2019高考物理复习-选修3-3知识点

合集下载

物理选修3-3知识点总结

物理选修3-3知识点总结

物理选修3-3知识点总结电场。

电场的概念,电荷周围的空间中存在电场,电场是一种物质的属性。

在电场中,电荷会受到电场力的作用。

电场强度,电场中单位正电荷所受到的电场力的大小称为电场强度,用E表示。

电场强度的方向与正电荷在电场中所受的力的方向一致。

电场强度的计算,电场强度E与电荷Q之间的关系可以用库仑定律来表示,即E= k|Q|/r^2,其中k为电场常数,r为电荷到观察点的距离。

电势能和电势差。

电势能,电荷在电场中由于位置的改变而具有的能量称为电势能,用U表示。

电势能与电荷的大小、电场强度以及位置有关。

电势差,单位正电荷在电场中由于位置的改变而具有的电势能的变化称为电势差,用ΔV表示。

电势差与电场强度之间存在着直接的关系,即ΔV=Ed。

电势差的计算,电场中某一点的电势差ΔV可以通过在该点放置单位正电荷所做的功来计算,即ΔV=W/q,其中W为单位正电荷所做的功,q为单位正电荷。

静电场中的电荷运动。

电荷在电场中受到电场力的作用,如果电荷能够自由移动,则会产生电流。

在静电场中,电荷的运动方式受到电场力的影响。

电场力对电荷做功,电场力对电荷做功,使电荷具有动能。

电场力对电荷做的功等于电荷在电场中由一个位置移动到另一个位置所具有的电势能的变化。

电荷在电场中的运动,电场力对电荷做功,使电荷具有动能,从而产生电流。

电荷在电场中运动时,电场力对电荷做的功等于电荷通过的电势差。

电容器。

电容器的概念,电容器是用来储存电荷和电能的装置,由两个导体之间的介质组成。

电容器的单位是法拉(F)。

电容器的电容,电容器的电容C是指在电容器两极间加上1V电压时所储存的电荷量与电压之比。

电容的计算公式为C=Q/V。

电容器的串联和并联,电容器的串联和并联是指将多个电容器连接在一起的方式。

串联时,总电容为各个电容器的倒数之和的倒数;并联时,总电容为各个电容器的和。

电容器的充放电,电容器充电时,电容器两极间的电压逐渐增大,电容器储存的电荷量也逐渐增大;电容器放电时,电容器两极间的电压逐渐减小,电容器储存的电荷量也逐渐减小。

物理选修3-3知识点总结

物理选修3-3知识点总结

物理选修3-3知识点总结
物理选修3-3主要涵盖以下知识点:
1. 电路定律:
- 基尔霍夫第一定律:对于一闭合电路,电流的总和等于零。

- 基尔霍夫第二定律:电压的总和等于零。

2. 串联和并联电路:
- 串联电路:电流只有一个路径可以通过。

- 并联电路:电流可以选择多个路径通过。

3. 电阻与电阻率:
- 电阻是物质对电流流动的阻碍程度。

- 电阻率是物质本身对电流的阻碍程度,与物质的导电性质有关。

4. 欧姆定律:
- 欧姆定律表明电流与电压和电阻之间成正比关系,表达式为I=V/R,其中I为电流,V为电压,R为电阻。

5. 电功和功率:
- 电功表示电能转化为其他形式能量的过程中所做的功。

- 功率表示单位时间内做功的大小,等于电功除以时间。

6. 电容器:
- 电容器可以将电能以电场的形式储存。

- 电容器的电容量表示电容器对电流的阻碍程度,等于电容器
的电荷与电压之比。

7. RC 电路:
- RC 电路包括一个电阻和一个电容连接在一起。

- RC 电路具有延迟响应的特性,可以用来滤除高频信号。

8. LC 电路:
- LC 电路包括一个电感和一个电容连接在一起。

- LC 电路具有振荡的特性,可以用来产生无线电信号。

这些是物理选修3-3的主要知识点,通过学习和理解这些知识,可以加深对电路和电子设备运作的理解。

