归纳抽象函数常见题型及解法

合集下载

高中数学 12抽象函数常见题型解法概述

高中数学 12抽象函数常见题型解法概述

抽象函数常见题型解法概述抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数。

由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一。

本文就抽象函数常见题型及解法评析如下:一、定义域问题例1. 已知函数)(2x f 的定义域是[1,2],求f (x )的定义域。

解:)(2x f 的定义域是[1,2],是指21≤≤x ,所以)(2x f 中的2x 满足412≤≤x ,从而函数f (x )的定义域是[1,4]评析:一般地,已知函数))((x f ϕ的定义域是A ,求f (x )的定义域问题,相当于已知))((x f ϕ中x 的取值范围为A ,据此求)(x ϕ的值域问题。

例 2. 已知函数)(x f 的定义域是]21[,-,求函数)]3([log 21x f -的定义域。

解:)(x f 的定义域是]21[,-,意思是凡被f 作用的对象都在]21[,-中,由此可得4111)21(3)21(2)3(log 11221≤≤⇒≤-≤⇒≤-≤--x x x所以函数)]3([log 21x f -的定义域是]4111[,评析:这类问题的一般形式是:已知函数f (x )的定义域是A ,求函数))((x f ϕ的定义域。

正确理解函数符号及其定义域的含义是求解此类问题的关键。

这类问题实质上相当于已知)(x ϕ的值域B ,且A B ⊆,据此求x 的取值范围。

例2和例1形式上正相反。

二、求值问题例3. 已知定义域为()0,+∞的函数f (x ),同时满足下列条件:①51)6(1)2(==f f ,;②)()()(y f x f y x f +=⋅,求f (3),f (9)的值。

解:取32==y x ,,得)3()2()6(f f f +=因为51)6(1)2(==f f ,,所以54)3(-=f 又取3==y x ,得58)3()3()9(-=+=f f f 评析:通过观察已知与未知的联系,巧妙地赋值,取32==y x ,,这样便把已知条件51)6(1)2(==f f ,与欲求的f (3)沟通了起来。

高一数学抽象函数常见题型解法综述

高一数学抽象函数常见题型解法综述

抽象函数常见题型解法综述抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数。

由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一。

本文就抽象函数常见题型及解法评析如下:一、定义域问题例1. 已知函数)(2x f 的定义域是[1,2],求f (x )的定义域。

解:)(2x f 的定义域是[1,2],是指21≤≤x ,所以)(2x f 中的2x 满足412≤≤x从而函数f (x )的定义域是[1,4]评析:一般地,已知函数))((x f ϕ的定义域是A ,求f (x )的定义域问题,相当于已知))((x f ϕ中x 的取值范围为A ,据此求)(x ϕ的值域问题。

例2. 已知函数)(x f 的定义域是]21[,-,求函数)]3([log 21x f -的定义域。

解:)(x f 的定义域是]21[,-,意思是凡被f 作用的对象都在]21[,-中,由此可得4111)21(3)21(2)3(log 11221≤≤⇒≤-≤⇒≤-≤--x x x 所以函数)]3([log 21x f -的定义域是]4111[,评析:这类问题的一般形式是:已知函数f (x )的定义域是A ,求函数))((x f ϕ的定义域。

正确理解函数符号及其定义域的含义是求解此类问题的关键。

这类问题实质上相当于已知)(x ϕ的值域B ,且A B ⊆,据此求x 的取值范围。

例2和例1形式上正相反。

二、求值问题例3. 已知定义域为+R 的函数f (x ),同时满足下列条件:①51)6(1)2(==f f ,;②)()()(y f x f y x f +=⋅,求f (3),f (9)的值。

解:取32==y x ,,得)3()2()6(f f f +=因为51)6(1)2(==f f ,,所以54)3(-=f 又取3==y x ,得58)3()3()9(-=+=f f f 评析:通过观察已知与未知的联系,巧妙地赋值,取32==y x ,,这样便把已知条件51)6(1)2(==f f ,与欲求的f (3)沟通了起来。

