板式换热器课程设计

合集下载

化工原理课程设计 换热器的设计

化工原理课程设计 换热器的设计

摘要换热器的应用贯彻化工生产过程的始终,换热器换热效果的好坏直接影响化工生产的质量和生产效益。

所以换热器是非常重要的化工生产设备,在化工领域中,它扮演着主力军的身份,它是实现化工生产过程中热量交换和传递不可缺少的设备,在化工设备中占大约50%以上的比重。

既然换热器在化工生产中扮演如此重要的角色,那么如何设计出换热效果好,设备健全合理,三废排放量更低,能源利用率更高,经济效益高的换热器是我们从事化工行业工作人员刻不容缓的职责。

为了完成年产 2.8万吨酒精的生产任务,设计换热器的总体思路:在正常的生产过程中,利用塔底的釜残液作为加热介质在塔底冷却器中进行第一次预热,然后用少量的水蒸汽便可在预热器中使原料液达到预期的温度进入精馏塔中。

塔顶酒精蒸汽经过全凝器,利用循环冷却水作为冷却介质使酒精蒸汽转为液体。

最后,在塔顶冷却器中再次用冷却水使其降到25。

C输送到储装罐中。

关键词:冷却器;再沸器;全凝器;对流传热系数;压降;列管式换热器;离心泵。

目录第一章换热器的设计..............................................1.1概述 .............................................................1.1.1流程方案的确定..............................................1.1.2 加热介质、冷却介质的选择 ...................................1.1.3 换热器类型的选择 ...........................................1.1.4 流体流动空间的选择 .........................................1.1.5 流体流速的确定 .............................................1.1.6换热器材质的选择............................................1.1.7换热器壁厚的确定............................................1.2.固定管板式换热器的结构...........................................1.2.1管程结构....................................................1.2.2壳程结构....................................................1.3 列管换热器的设计计算.............................................1.3.1 换热器的设计步骤 ...........................................1.3.2 计算所涉及的主要公式 ....................................... 第二章设计的工艺计算 ............................................2.1 全塔物料恒算.....................................................2.2 原料预热器的设计和计算...........................................2.2.1 确定设计方案 ...............................................2.2.2 根据定性温度确定物性参数 ...................................2.2.3换热器的选择................................................2.3塔顶全凝器的设计和计算 ...........................................2.3.1确定设计方案................................................2.3.2 根据定性温度确定物性参数 ...................................2.2.3 换热器的选择 ...............................................2.4 塔顶冷却器的设计.................................................2.4.1 确定设计方案 ...............................................2.4.2 根据定性温度确定物性参数 ...................................2.4.3 换热器的选择 ...............................................2.5 塔底冷却器的设计.................................................2.5.1 确定设计方案 ...............................................2.5.2 根据定性温度确定物性参数 ...................................2.5.3 换热器的选择 ...............................................2.6 再沸器的设计.....................................................2.6.1 确定设计方案 ...............................................2.6.2 根据定性温度确定物性参数 ...................................2.6.3再沸器的工艺计算............................................ 第三章附录 .....................................................................................................................................符号说明............................................................. 第四章设计感想..................................................................................................................... 参考文献............................................................第一章换热器的设计1.1概述工业生产过程,两种物料之间的热交换一般是通过热交换器完成的,所以换热器的设计就显的尤为重要。