物理选修3-3知识点总结

物理选修3-3知识点总结

物理选修3-3知识点总结物理选修3-3是高中物理的一门选修课程,本文将对该课程中的重要知识点进行全面总结。

这些知识点包括电磁感应、电磁波和粒子物理等内容。

一、电磁感应1. 法拉第电磁感应定律:当导体相对磁场运动或磁场变化时,导体中将产生感应电动势。

2. 感应电动势的大小与导体的速度、磁感应强度以及导体的长度有关,可以用法拉第电磁感应定律进行计算。

3. 感应电动势的方向遵循楞次定律,即感应电流的磁场方向与原磁场方向相反,以保持磁通量守恒。

4. 电磁感应的应用包括发电机、变压器和感应炉等。

二、电磁波1. 电磁波的特点:电磁波由电场和磁场交替变化而形成,能够在真空和介质中传播,具有相同的传播速度。

2. 电磁波的分类:根据波长不同,电磁波可分为无线电波、微波、红外线、可见光、紫外线、X射线和γ射线。

3. 光的干涉和衍射:当光通过一些特定的物体时,会发生干涉和衍射现象,这些现象证明了光的波动性质。

4. 光的粒子性:根据光的光量子说,光可以看作粒子形式的能量传播。

三、粒子物理1. 基本粒子:粒子物理研究了构成宇宙的基本粒子,常见的基本粒子包括夸克、轻子、强子和介子等。

2. 模型:粒子物理的标准模型揭示了基本粒子的组成和相互作用方式,包括强力、弱力、电磁力和引力等。

3. 夸克色荷:夸克有三种“颜色”,即红色、蓝色和绿色。

夸克组合形成介子和强子。

四、其他1. 电磁场的相互作用:电磁场与电荷之间存在相互作用,电磁场的强度与电荷的数量和距离有关。

2. 恒星能源:恒星的能量来源于核聚变,核聚变反应产生的能量维持了恒星的持续亮度和运行。

3. 核能与核反应:核能是一种巨大的能量,核裂变和核聚变是核能释放的两种方式。

总结:物理选修3-3涵盖了电磁感应、电磁波和粒子物理等知识点。

电磁感应定律和法拉第电磁感应定律是电磁感应的基础,应用广泛。

电磁波具有特定的波长和频率,可通过干涉和衍射进行研究。

粒子物理关注基本粒子及其相互作用,标准模型是粒子物理研究的理论基础。

物理选修33知识点总结

物理选修33知识点总结

第一部分:力学基础1. 力的概念:力是物体之间相互作用的结果,它可以改变物体的运动状态。

力的单位是牛顿(N)。

2. 牛顿第一定律:一个物体如果不受外力作用,它将保持静止状态或匀速直线运动状态。

3. 牛顿第二定律:物体的加速度与作用在它上面的力成正比,与它的质量成反比。

公式为 F = ma,其中 F 是力,m 是质量,a 是加速度。

4. 牛顿第三定律:作用力和反作用力总是大小相等、方向相反,并且作用在不同的物体上。

5. 重力:地球对物体的吸引力,大小为 G = mg,其中 G 是重力,m 是物体的质量,g 是重力加速度,约为9.8 m/s²。

6. 弹力:物体发生形变时产生的力,方向与形变方向相反。

7. 摩擦力:两个物体接触时产生的阻碍相对运动的力,方向与相对运动方向相反。

8. 动能:物体由于运动而具有的能量,公式为E_k = 1/2 mv²,其中 E_k 是动能,m 是质量,v 是速度。

9. 势能:物体由于位置或状态而具有的能量,如重力势能 E_p = mgh,其中 E_p 是势能,m 是质量,g 是重力加速度,h 是高度。

10. 机械能守恒定律:在只有重力或弹力做功的系统中,机械能(动能和势能之和)保持不变。

11. 动能定理:物体所受外力做的功等于物体动能的变化量。

12. 动量:物体运动的量度,公式为 p = mv,其中 p 是动量,m 是质量,v 是速度。

