题,理解P (A),P (A ∩B ),P (B |A )的含义.例4 (1)两根相距6米的木杆上系一根绳子,并在绳子上挂一盏灯,则灯与两端距离都大于2米的概率是______.(2)甲乙两人约定在6点到7点之间在某处会面,并约好先到者等候另一人一刻钟,过时即可离去.则两人能会面的概率是______.(3)正方体内有一个内切球,则在正方体内任取一点,这个点在球内的概率为______.【分析】这三个题都可转化为几何概率问题求解.分别转化为线段长度、图形面积、几何体体积问题求解.解:(1)本题可转化为:“在长为6m 的线段上随机取点,恰好落在2m 到4m 间的概率为多少?” 易求得⋅=31P (2)本题可转化为面积问题:即“阴影部分面积占总面积的多少?”, 解得⋅=167)(A P (3)本题可转化为体积问题:即“内切球的体积与正方体体积之比是多少?”.解得⋅=6πP 【评析】几何概型也是一种概率模型,它具有等可能性和无限性两个特点.解题的关键是要建立模型,将实际问题转化为几何概率问题.基本步骤是:把基本事件空间转化为与之对应的区域Ω;把随机事件A 转化为与之对应的区域A ;利用概率公式)()()(ΩA A P μμ=计算.常用的几何度量包括:长度、面积、体积.例5 设有关于x 的一元二次方程x 2+2ax +b 2=0.(Ⅰ)若a 是从0,1,2,3四个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,求上述方程有实根的概率;(Ⅱ)若a 是从区间[0,3]任取的一个数,b 是从区间[0,2]任取的一个数,求上述方程有实根的概率.【分析】本题第一问是古典概型问题,第二问由于a 、b 在实数区间选取,可以转化为几何概型问题求解.解:设事件A 为“方程x 2+2ax +b 2=0有实根”.当a ≥0,b ≥0时,方程x 2+2ax +b 2=0有实根的充要条件为a ≥b .(Ⅰ)基本事件共12个:(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2).其中第一个数表示a 的取值,第二个数表示b 的取值.事件A 中包含9个基本事件,事件A 发生的概率为⋅==43129)(A P (Ⅱ)试验的全部结果所构成的区域为{(a ,b )|0≤a ≤3,0≤b ≤2}.构成事件A 的区域为{(a ,b )|0≤a ≤3,0≤b ≤2,a ≥b }.所以所求的概率为⋅=⨯⨯-⨯=3223221232 【评析】几何概型与古典概型的每个基本事件发生的可能性是均等的,只是几何概型的基本事件有无限个,而古典概型的基本事件有有限个.在具体问题中,不能因为古典概型的基本事件的个数多而误认为是几何概型.例6 如图,用A 、B 、C 三类不同的元件连结成两个系统N 1、N 2,当元件A 、B 、C 都正常工作时,系统N 1正常工作;当元件A 正常工作且元件B 、C 至少有一个正常工作时,系统N 2正常工作,已知元件A 、B 、C 正常工作的概率为0.80、0.90、0.90,分别求系统N 1、N 2正常工作的概率.【分析】三个元件能否正常工作相互独立.当元件A 、B 、C 同时正常工作时,系统N 1正常工作;当元件A 正常工作且元件B 、C 至少有一个正常工作时,系统N 2正常工作,而B 、C 至少有一个正常工作的概率可通过其对立事件计算.解:设元件A 、B 、C 正常工作为事件A 、B 、C ,则P (A )=0.8,P (B)=0.9,P (C)=0.9,且事件A 、B 、C 相互独立.(1)系统N 1正常工作的概率为p 1=P (A ·B ·C )=P (A )·P (B )·P (C )=0.80×0.90×0.90=0.648.(2)元件B 、C 至少有一个正常工作的概率为1-P (B ·C )=1-P (B )·P (C )=1-0.1×0.1=0.99,所以系统N 2正常工作的概率为p 2=P (A )·(1-P (B ·C ))=0.80×0.99=0.792.【评析】本题以串、并联为背景,重点在正确理解题意.在计算几个事件同时发生的概率时,要先判断各个事件之间是否相互独立.独立事件、互斥事件、对立事件的概率各有要求,要依据题目特点,巧妙地选用相关方法.例7 每次抛掷一枚质地均匀的骰子(六个面上分别标以数字1,2,3,4,5,6).(1)连续抛掷3次,求向上的点数之和为3的倍数的概率;(2)连续抛掷6次,求向上的点数为奇数且恰好出现4次的概率.【分析】向上点数之和为3的倍数共有6种情况,计数时要不重不漏;向上点数为奇数的概率为21,连续抛掷6次是独立重复试验. 解:(1)向上的点数之和为3的结果有1种情况,为6的结果共10种情况,为9的结果共25种情况,为12的结果共25种情况,为15的结果共10种情况,为18的结果共1种情况.所以⋅=⨯⨯+++++=3166611025251012P(2)因为每次抛掷骰子,向上的点数为奇数的概率为P =21, 根据独立重复试验概率公式有⋅==⋅⋅6415)21()21(24463C P 【评析】独立重复试验是一类重要的概率问题,要善于分析模型的特点,正确合理的解题.例8 某学校进行交通安全教育,设计了如下游戏,如图,一辆车模要直行通过十字路口,此时前方交通灯为红灯,且该车模前面已有4辆车模依次在同一车道上排队等候(该车道只可以直行或左转行驶).已知每辆车模直行的概率是53,左转行驶的概率是52,该路口红绿灯转换间隔时间均为1分钟.假设该车道上一辆直行去东向的车模驶出停车线需要10秒钟,一辆左转去北向的车模驶出停车线需要20秒钟,求:(1)前4辆车模中恰有2辆车左转行驶的概率;(2)该车模在第一次绿灯亮起时的1分钟内通过该路口的概率(汽车驶出停车线就算通过路口).【分析】该车模1分钟内通过路口包含2种情况:4辆车都直行,3辆车直行1辆车左转.解:(1)设前4辆车模中恰有2辆左转行驶为事件A ,则⋅=⨯=625216)52()53()(2224C A P (2)设该车在第一次绿灯亮起时的1分钟内通过该路口为事件B ,其中4辆车模均 直行通过路口为事件B 1,3辆直行1辆左转为事件B 2,则事件B 1、B 2互斥.=+=+=)()()()(2121B B P B B P B P ⋅=⨯+62529752)53()53(334444C C 【评析】善于从复杂的背景中发现线索,体会其实质.善于转化问题的叙述,恰当的分类.练习11-1一、选择题1.下列随机事件的频率和概率的关系中哪个是正确的( )A .频率就是概率B .频率是客观存在的,与试验次数无关C .随着试验次数增加,频率一般会越来越接近概率D .概率是随机的,在试验前不能确定2.从装有2个黑球2个白球的口袋中任取2个球,那么互斥而不对立的两个事件是( )A .至少有一个白球,都是白球B .至少有一个白球,至少有一个红球C .恰有一个白球,恰有两个白球D .至少有一个白球,都是红球3.独立工作的两套报警系统遇危险报警的概率均为0.4,则遇危险时至少有一套报警系统报警的概率是( )A .0.16B .0.36C .0.48D .0.644.考察正方体6个面的中心,甲从这6个点中任意选两个点连成直线,乙也从这6个点中任意选两个点连成直线,则所得的两条直线相互平行但不重合的概率等于( )A .751B .752C .753D .754 二、填空题5.甲、乙二人掷同一枚骰子各一次.如果谁掷的点数大谁就取胜,则甲取胜的概率为______.6.设每门高射炮命中飞机的概率都是0.6.今有一敌机来犯,要有99%的把握击中敌机,至少需要______门高射炮.7.在平面直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随机投一点,则落入E 中概率为______.8.一个口袋中有4个白球,2个黑球.有放回的取出3个球,如果第一次取出的是白球,则第三次取出的是黑球的概率为______;不放回的取出3个球,在第一次取出的是白球的条件下,第二次取出的是黑球的概率为______.三、解答题9.已知集合A ={-4.-2,0,1,3,5},在平面直角坐标系中点M (x ,y )的坐标满足x ∈A ,y ∈A .计算:(1)点M 恰在第二象限的概率;(2)点M 不在x 轴上的概率;(3)点M 恰好落在区域⎪⎩⎪⎨⎧>>>-+0008y x y x 上的概率.10.某个高中研究性学习小组共有9名学生,其中有3名男生和6名女生.在研究学习过程中,要进行两次汇报活动(即开题汇报和结题汇报),每次汇报都从这9名学生中随机选1人作为代表发言.设每人每次被选中与否均互不影响;(1)求两次汇报活动都是由小组成员甲发言的概率;(2)求男生发言次数不少于女生发言次数的概率.11.3名志愿者在10月1日至10月5日期间参加社区服务工作,若每名志愿者在这5天中任选两天参加社区服务工作,且各名志愿者的选择互不影响.求(1)这3名志愿者中在10月1日都参加社区服务工作的概率;(2)这3名志愿者中在10月1日至多有1人参加社区服务工作的概率.§11-2 概率(二)【知识要点】1.离散型随机变量及其分布列随机变量:如果随机试验的可能结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而变化的,我们把这样的变量X 叫做一个随机变量.如果随机变量X 的所有可能的取值都能一一列举出来,则称X 为离散型随机变量.离散型随机变量的分布列:设离散型随机变量X 的可能取值为x 1,x 2,…,x n ,X 取到i i ii 12+…+p n =1.离散型随机变量在某个范围取值的概率等于它取这个范围内各个值的概率和.其中0<p <1,q =1-,则称离散型随机变量服从参数为p 的二点分布.二项分布:一般的,在相同条件下重复地做n 次试验,各次试验的结果相互独立,称为n 次独立重复试验.在n 次独立重复试验中,事件A 恰好发生k 次的概率为==)(k X P k n k k n q p C -(其中p 为在一次试验中事件A 发生的概率,q =1-p ,k =0,1,…,n ).若将n次独立重复试验中事件A 发生的次数设为X ,则X 的分布列为超几何分布:一般的,设有总数为N 件的两类物品,其中一类有M 件,从所有物品中任取n 件(n ≤N ),这n 件中所含这类物品件数X 是一个离散型随机变量,它取值为m 时的概率为m C C C m X P n Nm n M N m M ≤==--0()(≤l ,其中l 为n 和M中较小的一个).我们称离散型随机变量X 的这种形式的概率分布为超几何分布,也称X 服从参数为N 、M 、n 的超几何分布.2.随机变量的数字特征及正态分布1122i i n n 了离散型随机变量的平均取值水平.称i i n i p X E xX D ⋅-=∑=21))(()(为随机变量X 的方差,它反映了离散型随机变量X 相对于期望的平均波动大小(或说离散程度),其算数平方根)(X D 为随机变量X 的标准差,记作σ (X ),方差(或标准差)越小表明X 的取值相对于期望越集中,否则越分散.均值与方差的性质:①E (aX +b )=aE (X )+b ②D (aX +b )=a 2D (X )若X 服从两点分布,则E (X )=p ,D (X )=pq ;若X ~B (n ,p ),则E (X )=np ,D (X )=npq . 正态曲线:函数),((21)(222)(+∞∝-∈=--x e x x σμσπϕ,其中μ ∈R ,σ >0)的图象为正态分布密度曲线,简称正态曲线.其特点有:①曲线位于x 轴上方,与x 轴不相交;②曲线是单峰的,关于x =μ 对称;③曲线在x =μ 处达到峰值σ2π1;④曲线与x 轴之间的面积为1;⑤当σ 一定时,曲线随着μ 的变化而沿x 轴平移;⑥当μ 一定时,曲线的形状由σ 决定.σ 越小,曲线越“瘦高”,表示总体的分布越集中;σ 越大,曲线越“矮胖”,表示总体的分布越分散.正态分布:如果对于任意实数a <b ,随机变量X 满足=≤<)(b X a P dx x ba )(ϕ⎰,则称X 的分布为正态分布;随机变量X 服从参数μ 、σ 的正态分布,记作N ~(μ ,σ 2).正态分布的三个常用数据:①P (μ -σ <X <μ +σ )=68.3%;②P (μ -2σ <X <μ +2σ )=95.4%;③P (μ -3σ <X <μ +3σ )=99.7%.【复习要求】①在对具体问题的分析中,理解取有限值的离散型随机变量及其分布列的概念,认识分布列对于刻画随机现象的重要性.②通过实例,理解超几何分布及其导出过程,并能进行简单的应用.③通过实例,理解n 次独立重复试验的模型及二项分布,并能解决一些简单的实际问题. ④通过实例,理解取有限值的离散型随机变量期望、方差的概念,能计算简单离散型随机变量的期望、方差,并能解决一些实际问题.⑤通过实际问题,认识正态分布曲线的特点及曲线所表示的意义.【例题分析】例1 一袋中装有编号为1、2、3、4、5、6的6个大小相同的小球,现从中随机取出3个球,以X 表示取出球的最大号码,(1)求X 的分布列;(2)求X >4的概率;(3)求E (X ).【分析】随机变量X 可能取的值为3、4、5、6,应用古典概型求得X 取每一个值的概率,就可以写出分布列.解:(1)随机变量X 可能取的值为3、4、5、6,且,203)4(,2011)3(362336======C C X P C X P 3624)5(C C X P ==103206==,212010)6(3625====C C X P ,所求X 的分布列为(2)==+==>)6()5()4(X P X P X P ⋅54 (3).25.5216103520342013)(=⨯+⨯+⨯+⨯=X E 【评析】离散型随机变量的分布列反映了一次试验的所有可能结果(X 的所有可能取值),以及取得每个结果(X 的每一个值)的概率.