讲座(三):抽象函数常见题型解法综述(教师版)1

讲座(三):抽象函数常见题型解法综述(教师版)1

抽象函数常见题型解法综述抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数.由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一.本文就抽象函数常见题型及解法评析如下: 一、定义域问题例1. 已知函数)(x f 的定义域是]21[,-,求函数)]3([log 21x f -的定义域.解:)(x f 的定义域是]21[,-,意思是凡被f 作用的对象都在]21[,-中,由此可得4111)21(3)21(2)3(log 11221≤≤⇒≤-≤⇒≤-≤--x x x所以函数)]3([log 21x f -的定义域是]4111[,二、求值问题例2.(1) 已知定义域为+R 的函数f (x ),同时满足下列条件: ①51)6(1)2(==f f ,;②)()()(y f x f y x f +=⋅,求f (3),f (9)的值. 解:取32==y x ,,得)3()2()6(f f f +=因为51)6(1)2(==f f ,,所以54)3(-=f 又取3==y x得58)3()3()9(-=+=f f f(2)定义在R 上的函数f x ()满足:f x f x ()()=-4且f x f x ()()220-+-=,求f ()2000的值.解:由f x f x ()()220-+-=, 以t x =-2代入,有f t f t ()()-=, ∴f x ()为奇函数且有f ()00= 又由f x f x ()[()]+=--44=-=-∴+=-+=f x f x f x f x f x ()()()()()84故f x ()是周期为8的周期函数, ∴==f f ()()200000三、值域问题例3. 设函数f (x )定义于实数集上,对于任意实数x 、y ,)()()(y f x f y x f =+总成立,且存在21x x ≠,使得)()(21x f x f ≠,求函数)(x f 的值域.解:令0==y x ,得2)]0([)0(f f =,即有0)0(=f 或1)0(=f 。