13. 动量守恒定律:在没有外力作用的系统中,总动量保持不变。

14. 冲量:力在一段时间内对物体的作用效果,公式为J = FΔt,其中 J 是冲量,F 是力,Δt 是作用时间。

15. 冲量定理:物体所受冲量等于物体动量的变化量。

第二部分:电磁学基础16. 电荷:物质的基本性质之一,电荷分为正电荷和负电荷,同种电荷相互排斥,异种电荷相互吸引。

17. 库仑定律:描述电荷之间相互作用力的规律,公式为 F = k q1 q2 / r²,其中 F 是力,k 是库仑常数,q1 和 q2 是两个电荷量,r 是它们之间的距离。

物理选修3-3知识点总结

物理选修3-3知识点总结

物理选修3-3知识点总结一、电磁场与电磁波的基础概念1. 电磁场的基本概念- 电荷与电场- 电流与磁场- 电磁场的相互作用2. 电磁波的产生- 电磁振荡- 电磁波的产生条件- 电磁波的传播特性3. 电磁波的性质- 电磁波的波长、频率和速度- 电磁波的能量- 电磁波的极化二、电磁感应与电磁波的应用1. 电磁感应现象- 法拉第电磁感应定律- 楞次定律- 感应电动势的计算2. 电磁波的应用- 无线电通信- 微波技术- 电磁波在医学领域的应用三、电磁波的传播与天线1. 电磁波的传播方式- 直线传播- 反射与折射- 衍射与干涉2. 天线的基本原理- 天线的种类与功能- 天线的辐射与接收- 天线的指向性与增益四、电磁兼容性与电磁污染1. 电磁兼容性- 电磁兼容性的定义- 电磁兼容性设计的原则- 电磁兼容性测试与评估2. 电磁污染- 电磁污染的来源- 电磁污染的影响- 电磁污染的防护措施五、电磁波的安全与健康1. 电磁波的生物效应- 电磁场对生物体的影响- 电磁波的热效应与非热效应 - 电磁波对人体健康的影响2. 电磁波的安全标准- 国际电磁波安全标准- 电磁波的安全防护措施- 电磁波的安全使用指南六、电磁波的测量与分析1. 电磁波的测量技术- 电磁场强度的测量- 电磁波功率的测量- 电磁波频率的测量2. 电磁波的分析方法- 时域分析与频域分析- 电磁波的谱分析- 电磁波的相位分析七、电磁波在现代科技中的应用1. 通信技术- 移动通信- 卫星通信- 光纤通信2. 遥感技术- 雷达遥感- 无线电遥感- 红外遥感3. 医疗技术- 磁共振成像(MRI)- 放射治疗- 无线医疗监测八、电磁波的未来发展趋势1. 电磁波技术的创新- 新型天线技术- 高频率电磁波的应用- 量子电磁学2. 电磁波与可持续发展- 电磁波在清洁能源中的应用- 电磁波在环境保护中的作用- 电磁波技术的绿色发展结语电磁波作为现代科技不可或缺的一部分,其理论和应用在不断发展和完善中。

(完整版)高中物理选修3-3知识点整理,推荐文档

(完整版)高中物理选修3-3知识点整理,推荐文档

选修3—3期末复习知识点汇总一、分子动理论1、物质是由大量分子组成的(1) 单分子油膜法测量分子直径-V=Sd V 是滴入浅水盘中 纯油酸的体积,等于油酸溶液的体积 乘以浓度。

S 是单分子油膜在水面上形成的面积。

(2) 1mol 任何物质含有的微粒数相同N A 6.02 1023mol 1(3)对微观量的估算① 分子的两种模型:球形和立方体(固体液体通常看成球形,空气分子占据的空间看成 立方体)② 利用阿伏伽德罗常数联系宏观量与微观量2、分子永不停息的做无规则的热运动(布朗运动扩散现象)(1) 扩散现象:不同物质能够彼此进入对方的现象,说明了物质分子在不停地运动,同 时还说明分子间有间隙,温度越高扩散越快 (2) 布朗运动:它是悬浮在液体中的 固体颗粒的无规则运动,不是分子热运动,但颗粒 很小,是在显微镜下才能观察到的。

