黄酮类化合物提取分离.

合集下载

黄精中黄酮的提取

黄精中黄酮的提取

黄精中黄酮的提取
黄精是一种具有滋补作用的中药材,其中含有丰富的黄酮类化合物。

为了充分利用黄精中的黄酮成分,需要对其进行提取。

以下是黄精中黄酮的提取方法:
首先,将黄精进行预处理。

将黄精切片,并在45℃下烘干至恒重。

这样做是为了确保黄精中的水分含量较低,有利于后续的提取过程。

烘干后的黄精将被粉碎成粉末状,以便于与提取溶剂充分接触。

接下来,按照一定的料液比将黄精粉末与提取溶剂混合。

料液比是指黄精粉末与提取溶剂的比例,通常为1:6-1:24。

混合后的溶液将被置于水浴中加热,以促进黄酮类化合物的溶出。

经过一段时间的加热后,离心分离上清液与底部黄精粉。

这一步是为了将黄酮类化合物与黄精残渣分离,得到较为纯净的提取液。

对于分离出的黄精粉,可以重复上述水浴提取过程,再次离心获得上清液。

通过合并上清液,可以增加黄酮类化合物的提取率。

最后,将上清液用提取溶剂定容至一定体积,得到最终的提取溶液。

此时的提取溶液已经去除了大部分杂质,含有较高浓度的黄酮类化合物。

通过离心处理,可以得到更为纯净的提取液。

上述方法能够有效地从黄精中提取出黄酮类化合物,为充分利用这一中药材提供了理论依据和技术支持。

这种提取方法简单易行,适用于大规模生产。

在未来的研究中,可以进一步优化提取条件和参数,以提高黄酮类化合物的提取率和纯度。

举例说明黄酮的提取分离方法

举例说明黄酮的提取分离方法

举例说明黄酮的提取分离方法组长:宁组员:翟雪王璐璐子涵子惠罗春雨红成1.提取方法1.1热水提取法热水提取法一般仅限于提取苷类. 在提取过程中要考虑加水量、浸泡时间、煎煮时间与煎煮次数等因素. 此工艺成本低、安全,适合于工业化大生产。

以水做溶剂,同时提高浸提温度、延长浸提时间和增加液料比(60倍) ,可以明显提高芦丁的产率。

实例桑叶:采用热水提取法测定桑叶中各有效成分含量,发现黄酮类化合物含量为1%以上,其中霜后桑叶黄酮类化合物含量最高为1.54% ,其次是晚秋桑叶,春季桑芽和后期桑叶含量最低。

甘草:过去甘草黄酮的提取主要为水提法,其主要原理通过甘草粉与水按一定配比,加热混合至80~95 ℃浸提甘草粉,利用甘草黄酮的水溶性进而提取甘草黄酮。

此法虽然要求设备简单,但因提取杂质多、提取时间长、提取液存放易腐败变质、后续过滤操作困难、收率较低等缺点,现已不常使用。

1.2有机溶剂萃取法其原理是利用黄酮类化合物与混入的杂质极性不同,选用不同的溶剂萃取。

常用的有机溶剂有甲醇、乙醇、丙酮、乙酸乙酯等,一般采取乙醇为提取溶剂。

高浓度的乙醇(如90 %~95 %) 适于提取苷元,浓度60 %左右的乙醇适于提取苷类。

提取次数一般为2~4 次,提取方法有热回流提取和冷浸提取两种方式。

实例桑叶:使用乙醇提取桑叶中总黄酮的最正确工艺条件为:乙醇的浓度为70%,料液比为1:15,在80℃的条件下浸泡3h。

使用多种有机溶剂提取发现桑叶中黄酮类化合物的最正确提取溶剂是60%丙酮。

西芹:使用无水乙醇为提取剂,按西芹鲜重与提取剂的比例(W/ V) 1∶2 ,在80 ℃下回流提取2~4h ,制备西芹总黄酮。

银杏叶:从银杏叶中提取总黄酮时, 随乙醇浓度的增加总黄酮提取率逐渐上升, 当乙醇浓度增至70% 时提取率最高, 之后反而下降, 应选用70% 的乙醇作浸提剂最正确。

生:生黄酮提取用40倍原料的90%甲醇溶液, 在60 ~ 65℃条件下提取4 h 为其优化组合, 而其试验组合中以用40倍原料的75%甲醇溶液,在60~ 65 ℃条件下提取2 h的提取效果最好。

