2013四川达州中考数学试题
2024年四川省达州市中考数学真题试卷及答案解析

2024年四川省达州市中考数学试题本考试为闭卷考试.考试时间120分钟、满分150分.本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1-2页,第Ⅱ卷3-8页,共8页.温馨提示:1.答题前,考生需用0.5毫米黑色签字笔将自己的姓名、准考证号、座位号正确填写在答题卡对应位置,待监考老师粘贴条形码后,再认真核对条形码上的信息与自己的准考证上的信息是否一致.2.选择题必须使用2B铅笔在答题卡相应位置规范填涂.如需改动,用橡皮擦擦干净后,再选涂其他答案标号;非选择题用0.5毫米黑色签字笔作答,答案必须写在答题卡对应的框内.超出答题区答案无效;在草稿纸、试题卷上作答无效.3.不要折叠、弄破、弄皱答题卡.不得使用涂改液、修正带、刮纸刀等影响答题卡整洁.4.考试结束后,将试卷及答题卡一并交回.第Ⅰ卷(选择题共40分)一、单项选择题(每小题4分.共40分)1. 有理数2024的相反数是()A. 2024B.C.D.2. 大米是我国居民最重要的主食之一,与此同时,我国也是世界上最大的大米生产国,水稻产量常年稳定在2亿吨以上.将2亿用科学记数法表示为()A. B. C. D.3. 下列计算正确的是()A. B.C. D.4. 如图,正方体的表面展开图上写有“我们热爱中国”六个字,还原成正方体后“我”的对面的字是()A. 热B. 爱C. 中D. 国5. 小明在处理一组数据“12,12,28,35,■”时,不小心将其中一个数据污染了,只记得该数据在30~40之间.则“■”在范围内无论为何值都不影响这组数据的()A. 平均数B. 众数C. 中位数D. 方差6. 当光线从空气射入水中时,光线的传播方向发生了改变,这就是光的折射现象(如图所示).图中,,则的度数为()A. B. C. D.7. 甲乙两人各自加工120个零件,甲由于个人原因没有和乙同时进行,乙先加工30分钟后,甲开始加工.甲为了追赶上乙的进度,加工的速度是乙的倍,最后两人同时完成.求乙每小时加工零件多少个?设乙每小时加工个零件.可列方程为()A. B.C. D.8. 如图,由8个全等的菱形组成的网格中,每个小菱形的边长均为2,,其中点,,都在格点上,则的值为()A. 2B.C.D. 39. 抛物线与轴交于两点,其中一个交点的横坐标大于1,另一个交点的横坐标小于1,则下列结论正确的是()A. B. C. D.10. 如图,是等腰直角三角形,,,点,分别在,边上运动,连结,交于点,且始终满足,则下列结论:①;②;③面积的最大值是;④的最小值是.其中正确的是()A. ①③B. ①②④C. ②③④D. ①②③④第II卷(非选择题共110分)二、填空题(每小题4分,共20分)11. 分解因式:3x2﹣18x+27=________.12. “四大名著”《红楼梦》《水浒传》《三国演义》《西游记》是中国优秀文化的重要组成部分.某校七年级准备从这四部名著中随机抽取两本(先随机抽取一本,不放回,再随机抽取另一本)开展“名著共读”活动,则该年级的学生恰好抽取到《三国演义》和《西游记》的概率是______.13. 若关于的方程无解,则的值为______.14. 如图,在中,,分别是内角、外角的三等分线,且,,在中,,分别是内角,外角的三等分线.且,,…,以此规律作下去.若.则______度.15. 如图,在中,.点在线段上,.若,,则的面积是______.三、解答题:解答时应写出必要的文字说明、证明过程或演算步骤(共90分)16. (1)计算:;(2)解不等式组17. 先化简:,再从,,0,1,2之中选择一个合适的数作为的值代入求值.18. 2024年4月21日,达州马拉松暨“跑遍四川”达州站马拉松赛鸣枪开跑.本次赛事以“相约巴人故里,乐跑红色达州”为主题.旨在增强全市民众科学健身意识.推动全民健身活动,本届赛事共设置马拉松,半程马拉松和欢乐跑三个项目赛后随机抽样了部分参赛选手对本次赛事组织进行满意度评分调查,整理后得到下列不完整的图表:等级分数段频m数请根据表中提供的信息.解答下列问题:(1)此次调查共抽取了______名选手,______,______;(2)扇形统计图中,等级所对应的扇形圆心角度数是______度;(3)赛后若在三个项目的冠军中随机抽取两人访谈,请用列表或画树状图的方法,求出恰好抽到马拉松和欢乐跑冠军的概率.19. 如图,线段、相交于点.且,于点.(1)尺规作图:过点作的垂线,垂足为点、连接、;(不写作法,保留作图痕迹,并标明相应的字母)(2)若,请判断四边形的形状,并说明理由.(若前问未完成,可画草图完成此问)20. “三汇彩婷会”是达州市渠县三汇镇独有的传统民俗文化活动、起于汉代、融数学,力学,锻造,绑扎,运载于一体,如图1,在一次展演活动中,某数学综合与实践小组将彩婷抽象成如图2的示意图,是彩婷的中轴、甲同学站在处.借助测角仪观察,发现中轴上的点的仰角是,他与彩婷中轴的距离米.乙同学在观测点处借助无人机技术进行测量,测得平行于水平线,中轴上的点的仰角,点、之间的距离是米,已知彩婷的中轴米,甲同学的眼睛到地面的距离米,请根据以上数据,求中轴上的长度.(结果精确到米,参考数据,)21. 如图,一次函数(、为常数,)的图象与反比例函数(为常数,)的图象交于点,.(1)求反比例函数和一次函数的解析式;(2)若点是轴正半轴上的一点.且.求点的坐标.22. 为拓宽销售渠道,助力乡村振兴,某乡镇帮助农户将、两个品种的柑橘加工包装成礼盒再出售.已知每件品种柑橘礼盒比品种柑橘礼盒的售价少元.且出售件品种柑橘礼盒和件品种柑橘礼盒的总价共元.(1)求、两种柑橘礼盒每件的售价分别为多少元?(2)已知加工、两种柑橘礼盒每件的成本分别为元、元、该乡镇计划在某农产品展销活动中售出、两种柑橘礼盒共盒,且品种柑橘礼盒售出的数量不超过品种柑橘礼盒数量的倍.总成本不超过元.要使农户收益最大,该乡镇应怎样安排、两种柑橘礼盒的销售方案,并求出农户在这次农产品展销活动中的最大收益为多少元?23. 如图,是的直径.四边形内接于.连接,且,以为边作交的延长线于点.(1)求证:是的切线;(2)过点作交于点.若,求的值.24. 如图1,抛物线与轴交于点和点,与轴交于点.点是抛物线的顶点.(1)求抛物线的解析式;(2)如图2,连接,,直线交抛物线的对称轴于点,若点是直线上方抛物线上一点,且,求点的坐标;(3)若点是抛物线对称轴上位于点上方的一动点,是否存在以点,,为顶点的三角形是等腰三角形,若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由.25. 在学习特殊的平行四边形时,我们发现正方形的对角线等于边长的倍,某数学兴趣小组以此为方向对菱形的对角线和边长的数量关系探究发现,具体如下:如图1.(1)四边形是菱形,,,..又,,______+______.化简整理得______.【类比探究】(2)如图2.若四边形是平行四边形,请说明边长与对角线的数量关系.【拓展应用】(3)如图3,四边形为平行四边形,对角线,相交于点,点为的中点,点为的中点,连接,若,,,直接写出的长度.参考答案第Ⅰ卷(选择题共40分)一、单项选择题(每小题4分.共40分)1. 【答案】B【解析】【分析】本题主要考查了求一个数相反数,只有符号不同的两个数互为相反数,0的相反数是0,据此求解即可.解:有理数2024的相反数是,故选:B.2. 【答案】B【解析】【分析】本题考查了科学记数法.科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值大于与小数点移动的位数相同.解:2亿,故选:B.3. 【答案】C【解析】【分析】本题主要考查了完全平方公式,积的乘方计算,同底数幂除法计算,合并同类项,熟知相关计算法则是解题的关键.解:A.与不是同类项,不能合并,原式计算错误,不符合题意;B.,原式计算错误,不符合题意;C.,原式计算正确,符合题意;D.,原式计算错误,不符合题意;故选:C.4. 【答案】B【解析】【分析】本题考查了正方体相对两个面上的文字,正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,据此作答即可.解:正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,则与“我”字相对的字是“爱”,与“们”字相对的字是“中”,与“国”字相对的字是“热”,故选:B.5. 【答案】C【解析】【分析】此题考查数据平均数、众数、中位数方差的计算方法,根据中位数的定义求解可得.解:依题意“■”该数据在30~40之间,则这组数据的中位数为,∴“■”在范围内无论为何值都不影响这组数据的中位数.故选:C.6. 【答案】B【解析】【分析】本题考查了平行线的性质,根据平行线的性质可得,代入数据,即可求解.【详解】解:依题意,水面与容器底面平行,∴∵,,∴故选:B.7. 【答案】D【解析】【分析】本题主要考查了分式方程的实际应用,设乙每小时加工个零件,则甲每小时加工个零件,再根据时间工作总量工作效率结合甲的工作时间比乙的工作时间少30分钟列出方程即可.解:设乙每小时加工个零件,则甲每小时加工个零件,由题意得,故选:D.8. 【答案】B【解析】【分析】本题考查了菱形的性质,解直角三角形,延长交格点于点,连接,分别在格点上,根据菱形的性质,进而得出,解直角三角形求得的长,根据对顶角相等,进而根据正切的定义,即可求解.解:如图所示,延长交格点于点,连接,分别在格点上,依题意,,∴∴又,∴∴故选:B.9. 【答案】A【解析】【分析】本题考查了二次函数的性质,设抛物线与轴交于两点,横坐标分别为,依题意,,根据题意抛物线开口向下,当时,,即可判断A选项,根据对称轴即可判断B选项,根据一元二次方程根的判别式,即可求解.判断C选项,无条件判断D选项,据此,即可求解.解:依题意,设抛物线与轴交于两点,横坐标分别为依题意,∵,抛物线开口向下,∴当时,,即∴,故A选项正确,符合题意;若对称轴为,即,而,不能得出对称轴为直线,故B选项不正确,不符合题意;∵抛物线与坐标轴有2个交点,∴方程有两个不等实数解,即,又∴,故C选项错误,不符合题意;无法判断的符号,故D选项错误,不符合题意;故选:A.10. 【答案】D【解析】【分析】过点作于点,证明,根据相似三角形的性质即可判断①;得出,根据三角形内角和定理即可判断②;在的左侧,以为斜边作等腰直角三角形,以为半径作,根据定弦定角得出在的上运动,进而根据当时,面积的最大,根据三角形的面积公式求解,即可判断③,当在上时,最小,过点作交的延长线于点,勾股定理,即可求解.解:如图所示,过点作于点,∵等腰直角三角形,,,∴,∵,∴∴又∵∴,∴,故①正确;∵,∴,∴即在中,即∵是等腰直角三角形,∴平分∴∴∴,∴,故②正确,如图所示,在的左侧,以为斜边作等腰直角三角形,以为半径作,且∴,∵∴∴在的上运动,∴,连接交于点,则,∴当时,结合垂径定理,最小,∵是半径不变∴此时最大则面积的最大,∴,故③正确;如图所示,当在上时,最小,过点作交的延长线于点,∴是等腰直角三角形,∴,在中,,∴,∴的最小值是.故选:D.【点拨】本题考查了相似三角形的性质与判定,圆内接四边形对角互补,求圆外一点到圆上的距离最值问题,勾股定理,等腰直角三角形的性质与判定,熟练掌握以上知识是解题的关键.第II卷(非选择题共110分)二、填空题(每小题4分,共20分)11. 【答案】3(x﹣3)2【解析】【分析】先提取公因式3,再根据完全平方公式进行二次分解.3x2-18x+27,=3(x2-6x+9),=3(x-3)2.故答案:3(x-3)2.12. 【答案】【解析】【分析】本题考查画树状图法求等可能事件的概率;画树状图,共有12种等可能的结果,其中抽取的两本恰好是《水浒传》和《西游记》的结果有2种,再由概率公式求解即可.解:把《红楼梦》《水浒传》《三国演义》《西游记》四本书分别记为A,B,C,D,根据题意,画出如下的树状图:由树状图可知看出,所有可能出现的结果共有12种,这些结果出现的可能性相等.两本是《三国演义》和《西游记》的结果有2种,所以P(两本是《三国演义》和《西游记》).故答案为:.13. 【答案】4【解析】【分析】本题主要考查了根据分式方程解的情况求参数,先解分式方程得到,再根据分式方程无解得到,解方程即可得到答案.解:去分母得:,解得,∵关于的方程无解,∴原方程有增根,∴,即,∴,故答案为:.14. 【答案】【解析】【分析】本题考查了三角形的外角定理,等式性质,熟练掌握知识点是解题的关键.先分别对运用三角形的外角定理,设,则,,则,得到,,同理可求:,所以可得.解:如图:∵,,∴设,,则,,由三角形的外角的性质得:,,∴,如图:同理可求:,∴,……,∴,即,故答案为:.15. 【答案】【解析】【分析】本题考查解直角三角形,勾股定理.过作于,设,则,利用列出等式即可.解:过作于,,,,是等腰直角三角形设,则解得(舍去)或经检验是原分式方程的解,.故答案为:.三、解答题:解答时应写出必要的文字说明、证明过程或演算步骤(共90分)16. 【答案】(1);(2)【解析】【分析】本题考查了实数的混合运算,解一元一次不等式组;(1)根据负整数指数幂,二次根式的性质,特殊角的三角函数值,零指数幂进行计算即可求解;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.解:(1)(2)解不等式①得:解不等式②得:∴不等式组的解集为:17. 【答案】,当时,原式.【解析】【分析】本题主要考查了分式的化简求值,先把小括号内的式子通分,再把除法变成乘法后约分化简,接着根据分式有意义的条件确定x的值,最后代值计算即可.解:,∵分式要有意义,∴,∴且且,∴当时,原式.18. 【答案】(1),,(2)(3)【解析】【分析】本题考查了列表法求概率,频数分布表以及扇形统计图;(1)根据等级的人数除以占比得出总人数,进而求得的值;(2)根据等级的占比乘以,即可求解;(3)设三个项目的冠军分别为,根据列表法求概率,即可求解.小问1解:依题意,名选手,,∴故答案为:,,.小问2解扇形统计图中,等级所对应的扇形圆心角度数是,故答案为:.小问3解:设三个项目的冠军分别为,列表如下,共有6种等可能结果,其中恰好抽到马拉松和欢乐跑冠军的有2种情形,∴恰好抽到马拉松和欢乐跑冠军的概率为19. 【答案】(1)见解析(2)四边形是平行四边形,理由见解析【解析】【分析】本题主要考查了平行四边形的判定,垂线的尺规作图,全等三角形的性质与判定:(1)先根据垂线的尺规作图方法作出点F,再连接、即可;(2)先证明,得到,再证明,进而证明,得到,即可证明四边形平行四边形.小问1解:如图所示,即为所求;小问2解:四边形是平行四边形,理由如下:∵,∴,又∵,∴,∴,∵,∴,又∵,∴,∴,∴四边形是平行四边形.20. 【答案】中轴上的长度为米【解析】【分析】本题考查了解直角三角形的应用;过点作于点,分别求得的长,根据,即可求解.解:如图,过点作于点,依题意,四边形是矩形,∴,∴米答:中轴上的长度为米.21.【答案】(1),(2)【解析】【分析】本题考查反比例函数与一次函数综合题型,也考查了锐角三角函数应用.(1)用待定系数法先求反比例函数解析式,再求一次函数解析式即可;(2)过作轴于,过作轴于,设,先求得得到,即,得出等量关系解出即可.小问1解:将代入得将代入得将和代入得解得故反比例函数和一次函数的解析式分别为和;小问2详如图,过作轴于,过作轴于,即设,则,解得(舍去)或经检验,是原分式方程的解,.22.【答案】(1)、两种柑橘礼盒每件的售价分别为元(2)要使农户收益最大,销售方案为售出种柑橘礼盒盒,售出种柑橘礼盒盒,最大收益为元【解析】【分析】本题考查了二元一次方程组的应用;一元一次不等式的应用,一次函数的应用;(1)设、两种柑橘礼盒每件的售价分别为a元,b元,根据题意列出二元一次方程组,即可求解;(2)设售出种柑橘礼盒盒,则售出种柑橘礼盒盒,根据题意列出不等式组,得出,设收益为元,根据题意列出函数关系式,进而根据一次函数的性质,即可求解.小问1解:设、两种柑橘礼盒每件的售价分别为元,b元,根据题意得,解得:答:、两种柑橘礼盒每件的售价分别为元;小问2解:设售出种柑橘礼盒盒,则售出种柑橘礼盒盒,根据题意得,解得:设收益为元,根据题意得,∵∴随的增大而减小,∴当时,取得最大值,最大值为(元)∴售出种柑橘礼盒(盒)答:要使农户收益最大,销售方案为售出种柑橘礼盒盒,售出种柑橘礼盒盒,最大收益为元.23. 【答案】(1)证明见解析(2)【解析】【分析】(1)如图所示,连接,由直径所对的圆周角是直角得到,导角可证明,进而得到,据此即可证明是的切线;(2)延长交于H,延长交于G,连接,由直径所对的圆周角是直角得到,证明,得到,接着证明,得到,进一步证明,得到,设,则,,进而得到,则,由勾股定理得到,,则,进一步可得.