① 布朗运动的三个主要特点:永不停息地无规则运动;颗粒越小,布朗运动越明 显;温度越高,布朗运动越明显。

② 产生布朗运动的原因:它是由于液体分子无规则运动对固体微小颗粒各个方向 撞击的不均匀性造成的。

③ 布朗运动间接地 反映了液体分子的无规则运动,扩散现象的产生原因是物体分 子做无规则热运动。

两者都有力地说明分子在永不停息地做无规则运动。

(3)热运动:分子的无规则运动与温度有关,简称热运动,温度越高,运动越剧烈布朗运动不是分子热运动,扩散现象是分子热运动3、分子间的相互作用力分子之间的引力和斥力都随分子间距离增大而减小。

但是分子间' 斥力随分子间距离加大而减小得更快些,如图1中两条虚线所示。

分子间同时存在引c.分子数量: nN AN AN AN A 【M-任意质量;V--任意体积】M molM molV molV molV£【固体和液体-分子体积,气体~分子平均占有空间体积】a.分子质M molb.分子体积: 衡,分子间作用力为零,r o 的数量级为10 10 m 相当于r o 位置叫引力力和斥力,两种力的合力又叫做分子力,随距离的增加,分子力先减小,后增加,再减小。

物理选修3-3知识点总结

物理选修3-3知识点总结
物理选修3-3主要包括以下知识点:
1. 需要了解质点和刚体的概念及特点。

质点是指没有大小和形状的物体,在物理分析中可以将物体简化为质点来计算其运动状态和力的作用。

刚体是指不会发生形变的物体,其内部各点之间的距离保持不变。

2. 学习力矩的概念和计算方法。

力矩是指力对物体的转动效果,其大小等于力的大小乘以力臂的长度。

力的方向垂直于力臂,并遵循右手螺旋法则。

3. 了解刚体的平衡条件和平衡方程。

平衡条件包括力的合力为零和力矩的合为零。

平衡方程根据力的矢量特点计算不同方向的力。

4. 熟悉力矩平衡实验和杠杆原理。

力矩平衡实验是通过调整物体和力臂的位置,使物体保持平衡。

杠杆原理是指物体在平衡时,负责承受力的支点所受的力和力臂的积相等。

5. 学习重力和重心的概念。

重力是指地球对物体的吸引力,大小等于物体的质量乘以重力加速度。

重心是指物体的质心,即物体所有质点构成的点。

6. 了解平衡力和力的平衡条件。

平衡力是指使物体保持平衡的力。

在平衡力中,重力和支撑力相等,且大小等于物体所受的压力。

7. 学习浮力和浮力平衡原理。

浮力是指物体在液体或气体中受到的向上的力,大小等于物体在液体或气体中排开的液体或气体的重量。

浮力平衡原理是指物体浸没在液体中时,其所受的浮力等于其重力。

8. 熟悉流体力学和浮力的应用。

流体力学是研究液体和气体静力学和动力学性质的物理学分支。

浮力的应用包括气球的浮力、船只的浮力和角度等。

(完整版)物理选修3-3知识点总结

(完整版)物理选修3-3知识点总结
物理选修3-3部分介绍了热学的基本概念,由它派生而来的温度、热量和热流对本质
模型有何影响,以及如何用热传导来解释相关现象。

首先,温度是物质间热量的一种测量,它是一种宏观量。

温度的单位是摄氏度(°C)和华氏度(°F)。

热量是温度变化所伴随而存在的能量,在一定温度条件下,物质中存
在能量不变性。

热流是物质中热量的流动,它决定了热冲击力的大小。