固定管板式换热器设计-过程设备设计课程设计之欧阳学文创作

固定管板式换热器设计-过程设备设计课程设计之欧阳学文创作

目录欧阳学文1.换热器选型和工艺设计41.1设计条件41.2换热器选型41.3工艺设计51.3.1传热管根数的确定51.3.2传热管排列和分程方法51.3.3壳体内径62 换热器结构设计与强度校核62.1 管板设计62.1.1管板材料和选型62.1.2管板结构尺寸72.1.3管板质量计算72.2法兰与垫片82.2.1管箱法兰与管箱垫片82.3 接管92.3.1接管的外伸长度102.3.2 接管位置设计102.3.3 接管法兰122.4管箱设计132.4.1管箱结构形式选择132.4.2管箱最小长度132.5 换热管142.5.1 布管限定圆142.5.2 换热管与管板的连接15 2.6 拉杆与定距管152.6.1 拉杆的结构形式152.6.2 拉杆的直径、数量及布置162.6.3 定距管172.7防冲板172.7.1防冲板选型172.7.2防冲板尺寸172.8 折流板182.8.1 折流板的型式和尺寸18 2.8.2 折流板的布置182.8.3 折流板重量计算193.强度计算203.1壳体和管箱厚度计算203.1.1 壳体、管箱和换热管材料的选择203.1.2 圆筒壳体厚度的计算213.1.3 管箱厚度计算223.2 开孔补强计算233.2.1 壳体上开孔补强计算233.3 水压试验243.4支座243.4.1支反力计算如下:253.4.2 鞍座的型号及尺寸264焊接工艺设计274.1.壳体与焊接274.1 .1壳体焊接顺序274.1.2 壳体的纵环焊缝284.2 换热管与管板的焊接284.2.1 焊接工艺284.2.2 法兰与短节的焊接294.2.3管板与壳体、封头的焊接29 4.2.4接管与壳体焊接30总结30 参考文献301.换热器选型和工艺设计1.1设计条件1.2换热器选型 管程定性温度 壳程定性温度管壳程温差故初步选择不带膨胀节的固定管板式换热器(双管程)。

根据介质特性初步选择换热管材料为20号碳钢,壳体材料为Q245R项目 管程 壳程 工作压力(MPa )1.70.7 工作温度(℃) 40~150 170~90 介质净化煤气 水蒸气/冷凝水换热管尺寸(mm ) φ25×2.5 换热面积(m2) 90 换热管长度(m ) 自选 管程数 2 结构型式 卧式 使用寿命10年1.3工艺设计1.3.1传热管根数的确定已知换热管外径,内径,换热面积S=90,管程数为2。

《板式换热器教案》课件

《板式换热器教案》课件

《板式换热器教案》PPT课件一、教案概述1.1 课程目的:使学生了解板式换热器的工作原理、结构特点及应用范围。

培养学生掌握板式换热器的选型、设计及计算方法。

提高学生对板式换热器操作与维护的认知。

1.2 适用对象:热能与动力工程及相关专业的大专院校学生。

从事换热器设计、制造、运行和维护的工程技术人员。

二、教学内容2.1 板式换热器简介板式换热器的定义板式换热器的发展历程板式换热器的分类及特点2.2 板式换热器的工作原理板式换热器的传热过程板式换热器的流动过程板式换热器的热损失计算2.3 板式换热器的结构与组成板式换热器的板块结构板式换热器的密封结构板式换热器的主要部件及功能2.4 板式换热器的应用范围板式换热器在加热领域的应用板式换热器在冷却领域的应用板式换热器在其他领域的应用三、教学方法3.1 讲授法通过PPT课件,对板式换热器的原理、结构、应用等进行详细讲解。