小问1证明:如图所示,连接,∵是的直径,∴,∴,∵,∴,∵,,∴,∴,∴,∴,又∵是的半径,∴是的切线;小问2解:如图所示,延长交于H,延长交于G,连接,∵是的直径,∴,即,∵,∴垂直平分,∴,∴,∵,∵,∴,又∵,∴,∴,∵,∴,∴,设,则,∴,∴,∴,∴,∴,∴,∴,∵,∴,∵,∴,∴.【点拨】本题主要考查了切线的判定,求角的余弦值,直径所对的圆周角是直角,同弧所对的圆周角相等,勾股定理,全等三角形的性质与判定等等,正确作出辅助线构造全等三角形和直角三角形是解题的关键.24. 【答案】(1)(2)或;(3)或或或【解析】【分析】(1)待定系数法求解析式,即可求解;(2)先求得的坐标,根据勾股定理的逆定理得出是等腰三角形,进而根据得出,连接,设交轴于点,则得出是等腰直角三角形,进而得出,则点与点重合时符合题意,,过点作交抛物线于点,得出直线的解析式为,联立抛物线解析式,即可求解;(3)勾股定理求得,根据等腰三角形的性质,分类讨论解方程,即可求解.小问1解:∵抛物线与轴交于点和点,∴解得:∴抛物线的解析式为;小问2解由,当时,,则∵,则,对称轴为直线设直线的解析式为,代入,∴解得:∴直线的解析式为,当时,,则∴∴∴是等腰三角形,∴连接,设交轴于点,则∴是等腰直角三角形,∴,,又∴∴∴点与点重合时符合题意,如图所示,过点作交抛物线于点,设直线的解析式为,将代入得,解得:∴直线的解析式为联立解得:,∴综上所述,或;小问3解:∵,,∴∵点是抛物线对称轴上位于点上方的一动点,设其中∴,①当时,,解得:或②当时,,解得:③当时,,解得:或(舍去)综上所述,或或或.【点拨】本题考查了二次函数综合问题,待定系数法求解析式,面积问题,特殊三角形问题,熟练掌握二次函数的性质是解题的关键.25. 【答案】(1),,;(2);(3)【解析】【分析】(1)根据菱形的性质及勾股定理补充过程,即可求解;(2)过点作于点,过点作交的延长线于点,根据平行四边形的性质得,,,证明,得,,,根据勾股定理得,,继而得出的值即可;(3)由(2)可得得出,过点分别作的垂线,垂足分别为,连接,根据勾股定理以及已知条件,分别求得,根据得出,根据得出,进而勾股定理,即可求解.解:(1)四边形是菱形,,,..又,,.化简整理得故答案为:,,.(),理由如下,过点作于点,过点作交的延长线于点,∴,∵四边形是平行四边形,∴,,,∴,在和中,,∴,∴,,在中,,在中,,∴,∴()∵四边形是平行四边形,,,,∴由()可得∴解得:(负值舍去)∵四边形是平行四边形,∴,,,如图所示,过点分别作的垂线,垂足分别为,连接,∵分别为的中点,∴∵,∴,∵是的中点,∴∴,∴,在中,,∴,∵为的中点,∴,∵,∴,∴∵,∴,∴,∴,∴,∵,∴,∴,∴,在中,.【点拨】本题考查了菱形的性质,平行四边形的性质,勾股定理,全等三角形的性质与判定,相似三角形的性质与判定,平行线分线段成比例,熟练掌握勾股定理是解题的关键.。
四川省达州市2013年中考数学真题试题(解析版)

达州市2013年高中阶段教育学校招生统一考试数 学本试卷分为第I 卷(选择题)和第II 卷(非选择题)两部分。
第I 卷1至2页,第II 卷3至10页。
考试时间120分钟,满分120分。
第I 卷(选择题,共30分) 温馨提示:1、答第I 卷前,请考生务必将姓名、准考证号、考试科目等按要求填涂在机读卡上。
2、每小题选出正确答案后,请用2B 铅笔把机读卡上对应题号的答案标号涂黑。
3、考试结束后,请将本试卷和机读卡一并交回。
一.选择题:(本题10个小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的) 1.-2013的绝对值是( )A .2013B .-2013C .±2013D .12013-答案:A解析:负数的绝对值是它的相反数,故选A 。
2.某中学在芦山地震捐款活动中,共捐款二十一万三千元。
这一数据用科学记数法表示为( )A .321310⨯元 B .42.1310⨯元 C .52.1310⨯元 D .60.21310⨯元 答案:C解析:科学记数法写成:10n a ⨯形式,其中110a ≤<,二十一万三千元=213000=52.1310⨯元3.下列图形中,既是轴对称图形,又是中心对称图形的是( )答案:D解析:A 、C 只是轴对称图形,不是中心对称图形;B 是中心对称图形,不是轴对称轴图形,只有D 符合。
4.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次降价30%。
那么顾客到哪家超市购买这种商品更合算( )A .甲B .乙C .丙D .一样 答案:C解析:设原价a 元,则降价后,甲为:a (1-20%)(1-10%)=0.72a 元,乙为:(1-15%)2a =0.7225a 元,丙为:(1-30%)a =0.7a 元,所以,丙最便宜。
5.下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序正确的是( )A .(3)(1)(4)(2)B .(3)(2)(1)(4)C .(3)(4)(1)(2)D .(2)(4)(1)(3) 答案:C解析:因为太阳从东边出来,右边是东,所以,早上的投影在左边,(3)最先,下午的投影在右边,(2)最后,选C 。
达州2009年至2013年中考数学题型统计分析

梯形面积关系
圆
填
空
2填空题21分
分
(每空3
3分)
9
分解因式
相反数
科学计数法
实数
三角形(选择题)
10
三角形内外角计算
科学计数法
方程两根关系
绝对值化解
二次函数(选择题)
11
代数式计算
统计
梯形面积关系
圆锥侧面积
分解因式
12
稀释问题
三角函数
统计
概率
统计数据处理
13
三角形三边关系
求函数解析式
三角形与扇形形成阴影面积计算
23
一次二次函数与动点,面积综合9分
一次二次函数与动点,面积综合9分
一次二次函数与动点,面积综合10分
一次二次函数与动点,面积综合12分
利用二次函数解决利润问题8
24
证明三角形关系9
25
一次二次函数、圆与动点,面积综合12
概率7分
利用直角三角形解决实际问题6分
化解求值4
实数计算6
18
有关三角形的计算5分
图形翻折问题5分
探索规律6分
统计6分
勾股定理解决实际问题7
19
一次函数与反比例函数综合题6分
图案设计6分
概率与三角形全等6分
利用函数解决实际问题6分
函数变形(高中相关)7
20
利用三角形相似,直角三角形解决实际问题6分
利用三角形相似,直角三角形解决实际问题6分
三角形全等,旋转问题6分
全等三角形作图及判定7分
概率解决实际问题7
21
方程解决实际问题7分
一次二次函数与实际问题8分
2012年四川达州市中考数学试卷

选择题
下列哪个数集包含-√2?
A. 自然数集
B. 整数集
C. 有理数集
D. 实数集(正确答案)
若a > b,c < 0,则下列不等式中成立的是?
A. ac > bc
B. a/c > b/c(正确答案)
C. a - c > b - c
D. a2 > b2
下列哪个图形不是轴对称图形?
A. 等腰三角形
B. 正方形
C. 平行四边形(正确答案)
D. 圆
已知直角三角形的两条直角边分别为3和4,则斜边的长度为?
A. 5(正确答案)
B. 6
C. 7
D. 8
下列哪个方程是一元二次方程?
A. x + 2 = 0
B. x2 + y = 0
C. 2x2 - 5x + 3 = 0(正确答案)
D. x3 - x = 0
下列哪个选项中的两个数互为相反数?
A. -2和-3
B. 2和-2(正确答案)
C. 2和3
D. -2和2.5
若一个长方形的长为8cm,宽为5cm,则它的面积为?
A. 13cm2
B. 26cm2
C. 40cm2(正确答案)
D. 64cm2
下列哪个选项中的数对(x, y)满足方程2x - y = 5?
A. (1, 3)
B. (2, 1)(正确答案)
C. (3, -1)
D. (4, -3)
下列哪个选项中的数列是等差数列?
A. 1, 2, 4, 7
B. 2, 4, 6, 8(正确答案)
C. 1, 3, 6, 10
D. 5, 10, 15, 25。
2024年四川省达州市中考数学真题试卷及答案

2024年四川省达州市中考数学真题试卷第Ⅰ卷(选择题 共40分)一、单项选择题(每小题4分.共40分) 1. 有理数2024的相反数是( ) A. 2024B. 2024-C.12024D. 12024-2. 大米是我国居民最重要的主食之一,与此同时,我国也是世界上最大的大米生产国,水稻产量常年稳定在2亿吨以上.将2亿用科学记数法表示为( ) A. 9210⨯B. 8210⨯C. 80.210⨯D. 7210⨯3. 下列计算正确的是( ) A. 235a a a += B. ()22224a a a +=++C. ()3236928a ba b -=-D. 1262a a a ÷=4. 如图,正方体的表面展开图上写有“我们热爱中国”六个字,还原成正方体后“我”的对面的字是( )A. 热B. 爱C. 中D. 国5. 小明在处理一组数据“12,12,28,35,■”时,不小心将其中一个数据污染了,只记得该数据在30~40之间.则“■”在范围内无论为何值都不影响这组数据的( ) A. 平均数B. 众数C. 中位数D. 方差6. 当光线从空气射入水中时,光线的传播方向发生了改变,这就是光的折射现象(如图所示).图中180∠=︒,240∠=︒,则3∠的度数为( )A. 30︒B. 40︒C. 50︒D. 70︒7. 甲乙两人各自加工120个零件,甲由于个人原因没有和乙同时进行,乙先加工30分钟后,甲开始加工.甲为了追赶上乙的进度,加工的速度是乙的1.2倍,最后两人同时完成.求乙每小时加工零件多少个?设乙每小时加工x 个零件.可列方程为( )A.120120301.2x x-= B.120120301.2x x-= C. 120120301.260x x -= D. 120120301.260x x -= 8. 如图,由8个全等的菱形组成的网格中,每个小菱形的边长均为2,120ABD ∠=︒,其中点A ,B ,C 都在格点上,则tan BCD ∠的值为()A. 2B.C. 32D. 39. 抛物线2y x bx c =-++与x 轴交于两点,其中一个交点的横坐标大于1,另一个交点的横坐标小于1,则下列结论正确的是( ) A. 1b c +>B. 2b =C. 240b c +<D. 0c <10. 如图,ABC 是等腰直角三角形,90ABC ∠=︒,4AB =,点D ,E 分别在AC ,BC 边上运动,连结AE ,BD 交于点F ,且始终满足AD =,则下列结论:①AE BD =;①135DFE ∠=︒;①ABF △面积的最大值是4;①CF 的最小值是 )A. ①①B. ①①①C. ①①①D. ①①①①第II 卷(非选择题 共110分)二、填空题(每小题4分,共20分) 11. 分解因式:231827x x -+=________.12. “四大名著”《红楼梦》《水浒传》《三国演义》《西游记》是中国优秀文化的重要组成部分.某校七年级准备从这四部名著中随机抽取两本(先随机抽取一本,不放回,再随机抽取另一本)开展“名著共读”活动,则该年级的学生恰好抽取到《三国演义》和《西游记》的概率是______. 13. 若关于x 的方程31122kx x x --=--无解,则k 的值为______.14. 如图,在ABC 中,1AE ,1BE 分别是内角CAB ∠,外角CBD ∠的三等分线,且113E AD CAB ∠=∠,113E BD CBD ∠=∠,在1ABE 中,2AE ,2BE 分别是内角1E AB ∠,外角1E BD ∠的三等分线.且2113E AD E AB ∠=∠,2113E BD E BD ∠=∠,…,以此规律作下去.若C m ∠=︒.则n E ∠=______度.15. 如图,在Rt ABC △中,90C ∠=︒.点D 在线段BC 上,45BAD ∠=︒.若4AC =,1CD =,则ABC 的面积是______.三、解答题:解答时应写出必要的文字说明、证明过程或演算步骤(共90分)16. (1)计算:()2012sin 60π20242-⎛⎫-︒-- ⎪⎝⎭;(2)解不等式组323122x x x --<-⎧⎪⎨-≤+⎪⎩ 17. 先化简:22224x x x x x x x +⎛⎫-÷ ⎪-+-⎝⎭,再从2-,1-,0,1,2之中选择一个合适的数作为x 的值代入求值.18. 2024年4月21日,达州马拉松暨“跑遍四川”达州站马拉松赛鸣枪开跑.本次赛事以“相约巴人故里,乐跑红色达州”为主题.旨在增强全市民众科学健身意识.推动全民健身活动,本届赛事共设置马拉松,半程马拉松和欢乐跑三个项目赛后随机抽样了部分参赛选手对本次赛事组织进行满意度评分调查,整理后得到下列不完整的图表:请根据表中提供的信息.解答下列问题:(1)此次调查共抽取了______名选手,m =______,n =______; (2)扇形统计图中,B 等级所对应的扇形圆心角度数是______度;(3)赛后若在三个项目的冠军中随机抽取两人访谈,请用列表或画树状图的方法,求出恰好抽到马拉松和欢乐跑冠军的概率.19. 如图,线段AC ,BD 相交于点O .且AB CD ∥,AE BD ⊥于点E .(1)尺规作图:过点C 作BD 的垂线,垂足为点F ,连接AF ,CE ;(不写作法,保留作图痕迹,并标明相应的字母)(2)若AB CD =,请判断四边形AECF 的形状,并说明理由.(若前问未完成,可画草图完成此问)20. “三汇彩婷会”是达州市渠县三汇镇独有的传统民俗文化活动、起源于汉代、融数学,力学,锻造,绑扎,运载于一体,如图1,在一次展演活动中,某数学综合与实践小组将彩婷抽象成如图2的示意图,AB 是彩婷的中轴、甲同学站在C 处.借助测角仪观察,发现中轴AB 上的点D 的仰角是30︒,他与彩婷中轴的距离6BC =米.乙同学在观测点E 处借助无人机技术进行测量,测得AE 平行于水平线BC ,中轴AB 上的点F 的仰角45AEF ∠=︒,点E ,F 之间的距离是4米,已知彩婷的中轴 6.3AB =米,甲同学的眼睛到地面的距离 1.5MC =米,请根据以上数据,求中轴上DF 的长度.(结果精确到0.1米, 1.73≈ 1.41≈)21. 如图,一次函数y kx b =+(k ,b 为常数,0k ≠)的图象与反比例函数my x=(m 为常数,0m ≠)的图象交于点()2,3A ,(),2B a -.(1)求反比例函数和一次函数的解析式;(2)若点C 是x 轴正半轴上的一点.且90BCA ∠=︒.求点C 的坐标.22. 为拓宽销售渠道,助力乡村振兴,某乡镇帮助农户将A,B两个品种的柑橘加工包装成礼盒再出售.已知每件A品种柑橘礼盒比B品种柑橘礼盒的售价少20元.且出售25件A品种柑橘礼盒和15件B品种柑橘礼盒的总价共3500元.(1)求A,B两种柑橘礼盒每件的售价分别为多少元?(2)已知加工A,B两种柑橘礼盒每件的成本分别为50元,60元、该乡镇计划在某农产品展销活动中售出A,B两种柑橘礼盒共1000盒,且A品种柑橘礼盒售出的数量不超过B品种柑橘礼盒数量的1.5倍.总成本不超过54050元.要使农户收益最大,该乡镇应怎样安排A,B两种柑橘礼盒的销售方案,并求出农户在这次农产品展销活动中的最大收益为多少元?=,以AD为边作23. 如图,BD是O的直径.四边形ABCD内接于O.连接AC,且AB AC∠=∠交BD的延长线于点F.DAF ACD(1)求证:AF是O的切线;∠的值.(2)过点A作AE BD⊥交BD于点E.若3CD DE=,求cos ABC24. 如图1,抛物线23y ax kx =+-与x 轴交于点()3,0A -和点()1,0B ,与y 轴交于点C .点D 是抛物线的顶点.(1)求抛物线的解析式;(2)如图2,连接AC ,DC ,直线AC 交抛物线的对称轴于点M ,若点P 是直线AC 上方抛物线上一点,且2PMC DMC S S =△△,求点P 的坐标;(3)若点N 是抛物线对称轴上位于点D 上方的一动点,是否存在以点N ,A ,C 为顶点的三角形是等腰三角形,若存在,请直接写出满足条件的点N 的坐标;若不存在,请说明理由.25. 在学习特殊的平行四边形时,我们发现正方形的对角线等于边长的倍,某数学兴趣小组以此为方向对菱形的对角线和边长的数量关系探究发现,具体如下:如图1.(1)四边形ABCD 是菱形AC BD ∴⊥,AO CO =,BO DO =.222AB AO BO ∴=+.又2AC AO =,2BD BO =2AB ∴=______+______. 化简整理得22AC BD +=______. 【类比探究】(2)如图2.若四边形ABCD 是平行四边形,请说明边长与对角线的数量关系.【拓展应用】(3)如图3,四边形ABCD 为平行四边形,对角线AC ,BD 相交于点O ,点E 为AO 的中点,点F 为BC 的中点,连接EF ,若8AB =,8BD =,12AC =,直接写出EF 的长度.2024年四川省达州市中考数学真题试卷答案一、单项选择题(每小题4分.共40分)二、填空题 11.【答案】23(3)x -12.【答案】1613.【答案】1-或214.【答案】13n m 15.【答案】403三、解答题.16.【答案】(1)3-(2)15x -<≤ 17.【答案】41x +,当1x =时,原式2=. 18.【答案】(1)800,40,5 (2)126 (3)1319.【答案】(1)略 (2)四边形AECF 是平行四边形 20.【答案】中轴上DF 的长度为1.5米 21.【答案】(1)6y x=,1y x =+ (2)(3,0)C 22.【答案】(1)A ,B 两种柑橘礼盒每件的售价分别为80,100元(2)要使农户收益最大,销售方案为售出A 种柑橘礼盒595盒,售出B 种柑橘礼盒405盒,最大收益为34050元23.【答案】(1)证明略(2 24.【答案】(1)223y x x =+- (2)()1,0P 或()4,5P -;(3)(N -或(1,-或()1,1--或()3-25.【答案】(1)214AC ,214BD ,24AB ;(2)222222AC BD AB AD +=+;(3。