其次,本质模型可以用于解释物质的热量运动以及物体之间的热量传递,以及相应的
热冲击力的变化。

本质模型可以用来评估不同物质间的能量传输,包括热传导、热对流和
热辐射。

它们是物质热量传输的三种主要类型。

热传导是指物质内部在热量分布上的变化,它取决于热传导性能指标,如导热系数,
模拟物质内部能量流和温度分布变化的情况。

热对流指物质间温度非均匀性下,在物体表
面和空气中之间的交换,它取决于对流传热的系数,模拟物体表面和空气之间热流的传递。

热辐射是指热量在物质内部或者在物体表面和空气之间,以光或电磁波的方式传输,它取
决于辐射系数,可以表示物体表面和空气之间光热传递情况。

最后,热学中的概念可以用于研究物质的热量传输,并用本质模型来模拟不同体系中
热量传输的特征,说明不同物质之间的能量传输和物体表面与空气之间的热量传输情况。

另外,传热分析也可以用来衡量热量传输的精确度,从而辅助热学的实际应用,如火力发电、冷藏制冷等。

它们对于热学的理解和分析都很有帮助。

人教版高中物理选修3-3知识点复习

人教版高中物理选修3-3知识点复习( 共52张 PPT)
人教版高中物理选修3-3知识点复习( 共52张 PPT)
➢取分子间距离无限远时程,分子力做 正功,分子势能不断减小。 分子间距离从r0继续减小,克服斥力做功,使分子势 能不断增大。其数值将从负值逐渐变大至零,甚至 为正值。 当r=r0 时,分子势能最小。 F
人教版高中物理选修3-3知识点复习( 共52张 PPT)
人教版高中物理选修3-3知识点复习( 共52张 PPT)
扩散现象: 不同物质相互接触,能够彼此进入对方。这样的 现象叫做扩散。 布朗运动 悬浮在液体中的微粒做永不停息的无规则运动叫做 布朗运动。
人教版高中物理选修3-3知识点复习( 共52张 PPT)
人教版高中物理选修3-3知识点复习( 共52张 PPT)
F斥
0
r0
F分
r
F引
人教版高中物理选修3-3知识点复习( 共52张 PPT)
4)注意:分子间的相互作用力是由于 分子中带电粒子的相互作用引起的。 5)注意:压缩气体也需要力,不说明分子间存在 斥力作用,压缩气体需要的力是用来反抗大量气 体分子频繁撞击容器壁(活塞)时对容器壁(活 塞)产生的压力。
人教版高中物理选修3-3知识点复习( 共52张 PPT)
人教版高中物理选修3-3知识点复习( 共52张 PPT)
平衡态:对于一个系统,没有外界影响的情况下,只 要经过足够长的时间,系统内各部分的状态参量 会达到稳定的状态。
热平衡 :两个系统接触,这两个系统的状态参量将会互 相影响而分别变.最后,两个系统的状态参量不再变化, 此时我们说两个系统达到了热平衡.
ρ ,阿伏加德罗常数NA。
则 :1.分子的质量:
m0
M mol NA

高中物理选修3-3知识点

一对一个性化辅导教案气体三大定律【知识网络】【考点梳理】考点一、气体分子动理论要点诠释:1、气体分子运动的特点:①气体分子间距大,一般不小于10r0,因此气体分子间相互作用的引力和斥力都很小,以致可以忽略(忽略掉分子间作用力的气体称为理想气体)。

②气体分子间碰撞频繁,每个分子与其他的分子的碰撞多达65亿次/秒之多,所以每个气体分子的速度大小和方向是瞬息万变的,因此讨论气体分子的速度是没有实际意义的,物理中常用平均速率来描述气体分子热运动的剧烈程度。