书写分布列首先要根据具体情况正确分析X 可取的所有值,然后利用排列组合及概率的有关知识求得每个x i 所对应的概率p i ,最后列成表格.要注意不同的X 值所对应的事件之间是互斥的,求离散型随机变量在某一范围的概率等于它取这个范围内各个值的概率和.例2 袋中装有大小相同的5个红球、5个白球,现从中任取4个球,其中所含红球的个数为X ,写出X 的分布列,并求X 的期望.【分析】袋中共有10个球,从中任取4个,所含红球的个数为0、1、2、3、4,每个事件的概率可以利用古典概型求解.解:随机变量X 可取的值有0、1、2、3、4,)0(=X P =,42121054104505==⋅C C C )1(=X P =215210504103515==⋅C C C ,)2(=X P 21102101004102525===⋅C C C ,===⋅4101535)3(C C C X P 21050 215=,4212105)4(4100545==⋅==C C C X P , 分布列为2424213212211420)(=⨯+⨯-+⨯+⨯+⨯=X E 【评析】本题的随机变量X 服从参数为N ,M ,n 的超几何分布,其中N =10,M =5,n =4.例3 某人练习射击,每次击中目标的概率为31. (1)用X 表示击中目标的次数.①若射击1次,求X 的分布列和期望;②若射击6次,求X 的分布列和期望;(2)若他连续射击6次,设ξ为他第一次击中目标前没有击中目标的次数,求ξ的分布列;(3)他一共只有6发子弹,若击中目标,则不再射击,否则子弹打完为止,求他射击次数η 的分布列.【分析】射击问题常被看做是独立重复试验.ξ的取值为0到6,η 的取值为1到6. 解:(1)①X 服从二点分布⋅=31)(X E ②X 服从二项分布)6,,1,0()2()1()(),1,6(~66Λ===-k C k X P B k k k ,分布列为.236)(=⨯=X E (2)ξ的取值为0到6,ξ=k (k =0,1,…,5)表示第k +1次击中目标,前k 次都没击中目标,则P (ξ=k )=)5,,1,0(31)32(.Λ=k k ,ξ=6表示射击6次都未击中目标,==)6(ξP6)2(.ξ的分布列为(3)η 的取值为1到6.η =k (k =1,2,…,5)表示第k 次时第一次击中目标,==)(k P η 6;1)2(.1=-ηk 表示前5次都没有击中目标,5)2()6(==ξP .η 的分布列为“X =k ”.在计算满足二点分布和二项分布的随机变量的期望和方差时,可直接应用公式计算.例4 甲乙两名射手在一次射击中的得分为两个相互独立的随机变量X 和Y ,且X 和Y 的分布列为计算X 和Y 【分析】先由分布列所提供的数据用期望和方差公式计算,再根据实际意义作出分析. 解:E (X )=8.85,D (X )=2.2275;E (Y )=5.6,D (Y )=10.24.由于E (X )>E (Y ),说明甲射击的平均水平比乙高;由于D (X )<D (Y ),说明甲射击的环数比较集中,发挥比较稳定,乙射击的环数比较分散,技术波动较大,不稳定,由此可以看出甲比乙的技术好.【评析】正确记忆期望和方差的公式,在分布列中,期望是每个变量乘以它所对应的概率再相加,求方差要先求期望,再作差、平方、乘以相应概率再相加.科学对待计算结果,正确分析数据所表达的实际意义.例5 设b 和c 分别是先后抛掷一枚骰子得到的点数,用随机变量ξ表示方程x 2+bx +c =0实根的个数(重根按一个计).(1)求方程x 2+bx +c =0有实根的概率;(2)求在先后两次出现的点数中有5的条件下,方程x 2+bx +c =0有实根的概率;(3)若η =2ξ+1,求ξ、η 的数学期望和方差;【分析】本题概率问题是古典概型,要分别求出事件中所含元素的个数,第一问事件“二次方程有实根”等价于“∆=b 2-4c ≥0”,b 、c 的值都取自{1,2,3,4,5,6};第二问是条件概率问题;第三问先求ξ的期望和方差,再由公式求η 的期望和方差.解:(1)由题意知:设基本事件空间为Ω,记“方程x 2+bx +c =0没有实根”为事件A ,“方程x 2+bx +c =0有且仅有一个实根”为事件B ,“方程x 2+bx +c =0有两个相异实数”为事件C ,Ω中基本事件总数为36个,A 中的基本事件总数为17个,B 中的基本事件总数为2个,C 中的基本事件总数为17个.又因为B ,C 是互斥事件,故所求概率⋅=+=+=36193617362)()(C B B P P (2)记“先后两次出现的点数中有5”为事件D ,“方程x 2+bx +c =0有实数”为事件E ,由上面分析得D P D P (,3611)(=∩367)=E ,∴⋅==117)()()|(D P E D P D E P I (Ⅱ)由题意ξ的可能取值为0,1,2,则,3617}2{,181}1{,3617}0{======&ξξξP P P 故ξ的分布列为:所以.18173617·)12(181·)11(3617·(0-0-,136172181136170222=-+-+==⨯+⨯+⨯=ξξD E 9342)12(,312)12(2==+==+=+=ξξξξηηD D D E E E 【评析】本题是一道概率的综合题,由07山东卷改编而得.在古典概型中解决条件概率问题时,概率公式是=)|(A B P )()()()(A n B A n A P B A P I I =.具有线性关系的两个随机变量的期望和方差之间的关系是b X aE b aX E +=+)()(,)()(2X D a b aX D =+.例6 (1)设两个正态分布N (μ 1,21σ)(σ 1>0)和N (μ 2,22σ)(σ 2>0)的密度函数图象如图所示.则有( )。
2020全国卷高考数学概率与统计冲刺练习(含答案)

类型一:规范解答过程对于会做的题,要做到不丢分,具体要求解题步骤表达准确、考虑周密、书写规范、关键步骤清晰,防止分段扣分。
类型二:探究型问题的解答(1)未给出结论的通常称为归纳型问题.解答这类问题思路:归纳—猜想—证明;(2)结论不确定的,通常称之为存在型问题.解答思路:假设—推理—定论;(3)条件不全,需探求补足条件的,通常称为:条件探索型.解答思路:结论⇐条件.答案往往不唯一;(4)给定一些对象的某种关系,通过类比得到另一些对象的关系.解答思路:透彻理解条件,转换思维;(5)给出几个论断,选择其中若干个论断为条件,某一个(或几个)为结论,通常称为重组型.解答思路:组合条件,逐一验证.2.【2019年高考全国Ⅱ卷理数】演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是 A .中位数 B .平均数 C .方差D .极差【答案】A【解析】设9位评委评分按从小到大排列为123489x x x x x x <<<<<L .则①原始中位数为5x ,去掉最低分1x ,最高分9x 后剩余2348x x x x <<<<L ,中位数仍为5x ,A 正确; ②原始平均数1234891()9x x x x x x x =<<<<<L ,后来平均数23481()7x x x x x '=<<<L ,平均数受极端值影响较大,∴x 与x '不一定相同,B 不正确; ③2222111[()()()]9q S x x x x x x =-+-++-L ,22222381[()()()]7s x x x x x x '=-'+-'++-'L ,由②易知,C 不正确;④原极差91x x =-,后来极差82x x =-,显然极差变小,D 不正确.故选A . 3.【2019年高考浙江卷】设0<a <1,则随机变量X 的分布列是则当a 在(0,1)内增大时, A .()D X 增大B .()D X 减小C .()D X 先增大后减小D .()D X 先减小后增大【答案】D【分析】研究方差随a 变化的增大或减小规律,常用方法就是将方差用参数a 表示,应用函数知识求解.本题根据方差与期望的关系,将方差表示为a 的二次函数,二次函数的图象和性质解题.题目有一定综合性,注重重要知识、基础知识、运算求解能力的考查. 【解析】方法1:由分布列得1()3aE X +=, 则2222111111211()(0)()(1)()333333926a a a D X a a +++=-⨯+-⨯+-⨯=-+, 则当a 在(0,1)内增大时,()D X 先减小后增大.故选D . 方法2:则222221(1)222213()()()0[()]3399924a a a a D X E X E X a +-+=-=++-==-+,则当a 在(0,1)内增大时,()D X 先减小后增大.故选D .9.【2019年高考天津卷理数】设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(1)用X 表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X 的分布列和数学期望;(2)设M 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M 发生的概率. 【答案】(1)分布列见解析,()2E X =;(2)20243. 【分析】本小题主要考查离散型随机变量的分布列与数学期望,互斥事件和相互独立事件的概率计算公式等基础知识.考查运用概率知识解决简单实际问题的能力.满分13分. 【解析】(1)因为甲同学上学期间的三天中到校情况相互独立,且每天7:30之前到校的概率均为23,故2~(3,)3X B ,从而3321()C ()(),0,1,2,333k k kP X k k -===. 所以,随机变量X 的分布列为随机变量X 的数学期望()323E X =⨯=. (2)设乙同学上学期间的三天中7:30之前到校的天数为Y , 则2~(3,)3Y B ,且{3,1}{2,0}M X Y X Y =====U . 由题意知事件{3,1}X Y ==与{2,0}X Y ==互斥,且事件{3}X =与{1}Y =,事件{2}X =与{0}Y =均相互独立, 从而由(1)知()({3,1}{2,0})P M P X Y X Y =====U(3,1)(2,0)P X Y P X Y ===+== (3)(1)(2)(0)P X P Y P X P Y ===+==824120279927243=⨯+⨯=.。
【精品整理】2020年高考数学(文)重难点专练05 概率与统计(解析版)

重难点05 概率与统计【命题趋势】统计与概率是高考文科中的一个重要的一环高考对概率与统计内容的考查一般以实际应用题出现,这既是这类问题的特点,也符合高考发展的方向.概率应用题侧重于古典概率,近几年的高考有以概率应用题替代传统应用题的趋势,该题出现在解答题第二或第三题的位置,可见概率统计在高考中属于中档题.虽为中档题,但是实际生活背景在加强,阅读量大,所以快速阅读考题并准确理解题意是很重要的.对于这部分,我们还应当重视与传统内容的有机结合. 为了准确地把握2020年高考概率统计命题思想与趋势,在最后的复习中做到有的放矢,提高复习效率,纵观近五年的全国文科I卷,我们看到近几年每年一考,多出现在19题,分值12分;从难度上看:以中档题为主,重基础,考查的重点为统计图表的绘制与分析、数字特征的计算与分析、概率计算、线性回归分析,独立性检验等知识点,一般都会以实际问题为载体,代替传统建模题目.本专题我们把这些热点问题逐一说明,并提出备考指南,希望同学们在复习时抓住重点、事半功倍.【热点预测以及解题技巧】热点一:“统计”背景下的“概率”问题这类问题一般将统计与概率相结合.以频率分布直方图或茎叶图为背景来考查概率知识,有时以表格为背景来考查概率知识,需要从统计图、表格获取信息、处理数据的能力,并根据得出的数据求概率.热点二:样本分析并通过样本分析作决策进行样本分析时从统计图表中获取数据,得出频率、平均数、方差,用样本频率估计概率、样本数字特征估计总体数字特征,有时需以此作出决策.热点三:线性回归分析根据最小二乘法得出回归直线方程,有时需适当换元转化为线性回归方程. 由于计算量很大,题目一般会给出的参考数据,但是注意数据设置的“障眼法”,这时就要认真领会题意,找出适用的参考数据加以计算.热点四:独立性检验寻找数据完成列联表,下面的解题步骤比较固定,按部就班完成即可.热点五:与函数相结合的概率统计题这类题也是近几年出现较多的一类题,其综合性强,理解题意后找准变量,构建函数关系式.【限时检测】(建议用时:35分钟)一、单选题1.(2019·四川高考模拟(文))空气质量指数AQI是一种反映和评价空气质量的方法,AQI 指数与空气质量对应如下表所示:如图是某城市2018年12月全月的指AQI数变化统计图.根据统计图判断,下列结论正确的是()A.整体上看,这个月的空气质量越来越差B.整体上看,前半月的空气质量好于后半月的空气质量C.从AQI数据看,前半月的方差大于后半月的方差D.从AQI数据看,前半月的平均值小于后半月的平均值【答案】C【分析】根据题意可得,AQI指数越高,空气质量越差;数据波动越大,方差就越大,由此逐项判断,即可得出结果.【详解】从整体上看,这个月AQI数据越来越低,故空气质量越来越好;故A,B不正确;从AQI数据来看,前半个月数据波动较大,后半个月数据波动小,比较稳定,因此前半个月的方差大于后半个月的方差,所以C正确;从AQI数据来看,前半个月数据大于后半个月数据,因此前半个月平均值大于后半个月平均值,故D不正确.故选C.【点睛】本题主要考查样本的均值与方差,熟记方差与均值的意义即可,属于基础题型. 2.(2020·陕西高三月考(理))如图是某学校研究性课题《什么样的活动最能促进同学们进行垃圾分类》向题的统计图(每个受访者都只能在问卷的5个活动中选择一个),以下结论错误的是()A.回答该问卷的总人数不可能是100个B.回答该问卷的受访者中,选择“设置分类明确的垃圾桶”的人数最多C.