第8讲 抽象函数7种导函数构造(解析版)-2024高考数学常考题型

第8讲 抽象函数7种导函数构造(解析版)-2024高考数学常考题型

第8讲抽象函数7种导函数构造【题型目录】题型一:具体函数抽象化解不等式题型二:构造幂函数型解不等式题型三:构造指数函数型解不等式题型四:构造对数函数型解不等式题型五:构造三角函数型解不等式题型六:构造()kx x f +型函数解不等式题型七:复杂型:二次构造【典例例题】题型一:具体函数抽象化解不等式【例1】(2022·广东·南海中学高二阶段练习)已知()2cos ,R f x x x x =+∈,若()()1120f t f t ---≥成立,则实数t 的取值范围是()A .20,3⎛⎫ ⎪⎝⎭B .20,3⎡⎤⎢⎥⎣⎦C .()2,0,3∞∞⎛⎫-⋃+ ⎪⎝⎭D .()20,,03⎛⎤-∞ ⎥⎝⎦ 【答案】B 【解析】【分析】由奇偶性的定义得出函数()y f x =为偶函数,利用导数知函数()y f x =在区间[)0,∞+上为增函数,由偶函数的性质将不等式()()1120f t f t ---≥变形为()()112f t f t -≥-,利用单调性得出112t t -≥-,从而可解出实数t 的取值范围.【详解】解:函数()y f x =的定义域为R ,关于原点对称,()()()2cos 2cos f x x x x x f x -=-+-=+=Q ,∴函数()y f x =为偶函数,当0x ≥时,()2cos f x x x =+,()2sin 0f x x '=->,则函数()y f x =在[)0,∞+上为增函数,由()()1120f t f t ---≥得()()112f t f t -≥-,由偶函数的性质得()()112f t f t -≥-,由于函数()y f x =在[)0,∞+上为增函数,则112t t -≥-,即()()22112t t -≥-,整理得2320t t -≤,解得203t ≤≤,因此,实数t 的取值范围是20,3⎡⎤⎢⎥⎣⎦.故选:B.【题型专练】1.(2022·贵州遵义·高二期末(理))已知函数()ln e xxf x x =-,设()3log 2a f =,()0.2log 0.5b f =,()ln 4c f =,则a ,b ,c 的大小为()A .c a b >>B .a c b>>C .b c a>>D .c b a>>【答案】A 【解析】【分析】利用函数解析式求导数,判断导数大于零恒成立,故确定函数单调性,比较自变量大小确定函数值a ,b ,c 的大小即可.【详解】解:因为()ln e x x f x x =-,则,()0x ∈+∞,所以()2211e 11e e e (4e 2x x x x x xf x x x x x x x +--+-'==-=-又,()0x ∈+∞时,21111,(24e 4xx >--≥-,所以()0f x '>恒成立所以()ln e xxf x x =-在,()0x ∈+∞上单调递增;又30log 21<<,0.215351log 0.5log log 2log 22==<,ln 41>所以30.2ln 4log 2log 0.5>>,则c a b >>.故选:A.2.(2022·上海·复旦附中高二期末)设()2sin f x x x =+,若()()20221120210f x f x ++-≥,则x 的取值范围是___________.【答案】2x ≥-【解析】【分析】奇偶性定义判断()f x 奇偶性,利用导数研究()f x 的单调性,再应用奇偶、单调性求x 的范围.【详解】由()2sin (2sin )()f x x x x x f x -=--=-+=-且R x ∈,易知:()f x 为奇函数,所以(20221)(20211)f x f x +≥-,又()2cos 0f x x =+>',故()f x 在R x ∈上递增,所以2022120211x x +≥-,可得2x ≥-.故答案为:2x ≥-题型二:构造幂函数型解不等式【例1】(2022·黑龙江·哈师大附中高二期末)已知定义在(0,+∞)上的函数()f x 满足()()0xf x f x '-<,其中()f x '是函数()f x 的导函数,若()()()202220221f m m f ->-,则实数m 的取值范围为()A .(0,2022)B .(2022,+∞)C .(2023,+∞)D .(2022,2023)【答案】D 【解析】【分析】构造函数()g x ,使得()()2()0xf x f x g x x'-=<,然后根据函数()g x 的单调性解不等式即可.【详解】由题设()()2()()()0xf x f x f x g x g x x x'-'=⇒=<,所以()g x 在()0,∞+上单调递减,又()()()()()2022120222022120221f m f f m m f m -->-⇒>-,即(2022)(1)202212023g m g m m ->⇒-<⇒<,又函数()f x 的定义域为()0,∞+,所以202202022m m ->⇒>,综上可得:20222023m <<.