注意:温度相同的不同物质分子平均动能相同,如H2和O2,但是它们的平均速率不相同。

③气体分子的速率分布呈“中间多,两头少”分布规律。

④气体分子向各个方向运动的机会均等。

⑤温度升高,气体分子的平均动能增加,随着温度的增大,分子速率随随时间分布的峰值向分子速度增大的方向移动,因此T1小于T2。

2、气体压强的微观解释:气体的压强是大量气体分子频繁地碰撞器壁而产生的,气体的压强就是大量气体分子作用在器壁单位面积上的平均作用力。

气体分子的平均动能越大,分子越密,对单位面积器壁产生的压力就越大,气体的压强就越大。

考点三、理想气体实验定律对于一定质量的气体,如果温度、体积、压强这三个量都不变,就说气体处于一定的状态。

一定质量的气体,p与T、V有关,三个参量中不可能只有一个参量发生变化,至少有两个或三个同时变化。

1、玻意耳定律要点诠释:(1)、内容:一定质量的理想气体,在温度不变的情况下,它的压强跟体积成反比。

(2)、公式:1122p V p V ==恒量 (3)、图像:等温线(p V -图,1p V-图,如图)说明:①p V -图为双曲线,同一气体的两条等温线比较,双曲线顶点离坐标原点远的温度高,即12T T >。

②1p V-图线为过原点的直线,同一气体的两条等温线比较,斜率(tan pV α=)大的温度高,12T T >。

(4)、微观解释:①一定质量的气体,温度保持不变,从微观上看表示气体分子的总数和分子的平均动能保持不变,因此气体压强只跟单位体积的分子数有关。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

选修3-3知识点
一、分子动理论
1.分子永不停息地做无规则运动
(1)扩散现象:不同物质彼此进入对方的现象。

温度越高,扩散越快。

直接说明了组成物体的分子总是不停地做无规则运动,温度越高分子运动越剧烈。

意义:从微观机理上看,扩散现象说明了物质分子都在永不停息地做无规则运动,是分子永不停息做无规则运动的直接证据。

(2)布朗运动:悬浮在液体中的固体微粒的无规则运动。

发生原因是固体微粒受到包围微粒的液体分子无规则运动地撞击的不平衡性造成的。

因而间接说明了液体分子在永不停息地做无规则运动。

①布朗运动是固体微粒的运动而不是固体微粒中分子的无规则运动。

②布朗运动反映液体分子的无规则运动但不是液体分子的运动。

③微粒越小,布朗运动越明显;温度越高,布朗运动越明显。

2.分子间存在相互作用的引力和斥力
①分子间引力和斥力一定同时存在,且都随分子间距离的增大而减小,随分子间距离的减小而增大,但斥力变化快,实际表现出的分子力是分子引力和分子斥力的合力。

②分子力的表现及变化,对于曲线注意两个距离,即平衡距离(约
)与。

二、温度和内能
1.统计规律:单个分子的运动都是不规则的、带有偶然性的;大量分子的集体行为受到统计规律的支配。

多数分子速率都在某个值附近,满足“中间多,两头少”的分布规律。

2.分子平均动能:物体内所有分子动能的平均值。

①温度是分子平均动能大小的标志。

②温度相同时任何物体的分子平均动能相等,但平均速率一般不等(分子质量不同)。

3.分子势能
(1)一般规定无穷远处分子势能为零。

(2)分子势能与分子间距离关系
4.内能:物体内所有分子无规则运动的动能和分子势能的总和
(1)内能是状态量、宏观量,只对大量分子组成的物体有意义,对个别分子无意义。

(2)物体的内能由物质的量(分子数量)、温度(分子平均动能)、体积(分子间势能)决定,与物体的宏观机械运动状态无关。

内能与机械能没有必然联系。

三、热力学定律和能量守恒定律
1.改变物体内能的两种方式:做功和热传递。

①等效不等质:做功是内能与其他形式的能发生转化;热传递是不同物体(或同一物体的不同部分)之间内能的转移,它们改变内能的效果是相同的。

②概念区别:温度、内能是状态量,热量和功则是过程量,热传递的前提条件是存在温差,传递的是热量而不是温度,实质上是内能的转移。

2.热力学第一定律
(1)内容:一般情况下,如果物体跟外界同时发生做功和热传递的过程,外界对物体做的功W与物体从外界吸收的热量Q之和等于物体的内能的增加量△U
(2)绝热过程Q=0,关键词“绝热材料”或“变化迅速”
(3)对理想气体(不考虑分子间相互作用力,内能仅由温度和分子总数决定,与气体的体积无关。