回答该问卷的受访者中,选择“学校团委会宣传”的人数最少D.回答该问卷的受访者中,选择“公益广告”的人数比选择“学校要求”的少8个【答案】D【分析】先对图表数据分析处理,再结合简单的合情推理逐一检验即可得解.【详解】对于选项A,若回答该问卷的总人数不可能是100个,则选择③③③的同学人数不为整数,故A正确,对于选项B,由统计图可知,选择“设置分类明确的垃圾桶”的人数最多,故B正确,对于选项C,由统计图可知,选择“学校团委会宣传”的人数最少,故C正确,对于选项D,由统计图可知,选择“公益广告”的人数比选择“学校要求”的少8%,故D 错误,故选D.【点睛】本题考查了对图表数据的分析处理能力及简单的合情推理,属中档题. 3.(2018·湖南高考模拟(文))已知变量x 、y 之间的线性回归方程为0.710.3y x =-+,且变量x 、y 之间的一-组相关数据如下表所示,则下列说法错误..的是( )A .可以预测,当20x =时, 3.7y =-B .4m =C .变量x 、y 之间呈负相关关系D .该回归直线必过点()9,4【答案】B 【分析】将20x =的值代入回归直线方程可判断出A 选项的正误;将(),x y 的坐标代入回归直线方程可计算出实数m 的值,可判断出B 选项的正误;根据回归直线方程的斜率的正负可判断出C 选项的正误;根据回归直线过点(),x y 可判断出D 选项的正误. 【详解】对于A 选项,当20x =时,0.72010.3 3.7y =-⨯+=-,A 选项正确;对于B 选项,6810+1292x ++==,6321144m m y ++++==,将点(),x y 的坐标代入回归直线方程得110.7910.344m +=-⨯+=,解得5m =,B 选项错误; 对于C 选项,由于回归直线方程的斜率为负,则变量x 、y 之间呈负相关关系,C 选项正确;对于D 选项,由B 选项可知,回归直线0.710.3y x =-+必过点()9,4,D 选项正确.故选:B.【点睛】本题考查回归直线方程有关命题的判断,解题时要熟悉与回归直线有关的结论,考查分析问题和解决问题的能力,属于基础题.4.(2019·莒县第二中学高考模拟(文))我国现代著名数学家徐利治教授提出:图形的对称性是数学美的具体内容.如图,一个圆的外切正方形和内接正方形构成一个优美的几何图形,正方形ABCD 所围成的区域记为③,在圆内且在正方形ABCD 外的部分记为③,在圆外且在大正方形内的部分记为③.在整个图形中随机取一点,此点取自③,③,③的概率分别记为123,,P P P ,则( )A .123P P P =+B .132P P P >>C .123P P P >=D .123P P P => 【答案】A 【分析】首先要将小正方形旋转45度,由此看出大正方形与小正方形边长的比值,进而得到面积比,从而可确定概率间的关系. 【详解】将小正方形旋转45度,图像转化为:由图像易知:小正方形的面积是大正方形面积的一半,所以123P P P =+. 则选A.【点睛】本题考查了几何概型,着重考查了利用相似比求面积比,突显了对数学抽象与直观想象的考查.5.(2019·湖北高考模拟(理))七巧板是我们祖先的一项创造,被誉为“东方魔板”,它是由五块等腰直角三角形(两块全等的小三角形、一块中三角形和两块全等的大三角形)、一块正方形和一块平行四边形组成的.如图是一个用七巧板拼成的正方形,现从该正方形中任取一点,则此点取自黑色部分的概率是A .316B .38C .14D .18【答案】A 【解析】设2AB =,则1BC CD DE EF ====.③1124BCI S ∆==,112242BCI EFGHS S ∆==⨯=平行四边形 ③所求的概率为113422216P +==⨯ 故选A.二、解答题6.(2019·陕西高考模拟(文))某公司在若干地区各投入4万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从0开始计数的.(1)根据频率分布直方图,计算图中各小长方形的宽度;(2)根据频率分布直方图,估计投入4万元广告费用之后,销售收益的平均值(以各组的区间中点值代表该组的取值);(3)按照类似的研究方法,测得另外一些数据,并整理得到下表:表中的数据显示,x 与y 之间存在线性相关关系,请将(2)的结果填入空白栏,并计算y 关于x 的回归方程.附公式:1221ni ii nii x y nx ybxnx==-=-∑∑$,a y bx =-$$.【答案】(1)2;(2)5;(3) 1.20.2y x =+. 【分析】(③)根据频率分布直方图,由频率分布直方图各小长方形面积总和为1,可计算图中各小长方形的宽度;(③)以各组的区间中点值代表该组的取值,即可计算销售收益的平均值; (③)求出回归系数,即可得出结论. 【详解】(③)设各小长方形的宽度为m ,由频率分布直方图各小长方形面积总和为1,可知()0.080.10.140.120.040.020.51m m +++++⋅==,故2m =;(③)由(③)知各小组依次是[)[)[)[)[)[]0,2,2,4,4,6,6,8,8,10,10,12, 其中点分别为1,3,5,7,9,11,对应的频率分别为0.16,0.20,0.28,0.24,0.08,0.04, 故可估计平均值为10.1630.250.2870.2490.08110.045⨯+⨯+⨯+⨯+⨯+⨯=; (③)由(③)知空白栏中填5. 由题意可知,1234535x ++++==,232573.85y ++++==,51122332455769i ii x y==⨯+⨯+⨯+⨯+⨯=∑,522222211234555ii x==++++=∑,根据公式,可求得26953 3.8121.2555310ˆb-⨯⨯===-⨯, 3.8 1.230ˆ.2a =-⨯=,即回归直线的方程为 1.2.2ˆ0yx =+. 【点睛】本题考查回归方程,考查频率分布直方图,考查学生的读图、计算能力,属于中档题.7.(2019·宁夏高考模拟(文))2014年7月18日15时,超强台风“威马逊”登陆海南省.据统计,本次台风造成全省直接经济损失119.52亿元,适逢暑假,小明调查住在自己小区的50户居民由于台风造成的经济损失,作出如下频率分布直方图:(1)台风后区委会号召小区居民为台风重灾区捐款,小明调查的50户居民捐款情况如上表,在表格空白处填写正确数字,并说明是否有95%以上的把握认为捐款数额是否多于或少于500元和自身经济损失是否到4000元有关?(2)台风造成了小区多户居民门窗损坏,若小区所有居民的门窗均由李师傅和张师傅两人进行维修,李师傅每天早上在7:00到8:00之间的任意时刻来到小区,张师傅每天早上在7:30到8:30分之间的任意时刻来到小区,求李师傅比张师傅早到小区的概率.附:临界值表参考公式:22()()()()()n ad bcKa b c d a c b d-=++++,n a b c d=+++.【答案】(1)有把握;(2)218. 【分析】(1)由直方图得到22⨯列联表,利用公式求得2K 的值,与临界值比较即可作出判定,得到结论.(2)设李师傅、张师傅到小区的时间分别为,x y ,得到试验的全部结果所构成的区域及事件A 表示“李师傅比张师傅早到小区”, 根据几何概型,利用面积比可求()78P A =,则李师傅比张师傅早到小区的天数的分布列为二项分布,利用二项分布的期望公式可得结果. 【详解】 (1)如下表:()225030695 4.046 3.84139113515K ⨯⨯-⨯=≈>⨯⨯⨯所以有95%以上的把握认为捐款数额是否多于或少于500元和自身经济损失是否到4000元有关. (2)设李师傅、张师傅到小区的时间分别为,x y ,则(,x y )可以看成平面中的点.试验的全部结果所构成的区域为(){,|78,7.58.5}Q x y x x =≤≤≤≤,则S Ω=1,事件A 表示“李师傅比张师傅早到小区”,所构成的区域为A ={(x ,y )|y ≥x ,7≤x ≤8,7.5≤y ≤8.5}, 即图中的阴影部分面积为111712228A S =-⨯⨯=,所以()78A QS P A S ==, 李师傅比张师傅早到小区的天数的分布列为二项分布73,8B ξ⎛⎫~ ⎪⎝⎭,721388E ξ=⨯=. 【点睛】本题主要考查了独立性检验的应用,以及几何概型概率的计算问题,以及二项分布的数学期望公式的应用,属于中档试题. “求期望”,一般利用离散型随机变量的数学期望的定义求期望.对于某些实际问题中的随机变量,如果能够断定它服从某常见的典型分布(如二项分布(),X B n p ~),则此随机变量的期望可直接利用这种典型分布的期望公式(()E X np =)求得.因此,应熟记常见的典型分布的期望公式,可加快解题速度. 8.(2019·江西高二月考(文))通过随机询问某地100名高中学生在选择座位时是否挑同桌,得到如下22⨯列联表:()1从这50名男生中按是否挑同桌采取分层抽样的方法抽取一个容量为5的样本,现从这5人中随机选取3人做深度采访,求这3名学生中至少有2名要挑同桌的概率; ()2根据以上22⨯列联表,是否有95%以上的把握认为“性别与在选择座位时是否挑同桌”有关?下面的临界值表供参考:(参考公式:()()()()22()n ad bc K a b c d a c b d -=++++,其中)n a b c d =+++【答案】(③) 7(10P =③)见解析 试题分析:(③)根据分层抽样原理求出样本中挑同桌有3人,不挑同桌有2人,利用列举法求出基本事件数,计算对应的概率值;(③)根据2×2列联表计算观测值,对照临界值表得出结论. 解析:(③)根据分层抽样方法抽取容量为5的样本,挑同桌有3人,记为A 、B 、C ,不挑同桌有2人,记为d 、e ; 从这5人中随机选取3人,基本事件为ABC ABd ABe ACd ACe Ade BCd BCe Bde Cde ,,,,,,,,,共10种;这3名学生中至少有2名要挑同桌的事件为概率为ABC ABd ABe ACd ACe BCd BCe ,,,,,,,共7种;故所求的概率为710P =; (③)根据以上22⨯列联表,计算观测值22100(30102040) 4.7619 3.84170305050K ⨯⨯-⨯=≈>⨯⨯⨯,对照临界值表知,有95%以上的把握认为“性别与在选择座位时是否挑同桌”有关. 9.(2019·四川棠湖中学高三(文))省环保厅对A 、B 、C 三个城市同时进行了多天的空气质量监测,测得三个城市空气质量为优或良的数据共有180个,三城市各自空气质量为优或良的数据个数如下表所示:已知在这180个数据中随机抽取一个,恰好抽到记录B 城市空气质量为优的数据的概率为0.2.(I )现按城市用分层抽样的方法,从上述180个数据中抽取30个进行后续分析,求在C 城中应抽取的数据的个数;(II )已知23y ≥,24z ≥,求在C 城中空气质量为优的天数大于空气质量为良的天数的概率.【答案】(1)9;(2)38.【试题分析】(1)由0.2180x=计算出x ,再由总数计算出y z +,按比例计算得应抽人数.(2) 由(1)知54y z +=,,y z N ∈且23y ≥,24z ≥,利用列举法和古典概型计算公式计算得相应的概率. 【试题解析】 (1)由题意得0.2180x=,即36x =. ③1802832363054y z +=----=, ③在C 城中应抽取的数据个数为30549180⨯=. (2)由(1)知54y z +=,,y z N ∈且23y ≥,24z ≥,③满足条件的数对(),y z 可能的结果有()23,31,()24,30,()25,29,()26,28,()27,27,()28,26,()29,25,()30,24共8种.其中“空气质量为优的天数大于空气质量为良的天数”对应的结果有()28,26,()29,25,()30,24共3种.③在C 城中空气质量为优的天数大于空气质量为良的天数的概率为38. 10.(2019·江西高考模拟(文))某书店为了了解销售单价(单位:元)在[8,20]]内的图书销售情况,从2018年上半年已经销售的图书中随机抽取100本,获得的所有样本数据按照[8,10),[10,12),[12,14),[14,16),[16,18),[18,20]分成6组,制成如图所示的频率分布直方图,已知样本中销售单价在[14,16)内的图书数是销售单价在[18,20]内的图书数的2倍.(1)求出x 与y ,再根据频率分布直方图估计这100本图书销售单价的平均数(同一组中的数据用该组区间的中点值作代表);(2)用分层抽样的方法从销售单价在[8,20]内的图书中共抽取40本,求单价在6组样本数据中的图书销售的数量;(3)从(2)中抽取且价格低于12元的书中任取2本,求这2本书价格都不低于10元的概率.【答案】(1)见解析;(2)6本;(3)25【解析】(1)先求出x 与y ,再根据直方图求出平均值; (2)根据分层抽样是按比例抽样可得结果; (3)用列举法和古典概型概率公式求出结果 【详解】(1)样本中图书的销售单价在[)14,16内的图书数是2100200x x ⨯=g ,样本中图书的销售单价在[)1820,内的图书数是2100200y y ⨯=g , 依据题意,有2002200x y =⨯,即2x y =,③根据频率分布直方图可知()0.120.0250.0521x y ⨯++++⨯=,③ 由③③得0.15,0.075x y ==.