结合实例,分析板式换热器在不同领域的应用案例。

3.2 互动教学法设置问题环节,引导学生思考板式换热器的相关问题。

鼓励学生提问,解答学生关于板式换热器的疑问。

3.3 实践教学法安排板式换热器实验室参观,让学生直观了解板式换热器的结构。

组织板式换热器模拟操作,让学生动手实践,提高操作技能。

四、教学评价4.1 课堂问答评估学生在课堂上的参与程度,提问和回答问题的准确性。

4.2 课后作业布置与板式换热器相关的课后作业,评估学生的理解程度和应用能力。

4.3 实践操作评估学生在板式换热器模拟操作中的技能掌握情况。

五、教学进度安排5.1 课时安排总共24课时,其中PPT课件讲解12课时,互动教学6课时,实践教学6课时。

5.2 教学进度第1-4课时:板式换热器简介及工作原理第5-8课时:板式换热器的结构与组成第9-12课时:板式换热器的应用范围第13-16课时:板式换热器的选型与设计第17-20课时:板式换热器的操作与维护第21-24课时:板式换热器案例分析与讨论六、板式换热器的选型与设计6.1 选型依据换热器的设计压力和设计温度流体的种类和性质换热器所需的热交换面积换热器的结构形式和类型6.2 设计步骤确定换热器的工艺参数选择合适的板式换热器类型计算换热器的热交换面积确定换热器的材质和结构6.3 设计注意事项考虑换热器的压力损失和温差损失选择适当的板片形状和板间距考虑换热器的清洗和维修方便性七、板式换热器的操作与维护7.1 操作流程启动前的准备工作启动过程中的操作步骤运行过程中的监测与调节停机过程中的操作步骤7.2 维护保养日常巡检与清洁定期检查与维修换热器性能的检测与评估7.3 故障处理常见故障现象及其原因故障处理方法与步骤故障预防与改进措施八、板式换热器案例分析与讨论8.1 案例介绍案例一:板式换热器在食品工业中的应用案例二:板式换热器在制药工业中的应用案例三:板式换热器在热力发电中的应用8.2 案例分析分析案例中的换热器选型与设计分析案例中的操作与维护经验探讨案例中的故障处理方法8.3 讨论与启示讨论板式换热器在不同行业中的应用特点探讨板式换热器的设计与操作中的关键问题分析板式换热器的发展趋势与前景九、板式换热器的热力计算与CAD绘制9.1 热力计算方法传热过程的数学模型压力损失的计算方法温差损失的计算方法9.2 CAD绘制技巧使用CAD软件绘制板式换热器三维模型标注换热器的尺寸和参数换热器的结构图和零件图9.3 实践练习学生分组进行热力计算练习学生独立绘制板式换热器CAD图纸回顾板式换热器的原理、结构、选型、操作和维护等内容10.2 考核方式课堂问答与讨论课后作业与实践操作CAD图纸绘制与分析报告10.3 考核评价评估学生在课程中的学习态度和参与程度评估学生在知识掌握和应用能力方面的表现提出改进教学方法和提高教学质量的建议重点和难点解析重点环节1:板式换热器的工作原理板式换热器的工作原理是课程的核心内容,涉及到传热过程和流动过程的复杂性。

化工原理课程设计-固定管板式换热器

化工原理课程设计-固定管板式换热器

化工原理课程设计设计题目:固定管板式换热器指导教师:—班级:食品08级姓名:_2011 年1 月20 日目录设计题目 (1)说明书编写要求 (5)设计任务书 (6)一、设计方案 (8)1. 设计方案的选择 (8)1.1方案简介 (8)1.2设计的一般原则 (9)1.3换热器类型的选择 (10)2. 流程安排 (13)2.1 列管式换热器的选用................................ .第13页2.2加热剂或冷凝剂的选择 (14)2.3流体进口温度的确定 (14)2.4流体流速的选择 (15)2.5管子的规格和排列方法 (16)2.6 折流挡板和支承板.................................. .第18页2.7 夕卜壳直径的确定.................................... .. 第19页2.8 材料选用 (20)2.9流动空间及流速的确定 (21)二、 确定物性数据 (20)三、 计算总传热系数 (21)1. 热流量 ...........................................第21页 2. 平均传热温差 .....................................第21页 3. 冷却水用量 .......................................第22页 4. 总传热系数K ...........................................................第22页 四、 计算换热面积 .....................................第23页 五、 工艺结构尺寸 .....................................第23页 1. 管径和管内流速 ..................................第23页 2. 管程数和传热管数 ................................第23页 3 .平均传热温差校正及壳程数 .......................第24页 4. 传热管排列和分程方法 ............................第24页 5. 壳体内径 ........................................第25页 6. 折流板 ..........................................第25页 第 25 页 六、换热器核算1. 热量核算 ........................................第26页 2. 换热器内流体的流动阻力 .........................第28页 7. 接管第 26 页3. 换热器主要结构尺寸和计算结果 (30)设备结构图(附图) (31)主要符号说明 (32)七、设计心得 (33)参考文献 (36)评语 (29)广西工学院生物与化学工程系化工原理课程设计说明书设计课题:大豆油换热器的设计说明书编写要求:化工原理课程设计由说明书和图纸两部分组成。