①W取决于体积变化,V增大时,气体对外做功,W<0;V减小时,外界对气体做功,W>0。

②特例:如果是气体向真空扩散,W=0。

3.能量守恒定律:
(1)能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中其总量不变。

这就是能量守恒定律。

(2)第一类永动机:不消耗任何能量,却可以源源不断地对外做功的机器。

(违背能量守恒定律)
4.热力学第二定律(1)热传导的方向性:热传导的过程可以自发地由高温物体向低温物体进行,但相反方向却不能自发地进行,即热传导具有方向性,是一个不可逆过程。

(2)说明:①“自发地”过程就是在不受外来干扰的条件下进行的自然过程。

②热量可以自发地从高温物体传向低温物体,热量却不能自发地从低温物体传向高温物体。

③热量可以从低温物体传向高温物体,必须有“外界的影响或帮助”,就是要由外界对其做功才能完成。

(3)热力学第二定律的两种表述
①克劳修斯表述:不可能使热量从低温物体传向高温物体而不引起其他变化。

②开尔文表述:不可能从单一热源吸收热量,使之完全变为有用功而不引起其他变化。

(4)第二类永动机
①设想:只从单一热源吸收热量,使之完全变为有用的功而不引起其他变化的热机。

②第二类永动机不可能制成,不违反热力学第一定律或能量守恒定律,违反热力学第二定律。

原因:尽管机械能可以全部转化为内能,但内能却不能全部转化成机械能而不引起其他变化;机械能和内能的转化过程具有方向性。

(5)推广:与热现象有关的宏观过程都是不可逆的。

例如;扩散、气体向真空的膨胀、能量耗散。

四、固体和液体
1.晶体和非晶体
①晶体内部的微粒排列有规则,具有空间上的周期性,因此不同方向上相等距离内微粒数不同,使得物理性质不同(各向异性),但由于多晶
体由于是由许多杂乱无章地排列着的单晶体集合而成,因此显示各向同性,形状也不规则。

②晶体达到熔点后由固态向液态转化,分子间距离要加大。

此时晶体要从外界吸收热量来破坏晶体的点阵结构,所以吸热只是为了克服分子间的引力做功,只增加了分子的势能。

分子平均动能不变,温度不变。

③非晶体外形不规则,熔点不确定,具各向同性。

常见的晶体和非晶体:
④常见的晶体:石英,云母,明矾,食盐,硫酸铜,蔗糖,味精,雪花
⑤常见的非晶体:玻璃,蜂蜡,松香,沥青,橡胶
2.液晶:介于固体和液体之间的特殊物态
物理性质:①具有晶体的光学各向异性——在某个方向上看其分子排列比较整齐。

②具有液体的流动性——从另一方向看,分子的排列是杂乱无章的。

3、液体的表面张力现象和毛细现象
(1)表面张力一表面层(与气体接触的液体薄层)分子比较稀疏,,分子力表现为引力,在这个作用下,液体表面有收缩到最小的趋势,这个力就是表面张力。

五、气体实验定律
气体压强微观解释:大量气体分子对器壁频繁地碰撞产生的。

压强大小与气体分子单位时间内对器壁单位面积的碰撞次数有关。

决定因素:①气体分子的平均动能,从宏观上看由气体的温度决定。

②单位体积内的分子数(分子密度),从宏观上看由气体的体积决定。

六、饱和汽和饱和汽压1、饱和汽与饱和汽压:
在单位时间内回到液体中的分子数等于从液面飞出去的分子数,这时汽的密度不再增大,液体也不再减少,液体和汽之间达到了平衡状态,这种平衡叫做动态平衡。

我们把跟液体处于动态平衡的汽叫做饱和汽,把没有达到饱和状态的汽叫做未饱和汽。

在一定温度下,饱和汽的压强一定,叫做饱和汽压。

未饱和汽的压强小于饱和汽压。

饱和汽压影响因素:①与温度有关,温度升高,饱和气压增大
②饱和汽压与饱和汽的体积无关。

相关文档
最新文档