根据频率分布直方图估计这100本图书销售单价的平均数为810101212141416161818200.02520.0520.120.1520.120.0752222222++++++⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯ =0.45+1.1+2.6+4.5+3.4+2.85=14.9(元)(2)因为销售单价在[)[)[)[)[)[]8,10,10,12,12,14,14,16,16,18,18,20的图书的分层抽样比为1:2:4:6:4:3,故在抽取的40本图书中,销售单价在[)[)[)[)[)[]8,10,10,12,12,14,14,16,16,18,18,20内的图书分别为124643402,404,408,4012,408,406202020202020⨯=⨯=⨯=⨯=⨯=⨯=(本) (3)这40本书中价格低于12元的共有6本,其中价格低于10元的2本,记这2本为12,A A ,另外4本记为1234,,,B B B B ,从中抽取2本的基本事件有:121112131421222324121314232434,,,,,,,,,,,,,,A A A B A B A B A B A B A B A B A B B B B B B B B B B B B B共15个,其中价格不低于10元的有6个,所以: 这2本书价格都不低于10元的概率62155P ==. 【点睛】本题考查了频率分布直方图、分层抽样及概率问题,较为简单11.(2019·四川高考模拟(文))目前有声书正受着越来越多人的喜爱.某有声书公司为了解用户使用情况,随机选取了100名用户,统计出年龄分布和用户付费金额(金额为整数)情况如下图.有声书公司将付费高于20元的用户定义为“爱付费用户”,将年龄在30岁及以下的用户定义为“年轻用户”.已知抽取的样本中有38的“年轻用户”是“爱付费用户”. (1)完成下面的22⨯列联表,并据此资料,能否有95%的把握认为用户“爱付费”与其为“年轻用户”有关?(2)若公司采用分层抽样方法从“爱付费用户”中随机选取5人,再从这5人中随机抽取2 人进行访谈,求抽取的2人恰好都是“年轻用户”的概率.()()()()()22n ad bc K a b c d a c b d -=++++.【答案】(1)有95%的把握认为“爱付费用户”和“年轻用户”有关;(2)35. 【解析】 【分析】(1)根据题意可得列联表,然后根据表中的数据求出2K 后与临界值表中的数据对照后可得结论.(2)根据古典概型概率公式求解可得所求概率. 【详解】(1)根据题意可得22⨯列联表如下:由表中数据可得()()()()()()2221002430406 4.76 3.84130706436n ad bc K a b c d a c b d -⨯⨯-⨯==≈>++++⨯⨯⨯,所以有95%的把握认为“爱付费用户”和“年轻用户”有关.(2)由分层抽样可知,抽取的5人中有4人为“年轻用户”,记为1A ,2A ,3A ,4A ,1人为“非年轻用户”,记为B .则从这5人中随机抽取2人的基本事件有:()12,A A ,()13,A A ,()14,A A ,()1,A B ,()23,A A ,()24,A A ,()2,A B ,()34,A A ,()3,A B ,()4,A B ,共10个基本事件.其中满足抽取的2人均是“年轻用户”的事件有:()12,A A ,()13,A A ,()14,A A ,()23,A A ,()24,A A ,()34,A A ,共6个.所以从中抽取2人恰好都是“年轻用户”的概率为63P 105==. 【点睛】独立性检验的方法是得到列联表后求出2K 的值后与临界值表进行对照后得到结论,查表时要根据题目要求的百分比找到第一行对应的数值,再将该数值对应的k 值与求得的2K 相比较.另外,表中第一行数据表示两个变量没有关联的可能性p ,所以其有关联的可能性为1p -.。
押新高考第20题 统计概率(新高考)(解析版)

押第20题统计概率统计概率是高考的重点和热点,从2019年高考情况来看,更是有压轴题的趋势,并且分值和题量都略有增加。
其中解答题考查涉及的主要方向有:(1)与社会生活紧密相连,紧跟时代步伐创设情境。
(2)概率的求解.同时也常渗透考查统计知识,背景新颖,体现了概率与统计的工具性和交汇性,综合考查考生的应用意识、阅读理解能力、数据处理能力和转化与化归思想的应用;(3)统计知识.其核心是样本数据的获得和分析方法,重点是频率分布直方图、茎叶图、样本的数字特征、线性回归方程、独立性检验,常与概率交汇命题,意在考查考生的数据分析能力和综合应用能力.1.均值与方差的性质若Y=aX+b,其中a,b是常数,X是随机变量,则(1)E(k)=k,D(k)=0,其中k为常数;(2)E(aX+b)=aE(X)+b,D(aX+b)=a2D(X);(3)E(X1+X2)=E(X1)+E(X2);(4)D(X)=E(X2)–(E(X))2;(5)若X1,X2相互独立,则E(X1·X2)=E(X1)·E(X2);(6)若X服从两点分布,则E(X)=p,D(X)=p(1–p);(7)若X服从二项分布,即X~B(n,p),则E(X)=np,D(X)=np(1–p).2.随机变量是否服从超几何分布的判断若随机变量X服从超几何分布,则满足如下条件:(1)该试验是不放回地抽取n次;(2)随机变量X表示抽取到的次品件数(或类似事件),反之亦然.3.求超几何分布的分布列的步骤第一步,验证随机变量服从超几何分布,并确定参数N,M,n的值;第二步,根据超几何分布的概率计算公式计算出随机变量取每一个值时的概率;第三步,用表格的形式列出分布列.4.求超几何分布的均值与方差的方法(1)列出随机变量X的分布列,利用均值与方差的计算公式直接求解;(2)利用公式E (X )=nM N ,D (X )=2()()(1)nM N M N n N N ---求解.1.(2020年新高考全国卷Ⅰ数学高考试题(山东))为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM 2.5和2SO 浓度(单位:3μg/m ),得下表:(1)估计事件“该市一天空气中PM 2.5浓度不超过75,且2SO 浓度不超过150”的概率; (2)根据所给数据,完成下面的22⨯列联表:(3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM 2.5浓度与2SO 浓度有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,【详解】(1)由表格可知,该市100天中,空气中的 2.5PM 浓度不超过75,且2SO 浓度不超过150的天数有32618864+++=天,所以该市一天中,空气中的 2.5PM 浓度不超过75,且2SO 浓度不超过150的概率为640.64100=; (2)由所给数据,可得22⨯列联表为:2SO2.5PM[]0,150(]150,475合计[]0,75641680(]75,11510 10 20 合计7426100(3)根据22⨯列联表中的数据可得222()100(64101610)()()()()80207426n ad bc K a b c d a c b d -⨯⨯-⨯==++++⨯⨯⨯36007.4844 6.635481=≈>, 因为根据临界值表可知,有99%的把握认为该市一天空气中 2.5PM 浓度与2SO 浓度有关.2.(2020年北京市高考数学试卷)某校为举办甲、乙两项不同活动,分别设计了相应的活动方案:方案一、方案二.为了解该校学生对活动方案是否支持,对学生进行简单随机抽样,获得数据如下表:男生女生支持不支持支持不支持方案一 200人 400人 300人 100人 方案二350人250人150人250人假设所有学生对活动方案是否支持相互独立.(Ⅰ)分别估计该校男生支持方案一的概率、该校女生支持方案一的概率;(Ⅱ)从该校全体男生中随机抽取2人,全体女生中随机抽取1人,估计这3人中恰有2人支持方案一的概率;(Ⅲ)将该校学生支持方案二的概率估计值记为0p ,假设该校一年级有500名男生和300名女生,除一年级外其他年级学生支持方案二的概率估计值记为1p ,试比较0p 与 1p 的大小.(结论不要求证明)【详解】(Ⅰ)该校男生支持方案一的概率为2001200+4003=,该校女生支持方案一的概率为3003300+1004=; (Ⅱ)3人中恰有2人支持方案一分两种情况,(1)仅有两个男生支持方案一,(2)仅有一个男生支持方案一,一个女生支持方案一,所以3人中恰有2人支持方案一概率为:2121311313()(1)()(1)3433436C -+-=; (Ⅲ)01p p <16.(2021·山东淄博市·高三二模)某市在司法知识宣传周活动中,举办了一场司法知识网上答题考试,要求本市所有机关、企事业单位工作人员均要参加考试,试题满分为100分,考试成绩大于等于90分的为优秀.考试结束后,组织部门从所有参加考试的人员中随机抽取了200人的成绩作为统计样本,得到样本平均数为82、方差为64.假设该市机关、企事业单位工作人员有20万人,考试成绩ξ服从正态分布()82,64N . (1)估计该市此次司法考试成绩优秀者的人数有多少万人?(2)该市组织部门为调动机关、企事业单位工作人员学习司法知识的积极性,制定了如下奖励方案:所有参加考试者,均可参与网上“抽奖赢手机流量”活动,并且成绩优秀者可有两次抽奖机会,其余参加者抽奖一次.抽奖者点击抽奖按钮,即随机产生一个两位数()10,11,,99,若产生的两位数的数字相同,则可获赠手机流量5G ,否则获赠手机流量1G .假设参加考试的所有人均参加了抽奖活动,试估计此次抽奖活动赠予的手机流量总共有多少G ? 参考数据:若()2,N ξμσ,则()0.68P μσξμσ-<<+=【详解】(1)由题意,随机抽取了200人的成绩作为统计样本,得到样本平均数为82、方差为64, 即82,8μσ==,所以考试成绩优秀者得分90ξ≥,即ξμσ≥+. 又由()0.68P μσξμσ-<<+≈,得()()110.680.162P ξμσ≥+≈-=. 所以估计该市此次司法考试成绩优秀者人数可达200.16 3.2⨯=万人. (2)设每位抽奖者获赠的手机流量为X G ,则X 的值为1,2,5,6,10. 可得()()9756110.16101000P X ==-⨯=, ()29129620.161010000P X ⎛⎫==⨯=⎪⎝⎭, ()()184510.16101000P X ==-⨯=, ()9128860.162101010000P X ==⨯⨯⨯=,()2116100.161010000P X ⎛⎫==⨯=⎪⎝⎭. 所以随机变量X 的分布列为:所以()125610 1.62410001000010001000010000E X =⨯+⨯+⨯+⨯+⨯=(G ). 因此,估计此次抽奖活动赠予的手机流量总值为20 1.62432.48⨯=(万G ).17.(2021·山东德州市·高三二模)2020年1月15日教育部制定出台了《关于在部分高校开展基础学科招生改革试点工作的意见》(也称“强基计划”),《意见》宣布:2020年起不再组织开展高校自主招生工作,改为实行强基计划,强基计划主要选拔培养有志于服务国家重大战略需求且综合素质优秀或基础学科拔尖的学生,据悉强基计划的校考由试点高校自主命题,校考过程中通过笔试后才能进入面试环节.(1)为了更好的服务于高三学生,某研究机构对随机抽取的5名高三学生的记忆力x 和判断力y 进行统计分析,得到下表数据请用相关系数说明该组数据中y 与x 之间的关系可用线性回归模型进行拟合,并求y 关于x 的线性回归方程ˆˆˆya bx =+. (2)现有甲、乙两所大学的笔试环节都设有三门考试科目且每门科目是否通过相互独立,若某考生报考甲大学,每门笔试科目通过的概率均为25,该考生报考乙大学,每门笔试科目通过的概率依次为m ,14,23,其中01m <<,根据规定每名考生只能报考强基计划的一所试点高校,若以笔试过程中通过科目数的数学期望为依据作出决策,求该考生更希望通过乙大学笔试时m 的取值范围. 参考公式:①线性相关系数ni ix y nxyr -=∑r 的绝对值在0.95以上(含0.95)认为线性相关性较强;否则,线性相关性较弱.②对于一组数据()11,x y ,()22,x y ,…(),n n x y ,其回归直线方程ˆˆˆy bx a =+的斜率和截距的最小二乘法估计公式分别为:1221ˆni ii nii x y nxybxnx ==-=-∑∑,ˆˆa y bx=-. 【详解】(1)根据表格中的数据,可得689101295x ++++==,2345645y ++++==,511224365072194i ii x y==++++=∑,521366481100144425i i x ==++++=∑,5214916253690ii y==++++=∑,可得相关系数0.990.95r ==≈>, 故y 与x 之间的关系可用线性回归模型进行拟合,又由1221194594ˆ0.7425581ni ii nii x y nxybxnx ==--⨯⨯===-⨯-∑∑,可得ˆ490.7 2.3a =-⨯=-.综上回归直线方程ˆ 2.30.7yx =-+. (2)通过甲大学的考试科目数235XB ⎛⎫ ⎪⎝⎭,,则()26355E X =⨯=,设通过乙大学的考试科目数为Y ,则Y 可能的取值为0,1,2,3,则()()()12101111434P Y m m ⎛⎫⎛⎫==---=- ⎪⎪⎝⎭⎝⎭,()()()121212711111111434343123P Y m m m m ⎛⎫⎛⎫⎛⎫⎛⎫==--+-⨯⨯-+-⨯-⨯=- ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,()()121212152111434343612P Y m m m m ⎛⎫⎛⎫==⨯-+⨯-⨯+-⨯⨯=+ ⎪ ⎪⎝⎭⎝⎭,()1213436P Y m m ==⨯⨯=,所以()711511123123612612E Y m m m m ⎛⎫=-+++⨯=+ ⎪⎝⎭, 因为该考生更希望通过乙大学的笔试考试,所以()()E Y E X >,即116125m +>, 又由01m <<,解得17160m <<, 即为该考生更希望通过乙大学的笔试时m 的范围为17,160⎛⎫⎪⎝⎭. 