黄酮类化合物提取研究进展

黄酮类化合物提取研究进展

黄酮类化合物提取研究进展黄酮类化合物是一类天然产物,具有多种生物活性和药理作用,如抗氧化、抗炎、抗肿瘤等。

因此,对黄酮类化合物的提取研究具有重要意义。

本文旨在综述黄酮类化合物提取的研究进展,包括不同植物中黄酮类化合物的分布、提取方法及其优化条件等方面,以期为相关研究提供参考和借鉴。

黄酮类化合物是一类含有多酚结构的天然产物,广泛存在于植物、水果、蔬菜等生物体内。

根据结构不同,黄酮类化合物可分为黄酮、黄酮醇、二氢黄酮、二氢黄酮醇等不同类型。

这些化合物具有多种生物活性和药理作用,如抗氧化、抗炎、抗肿瘤等,在医药、保健品、食品等领域得到广泛应用。

因此,对黄酮类化合物的提取研究具有重要的理论和实践价值。

黄酮类化合物主要存在于植物中,不同植物中的黄酮类化合物种类和含量差异较大。

目前,对黄酮类化合物提取研究较多的植物主要包括银杏、柑橘、黑枸杞、虎杖等。

其中,银杏中的黄酮类化合物具有多种药理作用,如抗氧化、抗炎等;柑橘类水果中的黄酮类化合物则具有明显的抗氧化和抗炎作用;黑枸杞中的黄酮类化合物具有较好的抗氧化性能;虎杖中的黄酮类化合物则具有抗炎、抗病毒等多种活性。