化工原理课程设计——换热器设计

化工原理课程设计——换热器设计

化工原理课程设计——换热器设计本课题研究的目的要紧是针对给定的固定管板式换热器设计要求,通过查阅资料、分析设计条件,以及换热器的传热运算、壁厚设计和强度校核等设计,差不多确定固定管板式换热器的结构。

通过分析固定管板式换热器的设计条件,确定设计步骤。

对固定管板式换热器筒体、封头、管板等部件的材料选择、壁厚运算和强度校核。

对固定管板式换热器前端管箱、后端管箱、传热管和管板等结构进行设计,对换热器进行开孔补强校核。

绘制符合设计要求的固定管板式换热器的图纸,给出相关的技术要求;在固定管板换热器的结构设计过程中,要参考相关的标准进行设计,比如GB-150、GB151……,使设计能够符合相关标准。

同时要是设计的结构满足生产的需要,达到安全生产的要求。

通过设计过程达到熟悉了解换热器各部分结构特点及工作原理的目的。

关键词:换热器;固定管板;设计;强度名目摘要 ....................................................... 错误!未定义书签。

1绪论 (1)1.2固定管板换热器介绍 (2)1.3本课题的研究目的和意义 (3)1.4换热器的进展历史 (4)2产品冷却器结构设计的总体运算 (6)2.1 产品冷却器设计条件 (6)2.2前端管箱运算 (8)2.2.1前端管箱筒体运算 (8)2.2.2前端管箱封头运算 (10)2.3后端管箱运算 (11)2.3.1后端管箱筒体运算 (11)2.3.2后端管箱封头运算 (12)2.4壳程圆筒运算 (13)3各部分强度校核 (15)3.1开孔补强运算 (15)3.2壳程圆筒校核 (18)3.3管箱圆筒校核 (19)4换热管及法兰的设计 (20)4.1换热管设计 (20)4.2管板设计 (21)4.3管箱法兰设计 (22)4.4壳体法兰设计 (25)4.5各项系数运算 (27)5 产品冷却器制造过程简介 (34)5.1 总则 (34)5.2零部件的制造 (34)结论 (43)参考文献: (44)致谢 (44)1绪论1.1换热器的作用及分类在工业生产中,换热设备的要紧作用是使热量由温度较高的流体传递给温度较低的流体,使流体温度达到工艺过程规定的指标,以满足工艺过程上的需要。

固定管板式列管换热器课程设计

固定管板式列管换热器课程设计

银川能源学院题目: 26136吨/年乙苯冷却列管式换热器的设计院系石油化工学院专业班级过控(本)1301学生姓名徐仁元学号1310140144指导教师刘荣杰设计时间2015年6月10日化学工程教研室制目录摘要换热器是化工、石油、食品及其他许多工业部门的通用设备,在生产中占有重要的地位。

所以,本次课程设计我们设计列管式换热器。

设计内容有设计任务书、课程设计概述、换热工艺计算等。

设计过程主要通过设计任务书和国标准则,计算两流体的定性温度,查资料确定物性数据,计算总传热系数、工艺结构尺寸和确定主要零部件。

设计结果为单壳程和单管程的固定管板式换热器。

其优点结构简单、紧凑,制造成本低;管内不易积垢,即使产生污垢也便于清洗。

关键词:换热器;设计计算;固定管板式AbstractHeat exchanger is a chemical, oil, food and many other industrial departments of general equipment, occupies an important position in the production. So, the course design of our design of shell and tube heat exchanger. Design content has the design specification, summary of curriculum design, so the heat exchange process calculation, etc. Mainly through the design plan descriptions of the design process and gb standards, calculated two fluid temperature, check information to determine physical properties data, calculating the total heat transfer coefficient, process structure size and determine the main components. Design results for single shell side and tube side of fixed tube plate heat exchanger. The advantages of simple structure, compact, low manufacturing cost. Tube is not easy to fouling, even cause fouling also facilitate clean.Key words: heat exchanger; Design calculation; Fixed tube-sheet第一章设计任务书一、设计题目:处理量 26136吨/年乙苯冷却列管式换热器的设计。