故选:D.【例2】(2022·四川雅安·高二期末(理))设奇函数()()0f x x ≠的导函数是()f x ',且()20f -=,当0x >时,()()20xf x f x '-<,则不等式()0f x <的解集为______.【答案】()()2,02,-+∞ 【解析】【分析】设()()2f x g x x=,利用导数求得()g x 在(0,)+∞为单调递减函数,进而得到函数()g x 为奇函数,且()g x 在(,0)-∞为单调递减函数,结合函数()g x 的单调性,即可求解.【详解】设()()2f x g x x =,可得()()()32xf x f x g x x'-'=,因为当0x >时,()()20xf x f x '-<,可得()0g x '<,所以()g x 在(0,)+∞为单调递减函数,又因为函数()f x 为奇函数,且()20f -=,可得()20f =,则满足()()()()22()f x f x g x g x x x --==-=--,所以函数()g x 也为奇函数,所以()g x 在(,0)-∞为单调递减函数,且()()220g g -==,当0x >时,由()0f x <,即()0g x <,即()()2g x g <,可得2x >;当0x <时,由()0f x <,即()0g x <,即()()2g x g <-,可得20x -<<;所以不等式()0f x <的解集为()()2,02,-+∞ .故答案为:()()2,02,-+∞ .【例3】(2022·河南信阳·高二期中(理))已知定义域为R 的函数()f x 满足()()1f x xf x '+>(()f x '为函数()f x 的导函数),则不等式()()()2111x f x f x x +->-+的解集为()A .()0,∞+B .(]0,1C .(],1-∞D .()[),01,-∞⋃+∞【答案】A 【解析】【分析】构造函数()()g x xf x x =-,由题意可知()g x 在R 上单调递增,再对x 分情况讨论,利用函数()g x 的单调性即可求出不等式的解集.【详解】由2(1)(1)(1)x f x f x x +->-+,(1)当1x <时,可得2(1)(1)(1)(1)(1)(1)x x f x x f x x x -+->--+-,即222(1)(1)(1)(1)x f x x f x x x -->--+-,即222(1)(1)(1)(1)(1)(1)x f x x x f x x ---->----,构造函数()(),()()()10g x xf x x g x f x xf x ''=-=+->,所以函数()g x 单调递增,则211x x ->-,此时01x <<,即01x <<满足;(2)当1x >时,可得222(1)(1)(1)(1)(1)(1)x f x x x f x x ----<----,由函数()g x 递增,则211x x -<-,此时0x <或1x >,即1x >满足;(3)当1x =时,2(0)(0)1f f >+,即(0)1f >满足()()1f x x f x '+⋅>.综上,,()0x ∈+∞.故选:A.【例4】已知定义在R 上的奇函数()f x ,其导函数为()'f x ,当0x ≥时,恒有())03(xf f x x '+>.则不等式33()(12)(12)0x f x x f x -++<的解集为().A .{|31}x x -<<-B .1{|1}3x x -<<-C .{|3x x <-或1}x >-D .{|1x x <-或1}3x >-【答案】D 【解析】先通过())03(x f f x x '+>得到原函数()()33x f x g x =为增函数且为偶函数,再利用到y 轴距离求解不等式即可.【详解】构造函数()()33x f x g x =,则()()()()()322'''33x x g x x f x f x x f x f x ⎛⎫=+=+ ⎪⎝⎭由题可知())03(x f f x x '+>,所以()()33x f x g x =在0x ≥时为增函数;由3x 为奇函数,()f x 为奇函数,所以()()33x f x g x =为偶函数;又33()(12)(12)0x f x x f x -++<,即33()(12)(12)x f x x f x <++即()()12g x g x <+又()g x 为开口向上的偶函数所以|||12|x x <+,解得1x <-或13x >-故选:D 【点睛】此题考查根据导函数构造原函数,偶函数解不等式等知识点,属于较难题目.【例5】函数()f x 是定义在区间()0,∞+上的可导函数,其导函数为()f x ',且满足()()20xf x f x '+>,则不等式(2020)(2020)3(3)32020x f x f x ++<+的解集为A .