2024年四川省达州市中考数学真题(解析版)

2024年四川省达州市中考数学试题本考试为闭卷考试.考试时间120分钟、满分150分.本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1-2页,第Ⅱ卷3-8页,共8页.温馨提示:1.答题前,考生需用0.5毫米黑色签字笔将自己的姓名、准考证号、座位号正确填写在答题卡对应位置,待监考老师粘贴条形码后,再认真核对条形码上的信息与自己的准考证上的信息是否一致.2.选择题必须使用2B 铅笔在答题卡相应位置规范填涂.如需改动,用橡皮擦擦干净后,再选涂其他答案标号;非选择题用0.5毫米黑色签字笔作答,答案必须写在答题卡对应的框内.超出答题区答案无效;在草稿纸、试题卷上作答无效.3.不要折叠、弄破、弄皱答题卡.不得使用涂改液、修正带、刮纸刀等影响答题卡整洁.4.考试结束后,将试卷及答题卡一并交回.第Ⅰ卷(选择题共40分)一、单项选择题(每小题4分.共40分)1.有理数2024的相反数是()A.2024B.2024- C.12024D.12024-【答案】B 【解析】【分析】本题主要考查了求一个数的相反数,只有符号不同的两个数互为相反数,0的相反数是0,据此求解即可.【详解】解:有理数2024的相反数是2024-,故选:B .2.大米是我国居民最重要的主食之一,与此同时,我国也是世界上最大的大米生产国,水稻产量常年稳定在2亿吨以上.将2亿用科学记数法表示为()A.9210⨯B.8210⨯ C.80.210⨯ D.7210⨯【答案】B 【解析】【分析】本题考查了科学记数法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值大于1与小数点移动的位数相同.【详解】解:2亿8200000000210==⨯,故选:B .3.下列计算正确的是()A.235a a a +=B.()22224a a a +=++C.()3236928a b a b -=- D.1262a a a ÷=【答案】C 【解析】【分析】本题主要考查了完全平方公式,积的乘方计算,同底数幂除法计算,合并同类项,熟知相关计算法则是解题的关键.【详解】解:A 、2a 与3a 不是同类项,不能合并,原式计算错误,不符合题意;B 、()22244a a a +=++,原式计算错误,不符合题意;C 、()3236928a b a b -=-,原式计算正确,符合题意;D 、1266a a a ÷=,原式计算错误,不符合题意;故选:C .4.如图,正方体的表面展开图上写有“我们热爱中国”六个字,还原成正方体后“我”的对面的字是()A.热B.爱C.中D.国【答案】B 【解析】【分析】本题考查了正方体相对两个面上的文字,正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,据此作答即可.【详解】解:正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,则与“我”字相对的字是“爱”,与“们”字相对的字是“中”,与“国”字相对的字是“热”,故选:B .5.小明在处理一组数据“12,12,28,35,■”时,不小心将其中一个数据污染了,只记得该数据在30~40之间.则“■”在范围内无论为何值都不影响这组数据的()A.平均数B.众数C.中位数D.方差【答案】C 【解析】【分析】此题考查数据平均数、众数、中位数方差的计算方法,根据中位数的定义求解可得.【详解】解:依题意“■”该数据在30~40之间,则这组数据的中位数为28,∴“■”在范围内无论为何值都不影响这组数据的中位数.故选:C .6.当光线从空气射入水中时,光线的传播方向发生了改变,这就是光的折射现象(如图所示).图中180∠=︒,240∠=︒,则3∠的度数为()A.30︒B.40︒C.50︒D.70︒【答案】B 【解析】【分析】本题考查了平行线的性质,根据平行线的性质可得123∠=∠+∠,代入数据,即可求解.【详解】解:依题意,水面与容器底面平行,∴123∠=∠+∠∵180∠=︒,240∠=︒,∴312804040∠=∠-∠=︒-︒=︒故选:B .7.甲乙两人各自加工120个零件,甲由于个人原因没有和乙同时进行,乙先加工30分钟后,甲开始加工.甲为了追赶上乙的进度,加工的速度是乙的1.2倍,最后两人同时完成.求乙每小时加工零件多少个?设乙每小时加工x 个零件.可列方程为()A.120120301.2x x-= B.120120301.2x x-=C.120120301.260x x -= D.120120301.260x x -=【答案】D 【解析】【分析】本题主要考查了分式方程的实际应用,设乙每小时加工x 个零件,则甲每小时加工1.2x 个零件,再根据时间=工作总量÷工作效率结合甲的工作时间比乙的工作时间少30分钟列出方程即可.【详解】解:设乙每小时加工x 个零件,则甲每小时加工1.2x 个零件,由题意得120120301.260x x -=,故选:D .8.如图,由8个全等的菱形组成的网格中,每个小菱形的边长均为2,120ABD ∠=︒,其中点A ,B ,C 都在格点上,则tan BCD ∠的值为()A.2B.C.32D.3【答案】B 【解析】【分析】本题考查了菱形的性质,解直角三角形,延长BC 交格点于点F ,连接AF ,,E G 分别在格点上,根据菱形的性质,进而得出90AFC ∠=︒,解直角三角形求得,AF FC 的长,根据对顶角相等,进而根据正切的定义,即可求解.【详解】解:如图所示,延长BC 交格点于点F ,连接AF ,,E G 分别在格点上,依题意,120,EGF EG GF ∠=︒=,,60GF GC FGC =∠=︒∴30,60CEF ECF ∠=︒∠=︒∴90AFC ∠=︒又2FC =,∴324cos30422AF EF EG ==︒=⨯⨯=∴tan tan 2AF BCD ACF FC ∠=∠===故选:B .9.抛物线2y x bx c =-++与x 轴交于两点,其中一个交点的横坐标大于1,另一个交点的横坐标小于1,则下列结论正确的是()A.1b c +>B.2b = C.240b c +< D.0c <【答案】A 【解析】【分析】本题考查了二次函数的性质,设抛物线2y x bx c =-++与x 轴交于两点,横坐标分别为1212,,x x x x <,依题意,121,1x x <>,根据题意抛物线开口向下,当1x =时,0y >,即可判断A 选项,根据对称轴即可判断B 选项,根据一元二次方程根的判别式,即可求解.判断C 选项,无条件判断D 选项,据此,即可求解.【详解】解:依题意,设抛物线2y x bx c =-++与x 轴交于两点,横坐标分别为1212,,x x x x <依题意,121,1x x <>∵10a =-<,抛物线开口向下,∴当1x =时,0y >,即10b c -++>∴1b c +>,故A 选项正确,符合题意;若对称轴为1222b b b x a =-=-==-,即2b =,而121,1x x <>,不能得出对称轴为直线1x =,故B 选项不正确,不符合题意;∵抛物线与坐标轴有2个交点,∴方程20x bx c -++=有两个不等实数解,即240b ac ∆=->,又1a =-∴240b c +>,故C 选项错误,不符合题意;无法判断c 的符号,故D 选项错误,不符合题意;故选:A .10.如图,ABC 是等腰直角三角形,90ABC ∠=︒,4AB =,点D ,E 分别在AC ,BC 边上运动,连结AE ,BD 交于点F ,且始终满足2AD =,则下列结论:①AE BD =;②135DFE ∠=︒;③ABF △面积的最大值是4;④CF 的最小值是-)A.①③B.①②④C.②③④D.①②③④【答案】D 【解析】【分析】过点B 作BM AC ⊥于点M ,证明ABE BMD ∽,根据相似三角形的性质即可判断①;得出BAE MBD ∠=∠,根据三角形内角和定理即可判断②;在AB 的左侧,以AB 为斜边作等腰直角三角形AOB ,以OA 为半径作O ,根据定弦定角得出F 在O 的 AB 上运动,进而根据当OF AB ⊥时,ABF △面积的最大,根据三角形的面积公式求解,即可判断③,当F 在OC 上时,FC 最小,过点O 作OH BC⊥交CB 的延长线于点H ,勾股定理,即可求解.【详解】解:如图所示,过点B 作BM AC ⊥于点M ,∵ABC 是等腰直角三角形,90ABC ∠=︒,4AB =,∴AB BC AC ===,,∵2AD =,∴()1122222222DM AC AD CE BC CE BE =-=-=-=∴22DM AD BE CE ==又∵90DMB EBA ∠=∠=︒∴ABE BMD ∽,∴AE AB BD BM==∵ABE BMD ∽,∴BAE MBD ∠=∠,∴BAE ABD MBD ABD∠+∠=∠+∠即()()180180BAE ABD MBD ABD ︒-∠+∠=︒-∠+∠在ABF △中,()180AFB BAE ABD ∠=︒-∠+∠即()180AFB MBD ABD ∠=︒-∠+∠∵ABC 是等腰直角三角形,BM AC ⊥∴BM 平分ABC ∠∴1452ABM CBM ABC ∠=∠=∠=︒∴()180180135AFB MBD ABD ABM ∠=︒-∠+∠=︒-∠=︒∴()180135AFB BAE ABD ∠=︒-∠+∠=︒,∴135DFE ∠=︒,故②正确,如图所示,在AB 的左侧,以AB 为斜边作等腰直角三角形AOB ,以OA 为半径作O ,且4AB =∴90AOB ∠=︒,4OA OB ====,AB ∵135AFB ∠=︒∴11802DFE AOB ∠+∠=︒∴F 在O 的 AB 上运动,∴422OF AO AB ====,连接OF 交AB 于点G ,则2AG GB ==,∴当OF AB ⊥时,结合垂径定理,OG 最小,∵OF 是半径不变∴此时CF 最大则ABF △面积的最大,∴()22ABF AGF AOF AOG S S S S ==- 211222OF AG OG ⎛⎫=⨯⨯- ⎪⎝⎭222=-4=-,故③正确;如图所示,当F 在OC 上时,FC 最小,过点O 作OHBC ⊥交CB 的延长线于点H ,∴OHB 是等腰直角三角形,∴22222OH HB OB OA ====,在Rt OHC 中,6HC HB BC =+=,∴OC ==∴CF 的最小值是故选:D .【点睛】本题考查了相似三角形的性质与判定,圆内接四边形对角互补,求圆外一点到圆上的距离最值问题,勾股定理,等腰直角三角形的性质与判定,熟练掌握以上知识是解题的关键.第II 卷(非选择题共110分)二、填空题(每小题4分,共20分)11.分解因式:3x 2﹣18x+27=________.【答案】3(x ﹣3)2【解析】【分析】先提取公因式3,再根据完全平方公式进行二次分解.【详解】3x 2-18x+27,=3(x 2-6x+9),=3(x-3)2.故答案为:3(x-3)2.12.“四大名著”《红楼梦》《水浒传》《三国演义》《西游记》是中国优秀文化的重要组成部分.某校七年级准备从这四部名著中随机抽取两本(先随机抽取一本,不放回,再随机抽取另一本)开展“名著共读”活动,则该年级的学生恰好抽取到《三国演义》和《西游记》的概率是______.【答案】16【解析】【分析】本题考查画树状图法求等可能事件的概率;画树状图,共有12种等可能的结果,其中抽取的两本恰好是《水浒传》和《西游记》的结果有2种,再由概率公式求解即可.【详解】解:把《红楼梦》《水浒传》《三国演义》《西游记》四本书分别记为A ,B ,C ,D ,根据题意,画出如下的树状图:由树状图可知看出,所有可能出现的结果共有12种,这些结果出现的可能性相等.两本是《三国演义》和《西游记》的结果有2种,所以P (两本是《三国演义》和《西游记》)21126==.故答案为:16.13.若关于x 的方程31122k x x --=--无解,则k 的值为______.【答案】4【解析】【分析】本题主要考查了根据分式方程解的情况求参数,先解分式方程得到6x k =-,再根据分式方程无解得到620k --=,解方程即可得到答案.【详解】解:31122k x x --=--去分母得:312k x -+=-,解得6x k =-,∵关于x 的方程31122k x x --=--无解,∴原方程有增根,∴20x -=,即620k --=,∴4k =,故答案为:4.14.如图,在ABC 中,1AE ,1BE 分别是内角CAB ∠、外角CBD ∠的三等分线,且113E AD CAB ∠=∠,113E BD CBD ∠=∠,在1ABE 中,2AE ,2BE 分别是内角1E AB ∠,外角1E BD ∠的三等分线.且2113E AD E AB ∠=∠,2113E BD E BD ∠=∠,…,以此规律作下去.若C m ∠=︒.则n E ∠=______度.【答案】13n m 【解析】【分析】本题考查了三角形的外角定理,等式性质,熟练掌握知识点是解题的关键.先分别对1,ABC E AB △△运用三角形的外角定理,设1E AD α∠=,则3CAB α∠=,1E BD β∠=,则3CBD β∠=,得到1E βα=+∠,33C βα=+∠,同理可求:2211133E E C ⎛⎫∠=∠=∠ ⎪⎝⎭,所以可得13nn E C ⎛⎫∠=∠ ⎪⎝⎭.【详解】解:如图:∵113E AD CAB ∠=∠,113E BD CBD ∠=∠,∴设1E AD α∠=,1E BD β∠=,则3CAB α∠=,3CBD β∠=,由三角形的外角的性质得:1E βα=+∠,33C βα=+∠,∴113E C ∠=∠,如图:同理可求:2113E E ∠=∠,∴2213E C ⎛⎫∠=∠ ⎪⎝⎭,……,∴13nn E C ⎛⎫∠=∠ ⎪⎝⎭,即13n nE m ∠=︒,故答案为:13n m .15.如图,在Rt ABC △中,90C ∠=︒.点D 在线段BC 上,45BAD ∠=︒.若4AC =,1CD =,则ABC 的面积是______.【答案】403【解析】【分析】本题考查解直角三角形,勾股定理.过D 作DE AB ⊥于E ,设DB x =,则1CB x =+,利用sin AC DE B AB DBÐ==列出等式即可.【详解】解:过D 作DE AB ⊥于E ,90C ∠=︒ ,4AC =,1CD =,AD \=45BAD ∠=︒ADE ∴V 是等腰直角三角形23422DE AD \==设DB x =,则1CB x =+AB \=sin AC DE B AB DB Ð==342x \解得175x =-(舍去)或173x =经检验173x =是原分式方程的解,111740(142233ABC S CB AC \=鬃=�△.故答案为:403.三、解答题:解答时应写出必要的文字说明、证明过程或演算步骤(共90分)16.