18.(2021·山东高三二模)2020年是全面建成小康社会之年,是脱贫攻坚收官之年.上坝村是乡扶贫办的科学养鱼示范村,为了调查上坝村科技扶贫成果,乡扶贫办调查组从该村办鱼塘内随机捕捞两次,上午进行第一次捕捞,捕捞到60条鱼,共105kg ,称重后计算得出这60条鱼质量(单位kg )的平方和为200.41,下午进行第二次捕捞,捕捞到40条鱼,共66kg .称重后计算得出这40条鱼质量(单位kg )的平方和为117. (1)请根据以上信息,求所捕捞100条鱼儿质量的平均数z 和方差2s ;(2)根据以往经验,可以认为该鱼塘鱼儿质量X 服从正态分布()2,N μσ,用z 作为μ的估计值,用2s 作为2σ的估计值.随机从该鱼塘捕捞一条鱼,其质量在[1.21,2.71]的概率是多少?(3)某批发商从该村鱼塘购买了5000条鱼,若从该鱼塘随机捕捞,记ξ为捕捞的鱼儿质量在[1.21,2.71]的条数,利用(2)的结果,求ξ的数学期望.附:(1)数据1t ,2t ,…n t 的方差()22221111n n i i i i s t tt nt n n ==⎛⎫=-=- ⎪⎝⎭∑∑,(2)若随机变量X 服从正态分布()2,N μσ,则()0.6827P X μσμσ-≤≤+=;(22)0.9545P X μσμσ-≤≤+=;(33)0.9973P X μσμσ-≤≤+=.【详解】 (1)10566 1.716040z +==+,22200.411171.710.25100s +=-=.(2)该鱼塘鱼儿质量()2~,X N μσ,其中 1.71μ=,20.25σ=,所以(1.21 2.71)(2)P X P X μσμσ≤≤=-≤≤+.()(22)0.68270.95450.818622P X P X μσμσμσμσ-≤≤++-≤≤++===(3)由题意可知~(5000,0.8186)B ξ, 所以ξ的数学期望为()50000.81864093E ξ=⨯=.19.(2021·山东枣庄市·)天问一号火星探测器于2021年2月10日成功被火星捕获,实现了中国在深空探测领域的技术跨越.为提升探测器健康运转的管理水平,西安卫星测控中心组织青年科技人员进行探测器遥控技能知识竞赛,已知某青年科技人员甲是否做对每个题目相互独立,做对A ,B ,C 三道题目的概率以及做对时获得相应的奖金如表所示.规则如下:按照A ,B ,C 的顺序做题,只有做对当前题目才有资格做下一题. (1)求甲获得的奖金X 的分布列及均值;(2)如果改变做题的顺序,获得奖金的均值是否相同?如果不同,你认为哪个顺序获得奖金的均值最大?(不需要具体计算过程,只需给出判断)【详解】(1)解:分别用A,B,C表示做对题目A,B,C的事件,则A,B,C相互独立.由题意,X的可能取值为0,1000,3000,6000.()()00.2P X P A===;()()10000.80.40.32P X P AB===⨯=;()()30000.80.60.60.288P X P ABC===⨯⨯=;()()60000.80.60.40.192P X P ABC===⨯⨯=.所以甲获得的奖金X的分布列为:X0 1000 3000 6000P0.2 0.32 0.288 0.192()00.210000.3230000.28860000.1922336E X=⨯+⨯+⨯+⨯=.(2)改变做题的顺序,获得奖金的均值互不相同.决策的原则是选择期望值()E X大的做题顺序,这称为期望值原则.做对的概率大表示题目比较容易,做对的概率小表示题目比较难.猜想:按照由易到难的顺序做题,即按照题目A,B,C的顺序做题,得到奖金的期望值最大. 20.(2021·山东临沂市·高三其他模拟)下围棋既锻炼思维又愉悦身心,有益培养人的耐心和细心,舒缓大脑并让其得到充分休息.现某学校象棋社团为丰富学生的课余生活,举行象棋大赛,要求每班选派一名象棋爱好者参赛.现某班有12位象棋爱好者,经商议决定采取单循环方式进行比赛,(规则采用“中国数目法”,没有和棋.)即每人进行11轮比赛,最后靠积分选出第一名去参加校级比赛.积分规则如下(每轮比赛采取5局3胜制,比赛结束时,取胜者可能会出现3:0,3:1,3:2.三种赛式).3:0或3:1 3:2胜者积分3分2分负者积分0分1分9轮过后,积分榜上的前两名分别为甲和乙,甲累计积分26分,乙累计积分22分.第10轮甲和丙比赛,设每局比赛甲取胜的概率均为23,丙获胜的概率为13,各局比赛结果相互独立.(1)①在第10轮比赛中,甲所得积分为X ,求X 的分布列; ②求第10轮结束后,甲的累计积分Y 的期望;(2)已知第10轮乙得3分,判断甲能否提前一轮获得累计积分第一,结束比赛.(“提前一轮”即比赛进行10轮就结束,最后一轮即第11轮无论乙得分结果如何,甲累计积分最多)?若能,求出相应的概率;若不能,请说明理由. 【详解】(1)①由题意,随机变量X 的可能取值为3,2,1,0,则()322322221631333327P X C ⎛⎫⎛⎫⎛⎫⎛⎫==+-= ⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭, ()2224222162133381P X C ⎛⎫⎛⎫⎛⎫==⋅-⋅= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭, ()2324228113381P X C ⎛⎫⎛⎫==⋅-= ⎪ ⎪⎝⎭⎝⎭, ()331322210113339P X C ⎛⎫⎛⎫⎛⎫==-+-= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,所以X 的分布列为X 32 1 0P16271681 881 19②随机变量Y 的可能取值为29,28,27,26, 则()161681229029282726278181981E Y =⨯+⨯+⨯+⨯= ()2若3X =,则甲10轮后的总积分为29分,乙即便第10轮和第11轮都得3分,则11轮过后的总积分是28分,2928>,所以甲如果第10轮积3分,则可提前一轮结束比赛,其概率为()16327P X ==. (限时:30分钟)1.2017年国家发改委、住建部发布了《生活垃圾分类制度实施方案》规定46个城市在2020年底实施生活垃圾强制分类,垃圾回收、用率要达35%以上.某市在实施垃圾分类之前,对该市大型社区(即人口数量在1万左右)一天产生的垃圾量(单位:吨)进行了调查.已知该市这样的大型社区有200个,如图是某天从中随机抽取50个社区所产生的垃圾量绘制的频率分布直方图.现将垃圾量超过14吨/天的社区称为“超标”社区.(1)根据上述资料,估计当天这50个社区垃圾量的平均值x (四舍五入精确到整数);(2)若当天该市这类大型社区的垃圾量()~,9X N μ,其中μ近似为(1)中的样本平均值x ,请根据X 的分布估计这200个社区中“超标”社区的个数(四舍五入精确到整数);(3)市环保部门决定对样本中“超标”社区的垃圾来源进行调查,现从这些社区中随机抽取3个进行重点监控,设Y 为其中当天垃圾量至少为16吨的社区个数,求Y 的分布列与数学期望. 附:()0.6827P X μσμσ-<≤+≈;(22)0.9545P X μσμσ-<≤+≈;(33)0.9974P X μσμσ-<≤+≈.【详解】(1)由频率分布直方图得该样本中垃圾量为[)4,6,[)6,8,[)8,10,[)10,12,[)12,14,[)14,16,[]16,18的频率分别为0.08,0.1,0.2,0.24,0.18,0.12,0.08,50.0870.1090.20110.24130.18150.12170.0811.0411,x =⨯+⨯+⨯+⨯+⨯+⨯+⨯=≈所以当天这50个社区垃圾量的平均值为11吨; (2)由(1)知11μ=,29σ=,3σ∴=,10.6827(14)()0.158652P X P X μσ-∴>=>+==, 所以这200个社区中“超标”社区的个数为2000.1586532⨯≈;(3)由(1)得样本中当天垃圾量为[)14,16的社区有500.126⨯=个,垃圾量为[)16,18的社区有500.084⨯=个,所以Y 的可能取值为0,1,2,3,363101(0)6C P Y C ===,21643101(1)2C C P Y C ===,12643103(2)10C C P Y C ===,343101(3)30C P Y C ===,Y ∴的分布列为()01236210305E Y ∴=⨯+⨯+⨯+⨯=.2.到2020年年底,经过全党全国各族人民共同努力,现行标准下9899万农村贫困人口全部脱贫,832个贫困县全部摘帽,12.8万个贫困村全部出列,区域性整体贫困得到解决,完成了消除绝对贫困的艰巨任务.在接下来的5年过渡期,为巩固脱贫成果,将继续实行“四个不摘”,某市工作小组在2021年继续为已脱贫群众的生产生活进行帮扶,工作小组经过多方考察,引进了一种新的经济农作物,并指导一批农户于2021年初开始种植.已知该经济农作物每年每亩的种植成本为1000元,根据前期各方面调查发现,由于天气、市场经济等因素的影响,近几年该经济农作物的亩产量与每千克售价具有随机性,且互不影响,其具体情况如下表:(1)设2021年当地某农户种植一亩该经济农作物的纯收入为X 元,求X 的分布列;(2)已知当地某农户在2021年初种植了3亩该经济农作物,假设各亩地的产量相互独立,求该农户在2021年通过种植该经济农作物所获得的纯收入超过12000元的概率. (注:纯收入=种植收入-种植成本) 【详解】(1)由题知一亩地的种植收入可能为4000,6000,9000,故X 的所有可能取值为3000,5000,8000(3000)0.40.250.1P X ==⨯=,(5000)0.40.750.60.250.45P X ==⨯+⨯=, (8000)0.60.750.45P X ==⨯= X 的分布列为:P 0.1 0.45 0.45(2)纯收入超过12000元,即3亩地种植收入超过15000元, 若价格为10元/kg ,则3亩地的总产量超过1500kg , 因为40026001500⨯+<,所以符合条件的概率为()22330.750.250.750.40.3375C ⨯⨯+⨯=.若价格为15元/kg ,则3亩地的总产量超过1000kg ,34001000⨯>, ∴P (纯收入超过1200元)0.60.33750.9375=+=3.第24届冬季奥林匹克运动会,将于2022年2月4日至2022年2月20日在北京举行实践“绿色奥运、科技奥运、人文奥运”理念,举办一届“有特色、高水平”的奥运会,是中国和北京的庄严承诺,也是全世界的共同期待.为宣传北京冬奥会,激发人们参与冬奥会的热情,某市开展了关于冬奥知识的有奖问答.从参与的人中随机抽取100人,得分情况如下:(1)得分在80分以上称为“优秀成绩”,从抽取的100人中任取2人,记“优秀成绩”的人数为X ,求X 的分布列及数学期望;(2)由直方图可以认为,问卷成绩值Y 服从正态分布()2,N μσ,其中μ近似为样本平均数,2σ近似为样本方差.①求(77.289.4)P Y <<;②用所抽取100人样本的成绩去估计城市总体,从城市总人口中随机抽出2000人,记Z 表示这2000人中分数值位于区间(77.2,89.4)的人数,利用①的结果求()E Z .15012.2≈14612.1≈,()0.6826P Y μσμσ-<<+=,(22)0.9544P Y μσμσ-<<+=,(33)0.9974P Y μσμσ-<<+=.【详解】(1)得分80以上的人数为10010(0.0080.002)10⨯⨯+=,X 可能取值为0,1,22902100C 89(0)C 110P X ===,1110902100C C 2(1)C 11P X ===,2102100C 1(2)C 110P X ===, X 分布列为:()012110111105E X =⨯+⨯+⨯=. (2)10(350.002450.009550.022650.033750.024850.008950.002)x =⨯⨯+⨯+⨯+⨯+⨯+⨯+⨯65=22222(3565)100.002(4565)100.009(5565)100.022(7565)100.024s =-⨯⨯+-⨯⨯+-⨯⨯+-⨯⨯ 22(8565)100.008(9565)100.002150+-⨯⨯+-⨯⨯=取65x μ==,12.2σ==①1(77.289.4)[(22)()]0.13592P Y P Y P Y μσμσμσμσ<<=-<<+--<<+= ②~(2000,0.1359)Z B ,()20000.1359271.8E Z =⨯=4.在刚刚过去的寒假,由于新冠疫情的影响,哈尔滨市的A 、B 两所同类学校的高三学年分别采用甲、乙两种方案进行线上教学,为观测其教学效果,分别在两所学校的高三学年各随机抽取60名学生,对每名学生进行综合测试评分,记综合评分为80及以上的学生为优秀学生,经统计得到两所学校抽取的学生中共有72名优秀学生.(1)用样本估计总体,以频率作为概率,若在A 、B 两个学校的高三学年随机抽取3名学生,求所抽取的学生中的优秀学生数的分布列和数学期望;(2)已知A 学校抽出的优秀学生占该校抽取总人数的23,填写下面的列联表,并判断能否在犯错误的概率不超过0.1的前提下认为学生综合测试评分优秀与教学方案有关.附:()()()()()22n ad bc K a b c d a c b d -=++++,其中 n a b c d =+++. 【详解】()1由已知,学生为优秀的概率为720.6120=, 记优质学生数为X ,由题意知,X 的所有可能取值为0,1,2,3.则()()30300.40.064P X C ===,()()23110.40.60.288P X C ===, ()()22320.40.60.432P X C ===,()()33330.60.216P X C ===.