{}|2017x x >-B .{}|2017x x <-C .{}|20200x x -<<D .{}|20202017x x -<<-【答案】D 【解析】设函数()()()2,0g x x f x x =>,根据导数的运算和题设条件,求得函数()g x 在()0,∞+上为增函数,把不等式转化为22(2020)(2020)3(3)x f x f ++<,即()()20203g x g +<,利用单调性,即可求解.【详解】由题意,设函数()()()20g x x f x x =>,则()()()()()222()2g x x f x x f x x f x xf x ''''=⋅+⋅=+,因为()f x 是定义在区间()0,∞+上的可导函数,且满足()()20xf x f x '+>,所以()0g x '>,所以函数()g x 在()0,∞+上为增函数,又由(2020)(2020)3(3)32020x f x f x ++<+,即22(2020)(2020)3(3)x f x f ++<,即()()20203g x g +<,所以020203x <+<,解得20202017x -<<-,即不等式的解集为{}|20202017x x -<<-.故选:D .【点睛】本题主要考查了函数的导数与函数的单调性的关系及应用,其中解答中根据题设条件,构造新函数()()()20g x x f x x =>是解答的关键,着重考查了构造思想,以及推理与计算能力.【题型专练】1.(2021·新疆维吾尔自治区喀什第二中学高三阶段练习(理))定义在R 上的偶函数()f x 的导函数为()f x ',且当0x >时,()()20xf x f x '+<.则()A .()()2e 24ef f >B .()()931f f >C .()()2e 39ef f -<D .()()2e 39ef f ->【答案】D 【解析】【分析】由题构造函数()()2g x x f x =,利用导函数可得函数()()2g x x f x =在(0,+∞)上为减函数,且为偶函数,再利用函数的单调性即得.【详解】设()()2g x x f x =,则()()()()()222g x xf x x f x x f x xf x ⎡⎤=+='+'⎣'⎦,又当0x >时,()()20xf x f x '+<,∴()()()()()2220g x xf x x f x x f x xf x '''=+=+<⎡⎤⎣⎦,则函数()()2g x x f x =在(0,+∞)上为减函数,∵()f x 是定义在R 上的偶函数,∴()()()()()22g x x f x x f x g x -=--==,即g (x )为偶函数,所以()()e 2g g <,即()()2e 24ef f <,故A 错误;()()31g g <,即()()931f f <,故B 错误;()()e 3g g >,即()()2e 39ef f >因为()f x 为偶函数,所以()()33f f -=,所以()()2e 39ef f ->,故C 错误,D 正确.故选:D.【点睛】关键点点睛:本题的关键是构造函数()()2g x x f x =,结合条件可判断函数的单调性及奇偶性,即得.2.(2022·黑龙江·哈尔滨市阿城区第一中学校高二期末)已知()f x 是定义在()(),00,∞-+∞U 上的奇函数,当0x >时,()()0f x xf x '+>且()122f =,则不等式()1f x x>的解集是______.【答案】()()2,02,-+∞ 【解析】【分析】根据已知条件构造函数()()g x xf x =并得出函数()g x 为偶函数,利用导数与单调性的关系得出函数()g x 的单调性进而可以即可求解.【详解】设()()g x xf x =,则()()()g x f x xf x ''=+因为()f x 是定义在()(),00,∞-+∞U 上的奇函数,所以()()()()g x xf x xf x g x -=--==,所以()g x 是()(),00,∞-+∞U 上的偶函数,当0x >时,()()()0g x f x xf x ''=+>,所以()g x 在()0,+∞上单调递增,所以()g x 在(),0-∞上单调递减.因为()122f =,所以()()1222212g f ==⨯=,所以()()221g g -==.对于不等式()1f x x>,当0x >时,()1xf x >,即()()2g x g >,解得2x >;当0x <时,()1xf x <,即()()2g x g <-,解得20x -<<,所以不等式()1f x x>的解集是()()2,02,-+∞ .故答案为:()()2,02,-+∞ 【点睛】解决此题的关键是构造函数,进而讨论新函数的单调性与奇偶性,根据函数的性质即可求解不等式的解集.3.