提取黄酮类化合物的方法可分为传统提取方法和现代提取方法两类。

传统提取方法主要包括溶剂萃取、渗漉、煎煮等,而现代提取方法则包括超声波辅助提取、微波辅助提取、酶辅助提取等。

各种提取方法的特点和适用范围也有所不同。

例如,溶剂萃取法操作简单,但提取效率较低;渗漉法则可以在一定程度上提高提取效率;煎煮法虽然操作简便且提取效率较高,但是不适用于热敏性成分的提取。

相比之下,超声波辅助提取和微波辅助提取具有高效、快速、节能等优点,适用于工业化生产。

传统提取方法主要包括溶剂萃取法、渗漉法、煎煮法等。

这些方法操作简便,提取过程中无需特殊设备,适用于实验室和工业化生产。

在溶剂萃取法中,通常使用有机溶剂将黄酮类化合物从植物原料中萃取出来,然后进行分离纯化。

渗漉法则是在溶剂渗入植物原料的同时,将黄酮类化合物溶出,进而收集渗漉液进行分离纯化。

黄酮提取工艺流程

黄酮提取工艺流程

黄酮提取工艺流程
《黄酮提取工艺流程》
黄酮是一类天然的多酚化合物,具有很好的生物活性和药用价值。

它可以被提取自许多植物中,如柑橘类水果、葡萄、枫树等,被广泛应用于医药、保健品和化妆品工业中。

下面介绍一种常见的黄酮提取工艺流程。

1. 原料准备:选取新鲜的植物材料,去除杂质并干燥。

2. 粉碎:将植物材料粉碎成细粉状,增加提取效率。

3. 溶剂提取:将粉碎后的植物材料与溶剂(如乙醚、乙醇等)混合,用加热或搅拌的方式进行提取。

溶剂提取是最常用的方法,可以有效分离目标物质。

4. 过滤:提取后的混合液通过过滤器滤除固体颗粒和不溶于溶剂中的杂质物质。

5. 浓缩:用蒸馏或挥发的方法将溶剂蒸发掉,留下目标物质。

6. 结晶:提取得到的溶液冷却后,目标物质会结晶析出,使用过滤或离心将结晶物质分离出来。

7. 干燥:将分离出来的结晶物质进行干燥,得到纯净的黄酮提取物。

总的来说,黄酮提取工艺流程主要包括原料准备、粉碎、溶剂提取、过滤、浓缩、结晶和干燥等步骤。

通过这些步骤,可以高效地提取出纯净的黄酮,为其后续的应用打下基础。

值得注意的是,提取工艺中溶剂的选择要合理,提取条件要适宜,可以根据具体的植物材料和工艺要求进行调整,以提高提取效率和产品质量。

黄酮分离

黄酮分离

16
黄酮类化合物的提取和分离
金属盐络合法
原理: 原理:利用分子中某些特定官能团性质进行分离 具有邻二酚羟基的成分, 醋酸铅沉淀 具有邻二酚羟基的成分,用醋酸铅沉淀 不具有邻二酚羟基的成分,用碱式醋酸铅沉淀 不具有邻二酚羟基的成分, 碱式醋酸铅沉淀
具有邻二酚羟基的黄酮类化合物还可以与硼酸反应形成 具有邻二酚羟基的黄酮类化合物还可以与硼酸反应形成 邻二酚羟基 溶于水的硼酸络合物, 溶于水的硼酸络合物,可以与不具有邻二酚羟基的其它黄酮 类化合物分离。 类化合物分离。
黄酮类化合物的提取和分离
黄酮类化合物的检识和原理:黄酮类化合物的溶解性 原理:黄酮类化合物的溶解性和酸性 溶解性和 相似相溶与酸碱理论
提取
提取: 苷元:极性小的溶剂,如氯仿、乙醚、 苷元:极性小的溶剂,如氯仿、乙醚、乙酸乙酯等
回流提取
苷及极性大的苷元: 苷及极性大的苷元:
13
黄酮类化合物的提取和分离
葡聚糖凝胶柱色谱
规律: 规律: 苷元的羟基数越多,越难以洗脱。 苷元的羟基数越多,越难以洗脱。 吸附作用 苷的分子量越大, 苷的分子量越大,其上联结糖的数目 越多,容易洗脱。 越多,容易洗脱。 分子筛原理 苷比苷元先洗脱。 苷比苷元先洗脱。
14
黄酮类化合物的提取和分离
3 苷类水解后的 光谱。 苷类水解后的UV光谱。 光谱
24
黄酮类化合物的结构鉴定
UV
苯甲酰基 带II:220~280nm :
25
桂皮酰基 带I:300~400nm :
不同类型黄酮的UV 不同类型黄酮的UV基本特征 UV基本特征
黄酮 黄酮醇
两者UV光谱图形相似,但带I位置不同。整个母核上氧 两者UV光谱图形相似,但带I位置不同。 UV光谱图形相似 取代程度越高,则带I将向长波方向位移(红移)。 取代程度越高,则带I将向长波方向位移(红移)。

低共熔溶剂提取黄酮类化合物

低共熔溶剂提取黄酮类化合物

低共熔溶剂提取黄酮类化合物
低共熔溶剂(Deep Eutectic Solvent,DES)是一种由离子液体
和低分子化合物混合而成的溶剂,具有较低的熔点和相对较高的溶解度。