故X 的分布列为所以X 的数学期望为()30.6 1.8E X =⨯=.()2填写列联表如下计算()2212040282032 2.22 2.70660607248k ⨯-⨯=≈<⨯⨯⨯,所以不能在犯错误的概率不超过0.1的前提下认为学生综合测试评分优秀与教学方案有关.5.为了调查A 地区200000名学生寒假期间在家的课外阅读时间,研究人员随机抽取了20000名学生作调查,所得结果统计如下表所示:(1)若阅读的时间Z 近似地服从正态分布(),64N μ,其中μ为这20000名学生阅读时间的平均值,试估计这200000名学生中阅读时间在(]6,38的学生人数(同一组数据用该组区间的中点值为代表); (2)以频率估计概率,若从全体学生中随机抽取5人,记阅读时间在(]30,40中的人数为X ,求X 的分布列和数学期望()E X ;(3)为了调查阅读时间与性别是否具有相关性,研究人员从这20000名学生中再随机抽取500名男生和500名女生作进一步调查,所得数据如下表所示,判断是否有99.9%的把握认为阅读时间与性别具有相关性.附:若()2~,Z N μσ,则()0.6827P Z μσμσ-<≤+=,()220.9545P Z μσμσ-<≤+=,()330.9973P Z μσμσ-<≤+=.()()()()()22n ad bc K a b c d a c b d -=++++.【详解】(1)依题意,5200153700255300358000452300555003020000μ⨯+⨯+⨯+⨯+⨯+⨯==,则()230,8ZN ,故()()0.68270.997363830.842P Z P Z μσμσ+<≤=-<≤+==,故所求人数约为2000000.84168000⨯=人.(2)由题意,可得阅读时间在(]30,40的人数所占的频率为80002200005=,所以2~5,5XB ⎛⎫⎪⎝⎭,X 的可能取值为0,1,2,3,4,5.所以()53243053125P X ⎛⎫=== ⎪⎝⎭,()4152********C 553125625P X ⎛⎫⎛⎫==== ⎪⎪⎝⎭⎝⎭, ()23252310802162C 553125625P X ⎛⎫⎛⎫==== ⎪ ⎪⎝⎭⎝⎭,()3235237201443553125625P X C ⎛⎫⎛⎫==== ⎪ ⎪⎝⎭⎝⎭, ()24523240484C 553125625P X ⎛⎫⎛⎫====⎪ ⎪⎝⎭⎝⎭,()5232553125P X ⎛⎫=== ⎪⎝⎭, 故X 的分布列为:故()525E X =⨯=. (3)完善列联表如下:由于()221000300400200100166.6710.828500500400600K ⨯⨯-⨯=≈>⨯⨯⨯,所以有99.9%的把握认为阅读时间与性别具有相关性.。
2020年高考数学(理)之高频考点解密26 统计与概率的综合(解析版)

解密26统计与概率的综合考点1 古典概型与统计交汇考查题组一古典概型与用样本估计总体交汇考查调研1 五四青年节活动中,高三(1)、(2)班都进行了3场知识辩论赛,比赛得分情况的茎叶图如图所示(单位:分),其中高三(2)班得分有一个数字被污损,无法确认,假设这个数字x具有随机性(x∈N),那么高三(2)班的平均得分大于高三(1)班的平均得分的概率为A.34B.13C.35D.25【答案】D【解析】由茎叶图可得高三(1)班的平均分为x̅=89+92+933=2743,高三(2)的平均分为y̅=88+(90+x)+913=269+x3,由x̅<y̅,得10>x>5,又x∈N,所以x可取6,7,8,9,故所求的概率为P=410=25,故选D.调研2 某高中在今年的期末考试历史成绩中随机抽取n名考生的笔试成绩,作出其频率分布直方图如图所示,已知成绩在[75,80)中的学生有1名,若从成绩在[75,80)和[90,95)两组的所有学生中任取2名进行问卷调查,则2名学生的成绩都在[90,95)中的概率为A.23B.12C.35D.34【答案】C【解析】因为在[75,80)的频率为5×0.01=0.05,所以n=10.05=20,在[90,95)的频率为1-5×(0.01+0.02+0.06+0.07)=0.2,所以在[90,95)中的学生人数为20×0.2=4,所以[75,80)中有1个人,[90,95)中有4个人,共5个人,从5个人中任意取2个人共有10个基本事件,2名学生的成绩都在[90,95)中的基本事件有6个,所以由古典概型的概率计算公式得所求概率为610=35.故选C.调研3 五省优创名校2019届高三联考(全国I卷)数学试题)袋子中有四个小球,分别写有“美、丽、中、国”四个字,有放回地从中任取一个小球,直到“中”“国”两个字都取到就停止,用随机模拟的方法估计恰好在第三次停止的概率.利用电脑随机产生0到3之间取整数值的随机数,分别用0,1,2,3代表“中、国、美、丽”这四个字,以每三个随机数为一组,表示取球三次的结果,经随机模拟产生了以下18组随机数:232 321 230 023 123 021 132 220 001231 130 133 231 031 320 122 103 233由此可以估计,恰好第三次就停止的概率为 A .19 B .318 C .29D .518【答案】C【解析】因为随机模拟产生18组随机数,由随机产生的随机数可知,恰好第三次就停止的有: 021,001,031,130共4个基本事件,根据古典概型概率公式可得,恰好第三次就停止的概率为418=29, 故选C.【名师点睛】本题主要考查随机数的应用以及古典概型概率公式,属于中档题. 在解答古典概型概率题时,首先求出样本空间中基本事件的总数n ,其次求出概率事件中含有多少个基本事件m ,然后根据公式P =mn 求得概率.调研4 为了解某市的交通状况,现对其6条道路进行评估,得分分别为:5,6,7,8,9,10.规定评估的平均得分与全市的总体交通状况等级如表(1)求本次评估的平均得分,并参照上表估计该市的总体交通状况等级.(2)用简单随机抽样方法从这6条道路中抽取2条,它们的得分组成一个样本,求该样本的平均数与总体的平均数之差的绝对值不超0.5的概率. 【答案】(1)7.5,等级为合格;(2)715.【解析】(1)6条道路的平均得分为16(5+6+7+8+9+10)=7.5.∴该市的总体交通状况等级为合格.(2)设A 表示事件“样本平均数与总体平均数之差的绝对值不超过0.5”,从6条道路中抽取2条的得分组成的所有基本事件为:(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10),共15个基本事件.事件A 包括(5,9),(5,10),(6,8),(6,9),(6,10),(7,8),(7,9)共7个基本事件, ∴P (A )=715,即该样本的平均数与总体的平均数之差的绝对值不超0.5的概率为715.【名师点睛】本题考查的知识点是古典概型,平均数,古典概型要求所有结果出现的可能性都相等,强调所有结果中每一结果出现的概率都相同.解决问题的步骤是:计算满足条件的基本事件个数,及基本事件的总个数,然后代入古典概型计算公式进行求解,属于中等题.☆技巧点拨☆求解古典概型与用样本估计总体交汇问题的模型(1)识图:能读懂已知频率分布直方图或茎叶图所隐含的信息并进行信息提取.(2)转化:对文字语言较多的题,需要根据题目信息耐心阅读,步步实现文字语言与符号语言间的转化. (3)计算:对频率分布直方图或茎叶图所反馈的信息进行提取,并结合古典概型的概率公式进行运算.题组二 古典概型与回归分析、独立性检验的交汇考查调研 5 随着我国中医学的发展,药用昆虫的使用相应愈来愈多.每年春暖以后至寒冬前,是昆虫大量活动与繁殖季节,易于采集各种药用昆虫.已知一只药用昆虫的产卵数y 与一定范围内的温度x 有关,于是科研人员在3月份的31天中随机挑选了5天进行研究,现收集了该种药用昆虫的5组观测数据如下表:(1)从这5天中任选2天,记这两天药用昆虫的产卵分别为m ,n ,求事件“m ,n 均不小于25”的概率; (2)科研人员确定的研究方案是:先从这五组数据中任选2组,用剩下的3组数据建立y 关于x 的线性回归方程,再对被选取的2组数据进行检验.(ⅰ)若选取的是3月2日与30日的两组数据,请根据3月7日、15日和22日这三天的数据,求出y 关于x 的线性回归方程;(ⅱ)若由线性回归方程得到的估计数据与选出的检验数据的误差均不超过2个,则认为得到的线性回归方程是可靠的,试问(ⅰ)中所得的线性回归方程是否可靠?附:回归直线的斜率和截距的最小二乘估计公式分别为()()()121niii nii x x y y b x x ∧==--=-∑∑ ,a ∧=y −b ∧⋅x .【答案】(1)310(2)(ⅰ)y ∧=52x −3,(ⅱ)可靠,见解析.【解析】(1)依题意得,m 、n 的所有情况有:{23,25}、{23,30}、{23,26}、{23,16}、{25,30}、 {25,26}、{25,16}、{30,26}、{30,16}、{26,16},共有10个;设“m 、n 均不小于25”为事件A ,则事件A 包含的基本事件有{25,30}、{25,26}、{30,26}, 所以P(A)=310,故事件A 的概率为310.(2)(ⅰ)由数据得x =12,y =27,()()315i i i x x y y =--=∑,()3212i i x x =-=∑ ,()()()312152iii ni i x x y y b x x ∧==--==-∑∑, 552712 3.22a y x ∧=-=-⨯=- 所以y 关于x 的线性回归方程为y ∧=52x −3.(ⅱ)由(ⅰ)知,y 关于x 的线性回归方程为y ∧=52x −3.当x =10时,y ∧=52×10−3=22,|22−23|<2.当x =8时,y ∧=52×8−3=17,|17−16|<2.所以,所得到的线性回归方程y ∧=52x −3是可靠的.调研6 某学校研究性学习小组对该校高三学生视力情况进行调查,在高三的全体1000名学生中随机抽取了 100名学生的体检表,并得到如图的频率分布直方图.(1)若直方图中后四组的频数成等差数列,试估计全年级视力在4.8以下的人数;(2)学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对年级名次1∼50名和951∼1000名的学生进行了调查,得到上表中数据,根据表中的数据,能否在犯错的概率不超过0.05的前提下认为视力与学习成绩有关系?附:K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)【答案】(1)610;(2)见解析.【解析】(1)设各组的频率为,由图可知,第一组有3人,第二组7人,第三组27人,因为后四组的频数成等差数列,所以后四组频数依次为27,24,21,18,所以视力在4.8以下的频数为3+7+27+24=61人.故全年级视力在4.8以下的人数约为1000×61100=610人.(2)由已知得,Κ2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)=100×(45×20−5×30)250×50×75×25=12>3.841,因此在犯错误的概率不超过0.05的前提下认为视力与学习成绩有关系.调研7 某市一中毕业生有3000名,二中毕业生有2000名.为了研究语文高考成绩是否与学校有关,现采用分层抽样的方法,从中抽取100名学生,先统计了他们的成绩(折合成百分制),然后按“一中”、“二中”分为两组,再将成绩分为5组,[50,60),[60,70),[70,80),[80,90),[90,100],分别加以统计,得到如图所示的频率分布直方图:(1)从成绩在90分(含90分)以上的学生中随机抽取2人,问至少抽到一名学生是“一中”的概率;(2)规定成绩在70分以下为“成绩不理想”,请根据已知条件构造2×2列联表,并判断能否在犯错误的概率不超过0.1的前提下认为“成绩理想不理想与所在学校有关”?附:K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d),n=a+b+c+d.【答案】(1)910;(2)见解析.【解析】(1)由分层抽样抽取的100名学生中,一中有60名,二中有40名,所以成绩在90分以上的人中,一中有60×0.005×10=3人;二中有40×0.005×10=2人,故至少抽到一名学生是“一中”的概率为p=1−110=910.(2)2×2列联表如下:将列联表中的数据代入公式,可得:K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)=100×(15×26−14×45)229×71×60×40≈1.1656<2.706,所以不能在犯错误的概率不超过0.1的前提下认为“成绩理想不理想与所在学校有关”.调研8 某企业生产某种产品,为了提高生产效益,通过引进先进的生产技术和管理方式进行改革,并对改革后该产品的产量x(万件)与原材料消耗量y(吨)及100件产品中合格品与不合格品数量作了记录,以便和改革前作对照分析,以下是记录的数据:表一:改革后产品的产量和相应的原材料消耗量表二:改革前后定期抽查产品的合格数与不合格数(1)请根据表一提供数据,用最小二乘法求出y 关于x 的线性回归方程y ∧=b ∧x +a ∧.(2)已知改革前生产7万件产品需要6.5吨原材料,根据回归方程预测生产7万件产品能够节省多少原材料?(3)请根据表二提供的数据,判断是否有90%的把握认为“改革前后生产的产品的合格率有差异”?