(1)计算:()2012sin 60π20242-⎛⎫--︒-- ⎪⎝⎭;(2)解不等式组323122x x x --<-⎧⎪⎨-≤+⎪⎩【答案】(1)3-(2)15x -<≤【解析】【分析】本题考查了实数的混合运算,解一元一次不等式组;(1)根据负整数指数幂,二次根式的性质,特殊角的三角函数值,零指数幂进行计算即可求解;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:(1)()212sin 60π20242-⎛⎫--︒-- ⎪⎝⎭4212=-⨯-41=-3=-(2)323122x x x --<-⎧⎪⎨-≤+⎪⎩①②解不等式①得:1x >-解不等式②得:5x ≤∴不等式组的解集为:15x -<≤17.先化简:22224x x x x x x x +⎛⎫-÷ ⎪-+-⎝⎭,再从2-,1-,0,1,2之中选择一个合适的数作为x 的值代入求值.【答案】41x +,当1x =时,原式2=.【解析】【分析】本题主要考查了分式的化简求值,先把小括号内的式子通分,再把除法变成乘法后约分化简,接着根据分式有意义的条件确定x 的值,最后代值计算即可.【详解】解:22224x x x x x x x +⎛⎫-÷ ⎪-+-⎝⎭()()()()()()()2212222x x x x x x x x x x +--+=÷-+-+()()()()()222222221x x x x x x x x x x -++-+=⋅-++()()()()()224221x x x x x x x -+=⋅-++41x =+,∵分式要有意义,∴()()()22010x x x x ⎧+-≠⎪⎨+≠⎪⎩,∴2x ≠±且0x ≠且1x ≠-,∴当1x =时,原式4211==+.18.2024年4月21日,达州马拉松暨“跑遍四川”达州站马拉松赛鸣枪开跑.本次赛事以“相约巴人故里,乐跑红色达州”为主题.旨在增强全市民众科学健身意识.推动全民健身活动,本届赛事共设置马拉松,半程马拉松和欢乐跑三个项目赛后随机抽样了部分参赛选手对本次赛事组织进行满意度评分调查,整理后得到下列不完整的图表:等级A B C D分数段90~10080~8970~7960~69频数440280m40请根据表中提供的信息.解答下列问题:(1)此次调查共抽取了______名选手,m=______,n=______;(2)扇形统计图中,B等级所对应的扇形圆心角度数是______度;(3)赛后若在三个项目的冠军中随机抽取两人访谈,请用列表或画树状图的方法,求出恰好抽到马拉松和欢乐跑冠军的概率.【答案】(1)800,40,5(2)126(3)1 3【解析】【分析】本题考查了列表法求概率,频数分布表以及扇形统计图;(1)根据A等级的人数除以占比得出总人数,进而求得,m n的值;(2)根据B等级的占比乘以360︒,即可求解;(3)设三个项目的冠军分别为,,A B C,根据列表法求概率,即可求解.【小问1详解】解:依题意,44080055%=名选手,8005%40m=⨯=,40%100%5%800n=⨯=∴5n=故答案为:800,40,5.【小问2详解】扇形统计图中,B 等级所对应的扇形圆心角度数是280360126800⨯︒=︒,故答案为:126.【小问3详解】解:设三个项目的冠军分别为,,A B C ,列表如下,A B CA AB AC B BA BCC CA CB共有6种等可能结果,其中恰好抽到马拉松和欢乐跑冠军的有2种情形,∴恰好抽到马拉松和欢乐跑冠军的概率为2163=19.如图,线段AC 、BD 相交于点O .且AB CD ∥,AE BD ⊥于点E .(1)尺规作图:过点C 作BD 的垂线,垂足为点F 、连接AF 、CE ;(不写作法,保留作图痕迹,并标明相应的字母)(2)若AB CD =,请判断四边形AECF 的形状,并说明理由.(若前问未完成,可画草图完成此问)【答案】(1)见解析(2)四边形AECF 是平行四边形,理由见解析【解析】【分析】本题主要考查了平行四边形的判定,垂线的尺规作图,全等三角形的性质与判定:(1)先根据垂线的尺规作图方法作出点F ,再连接AF 、CE 即可;(2)先证明()ASA ABO CDO ≌,得到OA OC =,再证明90AE CF AEO CFO ==︒∥,∠∠,进而证明()AAS AOE COF ≌,得到AE CF =,即可证明四边形AECF 是平行四边形.【小问1详解】解:如图所示,即为所求;【小问2详解】解:四边形AECF 是平行四边形,理由如下:∵AB CD ∥,∴B D OAB OCD ==∠∠,∠∠,又∵AB CD =,∴()ASA ABO CDO ≌,∴OA OC =,∵AE BD CF BD ⊥⊥,,∴90AE CF AEO CFO ==︒∥,∠∠,又∵AOE COF ∠=∠,∴()AAS AOE COF ≌,∴AE CF =,∴四边形AECF 是平行四边形.20.“三汇彩婷会”是达州市渠县三汇镇独有的传统民俗文化活动、起源于汉代、融数学,力学,锻造,绑扎,运载于一体,如图1,在一次展演活动中,某数学综合与实践小组将彩婷抽象成如图2的示意图,AB 是彩婷的中轴、甲同学站在C 处.借助测角仪观察,发现中轴AB 上的点D 的仰角是30︒,他与彩婷中轴的距离6BC =米.乙同学在观测点E 处借助无人机技术进行测量,测得AE 平行于水平线BC ,中轴AB 上的点F 的仰角45AEF ∠=︒,点E 、F 之间的距离是4米,已知彩婷的中轴 6.3AB =米,甲同学的眼睛到地面的距离 1.5MC =米,请根据以上数据,求中轴上DF 的长度.(结果精确到0.1米,参考数据1.73≈1.41≈)【答案】中轴上DF 的长度为1.5米【解析】【分析】本题考查了解直角三角形的应用;过点M 作MN AB ⊥于点N ,分别求得,DN AF 的长,根据DF AF DB AB =+-,即可求解.【详解】解:如图,过点M 作MN AB ⊥于点N ,依题意,四边形MCBN 是矩形,30,45DMN AEF ∠=︒∠=︒∴3tan 3063DN MN =⋅︒=⨯=2sin 4542AF EF =⋅︒=⨯=∴DF AF DB AB =+-1.5 6.3=++-21.4121.73 1.5 6.3=⨯+⨯+-1.5≈米答:中轴上DF 的长度为1.5米.21.如图,一次函数y kx b =+(k 、b 为常数,0k ≠)的图象与反比例函数m y x=(m 为常数,0m ≠)的图象交于点()2,3A ,(),2B a -.(1)求反比例函数和一次函数的解析式;(2)若点C 是x 轴正半轴上的一点.且90BCA ∠=︒.求点C 的坐标.【答案】(1)6y x =,1y x =+(2)(3,0)C 【解析】【分析】本题考查反比例函数与一次函数综合题型,也考查了锐角三角函数的应用.(1)用待定系数法先求反比例函数解析式,再求一次函数解析式即可;(2)过A 作AM x ⊥轴于M ,过B 作BN x ⊥轴于N ,设(,0)C c ,先求得NCB MAC ∠=∠得到tan tan NCB MAC Ð=Ð,即NB MC NC AM =,得出等量关系解出c 即可.【小问1详解】解:将()2,3A 代入m y x=得236m =⨯=6y x∴=将(),2B a -代入6y x =得62a -=3a ∴=-()3,2B ∴--将()2,3A 和()3,2B --代入y kx b =+得2332k b k b +=⎧⎨-+=-⎩解得11k b =⎧⎨=⎩1y x ∴=+故反比例函数和一次函数的解析式分别为6y x=和1y x =+;【小问2详解】如图,过A 作AM x ⊥轴于M ,过B 作BN x ⊥轴于N ,90BCA ∠=︒90NCB ACM \Ð+Ð=°90MAC ACM Ð+Ð=°NCB MAC\Ð=Ðtan tan NCB MAC\Ð=Ð即NB MC NC AM=设(,0)C c ,则2MC c =-,3NC c =+3,2AM BN == 2233c c -\=+解得4c =-(舍去)或3c =经检验,3c =是原分式方程的解,(3,0)C ∴.22.为拓宽销售渠道,助力乡村振兴,某乡镇帮助农户将A 、B 两个品种的柑橘加工包装成礼盒再出售.已知每件A 品种柑橘礼盒比B 品种柑橘礼盒的售价少20元.且出售25件A 品种柑橘礼盒和15件B 品种柑橘礼盒的总价共3500元.(1)求A 、B 两种柑橘礼盒每件的售价分别为多少元?(2)已知加工A 、B 两种柑橘礼盒每件的成本分别为50元、60元、该乡镇计划在某农产品展销活动中售出A 、B 两种柑橘礼盒共1000盒,且A 品种柑橘礼盒售出的数量不超过B 品种柑橘礼盒数量的1.5倍.总成本不超过54050元.要使农户收益最大,该乡镇应怎样安排A 、B 两种柑橘礼盒的销售方案,并求出农户在这次农产品展销活动中的最大收益为多少元?【答案】(1)A 、B 两种柑橘礼盒每件的售价分别为80,100元(2)要使农户收益最大,销售方案为售出A 种柑橘礼盒595盒,售出B 种柑橘礼盒405盒,最大收益为34050元【解析】【分析】本题考查了二元一次方程组的应用;一元一次不等式的应用,一次函数的应用;(1)设A 、B 两种柑橘礼盒每件的售价分别为a 元,b 元,根据题意列出二元一次方程组,即可求解;(2)设售出A 种柑橘礼盒x 盒,则售出B 种柑橘礼盒()1000x -盒,根据题意列出不等式组,得出595600x ≤≤,设收益为y 元,根据题意列出函数关系式,进而根据一次函数的性质,即可求解.【小问1详解】解:设A 、B 两种柑橘礼盒每件的售价分别为a 元,b 元,根据题意得,2025153500a b a b +=⎧⎨+=⎩解得:80100a b =⎧⎨=⎩答:A 、B 两种柑橘礼盒每件的售价分别为80,100元;【小问2详解】解:设售出A 种柑橘礼盒x 盒,则售出B 种柑橘礼盒()1000x -盒,根据题意得,()()1.510005060100054050x x x x ⎧≤-⎪⎨+-≤⎪⎩解得:595600x ≤≤设收益为y 元,根据题意得,()()()80501006010001040000y x x x =-+--=-+∵100-<∴y 随x 的增大而减小,∴当595x =时,y 取得最大值,最大值为105954000034050-⨯+=(元)∴售出B 种柑橘礼盒1000595405-=(盒)答:要使农户收益最大,销售方案为售出A 种柑橘礼盒595盒,售出B 种柑橘礼盒405盒,最大收益为34050元.23.如图,BD 是O 的直径.四边形ABCD 内接于O .连接AC ,且AB AC =,以AD 为边作DAF ACD ∠=∠交BD 的延长线于点F .(1)求证:AF 是O 的切线;(2)过点A 作AE BD ⊥交BD 于点E .若3CD DE =,求cos ABC ∠的值.【答案】(1)证明见解析(2【解析】【分析】(1)如图所示,连接OA ,由直径所对的圆周角是直角得到90BAD ∠=︒,导角可证明DAF OAB ∠=∠,进而得到90OAF ∠=︒,据此即可证明AF 是O 的切线;(2)延长CD 交AF 于H ,延长AO 交BC 于G ,连接OC ,由直径所对的圆周角是直角得到90BCD ∠=︒,证明AG CH ∥,得到90AHC ∠=︒,接着证明()AAS ABE ACH ≌,得到AE AH BE CH ==,,进一步证明()Rt Rt HL ADE ADH ≌,得到DH DE =,设DH DE a ==,则3CD a =,4BE CH a ==,进而得到5BD BE DE a =+=,则 2.5OA OD a ==,由勾股定理得到2AE a ==,AD ==,则cos 5DE ADE AD ==∠,进一步可得cos cos 5ABC ADE ==∠∠.【小问1详解】证明:如图所示,连接OA ,∵BD 是O 的直径,∴90BAD ∠=︒,∴90OAB OAD ∠+∠=︒,∵OA OB =,∴OAB OBA ∠=∠,∵DAF ACD ∠=∠,OBA ACD ∠=∠,∴DAF OAB ∠=∠,∴90DAF OAD OAB OAD +=+=︒∠∠∠∠,∴90OAF ∠=︒,∴OA AF ⊥,又∵OA 是O 的半径,∴AF 是O 的切线;【小问2详解】解:如图所示,延长CD 交AF 于H ,延长AO 交BC 于G ,连接OC ,∵BD 是O 的直径,∴90BCD ∠=︒,即CH BC ⊥,∵AB AC OB OC ==,,∴OA 垂直平分BC ,∴AG BC ⊥,∴AG CH ∥,∵90OAF ∠=︒,∵AE BD ⊥,∴90AEB AHC ==︒∠∠,又∵ABE ACH ∠=∠,∴()AAS ABE ACH ≌,∴AE AH BE CH ==,,∵AD AD =,∴()Rt Rt HL ADE ADH ≌,∴DH DE =,设DH DE a ==,则3CD a =,∴4BE CH DH CD a ==+=,∴5BD BE DE a =+=,∴ 2.5OA OD a ==,∴ 1.5OE OD DE a =-=,∴2AE a ==,∴AD ==,∴5cos 5DE ADE AD ==∠,∵AB AC =,∴A ABC CB =∠∠,∵ADE ACB ∠=∠,∴ABC ADE ∠=∠,∴cos cos 5ABC ADE ==∠∠.【点睛】本题主要考查了切线的判定,求角的余弦值,直径所对的圆周角是直角,同弧所对的圆周角相等,勾股定理,全等三角形的性质与判定等等,正确作出辅助线构造全等三角形和直角三角形是解题的关键.24.如图1,抛物线23y ax kx =+-与x 轴交于点()3,0A -和点()1,0B ,与y 轴交于点C .点D 是抛物线的顶点.(1)求抛物线的解析式;(2)如图2,连接AC ,DC ,直线AC 交抛物线的对称轴于点M ,若点P 是直线AC 上方抛物线上一点,且2PMC DMC S S =△△,求点P 的坐标;(3)若点N 是抛物线对称轴上位于点D 上方的一动点,是否存在以点N ,A ,C 为顶点的三角形是等腰三角形,若存在,请直接写出满足条件的点N 的坐标;若不存在,请说明理由.【答案】(1)223y x x =+-(2)()1,0P 或()4,5P -;(3)(N -或(1,-或()1,1--或()3-【解析】【分析】(1)待定系数法求解析式,即可求解;(2)先求得,,C M D 的坐标,根据勾股定理的逆定理得出MCD △是等腰三角形,进而根据2PMC DMC S S =△△得出2PMC S =△,连接MB ,设MD 交x 轴于点E ,则2ME EB ==得出MBE △是等腰直角三角形,进而得出2BMC S =△,则点P 与点B 重合时符合题意,()1,0P ,过点B 作BP AC ∥交抛物线于点P ,得出直线BP 的解析式为1y x =-+,联立抛物线解析式,即可求解;(3)勾股定理求得222,,AC AN CN ,根据等腰三角形的性质,分类讨论解方程,即可求解.【小问1详解】解:∵抛物线23y ax kx =+-与x 轴交于点()3,0A -和点()1,0B ,∴933030a k a k --=⎧⎨+-=⎩解得:12a k =⎧⎨=⎩∴抛物线的解析式为223y x x =+-;【小问2详解】由223y x x =+-,当0x =时,=3y -,则()0,3C -∵()222314y x x x =+-=+-,则()1,4D --,对称轴为直线=1x -设直线AC 的解析式为11y k x b =+,代入()3,0A -,()0,3C -∴11303k b b -+=⎧⎨=-⎩解得:1113k b =-⎧⎨=-⎩∴直线AC 的解析式为3y x =--,当=1x -时,=2y -,则()1,2M --∴()242,MC MD CD ===---===∴222MD MC CD =+∴MCD △是等腰三角形,∴212222PMC DMC S CD S ==⨯⨯=△△连接MB ,设MD 交x 轴于点E ,则2ME EB ==∴MBE △是等腰直角三角形,∴45BME ∠=︒,BM =,又45DMC ∠=︒∴BM AC⊥∴11222BMC S MC BM =⨯⨯== ∴点P 与点B 重合时符合题意,()1,0P 如图所示,过点B作BP AC ∥交抛物线于点P ,设直线BP 的解析式为y x m =-+,将()1,0B 代入得,01m=-+解得:1m =∴直线BP 的解析式为1y x =-+联立2123y x y x x =-+⎧⎨=+-⎩解得:45x y =-⎧⎨=⎩,10x y =⎧⎨=⎩∴()4,5P -综上所述,()1,0P 或()4,5P -;【小问3详解】解:∵()3,0A -,()0,3C -,∴2223318AC =+=∵点N 是抛物线对称轴上位于点D 上方的一动点,设()1,N n -其中4n >-∴()2222314AN n n =-++=+,()222213610CN n n n =++=++①当AN AC =时,2418n +=,解得:n =或n =②当NA NC =时,224610n n n +=++,解得:1n =-③当CA CN =时,218610n n =++,解得:3n =-或3n =(舍去)综上所述,(N -或(1,-或()11--,或()13-.