板式换热器教案

板式换热器教案

板式换热器教案教案板式换热器工作原理及特点解析一、教学目标1.让学生了解板式换热器的基本结构和工作原理。

2.使学生掌握板式换热器的主要特点及其在工业中的应用。

3.培养学生分析问题和解决问题的能力。

二、教学内容1.板式换热器的基本结构2.板式换热器的工作原理3.板式换热器的主要特点4.板式换热器的应用领域三、教学重点与难点1.教学重点:板式换热器的工作原理和主要特点。

2.教学难点:板式换热器内部流动与传热过程的理解。

四、教学方法1.讲授法:讲解板式换热器的基本概念、工作原理和特点。

2.图解法:通过图片和示意图展示板式换热器的结构和流动过程。

3.案例分析法:分析板式换热器在实际工程中的应用实例。

五、教学步骤1.导入新课:简要介绍换热器在工业中的重要性,引出板式换热器。

2.讲解板式换热器的基本结构:板式换热器由一组波纹形的金属板组成,板片之间通过垫片密封,形成流体通道。

冷热流体分别在相邻板片的通道内流动,通过板片进行传热。

3.讲解板式换热器的工作原理:以水-水换热为例,热流体(水)在板式换热器的高温侧流动,冷流体(水)在低温侧流动。

热流体释放热量,温度降低,冷流体吸收热量,温度升高。

通过调整板片数量和排列方式,可以满足不同工况下的换热需求。

4.讲解板式换热器的主要特点:1)高效节能:板式换热器具有极高的传热系数,热损失小,节能效果显著。

2)紧凑结构:板式换热器采用板片叠加结构,占地面积小,安装方便。

3)灵活调节:通过增减板片数量或调整板片排列方式,可以灵活调节换热面积和传热效果。

4)易于清洗和维护:板式换热器拆卸方便,可定期清洗板片,保证换热效果。

5.分析板式换热器的应用领域:板式换热器广泛应用于供暖、空调、化工、食品、制药等行业,特别是在中小型换热场合具有明显优势。

6.总结:回顾本节课的主要内容,强调板式换热器的工作原理、特点和应用领域。

7.作业布置:让学生查阅相关资料,了解板式换热器在我国的应用现状和发展趋势。

固定管板式换热器课设

固定管板式换热器课设

江汉大学课题名称:固定管板式换热器设计系别:化学与环境工程学院专业:过控121班学号: 122209104119姓名:库勇智指导教师:杨继军时间: 2016年元月课程设计任务书设计题目:固定管板式换热器设计一、设计目的:1.实用国家最新压力容器标准、规范进行设计,掌握典型的过程装备设计的全过程。

2.掌握查阅和综合分析文献资料的能力,进行设计方法和设计方案的可行性研究和论证。

3.掌握软件强度设计计算,要求设计思路清晰,计算数据准确可靠,正确掌握计算机操作和专业软件的实用。

4.掌握图纸的计算机绘图。

二、设计条件:设计条件单名称管程壳程物料名称循环水甲醇工作压力0.45Mpa 0.05Mpa操作温度40℃70℃推荐钢材10,Q235-A,16MnR换热面积60㎡推荐管长Φ=2532-39㎡40-75㎡76-135㎡2m 2.5 3m管口表符号公称直径用途a 200 冷却水金口b 200 甲醇蒸汽进口c 20 放气口d 70 甲醇物料出口e 20 排净物f 200 冷却水出口三、设计要求:1.换热器机械设计计算及整体结构设计2.绘制固定管板式换热器装配图(一张一号图纸)3.管长与壳体内径之比在3-20之间四、主要参考文献1.国家质量监督检验检疫总局,GB150-2011《压力容器》,中国标准出版社,2011.2.国家质量监督检验检疫总局,TSG R0004-2009《固定式压力容器安全技术监察规程》,新华出版社,2009.3.国家质量监督检验检疫总局,GB151-1999《管壳式换热器》,中国标准出版社,1999.4.天津大学化工原理教研室,《化工原理》上册,姚玉英主编,天津科学技术出版社,2012.5.郑津样,董其伍,桑芝富主编,《过程装备设计》,化学工业出版社,2010.6.赵惠清,蔡纪宁主编,《化工制图》,化学工业出版社,2008。