附参考公式与数据:1122211()()ˆ()n niii ii i nniii i x x y y x y nx ybx x xnx====---==--∑∑∑∑,ˆˆay b x =-⋅; K 2=2()()()()()n ad bc a b c d a c b d -++++;【答案】(1)线性回归方程为y ̂=0.7x +0.35;(2)见解析;(3)见解析. 【解析】(1)由表一得x̅=3+4+5+64=4.5,y ̅=2.5+3+4+4.54=3.5,422221345ii x==++∑+62=86,∴b̂=3×2.5+4×3+5×4+6×4.5−4×4.5×3.586−4×4.52=66.5−635=0.7,a ̂=3.5−0.7×4.5=0.35,所以所求线性回归方程为y ̂=0.7x +0.35. (2)当x =7时,y ̂=0.7×7+0.35=5.25, 从而能够节省6.5−5.25=1.25吨原材料. (3)由表二得K 2=200×(90×15−85×10)2100×100×175×25=87<2.706,因此,没有90%的把握认为“改革前后生产的产品的合格率有差异”.☆技巧点拨☆古典概型与回归分析、独立性检验的交汇问题的解题策略(1)古典概型的概率问题,关键是正确找出基本事件总数和所求事件包含的基本事件数,然后利用古典概型的概率计算公式计算;当基本事件总数较少时,用列举法把所有的基本事件一一列举出来,要做到不重不漏,有时可借助表格,树状图列举;同时注意判断是古典概型还是几何概型,基本事件前者是有限的,后者是无限的,两者都有等可能性.(2)求回归直线方程的一般步骤如下:①作出散点图,依据问题所给的数据在平面直角坐标系中描点,观察点的分布是否呈条状分布,即是否在一条直线附近,从而判断两变量是否具有线性相关关系;②当两变量具有线性相关关系时,求回归系数ˆˆa b、,写出回归直线方程. (3)回归直线方程ˆˆˆya bx =+中的ˆb 表示x 每增加1个单位时,ˆy 的变化量的估计值为ˆb . (4)可以利用回归直线方程ˆˆˆya bx =+预报在x 取某个值时y 的估计值. (5)由于回归直线方程中的系数ˆa和ˆb 是通过样本估计而来的,存在着误差,这种误差可能导致预报结果有偏差.(6)独立性检验是用来考察两个分类变量是否有关系,计算随机变量的观测值K 2,K 2越大,说明两个分类变量有关系的可能性越大.考点2 随机变量及其分布与统计交汇考查题组一 随机变量及其分布与用样本估计总体交汇考查调研1 某高中随机抽取部分高一学生调查其上学路上所需的时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中上学路上所需时间的范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100]. (1)求直方图中x 的值;(2)如果上学路上所需时间不少于1小时的学生可申请在学校住宿,若招生1200名,请估计新生中有多少名学生可以申请住宿;(3)从学校的高一学生中任选4名学生,这4名学生中上学路上所需时间少于 40分钟的人数记为 X ,求X 的分布列和数学期望.(以直方图中的频率作为概率)【答案】( 1 ) 0.0025;(2) 180;(3)见解析.【解析】( 1 )由直方图可得20×(2x +0.005+0.0175+0.0225)=1. ∴x =0.0025 .(2)新生上学所需时间不少于1小时的频率为:20×(0.005+0.0025)=0.15. ∵1200×0.15=180,∴估计1200名新生中有180名学生可以申请住宿. (3)X 的可能取值为0,1,2,3,4.由直方图可知,每位学生上学所需时间少于40分钟的概率为25,P(X =0)=(35)4=81625,P(X =1)=C 41(25)(35)3=216625, P(X =2)=C 42(25)2(35)2=216625,P(X =3)=C 43(25)3(35)=96625,P(X =4)=(25)4=16625.则X 的分布列为:故EX =0×81625+1×216625+2×216625+3×96625+4×16625=85. 即X 的数学期望为85.调研2 在十九大“建设美丽中国”的号召下,某省级生态农业示范县大力实施绿色生产方案,对某种农产品进行改良,为了检查改良效果,从中随机抽取100件作为样本,称出它们的重量(单位:克),重量分组区间为[10,20],(20,30],(30,40],(40,50],由此得到样本的重量频率分布直方图(如图). (1)求a 的值;(2)根据样本数据,估计样本中个体的重量的众数与平均值;(3)以样本数据来估计总体数据,从改良的农产品中随机抽取3个个体,其中重量在[10,20]内的个体的个数为X ,求X 的分布列和数学期望.(以直方图中的频率作为概率)【答案】(1)0.03; (2)25,29.6克; (3)35.【解析】(1)由题意,得(0.02+0.032+a +0.018)×10=1,解得a =0.03. (2)由最高矩形所对应区间中点的横坐标为25, 可估计样本个体重量的众数约为25克,而100件样本重量的平均值为x =0.2×15+0.32×25+0.3×35+0.18×45=29.6(克), 故估计样本中个体重量的平均值约为29.6克.(3)利用样本估计总体,该样本中个体的重量在[10,20]内的概率为0.2, 则X~B(3,15), X =0,1,2,3,P(X =0)=C 30×(1−15)3=64125, P(X =1)=C 31×(1−15)2×15=48125, P(X =2)=C 32×(1−15)×(15)2=12125, P(X =3)=C 33×(15)3=1125.∴X 的分布列为即E(X)=0×64125+1×48125+2×12125+3×1125=35.【名师点睛】本题考查了频率直方图下求平均数与众数和概率的计算问题,也考查了二项分布的应用问题,是中档题.题组二 随机变量及其分布与独立性检验的交汇考查调研3 心理学家发现视觉和空间能力与性别有关,某高中数学兴趣小组为了验证这个结论,从兴趣小组中抽取50名同学(男30女20),给所有同学几何题和代数题各一题,让各位同学自由选择一道题进行解答.选题情况如下表:(单位:人)(1)能否据此判断有97.5%的把握认为视觉和空间能力与性别有关?(2)将以上列联表中女生选做几何题的频率作为概率,从该校1500名女生中随机选6名女生,记6名女生选做几何题的人数为X ,求X 的数学期望E(X)和方差D(X).参考公式及数据:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.【解析】(1)由表中数据计算得K 2的观测值为k =50×(22×12−8×8)230×20×30×20=509≈5.556>5.024,∴可以判断有97.5%的把握认为视觉和空间能力与性别有关. (2)以列联表中女生选做几何题的频率作为概率,从该校1500名女生中随机选6名女生,记6名女生选做几何题的人数为X , 则X 服从二项分布X ∼B (6,25) ,根据二项分布的期望公式可得数学期望E(X)为6×25=2.4, 根据二项分布的方差公式可得方差为6×25×35=1.44 .1.(四川省成都市蓉城名校联盟2019-2020学年高三上学期第一次联考)某社会机构为了调查对手机游戏的兴趣与年龄的关系,通过问卷调查,整理数据得如下22⨯列联表:(1)根据列联表,能否有99.9%的把握认为对手机游戏的兴趣程度与年龄有关?(2)若已经从40岁以下的被调查者中用分层抽样的方式抽取了5名,现从这5名被调查者中随机选取3名,求这3名被调查者中恰有1名对手机游戏无兴趣的概率.参考公式及数据:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.【答案】(1)没有 99.9%的把握认为手机游戏的兴趣程度与年龄有关;(2)5. 【思路分析】(1)计算出2K 的观测值k ,根据参考数据判断出没有99.9%的把握认为手机游戏的兴趣程度与年龄有关;(2)利用列举法,结合古典概型概率计算公式,求得所求概率.【解析】(1)由题可得2K 的观测值2100(1050300)10010.8285050455511k ⨯-==<⨯⨯⨯,∴没有99.9%的把握认为手机游戏的兴趣程度与年龄有关.(2)由题得40岁以下的被调查者中用分层抽样的方式抽取的5名人员中有3名对手机游戏很有兴趣, 设为a 、b 、c ;有2名对手机游戏无兴趣,设为d 、e ,从a 、b 、c 、d ,e 中随机选取3名的基本事件有{},,a b c 、{},,a b d 、{},,a b e 、{},,a c d 、{},,a c e 、{},,a d e 、{},,b c d 、{},,b c e 、{},,b d e 、{},,c d e ,共10个.其中d ,e 恰有1个的有{},,a b d 、{},,a b e 、{},,a c d 、{},,a c e 、{},,b c d 、{},,b c e ,共6个 ∴这3名被调查者中恰有1名对手机游戏无兴趣的概率为35. 2.(辽宁省沈阳市沈河区第二中学2019年高三上学期10月月考)汽车尾气中含有一氧化碳(CO ),碳氢化合物(HC )等污染物,是环境污染的主要因素之一,汽车在使用若干年之后排放的尾气中的污染物会出现递增的现象,所以国家根据机动车使用和安全技术、排放检验状况,对达到报废标准的机动车实施强制报废.某环保组织为了解公众对机动车强制报废标准的了解情况,随机调查了100人,所得数据制成如下列联表:(1)若从这100人中任选1人,选到了解机动车强制报废标准的人的概率为35,问是否有95%的把握认为“对机动车强制报废标准是否了解与性别有关”?(2)该环保组织从相关部门获得某型号汽车的使用年限与排放的尾气中CO 浓度的数据,并制成如图所示的折线图,若该型号汽车的使用年限不超过15年,可近似认为排放的尾气中CO 浓度%y 与使用年限t 线性相关,试确定y 关于t 的回归方程,并预测该型号的汽车使用12年排放尾气中的CO 浓度是使用4年的多少倍.参考公式及数据:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.用最小二乘法求线性回归方程系数公式:1221ni ii n i i x ynx ybx nx==-=-∑∑$,a y bx =-$$.【答案】(1)有95%的把握认为“对机动车强制报废标准是否了解与性别有关”;(2)0.07y t =$,4.2倍. 【思路分析】(1)先根据题意计算,,,a b p q 的值,然后求出出2K 的观测值,对照临界值得出结论;(2)由公式计算出ˆa和ˆb ,从而得到y 关于t 的回归方程,把12t =,代入回归方程中,可预测该型号的汽车使用12年排放尾气中的CO 浓度,从而可得答案.【解析】(1)设“从100人中任选1人,选到了解机动车强制报废标准的人”为事件A , 由已知得353()1005b P A +==,所以25a =,25b =,40p =,60q =. 所以2K的观测值2100(25352515) 4.167 3.84140605050k ⨯⨯-⨯=≈>⨯⨯⨯,故有95%的把握认为“对机动车强制报废标准是否了解与性别有关”. (2)由折线图中所给数据计算,得1(246810)65t =⨯++++=, 1(0.20.20.40.60.7)0.425y =⨯++++=,故 2.80.0740b ==$,0.420.0760a =-⨯=$,所以所求回归方程为0.07y t =$.故预测该型号的汽车使用12年排放尾气中的CO 浓度为0.84%, 因为使用4年排放尾气中的CO 浓度为0.2%,所以预测该型号汽车使用12年排放尾气中的CO 浓度是使用4年的4.2倍.【名师点睛】本题考查列联表与独立性检验的应用,以及线性回归方程的求法,解题的关键是熟练掌握公式,考查学生基本的计算能力,属于中档题.3.(2019年10月广东省广州市天河区高考数学一模)某校在一次期末数学测试中,为统计学生的考试情况,从学校的2000名学生中随机抽取50名学生的考试成绩,被测学生成绩全部介于65分到145分之间(满分150分),将统计结果按如下方式分成八组:第一组[65,75),第二组[75,85),…,第八组[135,145],如图是按上述分组方法得到的频率分布直方图的一部分.(1)求第七组的频率,并完成频率分布直方图;(2)用样本数据估计该校的2000名学生这次考试成绩的平均分(同一组中的数据用该组区间的中点值代表该组数据平均值);(3)若从样本成绩属于第六组和第八组的所有学生中随机抽取2名,求他们的分差的绝对值小于10分的概率.【答案】(1)0.08,绘图见解析;(2)102;(3)25. 【思路分析】(1)由频率分布直方图可得:各小矩形的高之和为0.1,运算可得解;(2)由频率分布直方图中平均数的求法即可得解;(3)样本成绩属于第六组的有3人,样本成绩属于第八组的有2人,则随机抽取2名,基本事件总数为25C 10=,他们的分差的绝对值小于10分包含的基本事件个数为2232C C 4+=,再利用古典概型概率公式运算即可.【解析】(1)由频率分布直方图得第七组的频率为1(0.0040.0120.0160.0300.0200.0060.004)100.08-++++++⨯=.完成频率分布直方图如下:(2)用样本数据估计该校的2000名学生这次考试成绩的平均分为700.00410800.01210900.016101000.030101100.02010⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯+1200.006101300.008101400.00410102⨯⨯+⨯⨯+⨯⨯=.