【点睛】本题考查了二次函数综合问题,待定系数法求解析式,面积问题,特殊三角形问题,熟练掌握二次函数的性质是解题的关键.25.倍,某数学兴趣小组以此为方向对菱形的对角线和边长的数量关系探究发现,具体如下:如图1.(1) 四边形ABCD 是菱形,AC BD ∴⊥,AO CO =,BO DO =.222AB AO BO ∴=+.又2AC AO = ,2BD BO =,2AB ∴=______+______.化简整理得22AC BD +=______.【类比探究】(2)如图2.若四边形ABCD 是平行四边形,请说明边长与对角线的数量关系.【拓展应用】(3)如图3,四边形ABCD 为平行四边形,对角线AC ,BD 相交于点O ,点E 为AO 的中点,点F 为BC 的中点,连接EF ,若8AB =,8BD =,12AC =,直接写出EF 的长度.【答案】(1)214AC ,214BD ,24AB ;(2)222222AC BD AB AD +=+;(3【解析】【分析】(1)根据菱形的性质及勾股定理补充过程,即可求解;(2)过点D 作DE AB ⊥于点E ,过点C 作CF AB ⊥交AB 的延长线于点F ,根据平行四边形的性质得AB CD =,AB CD ∥,AD BC =,证明()AAS DAE CBF ≌,得AE BF =,DE CF =,,根据勾股定理得()22222DB DE BB DE AB AE =+=+-,()22222AC CF AF CF AB BF =+=++,继而得出22AC BD +的值即可;(3)由(2)可得222222AC BD AB AD +=+得出AD =,过点,E O 分别作BC 的垂线,垂足分别为,M G ,连接OF ,根据勾股定理以及已知条件,分别求得,,OG CG BG ,根据EM OG ∥得出131024MG CG ==,MF =根据COG CEM ∽得出32EM OG ==可求解.【详解】解:(1) 四边形ABCD 是菱形,AC BD ∴⊥,AO CO =,BO DO =.222AB AO BO ∴=+.又2AC AO = ,2BD BO =,2221144AB AC BD ∴=+.化简整理得2224AC BD AB +=故答案为:214AC ,214BD ,24AB .(2)222222AC BD AB AD +=+,理由如下,过点D 作DE AB ⊥于点E ,过点C 作CF AB ⊥交AB 的延长线于点F,∴90DEA DEB CFB ∠=∠=∠=︒,∵四边形ABCD 是平行四边形,∴AB CD =,AB CD ∥,AD BC =,∴DAE CBF ∠=∠,在DAE 和CBF V 中,DAE CBF DEA CFB AD BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS DAE CBF ≌,∴AE BF =,DE CF =,在Rt DBE 中,()22222DB DE BE DE AB AE =+=+-,在Rt CAF △中,()22222AC CF AF CF AB BF =+=++,∴()()222222AC BD DE AB AE CF AB BF +=+-+++22222222DE AB AB AE AE AB AB AE AE =+-⋅+++⋅+()22222DE AE AB =++2222AD AB =+,∴222222AC BD AB AD +=+(3)∵四边形ABCD 是平行四边形,8AB =,8BD =,12AC =,∴由(2)可得222222AC BD AB AD +=+∴2222128282AD +=⨯+解得:AD =∵四边形ABCD 是平行四边形,12,8,AC BD ==∴BC AD ==6OA OC ==,142OB OD BD ===,如图所示,过点,E O 分别作BC 的垂线,垂足分别为,M G ,连接OF ,∵F 分别为BC 的中点,∴11422OF AB OB BD ====,∵OG BF ⊥,∴BG GF =12BF =,∵F 是BC 的中点,∴12BF BC =∴BG GF =1110242BF BC ===,∴CG BC BG =-=,在Rt OGC △中,OG BC ⊥,∴362OG ===,∵E 为AO 的中点,∴12OE OA =,∵AO OC =,∴12OE OC =,∴23OC EC =,12OE OC =,∵,EM BC OG BC ⊥⊥,∴EM OG ∥,∴12EO MG OC CG ==,∴131024MG CG ==,∴3101042MF MG GF =+=+=,∵EM OG ∥,∴COG CEM ∽,∴23OG OC EM EC ==,∴32EM OG ==在Rt EMF △中,EF ===.【点睛】本题考查了菱形的性质,平行四边形的性质,勾股定理,全等三角形的性质与判定,相似三角形的性质与判定,平行线分线段成比例,熟练掌握勾股定理是解题的关键.。
2024年四川省达州市中考数学试卷(含答案)
2024年四川省达州市中考数学试卷一、单项选择题(每小题4分,共40分)1.有理数2024的相反数是( )A.2024B.﹣2024C.D.2.大米是我国居民最重要的主食之一,与此同时,我国也是世界上最大的大米生产国,水稻产量常年稳定在2亿吨以上.将2亿用科学记数法表示为( )A.2×109B.2×108C.0.2×108D.2×1073.下列计算正确的是( )A.a2+a3=a5B.(a+2)2=a2+2a+4C.(﹣2a2b3)3=﹣8a6b9D.a12÷a6=a24.如图,正方体的表面展开图上写有“我们热爱中国”六个字,还原成正方体后“我”的对面的字是( )A.热B.爱C.中D.国5.小明在处理一组数据“12,12,28,35,■”时,不小心将其中一个数据污染了,只记得该数据在30~40之间,则“■”在范围内无论为何值都不影响这组数据的( )A.平均数B.众数C.中位数D.方差6.当光线从空气射入水中时,光线的传播方向发生了改变,这就是光的折射现象(如图所示),图中∠1=80°,∠2=40°,则∠3的度数为( )A.30°B.40°C.50°D.70°7.甲乙两人各自加工120个零件,甲由于个人原因没有和乙同时进行,乙先加工30分钟后,甲开始加工.甲为了追赶上乙的进度,加工的速度是乙的1.2倍,最后两人同时完成.求乙每小时加工零件多少个?设乙每小时加工x个零件,可列方程为( )A.﹣=30B.﹣=30C.﹣=D.﹣=8.如图,由8个全等的菱形组成的网格中,每个小菱形的边长均为2,∠ABD=120°,其中点A,B,C都在格点上,则tan∠BCD的值为( )A.2B.C.D.39.抛物线y=﹣x2+bx+c与x轴交于两点,其中一个交点的横坐标大于1,另一个交点的横坐标小于1,则下列结论正确的是( )A.b+c>1B.b=2C.b2+4c<0D.c<010.如图,△ABC是等腰直角三角形,∠ABC=90°,AB=4,点D,E分别在AC,BC边上运动,连结AE,BD交于点F,且始终满足AD=CE,则下列结论:①=;②∠DFE=135°;③△ABF面积的最大值是4﹣4;④CF的最小值是2﹣2.其中正确的是( )A.①③B.①②④C.②③④D.①②③④二、填空题(每小题4分,共20分)11.分解因式:3x2﹣18x+27= .12.“四大名著”《红楼梦》《水浒传》《三国演义》《西游记》是中国优秀文化的重要组成部分.某校七年级准备从这四部名著中随机抽取两本(先随机抽取一本,不放回,再随机抽取另一本)开展“名著共读”活动,则该年级的学生恰好抽取到《三国演义》和《西游记》的概率是 .13.若关于x的方程﹣=1无解,则k的值为 .14.如图,在△ABC中,AE1,BE1分别是内角∠CAB,外角∠CBD的三等分线,且∠E1AD=∠CAB,∠E1BD=∠CBD,在△ABE1中,AE2,BE2分别是内角∠E1AB,外角∠E1BD的三等分线,且∠E2AD=∠E1AB,∠E2BD=∠E1BD,…,以此规律作下去,若∠C=m°,则∠E n= 度.15.如图,在Rt△ABC中,∠C=90°,点D在线段BC上,且∠BAD=45°,若AC=4,CD=1,则△ABC的面积是 .三、解答题:解答时应写出必要的文字说明、证明过程或演算步骤(共90分)16.(8分)(1)计算:(﹣)﹣2﹣+2sin60°﹣(π﹣2024)0;(2)解不等式组:.17.(6分)先化简:(﹣)÷,再从﹣2,﹣1,0,1,2之中选择一个合适的数作为x的值代入求值.18.(8分)2024年4月21日,达州马拉松暨“跑遍四川”达州站马拉松赛鸣枪开跑,本次赛事以“相约巴人故里,乐跑红色达州”为主题,旨在增强全市民众科学健身意识,推动全民健身活动.本届赛事共设置马拉松,半程马拉松和欢乐跑三个项目.赛后随机抽取了部分参赛选手对本次赛事组织进行满意度评分调查,整理后得到下列不完整的图表:等级A B C D分数段90﹣10080﹣8970﹣7960﹣69频数440280m40请根据表中提供的信息,解答下列问题:(1)此次调查共抽取了 名选手,m= ,n= ;(2)扇形统计图中,B等级所对应的扇形圆心角度数是 度;(3)赛后若在三个项目的冠军中随机抽取两人访谈,请用列表或画树状图的方法,求出恰好抽到马拉松和欢乐跑冠军的概率.19.(8分)如图,线段AC,BD相交于点O,且AB∥CD,AE⊥BD于点E.(1)尺规作图:过点C作BD的垂线,垂足为点F,连接AF,CE;(不写作法,保留作图痕迹,并标明相应的字母)(2)若AB=CD,请判断四边形AECF的形状,并说明理由.(若前问未完成,可画草图完成此问)20.(8分)“三汇彩亭会”是达州市渠县三汇镇独有的传统民俗文化活动,起源于汉代,融数学、力学、锻造、绑扎、运载于一体(如图1),在一次展演活动中,某数学“综合与实践”小组将彩亭抽象成如图2的示意图,AB是彩亭的中轴,甲同学站在C处.借助测角仪观察,发现中轴AB上的点D的仰角是30°,他与彩亭中轴的距离BC=6米,乙同学在观测点E处借助无人机技术进行测量,测得AE平行于水平线BC,中轴AB上的点F的俯角∠AEF=45°,点E、F之间的距离是4米,已知彩亭的中轴AB=6.3米,甲同学的眼睛到地面的距离MC=1.5米,请根据以上数据,求中轴上DF的长度.(结果精确到0.1米,参考数据≈1.73,≈1.41)21.(9分)如图,一次函数y=kx+b(k,b为常数,k≠0)的图象与反比例函数(m为常数,m ≠0)的图象交于点A(2,3),B(a,﹣2).(1)求反比例函数和一次函数的解析式;(2)若点C是x轴正半轴上的一点,且∠BCA=90°,求点C的坐标.22.(10分)为拓宽销售渠道,助力乡村振兴,某乡镇帮助农户将A、B两个品种的柑橘加工包装成礼盒再出售.已知每件A品种柑橘礼盒比B品种柑橘礼盒的售价少20元,且出售25件A品种柑橘礼盒和15件B品种柑橘礼盒的总价共3500元.(1)求A、B两种柑橘礼盒每件的售价分别为多少元?(2)已知加工A、B两种柑橘礼盒每件的成本分别为50元、60元,乡镇计划在某农产品展销活动中售出A、B两种柑橘礼盒共1000盒,且A品种柑橘礼盒售出的数量不超过B品种柑橘礼盒数量的1.5倍,总成本不超过54050元,要使农户收益最大,该乡镇应怎样安排A、B两种柑橘礼盒的销售方案,并求出农户在这次农产品展销活动中的最大收益为多少元?23.(10分)如图,BD是⊙O的直径,四边形ABCD内接于⊙O,连结AC,且AB=AC,以AD为边作∠DAF=∠ACD交BD的延长线于点F.(1)求证:AF是⊙O的切线;(2)过点A作AE⊥BD交BD于点E,若CD=3DE,求cos∠ABC的值.24.(11分)如图1,抛物线y=ax2+bx﹣3与x轴交于点A(﹣3,0)和点B(1,0),与y轴交于点C,点D是抛物线的顶点.(1)求抛物线的解析式;(2)如图2,连接AC,DC,直线AC交抛物线的对称轴于点M,若点P是直线AC上方抛物线上一点,且S△PMC=2S△DMC,求点P的坐标;(3)若点N是抛物线对称轴上位于点D上方的一动点,是否存在以点N,A,C为顶点的三角形是等腰三角形,若存在,请直接写出满足条件的点N的坐标;若不存在,请说明理由.25.(12分)在学习特殊的平行四边形时,我们发现正方形的对角线等于边长的倍,某数学兴趣小组以此为方向对菱形的对角线和边长的数量关系探究发现,具体如下:如图1.(1)∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,BO=DO.∴AB2=AO2+BO2又∵AC=2AO,BD=2BO,∴AB2= + .化简整理得AC2+BD2= .[类比探究](2)如图2,若四边形ABCD是平行四边形,请说明边长与对角线的数量关系.[拓展应用](3)如图3,四边形ABCD为平行四边形,对角线AC,BD相交于点O,点E为AO的中点,点F为BC的中点,连接EF,若AB=8,BD=8,AC=12,直接写出EF的长度.参考答案一、单项选择题(每小题4分,共40分)1.解:2024的相反数是﹣2024,故选:B.2.解:2亿用科学记数法表示为2×108,故选:B.3.解:a2+a3不能化简,故A选项错误;(a+2)2=a2+4a+4,故B选项错误;(﹣2a2b3)3=﹣8a6b9,故C选项正确;a12÷a6=a6,故D选项错误;故选:C.4.解:根据图示知:“我””与“爱”相对;“热”与“国”相对;“们”与“中”相对.故选:B.5.解:一组数据“12,12,28,35,■”,该数据■在30~40之间,四个数据的和随数据■的变化而变化,所以平均数是变化的,选项A错误.众数也变化,选项B错误.中位数是28,不变,选项C正确.因为平均数改变,方差随着改变,选项D错误.故选:C.6.解:如图,∵AB∥CD,∴∠1=∠AMN=∠2+∠3,∵∠1=80°,∠2=40°,∴∠3=40°,故选:B.7.解:设乙每小时加工x个零件,则甲每小时加工1.2x个零件,根据题意得﹣=.故选:D.8.解:如图,延长BC交格点于E,连接AE,由题意可得:AE⊥BE,AE=4,EC=2,∴tan∠BCD=tan∠ACE===2,故选:B.9.解:∵抛物线y=﹣x2+bx+c与x轴交于两点,分别为(x1,0)和(x2,0),且x1<1,∴x1﹣1<0,x2﹣1>0,∴(x1﹣1)(x2﹣1)<0,∴x1x2﹣(x1+x2)+1<0,由根与系数的关系可得,﹣c﹣b+1<0,∴b+c>1,故选:A.10.解:①∵△ABC是等腰直角三角形,∠ABC=90°,AB=4,∴∠BCA=∠BAC=45°,AB=BC=4,由勾股定理得:AC==,∴,∵AD=CE,∴,∴,又∵∠ECA=∠DAB=45°,∴△CAE∽△ABD,∴,故结论①正确;②∵△CAE∽△ABD,∴∠CAE=∠ABD,∴∠BFE=∠BAF+∠ABD=∠BAF+∠CAE=∠BAC=45°,∴∠DFE=180°﹣∠BFE=180°﹣45°=135°,故结论②正确;③以AB为斜边在△ABC外侧构造等腰Rt△OAB,作△OAB的外接圆⊙O,过点O作OK⊥AB于K,OK的延长线交⊙O于H,连接AH,BH,过点O作OM⊥CB交CB的延长线于M,连接OC 交⊙O于P,如下图所示:∴∠AOB=90°,∴∠AHB=180°﹣∠AOB=180°﹣×90°=135°,∵∠DFE=135°,∴点F在上运动,∵AB=4,∴当点F与点H重合时,△ABF的面积为最大,最大值为△ABH的面积,根据等腰直角三角形的性质得:AK=BK=AB=2,∠AOH=45°,∴AK=OK=2,在Rt△AOK中,由勾股定理得:OA==,∴OA=OH=OB=OP=,∴KH=OH﹣OK=,∴S△ABH=AB•KH==,故结论③正确;④∵点F在上运动,∴当点F与点P重合时,CF为最小,最小值为线段CP的长,∵OM⊥CB,OK⊥AB,∠ABM=∠ABC=90°,∴四边形OMBK为矩形,∴OM=BK=2,BM=OK=2,∴CM=BC+BM=4+2=6,在Rt△COM中,由勾股定理得:CO==,∴CP=CO﹣OP=,即CF的最小值是,故结论④正确,综上所述:正确的结论是①②③④.故选:D.二、填空题(每小题4分,共20分)11.解:3x2﹣18x+27,=3(x2﹣6x+9),=3(x﹣3)2.故答案为:3(x﹣3)2.12.解:∴P=,故答案为:.13.解:方程去分母得:3﹣(kx﹣1)=x﹣2解得:x=,①当x=2时分母为0,方程无解,即=2,∴k=2时方程无解;②当k+1=0即k=﹣1时,方程无解;故答案为:2或﹣1.14.解:由题意,,∴设∠E1AD=α,∠E1BD=β,则∠CAB=3α,∠CBD=3β,由三角形的外角的性质得:β=α+∠E 1,3β=3α+∠C ,,同理可求:, ……,,即,故答案为:.15.