7.潘红良,郝俊文主编,《过程装备机械设计》,华东理工大学出版社,2006。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

船舶柴油机高温淡水冷却器设计摘要:本文简要介绍了板式换热器的结构、优缺点、设计原理与设计依据,运用对数平均温差法(LMTD)设计了一款船舶柴油机高温淡水板式换热器,并对其进行热力和阻力校核。

关键词:板式换热器对数平均温差板片流程污垢系数目录第1章板式换热器基本构造 (3)1.1 整体结构 (3)1.2 流程组合方式 (4)1.3 半片形式及其性能 (5)1.3.1 常用形式 (5)1.3.2 特种形式 (5)1.4 密封垫片 (5)第2章板式换热器的优缺点及应用 (6)2.1 优点 (6)2.2 缺点 (7)2.3 应用 (7)第3章板式换热器热力及相关计算 (8)3.1 确定总传热系数的途径 (8)3.2 总传热系数的计算 (8)3.3 传热系数的计算 (11)3.4垢阻的确定. (11)第4章计算类型及工程设计一般原则 (12)4.1 计算的类型 (12)4.2工程设计、计算的一般原则 (13)第5章板式换热器热力计算实际应用 (15)第1章板式换热器基本构造1.1整体结构板式换热器的结构相对于板翅式换热器、壳管式换热器和列管式换热器比较简单,它是由板片、密封垫片、固定压紧板、活动压紧板、压紧螺柱和螺母、上下导杆、前支柱等零部件所组成,如图1-1所示:板片为传热元件,垫片为密封元件,垫片粘贴在板片的垫片槽内。

粘贴好垫片的板片,按一定的顺序(如图1-1所示,冷暖板片交叉放置)置于固定压紧板和活动压紧板之间,用压紧螺柱将固定压紧板、板片、活动压紧板夹紧。

压紧板、导杆、压紧装置、前支柱统称为板式换热器的框架。

按一定规律排列的所有板片,称为板束。

在压紧后,相邻板片的触点互相接触,使板片间保持一定的间隙,形成流体的通道。

换热介质从固定压紧板、活动压紧板上的接管中出入,并相间地进入板片之间的流体通道,进行热交换。

图1-1所示板式换热器为可拆式板式换热器,其原理就是在上导杆处安装了活动滑轮、顶压装置,在增减板片的时候,可以通过该滑轮调节换热器内可安装板片数量,顶压装置加固整体结构牢固性;而对于一些小型的板式换热器,则没有该装置,而是直接地将固定压紧板和活动压紧板通过导杆固定连接起来,这种结构没有清洗空间,清洗、检查时,板片不能挂在导杆上,虽然这样的结构轻便简易,但对大型的、需经常清洗的板式换热器不太适用。

对于要进行两种以上介质换热的板式换热器,则需要设置中间隔板。

1.2流程组合方式为了使流体在板束之间按一定的要求流动,所有板片的四角均按要求冲孔,垫片按要求粘贴,然后有规律地排列起来,形成流体的通道,称为流程组合。

(图1-2[a]、[b]、[c]是典型的排列方式)流程组合的表示方式为:式中:M1,M2,…Mi:从固定压紧板开始,甲流体侧流道数相等的流程数;N1,N2,…Ni:M1,M2,…Mi中的流道数;m1,m2,…mi:从固定压紧板开始,乙流体侧流道数相等的流程数;n1,n2,…ni::m1,m2,…mi中的流道数。

图1-2 典型的流程组合1.3板片形式及其性能板片是板式换热器的核心元件,冷、热流体的换热发生在板片上,所以它是传热元件,此外它又承受两侧的压力差。

从板式换热器出现以来,人们构思出各种形式的波纹板片,以求得换热效率高、流体阻力低、承压能力大的波纹板片。

1.3.1常用形式板片按波纹的几何形状区分,有水平平直波纹、人字形波纹、斜波纹等波纹板片;按流体在板间的流动形式区分,有管状流动、带状流动、网状流动的波纹板片。

1.3.2特种形式为了适应各种工程的需要,在传统板式换热器的基础上相继发展了一些特殊的板片及特殊的板式换热器。

1:便于装卸垫片的板片2:用于冷凝器的板片3:用于蒸发器的板片4:板管式板片5:双层板片6:石墨材料板片7:宽窄通道的板片1.4密封垫片板式换热器的密封垫片是一个关键的零件。