设函数()f x 是定义在(,0)-∞上的可导函数,其导函数为()'f x ,且有()()22'f x xf x x +>则不等式()()()220192019420x f x f ++--<的解集为()A .()20192017--,B . 20211()209--,C .()20192018--,D .(2020,2019)--【答案】B 【解析】【分析】令()()2F x x f x =,确定()F x 在(,0)-∞上是减函数,不等式等价为()()201920F x F +--<,根据单调性解得答案.【详解】由()()()22',0f x xf x x x +><,得()()23 2'xf x x f x x +<,即()23'0x f x x ⎡⎤⎣⎦<<,令()()2F x x f x =,则当0x <时,得()F'0x <,即()F x 在(,0)-∞上是减函数,()()()2201920192019f F x x x +∴+=+,()() 242F f -=-,即不等式等价为()()201920F x F +--<,()F x Q 在(),0-∞是减函数,∴由()()20192F x F +<-得20192x +>-,即2021x >-,又20190x +<,解得2019x <-,故 20212019x -<<-.故选::B .【点睛】本题考查了利用函数单调性解不等式,构造函数()()2F x x f x =,确定其单调性是解题的关键.4.已知()f x 是定义在()(),00,-∞+∞ 上的奇函数,且0x >时,()()20f x f x x'+<,又()10f =,则()0f x >的解集为()A .()()1,00,1-⋃B .()(),11,-∞-⋃+∞C .()(),10,1-∞-D .()()1,01,-⋃+∞【答案】C 【解析】【分析】令2()()g x x f x =,则()[()2()]g x x xf x f x ''=+,由题设易知0x >上()2()0xf x f x '+<,且()g x 在()(),00,-∞+∞ 上是奇函数,即()g x 在0x >、0x <都单调递减,同时可知(1)(1)0=-=g g ,利用单调性求()0>g x 的解集,即为()0f x >的解集.【详解】令2()()g x x f x =,则2()()2()[()2()]g x x f x xf x x xf x f x '''=+=+,由0x >时,()()20f x f x x'+<知:()2()0xf x f x '+<,∴在0x >上,()0g x '<,()g x 单调递减,又()(),00,-∞+∞ 上()f x 为奇函数,∴22()()()()()g x x f x x f x g x -=--=-=-,故()g x 也是奇函数,∴()g x 在0x <上单调递减,又()10f =,即有(1)(1)0=-=g g ,∴()0f x >的解集,即()0>g x 的解集为(,1)(0,1)-∞- .故选:C5.设函数()f x '是奇函数()()f x x ∈R 的导函数,()10f -=,当0x >时,()()0xf x f x '-<,则使得()0f x <成立的x 的取值范围是()A .()(),10,1-∞-⋃B .()()1,01,-⋃+∞C .()(),11,0-∞--UD .()()0,11,+∞ 【答案】B 【解析】【分析】设()()f x F x x=,求其导数结合条件得出()F x 单调性,再结合()F x 的奇偶性,得出()F x 的函数值的符号情况,从而得出答案.【详解】设()()f x F x x =,则()()()2xf x f x F x x'-'=,∵当0x >时,()()0xf x f x '-<,当0x >时,()0F x '<,即()F x 在()0,∞+上单调递减.由于()f x 是奇函数,所以()()()()f x f x F x F x x x--===-,()F x 是偶函数,所以()F x 在(),0∞-上单调递增.又()()110f f =-=,所以当1x <-或1x >时,()()0=<f x F x x;当10x -<<或01x <<时,()()0f x F x x=>.所以当10x -<<或1x >时,()0f x <.故选:B.题型三:构造指数函数型解不等式【例1】(2022·四川省资阳中学高二期末(理))已知定义域为R 的函数()f x 的导函数为()f x ',且满足()()(),41f x f x f '>=,则不等式()224e xf x ->的解集为___________.【答案】()2,2-【解析】【分析】令()()xf xg x =e,利用导数说明函数的单调性,则原不等式等价于()()24g xg >,再根据函数的单调性将函数不等式转化为自变量的不等式,解得即可;【详解】解:令()()xf xg x =e ,R x ∈,则()()()e xf x f xg x '-'=,因为()()f x f x '>,即()()0f x f x '-<,所以()0g x '<,即()g x 在R 上单调递减,又()41f =,所以()()4444e e f g -==,所以不等式()224ex f x->,即()242eexf x ->,即()()24g xg >,即24x <,解得22x -<<,所以原不等式的解集为()2,2-.