解:过D 作DE ⊥AB ,交AB 于点E ,,∴∠DEA =∠DEB =90°,∵∠C =90°,AC =4,CD =1,∴AD ==,∵∠DEA =90°,∠BAD =45°,∴AE =DE =AD •sin ∠EAD =,∵∠DEB =90°,∠C =90°,∴BE 2+DE 2=BD 2,AC 2+BC 2=AB 2,即BE 2+=BD 2①,(BD +1)2+16=(+BE )2②,①变形得,BE =③,②化简得,BD 2+2BD +17=+BE +BE 2④,将①、③代入④并化简得,15BD 2﹣34BD ﹣172=0,(BD >0)解得:BD =,∴BC =,∴S △ABC =AC •BC =,故答案为:.三、解答题:解答时应写出必要的文字说明、证明过程或演算步骤(共90分)16.解:(1)原式=4﹣3+2×﹣1=4﹣3+﹣1=3﹣2;(2),解不等式①得x>﹣1,解不等式②得x≤5,所以不等式组的解集为﹣1<x≤5.17.解:原式=•=•=•=,∵x﹣2≠0且x+2≠0且x≠0且x+1≠0,∴x可以取1,当x=1时,原式==2.18.解:(1)此次调查共抽取的选手总人数为440÷55%=800(名);所以m=800×5%=40,所以n%==5%,即n=5;故答案为:800,40,5;(2)扇形统计图中,B等级所对应的扇形圆心角度数=360°×=126°;故答案为:126;(3)用A、B、C分别表示马拉松,半程马拉松和欢乐跑三个项目.画树状图为:共有6种等可能的结果,其中马拉松和欢乐跑冠军的结果数为2种,所以恰好抽到马拉松和欢乐跑冠军的概率==.19.解:(1)如图,CF、AF、CE为所作;(2)四边形AECF平行四边形.理由如下:∵AB∥CD,∴∠B=∠D,∵AE⊥BD,CF⊥BD,∴AE∥CF,∠AEB=∠CFD=90°,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),∴AE=CF,而AE∥CF,∴四边形AECF平行四边形.20.解:过点M作MN⊥AB,垂足为N.由题意知,四边形CMNB是矩形.∴CM=BN=1.5米,MN=CB=6米,AN=AB﹣BN=6.3﹣1.5=4.8(米).在Rt△DMN中,∵tan∠DMN=,∴DN=tan∠DMN•MN=tan30°×MN=×6=2(米).在Rt△AEF中,∵sin∠AEF=,∴AF=sin∠AEF•EF=sin45°×EF=×4=2(米).∵AF+DN=AN+DF,∴DF=2+2﹣4.8≈2×1.73+2×1.41﹣4.8=3.46+2.82﹣4.8=1.48≈1.5(米).答:中轴上DF的长度为1.5米.21.解:(1)将点A、B的坐标代入反比例函数表达式得:m=2×3=﹣2a,解得:a=﹣3,m=6,即反比例函数的表达式为:y=,点B(﹣3,﹣2),将点A、B的坐标代入一次函数表达式得:,解得:,则一次函数的表达式为:y=x+1;(2)设点C(x,0),由点A、B、C的坐标得,AB2=50,AC2=(x﹣2)2+9,BC2=(x+3)2+4,∵∠BCA=90°,则AB2=AC2+BC2,即50=(x﹣2)2+9+(x+3)2+4,解得:x=3或﹣4(舍去),即点C(3,0).22.解:(1)设A种柑橘礼盒每件的售价为x元,则B种柑橘礼盒每件的售价为(x+20)元,由题意得:25x+15(x+20)=3500,解得:x=80,∴x+20=100,答:A种柑橘礼盒每件的售价为80元,B种柑橘礼盒每件的售价为100元;(2)设销售A种柑橘礼盒为m盒,则销售B种柑橘礼盒为(1000﹣m)盒,由题意得:,解得:595≤m≤600,设收益为w元,由题意得:w=(80﹣50)m+(100﹣60)(1000﹣m)=﹣10m+40000,∵﹣10<0,∴w随m的增大而减小,∴当m=595时,w有最大值=﹣10×595+40000=34050,此时,1000﹣m=1000﹣595=405,答:使农户收益最大,应该安排销售A种柑橘礼盒为595盒,B种柑橘礼盒为405盒,农户在这次农产品展销活动中的最大收益为34050元.23.(1)证明:如图所示,连接OA,∵BD是⊙O的直径,∴∠BAD=90°,∴∠OAB+∠OAD=90°,∵OA=OB,∴∠OAB=∠OBA,∵∠DAF=∠ACD,∠OBA=∠ACD,∴∠DAF=∠OAB,∴∠DAF+∠OAD=∠OAB+∠OAD=90°,∴∠OAF=90°,∴OA⊥AF,又∵OA是⊙O的半径,∴AF是⊙O的切线;(2)解:如图所示,延长CD交AF于H,延长AO交BC于G,连接OC,∵BD是⊙O的直径,∴∠BCD=90°,即CH⊥BC,∵AB=AC,OB=OC,∴OA垂直平分BC,∴AG⊥BC,∴AG∥CH,∵∠OAF=90°,∵AE⊥BD,∴∠AEB=∠AHC=90°,又∵∠ABE=∠ACH,∴△ABE≌△ACH(AAS),∴AE=AH,BE=CH,∵AD=AD,∴Rt△ADE≌Rt△ADH(HL),∴DH=DE,设DH=DE=a,则CD=3a,∴BE=CH=DH+CD=4a,∴BD=BE+DE=5a,∴OA=OD=2.5a,∴OE=OD﹣DE=1.5a,∴∴,∴,∵AB=AC,∴∠ABC=∠ACB,∵∠ADE=∠ACB,∴∠ABC=∠ADE,∴.24.解:(1)由题意得:y=a(x+3)(x﹣1)=a(x2+2x﹣3)=ax2+bx﹣3,解得:a=1,则抛物线的表达式为:y=x2+2x﹣3;(2)由抛物线的表达式知,点C(0,﹣3)、D(﹣1,﹣4),抛物线的对称轴为直线x=﹣1,过点D作直线DG∥AC交y轴于点G,在点C上方取点L使CL=2CG,过点L作直线BP∥AC 交抛物线于点P,则点P为所求点,由点A、C坐标得,直线AC的表达式为:y=﹣x﹣3,∵DG∥AC,则直线DG的表达式为:y=﹣(x+1)﹣4,则点G(0,﹣5),则CG=5﹣3=2,则CL=4,则点L(0,1),则直线LP的表达式为:y=﹣x+1,联立上式和抛物线的表达式得:x2+2x﹣3=﹣x+1,解得:x=1或﹣4,即点P(1,0)或(﹣4,5);(3)存在,理由:设点N(﹣1,m),由点A、C、N的坐标得,AC2=18,AN2=4+m2,CN2=1+(m+3)2,当AC=AN时,则18=4+m2,则点N(﹣1,±);当AC=CN或AN=CN时,则18=1+(m+3)2或4+m2=1+(m+3)2,解得:m=﹣3+或﹣1(不合题意的值已舍去),综上,N(﹣1,±)或(﹣1,﹣1)或(﹣1,﹣3+).25.解:(1)∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,BO=DO,∴AB2=AO2+BO2,又∵AC=2AO,BD=2BO,∴,化简整理得AC2+BD2=4AB2,故答案为:AC2,BD2,4AB2;(2)AC2+BD2=2AB2+2AD2理由如下,如图,过点D作DE⊥AB于点E,过点C作CF⊥AB交AB的延长线于点F,∴∠DEA=∠DEB=∠CFB=90°,四边形ABCD是平行四边形,∴AB=CD,AB∥CD,AD=BC,∴∠DAE=∠CBF,在△DAE和△CBF中,∴△DAE≌△CBF(AAS),∴AE=BF,DE=CF,在Rt△DBE中,DB2=DE2+BE2=DE2+(AB﹣AE)2在Rt△CAF中,AC2=CF2+AF2=CF2+(AB+BF)2∴AC2+BD2=DE2+(AB﹣AE)2+CF2+(AB+BF)2=2DE2+AB2﹣2AB•AE+AE2+AB2+2AB•AE+AE2=2(DE2+AE2)+2AB2=2AD2+2AB2,∴AC2+BD2=2AB2+2AD2;(3)∵四边形ABCD是平行四边形,AB=8,BD=8,AC=12,∴由(2)可得AC2+BD2=2AB2+2AD2,∴122+82=2×82+2AD2,解得:(负值舍去),∵四边形ABCD是平行四边形,AC=12,BD=8,∴,OA=OC=6,,如图所示,过点E、O分别作BC的垂线,垂足分别为M、G,连接OF,∵F分别为BC的中点,∴,∵OG⊥BF,∴,∵F是BC的中点,∴,∴,∴,在Rt△OGC中,OG⊥BC,∴,∵E为AO的中点,∴,∵AO=OC,∴,∴,∵EM⊥BC,OG⊥BC,∴EM∥OG,∴,∵,∴,∵EM∥OG,∴△COG∽△CEM,∴,∴在Rt△EMF中,.故答案为:EF=.。
2013达州中考卷
2013达州中考卷(考试时间:90分钟,满分:100分)一、选择题(共7题,每题4分,满分28分)1. ()(4分)2. ()(4分)3. ()(4分)4. ()(4分)5. ()(4分)6. ()(4分)7. ()(4分)二、填空题(共5题,每题4分,满分20分)1. ()(4分)2. ()(4分)3. ()(4分)4. ()(4分)5. ()(4分)三、解答题(共3题,每题10分,满分30分)1. ()(10分)2. ()(10分)3. ()(10分)四、计算题(共2题,每题10分,满分20分)1. ()(10分)2. ()(10分)五、应用题(共1题,满分12分)1. ()(12分)六、简答题(共3题,每题6分,满分18分)1. ()(6分)2. ()(6分)3. ()(6分)七、作图题(共2题,每题8分,满分16分)1. ()(8分)2. ()(8分)八、实验题(共2题,每题10分,满分20分)1. ()(10分)2. ()(10分)九、分析题(共2题,每题10分,满分20分)1. ()(10分)2. ()(10分)十、论述题(共1题,满分14分)1. ()(14分)十一、材料分析题(共1题,满分12分)1. ()(12分)十二、综合题(共1题,满分12分)1. ()(12分)十三、创新题(共1题,满分8分)1. ()(8分)十四、翻译题(共2题,每题6分,满分12分)1. ()(6分)2. ()(6分)十五、作文题(共1题,满分10分)1. ()(10分)一、选择题答案:1. D2. B3. A4. C5. A6. B7. D知识点分类:基础知识、概念理解、应用能力二、填空题答案:1. 质量2. 能量守恒3. 氧化还原反应4. 生态系统5. 语法结构知识点分类:名词术语、基本原理、化学反应、生态学概念、语言知识三、解答题答案:(略)知识点分类:问题解决、逻辑推理、数学运算、物理原理(略)知识点分类:数学计算、公式应用、数据处理五、应用题答案:(略)知识点分类:实际问题解决、模型建立、数据分析六、简答题答案:(略)知识点分类:概念解释、理论阐述、历史事件七、作图题答案:(略)知识点分类:空间想象、几何作图、物理图示八、实验题答案:(略)知识点分类:实验设计、操作步骤、数据分析、结论得出九、分析题答案:(略)知识点分类:数据分析、问题识别、解决方案十、论述题答案:(略)知识点分类:理论论述、逻辑推理、观点表达十一、材料分析题答案:(略)知识点分类:材料解读、信息提取、分析能力(略)知识点分类:跨学科知识、综合分析、问题解决十三、创新题答案:(略)知识点分类:创新思维、设计能力、实践应用十四、翻译题答案:(略)知识点分类:语言转换、词汇运用、语法结构十五、作文题答案:(略)知识点分类:语言表达、思维逻辑、创意构思知识点详解及示例:1. 基础知识:要求学生掌握学科的基本概念、定理、公式等。
2013年四川省达州市中考数学试卷及解析
四川省达州市2013年中考数学试卷一.选择题:(本题10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)(2013•达州)﹣2013的绝对值是( ) A . 2013 B . ﹣2013 C . D .2.(3分)(2013•达州)某中学在芦山地震捐款活动中,共捐款二十一万三千元.这一数据用科学记数法表示为( )A . 213×103元B . 2.13×104元C . 2.13×105元D . 0.213×106元3.(3分)(2013•达州)下列图形中,既是轴对称图形,又是中心对称图形的是( ) A .B .C .D .4.(3分)(2013•达州)甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次降价30%.那么顾客到哪家超市购买这种商品更合算( ) A . 甲 B . 乙 C . 丙 D . 一样5.(3分)(2013•达州)下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序正确的是( )A . (3)(1)(4)(2)B . (3)(2)(1)(4)C . (3)(4)(1)(2)D . (2)(4)(1)(3)6.(3分)(2013•达州)若方程3x 2﹣6x+m=0有两个不相等的实数根,则m 的取值范围在数轴上表示正确的是( ) A . B . C . D .7.(3分)(2013•达州)下列说法正确的是( )A .一个游戏中奖的概率是,则做100次这样的游戏一定会中奖B . 为了了解全国中学生的心理健康状况,应采用普查的方式C . 一组数据0,1,2,1,1的众数和中位数都是1D . 若甲组数据的方差,乙组数据的方差,则乙组数据比甲组数据稳定 8.(3分)(2013•达州)如图,一条公路的转变处是一段圆弧(即图中弧CD ,点O 是弧CD 的圆心),其中CD=600米,E 为弧CD 上一点,且OE ⊥CD ,垂足为F ,OF=米,则这段弯路的长度为( )A . 200π米B . 100π米C . 400π米D . 300π米9.(3分)(2013•达州)如图,在Rt △ABC 中,∠B=90°,AB=3,BC=4,点D 在BC 上,以AC 为对角线的所有▱ADCE 中,DE 最小的值是( )A .2 B.3 C .4 D .5 10.(3分)(2013•达州)二次函数y=ax 2+bx+c 的图象如图所示,反比例函数与一次函数y=cx+a 在同一平面直角坐标系中的大致图象是( )A .B .C .D .二.填空题:(本题6个小题,每小题3分,共18分.把最后答案直接填在题中的横线上) 11.(3分)(2013•达州)分解因式:x 3﹣9x= .12.(3分)(2013•达州)某校在今年“五•四”开展了“好书伴我成长”的读书活动.为了解八年级450名学生的读书情况,随机调查了八年级50名学生本学期读书册数,并将统计数据制成了扇形统计图,则该校八年级学生读书册数等于3册的约有 名.13.(3分)(2013•达州)已知(x 1,y 1),(x 2,y 2)为反比例函数y=图象上的点,当x 1<x 2<0时,y 1<y 2,则k 的一个值可为 .(只需写出符合条件的一个k 的值)14.(3分)(2013•达州)如果实数x满足x2+2x﹣3=0,那么代数式的值为.15.(3分)(2013•达州)如图,折叠矩形纸片ABCD,使B点落在AD上一点E处,折痕的两端点分别在AB、BC上(含端点),且AB=6,BC=10.设AE=x,则x的取值范围是.16.(3分)(2013•达州)如图,在△ABC中,∠A=m°,∠ABC和∠ACD的平分线交于点A1,得∠A1;∠A1BC和∠A1CD的平分线交于点A2,得∠A2;…∠A2012BC和∠A2012CD的平分线交于点A2013,则∠A2013=度.三.解答题(72分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(6分)(2013•达州)计算:.18.(7分)(2013•达州)钓鱼岛自古以来就是中国领土.中国有关部门已对钓鱼岛及其附属岛屿开展常态化监视监测.如图,E、F为钓鱼岛东西两端.某日,中国一艘海监船从A点向正北方向巡航,其航线距离钓鱼岛最近距离CF=海里,在A点测得钓鱼岛最西端F在点A的北偏东30°方向;航行22海里后到达B点,测得最东端E在点B的东北方向(C、F、E在同一直线上).求钓鱼岛东西两端的距离.(,,结果精确到0.1)19.(7分)(2013•达州)已知f(x)=,则f(1)=f (2)=…,已知f(1)+f(2)+f(3)+…+f(n)=,求n的值.20.(7分)(2013•达州)某中学举行“中国梦•我的梦”演讲比赛.志远班的班长和学习委员都想去,于是老师制作了四张标有算式的卡片,背面朝上洗匀后,先由班长抽一张,再由学习委员在余下三张中抽一张.如果两张卡片上的算式都正确,班长去;如果两张卡片上的算式都错误,学习委员去;如果两张卡片上的算式一个正确一处错误,则都放回去,背面朝上洗匀后再抽.这个游戏公平吗?请用树状图或列表的方法,结合概率予以说明.21.(8分)(2013•达州)已知反比例函数的图象与一次函数y=k2x+m的图象交于A(﹣1,a)、B(,﹣3)两点,连结AO.(1)求反比例函数和一次函数的表达式;(2)设点C在y轴上,且与点A、O构成等腰三角形,请直接写出点C的坐标.22.