提取黄酮类化合物的方法,可以使用低共熔溶剂替代传统的有机溶剂。

低共熔溶剂中的离子液体能够与黄酮类化合物形成氢键或离子键,从而实现高效的提取。

具体的操作步骤如下:
1. 选择合适的低共熔溶剂。

根据黄酮类化合物的特性,选择可以与其形成较强相互作用的离子液体和低分子化合物进行混合,形成低共熔溶剂。

2. 准备样品。

将含有黄酮类化合物的植物材料(如草药、植物种子等)进行粉碎或者研磨,使其与低共熔溶剂充分接触。

3. 提取操作。

将样品与低共熔溶剂混合,通常可以采用常温或略高于常温的条件下进行提取。

可以通过搅拌、超声波处理等方式提高提取效率。

4. 分离和回收。

将提取混合物进行离心、过滤或者其它分离方式,得到含有黄酮类化合物的提取液。

然后可以通过蒸发溶剂或者其它方法回收低共熔溶剂。

5. 浓缩和纯化。

将提取液进行浓缩,用有机溶剂或者其它方法
除去杂质,得到纯化的黄酮类化合物。

低共熔溶剂提取黄酮类化合物的优点包括操作简便、环境友好、溶解度高等,但也存在一些挑战,如合适的低共熔溶剂选择、提取条件的优化等。

因此,在实际操作中还需要根据具体情况进行调整和改进。

提取和纯化植物中的黄酮类化合物

提取和纯化植物中的黄酮类化合物

提取和纯化植物中的黄酮类化合物黄酮类化合物是一类广泛存在于植物中的重要天然产物,具有多种生理活性和药理活性。

在植物学、药学以及医药领域中,提取和纯化植物中的黄酮类化合物是一项重要的研究工作。

本文将介绍提取和纯化植物中的黄酮类化合物的方法和技术。

一、提取植物中的黄酮类化合物植物中的黄酮类化合物一般存在于根、茎、叶、花等不同部位,因此,提取黄酮类化合物的方法也有所不同。

下面介绍几种常用的提取方法:1. 浸提法浸提法是最常用的提取方法之一。

将研究对象的植物材料与适量的溶剂(如乙醇、乙醚、水等)一起浸泡一段时间,使溶剂渗入植物材料中,溶解黄酮类化合物的同时将其提取出来。

2. 超声波辅助提取法超声波提取法利用超声波的作用加速提取过程。

将植物材料与溶剂置于超声波浴中,超声波的压缩与膨胀引起溶剂中形成微小气泡,气泡破裂时带动溶剂迅速进入植物细胞内,加快提取过程。

3. 水蒸气蒸馏法水蒸气蒸馏法是一种温和的提取方法。

将植物材料与水一起在蒸馏器中加热,水蒸气通过植物细胞,带走黄酮类化合物,随后凝结回成液体,得到提取物。

二、纯化植物中的黄酮类化合物提取后的植物提取物中往往还有其他杂质和成分,需要通过纯化技术进一步分离和纯化黄酮类化合物。

下面介绍几种常用的纯化方法:1. 柱层析法柱层析法是最常用的分离和纯化技术之一。

将提取物溶解在适量的溶剂中,然后通过填充了固定相的柱子进行分离。

黄酮类化合物根据其在固相上的亲水性和疏水性的差异而被分离。

2. 高效液相色谱法高效液相色谱法(HPLC)是目前最常用的分离和纯化方法之一。

利用高压泵将样品通过填充了固定相的柱子进行分离。

通过调整流动相的组成和流速,可以实现黄酮类化合物的分离和纯化。

3. 冻干法冻干法是一种将溶液中的水分通过减压冻结脱水的方法。

将提取物溶解于适量的溶剂中,然后经过冷冻和真空干燥过程,将溶剂中的水分蒸发掉,得到纯化后的黄酮类化合物。

三、应用植物中的黄酮类化合物黄酮类化合物具有多种生理活性和药理活性,广泛应用于食品、医药等领域。

黄酮类化合物的提取

黄酮类化合物的提取

黄酮类化合物的提取:(1)水提取法:黄酮化合物包括黄酮苷元和黄酮苷类两种其中黄酮苷类有一定的水溶性,尤其在热水中的水溶性增大。

缺点是提取后杂质较多并且提取率低,且容易霉变,一般提取后用乙醇处理方能进行下一步实验。

(2)有机溶剂提取法:对于黄酮苷类和极性较大黄酮苷元,甲醇和乙醇都是较常用的提取剂,一般用60%左右的希醇提取黄酮苷类,95%的提取黄酮苷元,如提取物中含有叶绿素,胡萝卜素等脂溶性色素则应用石油醚萃取这些色素。

(3)碱提取法:黄酮类化合物大多都有酚羟基,易溶于碱性溶液,碱水溶解和再将溶液调成酸性,则黄酮类化合物即可析出。

当提取花果实等含有大量果胶,粘液等水溶性杂志的药用部位时,以用石灰水是上述杂质沉淀。

实例:(1)碱溶酸沉淀法:原理,黄酮类化合物成弱酸性,易溶于碱性溶剂。

底物:银杏叶片器材:微量移液器(1 ml) (上海热电仪器有限公司) ,TGL216C型离心机(上海安亭科学仪器厂) , 2XZ21 型旋片式真空泵(临海市精工真空设备厂) , 752C型紫外可见分光光度计(上海第三分析仪器厂) ,MP500B型电子天平(上海第二天平仪器厂) , EK2120G型分析天平(日本A&D 公司) ,3041 型恒温水浴锅(德国KOTTERMANN 公司) ,索氏提取器。

试剂:乙醇、盐酸、NaNO2、Al (NO3 ) 3、NaOH等试剂均为市售分析纯。

芦丁购自中国药品生物制品检定所。

方法:准确称取5. 000 g银杏叶粉,加入蒸馏水,用浓度为8%的NaOH 溶液调节其pH值,在一定的物料配比、温度、pH值、时间条件下煎煮后离心收集上清液,在一定温度下用稀盐酸调到一定pH值后静置24 h,抽滤,沉淀物水洗至中性, 60 ℃恒温下干燥得干浸膏(总黄酮)。