故答案为:()2,2-【例2】(2023·全国·高三专题练习)已知函数()f x 的导函数为()f x ',若对任意的R x ∈,都有()()2f x f x >'+,且()12022f =,则不等式()12020e 2x f x --<的解集为()A .()0,∞+B .1,e ⎛⎫-∞ ⎪⎝⎭C .()1,+∞D .(),1-∞【答案】C 【解析】【分析】设函数()()2e xf xg x -=,根据题意可判断()g x 在R上单调递减,再求出()01202e g =,不等式()12020e 2x f x --<整理得()22020e ex f x -<,所以()()1g x g <,利用()g x 单调性解抽象不等式即可.【详解】设函数()()2e xf xg x -=,所以()()()()()2e 2e2e ex xxxf x f x f x f xg x '⎡⎤⨯--⨯'-+⎣⎦'==,因为()()2f x f x >'+,所以()()20f x f x '-+<,即()0g x '<,所以()g x 在R 上单调递减,因为()12022f =,所以()()122020e 1e f g -==,因为()12020e 2x f x --<,整理得()22020e ex f x -<,所以()()1g x g <,因为()g x 在R 上单调递减,所以1x >.故选:C.【点睛】函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中.某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用.因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的.根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效.【例3】(2023·全国·高三专题练习)已知定义在R 上的可导函数()f x 的导函数为()'f x ,满足()()f x f x '<且()3f x +为偶函数,(1)f x +为奇函数,若(9)(8)1f f +=,则不等式()e x f x <的解集为()A .()3,-+∞B .()1,+∞C .(0,)+∞D .()6,+∞【答案】C【解析】【分析】先证明出()f x 为周期为8的周期函数,把(9)(8)1f f +=转化为(0)1f =.记()()xf xg x =e ,利用导数判断出()g x 在R 上单调递减,把原不等式转化为()()0g x g <,即可求解.【详解】因为()3f x +为偶函数,(1)f x +为奇函数,所以()()33f x f x +=-+,(1)(1)0f x f x ++-+=.所以()()6f x f x =-+,()(2)0f x f x +-+=,所以(6)(2)0f x f x -++-+=.令2t x =-+,则(4)()0f t f t ++=.令上式中t 取t -4,则()(4)0f t f t +-=,所以(4)(4)f t f t +=-.令t 取t +4,则()(8)f t f t =+,所以()(8)f x f x =+.所以()f x 为周期为8的周期函数.因为(1)f x +为奇函数,所以(1)(1)0f x f x ++-+=,令0x =,得:(1)(1)0f f +=,所以(1)0f =,所以(9)(8)1f f +=,即为(1)(0)1f f +=,所以(0)1f =.记()()xf xg x =e,所以()()()exf x f xg x '-'=.因为()()f x f x '<,所以()0g x '<,所以()()xf xg x =e在R 上单调递减.不等式()xf x e <可化为()1exf x <,即为()()0g x g <.所以0x >.故选:C 【点睛】解不等式的常见类型:(1)一元二次不等式用因式分解法或图像法;(2)指对数型不等式化为同底的结构,利用单调性解不等式;(3)解抽象函数型不等式利用函数的单调性.【例4】(2022·山西省长治市第二中学校高二期末)已知可导函数f (x )的导函数为()'f x ,f (0)=2022,若对任意的x ∈R ,都有()()f x f x '<,则不等式()2022e xf x <的解集为()A .()0,∞+B .22022,e ∞⎛⎫+ ⎪⎝⎭C .22022,e ∞⎛⎫- ⎪⎝⎭D .(),0∞-【答案】D 【解析】【分析】根据题意,构造函数()()xf xg x =e ,求导可知()g x 在x ∈R 上单调递增,利用单调性求解即可.