板式换热器的工作温度实质上就是垫片能承受的温度;板式换热器的工作压力也相当程度上受垫片制约。

从板式换热器结构分析,密封周边的长度(m)将是换热面积(m2)的6~8倍,超过了任何其它类型的换热器。

第2章板式换热器的优缺点及应用2.1 优点1:传热系数高管壳式换热器的结构,从强度方面看是很好的,但从换热角度看并不理想,因为流体在壳程中流动时存在着折流板—壳体、折流板—换热管、管束—壳体之间的旁路。

通过这些旁路的流体,并没有充分地参与换热。

而板式换热器,不存在旁路,而板片的波纹能使流体在较小的流速下产生湍流。

所以板式换热器有较高的传热系数,一般情况下是管壳式换热器的3~5倍。

2:对数平均温差大在管壳式换热器中,两种流体分别在壳程和管程内流动,总体上是错流的流动方式。

如果进一步分析,壳程为混合流动,管程是多股流动,所以对数平均温差都应采用修正系数。

修正系数通常较小。

流体在板式换热器内的流动,总体上是并流或逆流的流动方式,其温差修正系数一般大于0.8,通常为0.95。

3:占地面积小板式换热器结构紧凑,单位体积内的换热面积为管壳式换热器的2~5倍,也不像管壳式换热器那样需要预留抽出管束的检修场地,因此实现同样的换热任务时,板式换热器的占地面积约为管壳式换热器的1/5~1/10。

4:重量轻板式换热器的板片厚度仅为0.6~0.8mm,管壳式换热器的换热管厚度为2.0~2.5mm;管壳式换热器的壳体比板式换热器的框架重得多。

在完成同样的换热任务的情况下,板式换热器所需要的换热面积比管壳式换热器的小。

5:价格低在使用材料相同的前提下,因为框架所需要的材料较少,所以生产成本必然要比管壳式换热器低。

6:末端温差小管壳式换热器,在壳程中流动的流体和换热面交错并绕流,还存在旁流,而板式换热器的冷、热流体在板式换热器内的流动平行于换热面,且无旁流,这样使得板式换热器的末端温差很小,对于水—水换热可以低于1℃,而管壳式换热器大约为5℃,这对于回收低温位的热能是很有利的。

7:污垢系数低板式换热器的污垢系数比管壳式换热器的污垢系数小得多,其原因是流体的剧烈湍流,杂质不宜沉积;板间通道的流通死区小;不锈钢制造的换热面光滑、且腐蚀附着物少,以及清洗容易。

8:多种介质换热如果板式换热器安装有中间隔板,则一台设备可以进行三种或三种以上介质的换热。

9:清洗方便板式换热器的压紧板卸掉后,即可松开板束,卸下板片,进行机械清洗。

10:容易改变换热面积或流程组合只需要增加(或减少)板片,即可达到需要增加(或减少)的换热面积。

2.2 缺点1:工作压力在2.5MPa以下板式换热器是靠垫片进行密封的,密封的周边很长,而且角孔的两道密封处的支撑情况较差,垫片得不到足够的压紧力,所以目前板式换热器的最高工作压力仅为2.5MPa;单板面积在1m2以上时,其工作压力往往低于2.5MPa。