(2)有机溶剂提取法:原理:黄酮类化合物极性较小,易溶于极性较小的有机溶剂如甲醇,乙醇等,但不易溶于极性较大的溶剂如水灯。

材料:山楂叶片试剂:95%乙醇AR;甲醇CP;三氯化铝CP;盐酸CP;丙酮CP;乙醚CP;氨水CP;正丁醇CP;冰乙酸CP;乙酸乙醋CP. 仪器:紫外光可见光自动记录分光光度计,旋转薄膜蒸发器,高速冷冻离心机。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

➢乙醇或甲醇 ➢高浓度 苷元 ➢60% 苷类。 ➢提取的次数: 2~4次。 ➢提取方法:加热 回流法或冷浸法。
➢仅用于提取苷类 ➢成本低,无污染, 适合工业化生产 ➢提取出的杂质较 多
➢用极性由小到大 的溶剂依次将同样 极性顺序的黄酮类 分别提取出来
Page 3
分离——pH梯度萃取法
原理
利用黄酮苷元中酚OH数目及位置不同, 其酸性强弱不 同的性质来分离。
酸性
7, 4'-OH > 7-或4'-OH > 一般酚OH > 3-OH, 5-OH




溶于5%NaHCO3 溶于5%Na2CO3 溶于不同浓度的NaOH中
方法
总黄酮溶于Et2O,再用5%NaHCO3, 5%Na2CO3, 0.2% NaOH, 4%NaOH依次萃取(碱性由弱强),达到分离目的。 Page 4
黄酮类化合物 提取分离
Page 1
提取——碱溶酸沉法
➢可用碱性水溶液(如碳酸钠、氢氧化钠、氢氧化 钙等水溶液)或碱性稀醇溶液(如50%乙醇)浸出。 ➢用碱性溶剂提取时,所用的碱浓度不宜过高,以 免在强碱下加热时破坏黄酮类化合物结构。 ➢ 当有邻二酚羟基存在时,应加硼酸保护。
Page 2
提取——溶剂提取法
例: 查耳酮 > 二氢黄酮
➢当苷元相同时,被吸附的强弱顺序为: 苷元>单糖苷 >二糖苷 >三糖苷
例:在聚酰胺薄层上,吸附力 槲皮素>芸香苷(芦丁)
➢ 与介质的关系:吸附力 水(中)> 甲醇、乙醇(浓度由 低到高)> 碱性溶剂
相反,溶剂在聚酰胺柱上对黄酮类化合物洗脱能力顺序为:水(中) <甲醇、乙醇(浓度由低到高)<碱性溶剂

离异黄酮、二氢黄酮、二氢黄酮醇及

高度甲基化(或乙酰化)的黄酮及黄 酮醇类。少数情况下,在加水去活化

后也可用于分离极性较大的化合物,谱ຫໍສະໝຸດ 如多羟基黄酮醇及其甙类等。

Page 6
分离——柱色谱法(二)
聚酰胺柱色谱分离法
原理: 氢键吸附 (酰胺基与酚羟基、醌类化合物结合形成氢键, 产生吸附) 吸附规律:与黄酮类化合物酚羟基的数目及位置等有关。
中药提取物
乙醚溶解 乙醚液
5%NaHCO3萃取
碱水液 (7,4’-二羟基黄酮)
乙醚液 5%Na2CO3萃取
碱水液 (7-或4’-羟基黄酮)
乙醚液 0.2%NaOH萃取
碱水液 (一般羟基黄酮)
乙醚液 4%NaOH萃取
碱水液 (5-羟基黄酮)
乙醚液含中性或碱 性成分
分离——柱色谱法(一)

此法应用范围最广,主要适于分
酚羟基数目越多,吸附能力越强。
Page 7
➢酚羟基数目相同的情况下,酚羟基所处的位置易于形成分 子内氢键,吸附能力减弱。
OH
HO
O
OH
OH OH O
槲皮素
3-OH或5-OH黄酮的吸附力小于其他位置-OH黄酮; 邻二酚羟基黄酮的吸附力弱于间位或对位酚羟基黄酮
➢分子内芳香化程度越高,共轭双键越多,吸附力越强。
相关文档
最新文档