(8分)(2013•达州)选取二次三项式ax2+bx+c(a≠0)中的两项,配成完全平方式的过程叫配方.例如①选取二次项和一次项配方:x2﹣4x+2=(x﹣2)2﹣2;②选取二次项和常数项配方:,或③选取一次项和常数项配方:根据上述材料,解决下面问题:(1)写出x2﹣8x+4的两种不同形式的配方;(2)已知x2+y2+xy﹣3y+3=0,求x y的值.23.(8分)(2013•达州)今年,6月12日为端午节.在端午节前夕,三位同学到某超市调研一种进价为2元的粽子的销售情况.请根据小丽提供的信息,解答小华和小明提出的问题.(1)小华的问题解答:;(2)小明的问题解答:.24.(9分)(2013•达州)通过类比联想、引申拓展研究典型题目,可达到解一题知一类的目的.下面是一个案例,请补充完整.原题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,试说明理由.(1)思路梳理∵AB=CD,∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合.∵∠ADC=∠B=90°,∴∠FDG=180°,点F、D、G共线.根据,易证△AFG≌,得EF=BE+DF.(2)类比引申如图2,四边形ABCD中,AB=AD,∠BAD=90°点E、F分别在边BC、CD上,∠EAF=45°.若∠B、∠D都不是直角,则当∠B与∠D满足等量关系时,仍有EF=BE+DF.(3)联想拓展如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°.猜想BD、DE、EC应满足的等量关系,并写出推理过程.25.(12分)(2013•达州)如图,在平面直角坐标系中,直线AB交x轴于点A(5,0),交y轴于点B,AO是⊙M的直径,其半圆交AB于点C,且AC=3.取BO的中点D,连接CD、MD和OC.(1)求证:CD是⊙M的切线;(2)二次函数的图象经过点D、M、A,其对称轴上有一动点P,连接PD、PM,求△PDM 的周长最小时点P的坐标;(3)在(2)的条件下,当△PDM的周长最小时,抛物线上是否存在点Q,使S△QAM=S?若存在,求出点Q的坐标;若不存在,请说明理由.△PDM答案与解析1.(3分)考点:绝对值分析:根据负数的绝对值等于它的相反数解答.解答:解:﹣2013的绝对值是2013.故选A.点评:本题考查了绝对值的性质,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)考点:科学记数法—表示较大的数分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将二十一万三千元用科学记数法表示为2.13×105.故选C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)考点:中心对称图形;轴对称图形分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、不是轴对称图形,是中心对称图形,故本选项错误;C、是轴对称图形,不是中心对称图形,故本选项错误;D、既是轴对称图形又是中心对称图形,故本选项正确.故选D.点评:本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.(3分)考点:列代数式分析:设商品原价为x,表示出三家超市降价后的价格,然后比较即可得出答案.解答:解:设商品原价为x,甲超市的售价为:x(1﹣20%)(1﹣10%)=0.72x;乙超市售价为:x(1﹣15%)2=0.7225x;丙超市售价为:x(1﹣30%)=70%x=0.7x;故到丙超市合算.故选C.点评:本题考查了列代数式的知识,解答本题的关键是表示出三家超市降价后的售价,难度一般.5.(3分)考点:平行投影分析:根据从早晨到傍晚物体影子的指向是:西﹣西北﹣北﹣东北﹣东,影长由长变短,再变长.解答:解:西为(3),西北为(4),东北为(1),东为(2),∴将它们按时间先后顺序排列为(3)(4)(1)(2).故选:C.点评:本题考查了平行投影的特点和规律.在不同时刻,物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚物体影子的指向是:西﹣西北﹣北﹣东北﹣东,影长由长变短,再变长.6.(3分)考点:根的判别式;在数轴上表示不等式的解集分析:首先根据题意可得△>0,代入相应的数可得∴(﹣6)2﹣4×3×m>0,再解不等式即可.解答:解:∵方程3x2﹣6x+m=0有两个不相等的实数根,∴△>0,∴(﹣6)2﹣4×3×m>0,解得:m<3,在数轴上表示为:,故选:B.点评:此题主要考查了根的判别式,以及解一元一次不等式,关键是掌握一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.7.(3分)考点:概率的意义;全面调查与抽样调查;中位数;众数;方差分析:根据概率、方差、众数、中位数的定义对各选项进行判断即可.解答:A、一个游戏中奖的概率是,则做100次这样的游戏有可能中奖一次,该说法错误,故本选项错误;B、为了了解全国中学生的心理健康状况,应采用抽样调查的方式,该说法错误,故本选项错误;C、这组数据的众数是1,中位数是1,故本选项正确;D、方差越大,则平均值的离散程度越大,稳定性也越小,则甲组数据比乙组稳定,故本选项错误;故选C.点评:本题考查了概率、方差、众数、中位数等知识,属于基础题,掌握各知识点是解题的关键.8.(3分)考点:垂径定理的应用;勾股定理;弧长的计算分析:设这段弯路的半径为R米,OF=米,由垂径定理得CF=CD=×600=300.由勾股定理可得OC2=CF2+OF2,解得R的值,进而得出这段弧所对圆心角,求出弧长即可.解答:解:设这段弯路的半径为R米OF=米,∵OE⊥CD∴CF=CD=×600=300根据勾股定理,得OC2=CF2+OF2即R2=3002+(300)2解之,得R=600,∴sin∠COF==,∴∠COF=30°,∴这段弯路的长度为:=200π(m).故选:A.点评:此题主要考查了垂径定理的应用,根据已知得出圆的半径以及圆心角是解题关键.9.(3分)考点:平行四边形的性质;垂线段最短;平行线之间的距离分析:由平行四边形的对角线互相平分、垂线段最短知,当OD⊥BC时,DE线段取最小值.解答:解:∵在Rt△ABC中,∠B=90°,AB=3,BC=4,∴AC==5.∵四边形ADCE是平行四边形,∴OD=OE,OA=OC=2.5.∴当OD取最小值时,DE线段最短,此时OD⊥BC.∴OD=AB=1.5,∴ED=2OD=3.故选B.点评:本题考查了平行四边形的性质,以及垂线段最短.解答该题时,利用了“平行四边形的对角线互相平分”的性质.10.(3分)考点:二次函数的图象;一次函数的图象;反比例函数的图象分析:首先根据二次函数图象与y轴的交点可得c>0,根据抛物线开口向下可得a<0,由对称轴在y轴右边可得a、b异号,故b>0,再根据反比例函数的性质与一次函数图象与系数的关系画出图象可得答案.解答:解:根据二次函数图象与y轴的交点可得c>0,根据抛物线开口向下可得a<0,由对称轴在y轴右边可得a、b异号,故b>0,则反比例函数的图象在第一、三象限,一次函数y=cx+a在第一、三、四象限,故选:B.点评:此题主要考查了二次函数图象,一次函数图象,反比例函数图象,关键是根据二次函数图象确定出a、b、c的正负.二.填空题:(本题6个小题,每小题3分,共18分.把最后答案直接填在题中的横线上)11.(3分)考点:提公因式法与公式法的综合运用分析:先提取公因式x,再利用平方差公式进行分解.解答:解:x3﹣9x,=x(x2﹣9),=x(x+3)(x﹣3).点评:本题主要考查提公因式法分解因式和利用平方差公式分解因式,本题要进行二次分解,分解因式要彻底.12.(3分)考点:扇形统计图分析:首先根据扇形统计图求出样本中读书册数等于3册所占的百分比即m%的值,再利用样本估计总体的思想,用450乘以m%即可求出该校八年级学生读书册数等于3册的人数.解答:解:由扇形统计图可知,样本中读书册数等于3册所占的百分比为:1﹣6%﹣24%﹣30%﹣6%=34%,即m%=34%,所以该校八年级学生读书册数等于3册的约有:450×34%=153(名).故答案为153.点评:本题考查了扇形统计图及用样本估计总体的思想,从统计图中正确地获取信息是解题的关键.13.(3分)考点:反比例函数图象上点的坐标特征专题:开放型.分析:先根据已知条件判断出函数图象所在的象限,再根据反比例函数图象的特点解答即可.解答:解:∵x1<x2<0,∴A(x1,y1),B(x2,y2)同象限,y1<y2,∴点A,B都在第四象限,∴k<0,例如k=﹣1等.点评:本题考查了反比例函数图象的性质和增减性,难度比较大.14.(3分)考点:分式的化简求值.专题:探究型.分析:先根据分式混合运算的法则把原式进行化简,再根据实数x满足x2+2x﹣3=0求出x2+2x的值,代入原式进行计算即可.解答:解:原式=×(x+1)=x2+2x+2,∵实数x满足x2+2x﹣3=0,∴x2+2x=3,∴原式=3+2=5.故答案为:5.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.15.(3分)考点:翻折变换(折叠问题).分析:设折痕为PQ,点P在AB边上,点Q在BC边上.分别利用当点P与点A重合时,以及当点Q与点C重合时,求出AE的极值进而得出答案.解答:解:设折痕为PQ,点P在AB边上,点Q在BC边上.如图1,当点Q与点C重合时,根据翻折对称性可得EC=BC=10,在Rt△CDE中,CE2=CD2+ED2,即102=(10﹣AE)2+62,解得:AE=2,即x=2.如图2,当点P与点A重合时,根据翻折对称性可得AE=AB=6,即x=6;所以,x的取值范围是2≤x≤6.故答案是:2≤x≤6.点评:本题考查的是翻折变换(折叠问题),勾股定理.注意利用翻折变换的性质得出对应线段之间的关系是解题关键.16.(3分)考点:三角形内角和定理;三角形的外角性质专题:规律型.分析:利用角平分先性质、三角形外角性质,易证∠A1=∠A,进而可求∠A1,由于∠A1=∠A,∠A2=∠A1=∠A,…,以此类推可知∠A2013=∠A=°.解答:解:∵A1B平分∠ABC,A1C平分∠ACD,∴∠A1BC=∠ABC,∠A1CA=∠ACD,∵∠A1CD=∠A1+∠A1BC,即∠ACD=∠A1+∠ABC,∴∠A1=(∠ACD﹣∠ABC),∵∠A+∠ABC=∠ACD,∴∠A=∠ACD﹣∠ABC,∴∠A1=∠A,∴∠A1=m°,∵∠A1=∠A,∠A2=∠A1=∠A,…以此类推∠A2013=∠A=°.故答案为:.点评:本题考查了角平分线性质、三角形外角性质,解题的关键是推导出∠A1=∠A,并能找出规律.三.解答题(72分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(6分)考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值专题:探究型.分析:先根据0指数幂、负整数指数幂及特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行计算即可.解答:解:原式=1+2﹣+9=10+.点评:本题考查的是实数的运算,熟知0指数幂、负整数指数幂的计算法则,熟记特殊角的三角函数值是解答此题的关键.18.(7分)考点:解直角三角形的应用-方向角问题分析:首先根据已知得出∠CAF=30°,FC=20海里,AB=22海里,∠CBE=45°,进而得出AC,BC,以及EF长度即可.解答:解:由题意可得出:∵∠CAF=30°,FC=20海里,AB=22海里,∠CBE=45°,∴AC==60(海里),∴BC=EC=60﹣22=38(海里),∴EF=38﹣20≈3.4(海里).答:钓鱼岛东西两端的距离约为3.4海里.点评:此题主要考查了方向角问题的应用,根据已知得出BC=EC是解题关键.19.(7分)考点:分式的加减法;解分式方程分析:把f(x)裂项为﹣,然后进行计算即可得解.解答:解:∵f(x)==﹣,∴f(1)+f(2)+f(3)+…+f(n)=1﹣+﹣+﹣+…+﹣=1﹣,∵f(1)+f(2)+f(3)+…+f(n)=,∴1﹣=,解得n=14.点评:本题考查了分式的加减,把f(x)进行裂项是解题的关键,也是本题的难点.20.(7分)考点:游戏公平性;整式的混合运算;列表法与树状图法.分析:首先判断运算正确的卡片的数量,再利用树状图表示出所有可能,然后利用概率的公式求解即可.解答:解:由题意可画树状图得:∵四张卡片中B和D正确,两张都正确的只有2种情况,两张卡片上的算式都错误的只有AC,CA两种情况,∴班长去的概率为:=,学习委员去的概率为:=.故此游戏公平.点评:本题考查了游戏公平性以及概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.21.(8分)考点:反比例函数与一次函数的交点问题分析:(1)将点A(﹣1,a)、B(,﹣3)代入反比例函数中得:﹣3×=(﹣1)×a=k1,可求k1、a;再将点A(﹣1,a)、B(,﹣3)代入y2=k2x+m中,列方程组求k2、m即可;(2)分三种情况:①OA=OC;②AO=AC;③CA=CO;讨论可得点C的坐标.解答:解:(1)∵反比例函数的图象经过B(,﹣3),∴k1=3××(﹣3)=﹣3,∵反比例函数的图象经过点A(﹣1,a),∴a=1.由直线y2=k2x+m过点A,B得:,解得.∴反比例函数关系式为y=﹣,一次函数关系式为y=﹣3x﹣2;(2)点C在y轴上,且与点A、O构成等腰三角形,点C的坐标为:(0,﹣)或(0,)或(0,2)或(0,1).如图,线段OA的垂直平分线与y轴的交点,有1个;以点A为圆心、AO长为半径的圆与y轴的交点,有1个;以点O为圆心、OA长为半径的圆与y轴的交点,有2个.以上四个点为所求.点评:此题综合考查了待定系数法求函数解析式的方法、等腰三角形的性质等知识,注意分类思想的运用.22.(8分)考点:配方法的应用分析:(1)根据配方法的步骤根据二次项系数为1,常数项是一次项系数的一半的平方进行配方和二次项和常数项在一起进行配方即可.(2)根据配方法的步骤把x2+y2+xy﹣3y+3=0变形为(x+y)2+(y﹣2)2=0,再根据x+y,=0,y﹣2=0,求出x,y的值,即可得出答案.解答:解:(1)x2﹣8x+4=x2﹣8x+16﹣16+4=(x﹣4)2﹣12;x2﹣8x+4=(x﹣2)2+4x﹣8x=(x﹣2)2﹣4x;(2)x2+y2+xy﹣3y+3=0,(x+y)2+(y﹣2)2=0,x+y=0,y﹣2=0,x=﹣1,y=2,则x y=(﹣1)2=1;点评:本题考查了配方法的应用,根据配方法的步骤和完全平方公式:a2±2ab+b2=(a±b)2进行配方是解题的关键,是一道基础题.23.(8分)考点:二次函数的应用分析:(1)设定价为x元,利润为y元,根据利润=(定价﹣进价)×销售量,列出函数关系式,结合x的取值范围,求出当y取800时,定价x的值即可;(2)根据(1)中求出的函数解析式,运用配方法求最大值,并求此时x的值即可.解答:解:(1)设定价为x元,利润为y元,则销售量为:(500﹣×10),由题意得,y=(x﹣2)(500﹣×10)=﹣100x2+1000x﹣1600=﹣100(x﹣5)2+900,当y=800时,﹣100(x﹣5)2+900=800,解得:x=4或x=6,∵售价不能超过进价的240%,∴x≤2×240%,即x≤4.8,故x=4,即小华问题的解答为:当定价为4元时,能实现每天800元的销售利润;(2)由(1)得y=﹣100(x﹣5)2+900,∵﹣100<0,∴函数图象开口向下,且对称轴为x=5,∵x≤4.8,故当x=4.8时函数能取最大值,即y max=﹣100(4.8﹣5)2+900=896.故小明的问题的解答为:800元的销售利润不是最多,当定价为4.8元时,每天的销售利润最大.点评:本题考查了二次函数的应用,难度一般,解答本题的关键是根据题意找出等量关系列出函数关系式,要求同学们掌握运用配方法求二次函数的最大值.24.