2:工作温度在250℃以下板式换热器的工作温度决定于密封垫片能承受的温度。

用橡胶类弹性垫片时,最高工作温度在200℃以下;用压缩石棉绒垫片(Caf)时,最高工作温度为250~260℃。

3:不宜于进行易堵塞通道的介质的换热板式换热器的板间通道很窄,一般为3~5mm,当换热介质中含有较大的固体颗粒或纤维物质,就容易堵塞板间通道。

对这种换热场合,应考虑在入口安装过滤装置,或采用再生冷却系统。

2.3应用板式换热器早期只应用于牛奶高温灭菌、果汁加工、啤酒酿造等轻工业部门。

随着制造技术的提高,出现了耐腐蚀的板片材料和耐温、耐腐蚀的垫片材料,板片也逐渐大型化。

现代的板式换热器广泛地应用于各种工业中,进行液—液、气—液、汽—液,换热和蒸发、冷凝等工艺过程。

诸如:化学工业、食品工业、冶金工业、石油工业、电站、核电站、海洋石油平台、机械工业、污水处理、民用建筑工业等。

第3章板式换热器热力及相关计算热力计算的目的在于使所设计的换热器在服从传热方程式的基础撒谎能够满足热负荷所应具有的换热面积、传热系数、总传热系数、平均温差等综合方面的计算。

3.1 确定总传热系数的途径在设计计算板式换热器时,总传热系数的确定可通过两条途径:(一)选用经验公式有设计者根据经验或从有关参考书籍、有关性能测定的实验报告中,选用与工艺条件相仿、设备类型类似的换热器的总传热系数值作为设计依据。

表3-1列出了一般情况下板式换热器的总传热系数值。

表3-1 板式换热器的经验总传热系数K值(二)计算确定在设计计算中,常常需要知道比较准确的总传热系数值,这可以通过总传热系数的计算确定。

但由于计算传热系数的公式有一定误差及污垢热阻也不容易准确估计等原因,计算得到的总传热系数值与实际情况也会有出入。

3.2 总传热系数的计算(一)由热阻关系求解在板式换热器中,热量从高温物体传向低温物体的过程中,通常存在着五项热阻:板片热侧流体传热热阻1/α1,污垢层热阻Rs1,板片热阻δ/λ,板片冷侧流体传热热阻1/α2,污垢层热阻Rs2。

它们之和即为总热阻,总热阻的倒数也就是总传热系数,故其计算式为:(二)由传热方程求解传热的基本方程式为Q=KAΔtm由此可求得总传热系数K=Q/(AΔtm)。

1:换热量Q的计算换热量Q的计算可根据具体情况,分别在下列各式中选用:单相流体的吸、放热Q=qm cp(t’-t’’)或 Q=qm(i’-i’’)2:平均温差Δtm的求解平均温差Δtm 的求解通常采用修正逆流情况下对数平均温差Δtm的办法,即先按逆流考虑再进行修正:Δtm =ψΔt1m按逆流考虑时的对数平均温差为式中、—分别为逆流时端部温差中的最大值和最小值。

修正系数ψ随冷、热流体的相对流动方向的不同组合而异,在串联、并联或混联时可分别由图2-4、图2-5来确定:(也可以采用由Marriott实验求得的修正系数,见图2-6)图2-4 串联时,板式换热器的温差修正系数图2-5 并联时,板式换热器的温差修正系数图2-6 NTU法板式换热器的温差修正系数如果流体的温度沿传热面的变化不太大,例如当/2时,可采用算术平均温差代替对数平均温差,即:=(-)采用上式计算出的平均温差与采用对数平均温差计算的结果相比较,其误差在4%范围之内,这在工程计算上是允许的。

3:流体比热容或传热系数变化时的平均温差当流体的比热容不随温度变化时,流体温度的变化与吸收或放出的热量成正比,即成线性关系。

当流体的比热容变化不大时,可取某一温度时的比热容作为平均比热容。

如果在设计的温度范围内,比热容随温度的变化显著(大于2~3倍),则用对数平均温差的误差很大,应改用积分平均温差。

4:换热面积A的计算在板式换热器的计算中,换热面积A应采用有效换热面积(Ao为单板的有效换热面积,A e 为总的有效换热面积,Ne为总的有效传热板片数)Ae=NeAo3.3 传热系数的计算对流传热系数流体在板式换热器的通道中流动时,在湍流条件下,通常用下面的关联式计算流体沿整个流程的平均对流传热系数uf在计算Re数值时,所采用的当量直径de应该按下式计算[式中As—通道截面积(m2);S—参与传热的周边长(m)]。

相关文档
最新文档