(3)样本成绩属于第六组的有0.00610503⨯⨯=人,样本成绩属于第八组的有0.00410502⨯⨯=人, 从样本成绩属于第六组和第八组的所有学生中随机抽取2名,基本事件总数25C 10n ==,他们的分差的绝对值小于10分包含的基本事件个数2232C C 4m =+=,故他们的分差的绝对值小于10分的概率42105m p n ===. 4.(安徽省蚌埠市第二中学2019-2020学年高三上学期期中)在某项娱乐活动的海选过程中评分人员需对同批次的选手进行考核并评分,并将其得分作为该选手的成绩,成绩大于等于60分的选手定为合格选手,直接参加第二轮比赛,不超过40分的选手将直接被淘汰,成绩在(40,60)内的选手可以参加复活赛,如果通过,也可以参加第二轮比赛.(1)已知成绩合格的200名参赛选手成绩的频率分布直方图如图,求a 的值及估计这200名参赛选手的成绩平均数;(2)根据已有的经验,参加复活赛的选手能够进入第二轮比赛的概率为13,假设每名选手能否通过复活赛相互独立,现有3名选手进入复活赛,记这3名选手在复活赛中通过的人数为随机变量X ,求X 的分布列和数学期望.【答案】(1)0.04a =,82;(2)见解析.【思路分析】(1)由频率分布直方图面积和为1,可求得0.04a =.取每个矩形的中点与概率乘积和求得平均数.(2)由二项分布求得分布列与数学期望.【解析】(1)由题意可得(0.010.020.03)1010.04a a +++⨯=⇒=, 估计这200名选手的成绩平均数为650.1750.4850.2950.382⨯+⨯+⨯+⨯=. (2)由题意知,X ~B (3,1/3),X 可能取值为0,1,2,3, 且3312()C ()()iiiP X i -==,所以X 的分布列为所以X 的数学期望为()313E X =⨯=.【名师点睛】本题主要考查随机变量的分布列和期望,考查独立性检验,意在考查离散型随机变量的分布列期望和独立性检验等基础知识的掌握能力,考查学生基本的运算推理能力.5.(江西省吉安市2019-2020学年高三上学期期中)据报道,全国很多省市将英语考试作为高考改革的重点,一时间“英语考试该如何改革”引起广泛关注,为了解某地区学生和包括老师、家长在内的社会人士对高考英语改革的看法,某媒体在该地区选择了3600人进行调查,就“是否取消英语听力”问题进行了问卷调查统计,结果如下表:(1)已知在全体样本中随机抽取1人,抽到持“应该保留”态度的人的概率为0.05,现用分层抽样的方法在所有参与调查的人中抽取360人进行问卷访谈,问应在持“无所谓”态度的人中抽取多少人?(2)在持“应该保留”态度的人中,用分层抽样的方法抽取6人,再平均分成两组进行深入交流,求第一组中在校学生人数ξ的分布列和数学期望.【答案】(1)72;(2)2.【思路分析】(1)由题意得持“应该保留”态度的人为120x+,占总人数3600的0.05,列出对应的概率等式即可算得60x=,再利用分层抽样的方法求解在持“无所谓”态度的人中抽取多少人即可;(2)由分层抽样可求得在校学生为4人,社会人士为2人,再利用超几何分布的方法列出分布列求解期望即可.【解析】(1)因为抽到持“应该保留”态度的人的概率为0.05,所以1200.053600x+=,所以60x=.所以持“无所谓”态度的人数共有3600210012060060720----=,所以应在“无所谓”态度抽取360720723600⨯=人.(2)由(1)知持“应该保留”态度的一共有180人,所以在所抽取的6人中,在校学生为12064180⨯=人,社会人士为6062180⨯=人,则第一组在校学生人数1,2,3ξ=,且124236C C1(1)C5Pξ===,214236C C3(2)C5Pξ===,304236C C1(3)C5Pξ===,故ξ的分布列为所以()1232555Eξ=⨯+⨯+⨯=.【名师点睛】本题主要考查分层抽样的一般方法与超几何分布的一般方法.同时也考查了分布列与数学期望的方法,属于中等题型.6.(江西省南昌市东湖区第十中学2019-2020学年高三上学期期中)为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对30名六年级学生进行了问卷调查得到如下列联表:平均每天喝500ml以上为常喝,体重超过50kg为肥胖.已知在全部30人中随机抽取1人,抽到肥胖的学生的概率为15.(1)请将上面的列联表补充完整;(2)是否有99%的把握认为肥胖与常喝碳酸饮料有关?说明你的理由;(3)已知常喝碳酸饮料且肥胖的学生中有2名女生,现从常喝碳酸饮料且肥胖的学生抽取2人参加电视节目,则正好抽到一男一女的概率是多少?参考公式及数据:22()()()()()n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.【答案】(1)列联表见解析;(2)有99%的把握认为肥胖与常喝碳酸饮料有关;(3)15.【思路分析】(1)根据题中不常喝碳酸饮料的肥胖人数和不肥胖人数及总人数即可完成列联表;(2)利用公式求出2K的的观测值,与临界值比较可得到把握性大小;(3)设常喝碳酸饮料的肥胖者男生为A、B、C、D,女生为E、F,列举出任选两人的所有取法,找出正好抽到一男一女的取法可得概率.【解析】(1)设常喝碳酸饮料肥胖的学生有x人,343015x+=,6x=,补充完整的22⨯列联表如下:(2)由已知数据可求得:2230(6824)8.522 6.6351020822K⨯-⨯=≈>⨯⨯⨯,因此有99%的把握认为肥胖与常喝碳酸饮料有关.(3)设常喝碳酸饮料的肥胖者男生为A、B、C、D,女生为E、F,则任取两人有AB,AC,AD,AE,AF,BC,BD,BE,BF,CD,CE,CF,DE,DF EF,共15种,其中一男一女有AE,AF,BE,BF,CE,CF,DE,DF,共8种,故抽出一男一女的概率为815P=.7.(吉林省长春市2020届高三一模)环保部门要对所有的新车模型进行广泛测试,以确定它的行车里程的等级,右表是对100辆新车模型在一个耗油单位内行车里程(单位:公里)的测试结果.(1)做出上述测试结果的频率分布直方图,并指出其中位数落在哪一组;(2)用分层抽样的方法从行车里程在区间[38,40)与[40,42)的新车模型中任取5辆,并从这5辆中随机抽取2辆,求其中恰有一个新车模型行车里程在[40,42)内的概率.【答案】(1)频率分布直方图见解析,中位数在区间[36,38);(2)35.【思路分析】(1)画出频率分布直方图后,找到频率总和为0.5时对应的分组区间;(2)先利用分层抽样计算每组内抽取的辆数,然后对车辆进行标记,利用古典概型计算目标事件的概率.【解析】(1)由题意可画出频率分布直方图如图所示:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020高考考前必刷---统计与概率
13、统计小题★★★★
十年考情:
只在2013 年和2018 年考了统计小题.统计一般放在大题考,这个考点内容实在太多:频率分布表、直方图、抽样方法、样本平均数、方差、标准差、散点图、回归分析、独立性检验等。
正相关、负相关、完全相关、相关系数、样本中心点、频率分布直方图和频数分布表中的平均数及中位数。
虽然考点多,但考察的难度都不大,要求同学们掌握相关考点的基本知识即可,避免考到时,连基本的概念都不了解。
2020高考预测:
67.华为公司是世界最大的通信设备制造商,是中国引以为傲的民营企业。
现统计华为公司
十年来的年营收总额及其年利润率数据,并制成如图所示的条形图与折线图的组合图.
根据组合图判断,下列结论正确的是()
A.这10年年利润率逐年递减
B.2019年年利润率最高
C.前5年销售收入的极差大于后5年销售收入的极差
D.这10年销售收入逐年增加
【解析】选D.根据柱形图和折线图易得选项A,B,C错误,选项D正确.
68.根据如下样本数据
得到的回归方程为ˆy=b x+ˆa,则()
A. ˆa
>0, ˆb <0 B. ˆa >0, ˆb >0 C. ˆa <0, ˆb <0 D. ˆa <0, ˆb >0【解析】选A
由上表可知,y 是随x 的增加而减少,所以 ˆb
<0,又345678 5.56
x +++++==,4.0 2.50.50.5 2.0 3.00.256
y +-+--=
=,$0.25 5.50a
y bx b =-=->$$ 69.某地区经过一年的农村脱贫攻坚建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区农村脱贫攻坚建设前后农村的经济收入构成比例,得到如下饼图:
建设前经济收入构成比例 建设后经济收入构成比例
则下面结论中不正确的是( ) A .脱贫攻坚建设后,种植收入减少
B .脱贫攻坚建设后,其他收入增加了一倍以上
C .脱贫攻坚建设后,养殖收入增加了一倍
D .脱贫攻坚建设后,养殖收入与第三产业收入的总和超过了经济收入的一半
【解析】通解 设建设前经济收入为a ,则建设后经济收入为2a ,则由饼图可得建设前种植
收入为0.6a ,其他收入为0.04a ,养殖收入为0.3a .建设后种植收入为0.74a ,其他收入为0.1a ,养殖收入为0.6a ,养殖收入与第三产业收入的总和为1.16a ,所以新农村建设后,种植收入减少是错误的.故选A .
优解 因为0.60.372<⨯,所以新农村建设后,种植收入增加,而不是减少,所以A 是错误的.故选A .
70.某学校诗词大赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是( ) A .中位数 B .平均数 C .方差 D .极差【解析】选A.
71.如图所示的茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩,已知甲组数据的平均数为18,乙组数据的中位数为16,则,x y 的值分别为( )
A. 8,6
B. 8,5
C. 5,8
D. 8,8
72.某城市气象局的根据2019年气温情况,绘制了一年中各月平均最高
气温和平均最低气温的雷达图。
图中A 点表示十月的平均最高气温约为15℃,B 点表示四月的平均最低气温约为5℃。
下面叙述不正确的是( )
A .各月的平均最低气温都在0℃以上
B .七月的平均温差比一月的平均温差大
C .三月和十一月的平均最高气温基本相同
D .平均气温高于20℃的月份有5个
【解析】选A.由图可知0℃在虚线框内,所以各月的平均最低气温都在0℃以上,A 正确;
由图可知七月的平均温差比一月的平均温差大,B 正确;由图可知三月和十一月的平均最高气温都约为10℃,基本相同,C 正确;由图可知平均最高气温高于20℃的月份不是5个,D 不正确,故选D .
14、概率小题★★★
十年考情:
我们考的全国卷就2014年2卷出现,但是1卷和2卷出现的概率题的频率很高.主要考古典概型、几何概型和相互独立事件的概率。
几何概型:长度型、面积型、体积型、角度型 2020高考预测:
73.2013年华人数学家张益唐证明了孪生素数猜想的一个弱化形式.孪生素数猜想是希尔伯特在1900年提出的23个问题之一,可以这样描述:存在无穷多个素数p ,使得p+2是素数,素数对(p ,p+2)称为孪生素数.在不超过30的素数中,随机选取两个不同的数,其中能够组成孪生素数的概率是( ) A .
115
B .
215 C .255 D .455
【解析】选D.小于30的素数有2,3,5,7,9,11,13,17,19,23,29共11个,孪生素数对(3,5),(7,9),(11,13),(17,19)共4对,所以21144
55
p C =
=
74.在一个袋子中装有分别标注数字1,2,3,4,5的5个小球,这些小球除标注数字外完
全相同,现从中随机取2个小球,则取出的小球标注的数字之和为3或6的概率是________. 【解析】填
3
10
.两个数之和为3或6的有:(1,2),(1,5),(2,4)共三种,从5个球中取出两个球有(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)共10种取法,2533
10
p C =
=
.
75.青春因奉献而美丽,为了响应党的十九大关于“推动城乡义务教育一体化发展,高度重视农村义务教育”精神,现有5名师范大学毕业生主动要求赴西部某地区甲、乙、丙三个不同的学校去支教,每个学校至少去1人,则恰好有2名大学生分配去甲学校的概率为( ) A .
25
B .
35 C .15 D .215
【解析】填25.212
532
2233
5353
222
5
C C A p C C C A A =
=
骣琪
+琪桫
.
76.假定你家订了一份报纸,送报人可能在早上6:30~7:30之间把报纸送到你家,你父亲离开家去工作的时间在早上7:00~8:00之间,你父亲在离开家前能得到报纸的概率为_____. 【解析】填
7
8
.如图设送报人到达时间为x ,父亲离开家的时间为y ,则6:30≤x≤7:30,7:00≤y≤8:00,A 为图中阴影部分,全部结果构成集合Ω为边长是1的正方形及其内部.
所求概率为P =A 的面积
Ω的面积
=
111
1722211
8-创=´.
77.已知甲盒中仅有一个球且为红球,乙盒中有3个红球和4
个蓝球,从乙盒中随机抽取
(1,2)i i =个球放在甲盒中,放入i 个球后,甲盒中含有红球的个数为i ξ(1,2)i =,则
()()12E E ξξ+的值为_______
【解析】填
237
甲盒中含有红球的个数1x 的取值为1,2
()()()11
3411111774343
10
1,2,12,7777
7
C C p p E C C x x x =======??
乙盒中含有红球的个数2x 的取值为1,2,3
()()()()1122
343422222277722
411,2,3,
777
24111
123,7777
C C C C p p p C C C E x x x x ==========?
??
()()12237
E E x x +=。