(9分)考点:几何变换综合题分析:(1)把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合,再证明△AFG ≌△AEF进而得到EF=FG,即可得EF=BE+DF;(2)∠B+∠D=180°时,EF=BE+DF,与(1)的证法类同;(3)根据△AEC绕点A顺时针旋转90°得到△ABE′,根据旋转的性质,可知△AEC ≌△ABE′得到BE′=EC,AE′=AE,∠C=∠ABE′,∠EAC=∠E′AB,根据Rt △ABC中的,AB=AC得到∠E′BD=90°,所以E′B2+BD2=E′D2,证△AE′D≌△AED,利用DE=DE′得到DE2=BD2+EC2;解答:解:(1)∵AB=CD,∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合.∴∠BAE=∠DAG,∵∠BAD=90°,∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠EAF=∠FAG,∵∠ADC=∠B=90°,∴∠FDG=180°,点F、D、G共线,在△AFG和△AEF中,∴△AFG≌△AEF(SAS),∴EF=FG,即:EF=BE+DF.(2)∠B+∠D=180°时,EF=BE+DF;∵AB=AD,∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合,∴∠BAE=∠DAG,∵∠BAD=90°,∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠EAF=∠FAG,∵∠ADC+∠B=180°,∴∠FDG=180°,点F、D、G共线,在△AFG和△AEF中,∴△AFG≌△AEF(SAS),∴EF=FG,即:EF=BE+DF.(3)猜想:DE2=BD2+EC2,证明:根据△AEC绕点A顺时针旋转90°得到△ABE′,∴△AEC≌△ABE′,∴BE′=EC,AE′=AE,∠C=∠ABE′,∠EAC=∠E′AB,在Rt△ABC中,∵AB=AC,∴∠ABC=∠ACB=45°,∴∠ABC+∠ABE′=90°,即∠E′BD=90°,∴E′B2+BD2=E′D2,又∵∠DAE=45°,∴∠BAD+∠EAC=45°,∴∠E′AB+∠BAD=45°,即∠E′AD=45°,在△AE′D和△AED中,∴△AE′D≌△AED(SAS),∴DE=DE′,∴DE2=BD2+EC2.点评:此题主要考查了几何变换,关键是正确画出图形,证明△AFG≌△AEF.此题是一道综合题,难度较大,题目所给例题的思路,为解决此题做了较好的铺垫.25.(12分)考点:二次函数综合题.分析:(1)连接CM,可以得出CM=OM,就有∠MOC=∠MCO,由OA为直径,就有∠ACO=90°,D为OB的中点,就有CD=OD,∠DOC=∠DCO,由∠DOC+∠MOC=90°就可以得出∠DCO+∠MCO=90°而得出结论;(2)根据条件可以得出△ACO∽△AOB而求出,从而求出AB,在Rt△AOB中由勾股定理就可以求出OB的值,根据D是OB的中点就可以求出D的坐标,由待定系数法就可以求出抛物线的解析式,求出对称轴,根据轴对称的性质连接AD交对称轴于P,先求出AD的解析式就可以求出P的坐标;(3)根据S△PDM=S△ADM﹣S△APM而求出其值就可以表示出S△QAM的大小,设Q的坐标为m,根据三角形的面积公式就可以求出横坐标而得出结论.解答:(1)证明:连接CM,∵AO是直径,M是圆心,∴CM=OM,∠ACO=90°,∴∠MOC=∠MCO.∵D为OB的中点,∴CD=OD,∴∠DOC=∠DCO.∵∠DOC+∠MOC=90°,∴∠DCO+∠MCO=90°,即∠MCD=90°,∴CD是⊙M的切线;(2)解:∵∠ACO=∠AOB=90°,∠OAB=∠OAB,∴△ACO∽△AOB,∴,∴,∴AB=.在Rt△AOB中,由勾股定理,得BO=,∵D为OB的中点,∴OD=OB=,∴D(0,).∵OM=AM=OA=,∴M(,0).设抛物线的解析式为y=a(x﹣)(x﹣5),由题意,得=a(0﹣)(0﹣5),解得:a=,∴抛物线的解析式为:y=(x﹣)(x﹣5),=(x﹣)2﹣.连接AD交对称轴于P,设直线AD的解析式为y=kx+b,由题意,得,解得:,∴直线AD的解析式为:y=﹣x+,当x=时,y=,∴P(,);(3)解:存在.∵S△PDM=S△ADM﹣S△APM,∴S△PDM=××﹣××,=,∴S△QAM==.设Q的坐标为m,由题意,得,∴|m|=,∴m=±,当m=时,=(x﹣)2﹣.x1=,x2=,当m=﹣时,﹣=(x﹣)2﹣.x=.∴Q(,),(,),(,﹣).点评:本题考查圆周角定理的运用,勾股定理的运用,圆的切线的判定定理的运用,待定系数法求函数的解析式的运用,抛物线的顶点式的运用,三角形的面积公式的运用,轴对称性质的运用,解答时求出抛物线的解析式是解答本题的关键.。
2013·四川省中考试题压轴题(成都极致教育数学教研组)
6
【7】 (2013·广安,25)如图,在 ABC 中, AB AC ,以 AB 为直径作半圆 连接 AD ,过点 D 作 DE AC ,垂足为点 E ,交 AB 的延长线于点 F . ( 1)求证: EF 是 O 的切线; (2)如 果
O ,交 BC 于 D ,
O 的半径为 5 ,
,求 BF 的长.
2013 四川中考数学压轴题
【1】 (2013·成都,27)如图, O 的半径 r 25 ,四边形 ABCD 内接圆 P 为 CA 延长线上的一点,且 PDA ABD . (1)试判断 PD 与⊙ O 的位置关系,并说明理由: (2)若 tan ADB
O , AC BD 于点 H ,
OB OC 3 , OA OD 1 ,抛物线 y ax2 bx c(a 0) 经过 A 、 B 、 C 三点,直线 AD 与抛
物线交于另一点 M . (1)求这条抛物线的解析式; (2) P 为抛物线上一动点, E 为直线 AD 上一动点,是否存在点 P ,使以点 A 、 P 、 E 为顶点的三 角形为等腰直角三角形?若存在,请求出所有点 P 的坐标;若不存在,请说明理由. (3)请直接写出将该抛物线沿射线 AD 方向平移 2 个单位后得到的抛物线的解析式.
A
O C
B
D l
x
16
【17】 (2013·绵阳,25)我们知道,三角形的三条中线一定会交于一点,这一点就叫做三角形的重心. 重心有很多美妙的性质,如在关线段比.面积比就有一些“漂亮”结论,利用这些性质可以解决三角 形中的若干问题,请你利用重心的概念完成如下问题: (1)若 O 是 ABC 的重心(图 1) ,连结 AO 并延长交 BC 于 D ,证明: (2)若 AD 是 ABC 的一条中线(图 2) , O 是 AD 上一点,且满足 重心吗?如果是,请证明;如果不是,请说明理由; (3)若 O 是 ABC 的重心,过 O 的一条直线分别与 AB 、 AC 相交于 G 、 H ( G 、 H 均不与 ABC 的顶点重合) (如图 3) , S1 , S 2 分别表示四边形 BCGH 和 AGH 的面积,探究
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
达州市2013年高中阶段教育学校招生统一考试数 学一.选择题:(本题10个小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.-2013的绝对值是(A )A .2013B .-2013C .±2013D .12013-2.某中学在芦山地震捐款活动中,共捐款二十一万三千元。
这一数据用科学记数法表示为(C )A .321310⨯元B .42.1310⨯元C .52.1310⨯元D .60.21310⨯元 3.下列图形中,既是轴对称图形,又是中心对称图形的是(D )4.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次降价30%。
那么顾客到哪家超市购买这种商品更合算(C ) A .甲 B .乙 C .丙 D .一样5.下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序正确的是(C )A .(3)(1)(4)(2)B .(3)(2)(1)(4)C .(3)(4)(1)(2)D .(2)(4)(1)(3)6.若方程2360x x m -+=有两个不相等的实数根,则m 的取值范围在数轴上表示正确的是(B )7.下列说法正确的是(C )A .一个游戏中奖的概率是1100,则做100次这样的游戏一定会中奖 B .为了了解全国中学生的心理健康状况,应采用普查的方式 C .一组数据0,1,2,1,1的众数和中位数都是1D .若甲组数据的方差20.2S =甲,乙组数据的方差20.5S =乙,则乙组数据比甲组数据稳定8.如图,一条公路的转变处是一段圆弧(即图中弧CD ,点O 是弧CD 的圆心),其中CD=600米,E 为弧CD 上一点,且O E ⊥CD ,垂足为F ,OF=米,则这段弯路的长度为(A )A .200π米B .100π米C .400π米D .300π米9.如图,在R t △ABC 中,∠B=90°,AB=3,BC=4,点D 在BC 上,以AC 为对角线的所有□ADCE 中,DE 最小的值是(B ) A .2 B .3 C .4 D .5 10.二次函数2y ax bx c =++的图象如图所示,反比例函数by x=与一次函数y cx a =+在同一平面直角坐标系中的大致图象是( C )第II 卷(非选择题,共90分)二.填空题:(本题6个小题,每小题3分,共18分。
把最后答案直接填在题中的横线上)11.分解因式:39x x -=_X(X+3)(X-3)_.12.某校在今年“五²四”开展了“好书伴我成长”的读书活动。
为了解八年级450名学生的读书情况,随机调查了八年级50名学生本学期读书册数,并将统计数据制成了扇形统计图,则该校八年级学生读书册数等于3册的约有162名。
13.点()11,x y 、()22,x y 在反比例函数ky x=的图象上,当120x x <<时,12y y <,则k 的取值可以是___-1__(只填一个符合条件的k 的值).14.如果实数x 满足2230x x +-=,那么代数式21211x x x ⎛⎫+÷ ⎪++⎝⎭的值为_5_. 15.如图,折叠矩形纸片ABCD ,使B 点落在AD 上一点E 处,折痕的两端点分别在AB 、BC 上(含端点),且AB=6,BC=10。
设AE=x ,则x 的取值范围是2≤_X ≤6 .16.如图,在△ABC 中,∠A=m °,∠ABC 和∠ACD 的平分线交于点A 1,得∠A 1;∠A 1BC 和∠A 1CD 的平分线交于点A 2,得∠A 2;…∠A 2012BC 和∠A 2012CD 的平分线交于点A 2013,则∠A 2013=m/22013度。
三.解答题(72分,解答时应写出必要的文字说明、证明过程或演算步骤) (一)(本题2个小题,共13分)17.(6分)计算:21tan 603-⎛⎫︒+ ⎪⎝⎭=10+318.(7分)钓鱼岛自古以来就是中国领土。
中国有关部门已对钓鱼岛及其附属岛屿开展常态化监视监测。
如图,E 、F 为钓鱼岛东西两端。
某日,中国一艘海监船从A 点向正北方向巡航,其航线距离钓鱼岛最近距离CF=在A 点测得钓鱼岛最西端F 在最东端E 的东北方向(C 、F 、E 在同一直线1.41≈ 1.73≈,结果精确到0.1)解: 3.5公里。
(二)(本题2个小题,共14分) 19.(7分)已知()()11f x x x =⨯+,则()()11111112f ==⨯+⨯()()11222123f ==⨯+⨯……已知()()()()1412315f f f f n ++++=,求n 的值。
解:原方程可变形为:1514)1(1431321211=++⋯⋯+⨯+⨯+⨯n n N=1420.(7分)某中学举行“中国梦²我的梦”演讲比赛。
志远班的班长和学习委员都想去,于是老师制作了四张标有算式的卡片,背面朝上洗匀后,先由班长抽一张,再由学习委员在余下三张中抽一张。
如果两张卡片上的算式都正确,班长去;如果两张卡片上的算式都错误,学习委员去;如果两张卡片上的算式一个正确一处错误,则都放回去,背面朝上洗匀后再抽。
这个游戏公平吗?请用树状图或列表的方法,结合概率予以说明。
一共有12种情况,设班长去的概率为P1,满足班长的情况有2种。
所以P 1=61;同理,则学习委员的概率为也61。
因此此游戏公平。
(三)(本题2个小题,共16分)21.(8分)已知反比例函数13k y x=的图象与一次函数2y k x m =+的图象交于A ()1,a -、B 1,33⎛⎫- ⎪⎝⎭两点,连结AO 。
(1)求反比例函数和一次函数的表达式;(2)设点C 在y 轴上,且与点A 、O 构成等腰三角形,请直接写出点C 的坐标。
解:(1)x y 1-=和23--=x y(2)(0,±2或((0,1)22.(8分)选取二次三项式()20ax bx c a ++≠中的两项,配成完全平方式的过程叫配方。
例如①选取二次项和一次项配方:()224222x x x -+=--;②选取二次项和常数项配方:(()22424x x x x -+=+,或((22424x x x x -+=+-+③选取一次项和常数项配方:22242xx x -+=-根据上述材料,解决下面问题:(1)写出284x x -+的两种不同形式的配方; (2)已知22330x y xy y ++-+=,求y x 的值。
解:(1)284x x -+=x 2-8x+16-16+4=(x-4)2-12 或284x x -+=(x-2)2-4x(2) 02)2(432)2(03322=-++=+-++y y x y y yx xX=-1,y=2.因此x y =(-1)2=1(四)(本题2个小题,共17分)23.(8分)今年,6月12日为端午节。
在端午节前夕,三位同学到某超市调研一种进价为2元的粽子的销售情况。
请根据小丽提供的信息,解答小华和小明提出的问题。
(1)小华的问题解答:解:设利润为W=(x-2)[500-100(x-3)]= -100x2+1000x-1600=-100(x-5)2+900 当W=800时,x=4或6时,又因为:2³240%=4.8元,所以定价为4元时,其利润为800元。
(2)小明的问题解答:解:当x<5时,y随x的增大而增大。
所以当X=4.8时,Y最大=-100(4.8-5)2+900=896(元)24.(9分)通过类比联想、引申拓展研究典型题目,可达到解一题知一类的目的。
下面是一个案例,请补充完整。
FF原题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,试说明理由。
(1)思路梳理∵AB=CD,∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合。
∵∠ADC=∠B=90°,∴∠FDG=180°,点F、D、G共线。
根据__SAS__________,易证△AFG ≌_△AFE_______,得EF=BE+DF 。
(2)类比引申如图2,四边形ABCD 中,AB=AD ,∠BAD=90°点E 、F 分别在边BC 、CD 上,∠EAF=45°。
若∠B 、∠D 都不是直角,则当∠B 与∠D 满足等量关系_互补___时,仍有EF=BE+DF 。
(3)联想拓展如图3,在△ABC 中,∠BAC=90°,AB=AC ,点D 、E 均在边BC 上,且∠DAE=45°。
猜想BD 、DE 、EC 应满足的等量关系,并写出推理过程。
解:BD 2+EC 2=DE 2(五)(本题12分)25.如图,在直角体系中,直线AB 交x 轴于点A (5,0),交y 轴于点B ,AO 是⊙M 的直径,其半圆交AB 于点C ,且AC=3。
取BO 的中点D ,连接CD 、MD 和OC 。
(1)求证:CD 是⊙M 的切线;(2)二次函数的图象经过点D 、M 、A ,其对称轴上有一动点P ,连接PD 、PM ,求△PDM 的周长最小时点P 的坐标;(3)在(2)的条件下,当△PDM 的周长最小时,抛物线上是否存在点Q ,使16QAM PDM S S = ?若存在,求出点Q 的坐标;若不存在,请说明理由。
解:(1)连结CM ,关键是∠OCA=∠OCB=90度.(2)在直角三角形OCA 中,AC=3,OA =5,所以OC=4,因此∠BAX 的正切值为34-,设直线AB :bx y +-=34。
将A (5,0)代入上式,得:点B(0,320),点D (0,310),点M(25,0)对称轴415=x 。
点M 与点A 关于对称轴成轴对称。
因此直线AD :31032+-=x y 与对称轴415=x 的交点就是点P )65,415(。
(3)二次函数为)5)(25(154--=x x y所以16QAMPDM S S =6525213102521(612521⨯⨯-⨯⨯=⨯⨯h125±=h将125±=h 代入二次函数,可得点Q)125,811030(± 或)125,415(-。