【详解】令()(),e xf xg x =对任意的x ∈R ,都有()()()()(),0e xf x f x f x f xg x -<∴=''>',()g x ∴在x ∈R 上单调递增,又()()()()()02022,02022,2022e 0xf g f x g x g =∴=∴<⇔<,0,x ∴<∴不等式()2022e x f x <的解集(),0∞-,故选:D.【例5】(2022·重庆巴蜀中学高三阶段练习)已知奇函数()f x 的定义域为R ,当0x >讨,()()20f x f x '+>,且()20f =,则不等式()0f x >的解集为___________.【答案】()(2,02,)-⋃+∞【解析】【分析】构造函数2()e ()=x g x f x ,利用导函数判断出当x >0时,()g x 单调递增,得到当x >2时()0g x >,从而()0f x >;当02x <<时,()0g x <,从而()0f x <.由()f x 为奇函数得到不等式()0f x >的解集.【详解】构造函数2()e ()=x g x f x ,则当0x >时,[]2()e2()()0xg x f x f x ''=+>,所以当x >0时()g x 单调递增.因为f (2)=0,所以()()42e 20g f ==,所以当x >2时()0g x >,从而()0f x >.当02x <<时,()0g x <,从而()0f x <.又奇函数()f x 的图像关于原点中心对称,所以()0f x >的解集为()(2,02,)-⋃+∞.故答案为:()(2,02,)-⋃+∞.【题型专练】1.(2022·陕西榆林·三模(理))已知()f x 是定义在R 上的函数,()'f x 是()f x 的导函数,且()()1f x f x '+>,(1)2f =,则下列结论一定成立的是()A .12(2)f +<e eB .1(2)f +<e eC .12(2)f +>eeD .1(2)f +>e e【答案】D 【解析】【分析】构造()()e e x xg x f x =-利用导数研究其单调性,即可得()()21g g >,进而可得答案.【详解】令()()e e x x g x f x =-,则()()()e 10xg x f x f x ⎡⎤=+->⎣⎦'',则()g x 是增函数,故()()21g g >,即22e (2)e e (1)e e f f >--=,可得()1e2ef +>.故选:D2.(2022·江西·萍乡市上栗中学高二阶段练习(理))定义在R 上的函数()f x 满足()()e 0x f x f x '-+<(e 为自然对数的底数),其中()'f x 为()f x 的导函数,若3(3)3e f =,则()e x f x x >的解集为()A .(,2)-∞B .(2,)+∞C .(3),-∞D .(3,)+∞【答案】D 【解析】【分析】构造新函数,并利用函数单调性把抽象不等式()e x f x x >转化为整式不等式即可解决.【详解】设()()e x f x g x x =-,则3(3)(3)30ef g =-=,所以()e x f x x >等价于()0(3)g x g >=,由()()e 0x f x f x '-+<,可得()()e 0x f x f x '->>则()()()10e xf x f xg x '-'=->,所以()g x 在R 上单调递增,所以由()(3)g x g >,得3x >.故选:D3.(2022·安徽省蚌埠第三中学高二开学考试)已知可导函数()f x 的导函数为()f x ',若对任意的x ∈R ,都有()()1f x f x '-<,且()02021f =,则不等式()12022e xf x +>的解集为()A .(),0∞-B .()0,∞+C .1,e ⎛⎫-∞ ⎪⎝⎭D .(),1-∞【答案】A 【解析】【分析】构造函数()()1e x f x F x +=,通过导函数研究其单调性,利用单调性解不等式.【详解】构造函数()()1e xf x F x +=,则()()()()()2e 1e1e ex xx xf x f x f x f x F x '⋅-+⋅⎡⎤'--⎣⎦'==,因为()()1f x f x '-<,所以()0F x '<恒成立,故()()1e x f x F x +=单调递减,()12022e xf x +>变形为()12022exf x +>,又()02021f =,所以()()00102022ef F +==,所以()()0F x F >,解得:0x <,故答案为:(),0∞-.故选:A4.若()f x 在R 上可导且()00f =,其导函数()f x '满足()()0f x f x '+<,则()0f x <的解集是_________________【答案】()0,∞+【解析】【分析】由题意构造函数()()e xg x f x =,利用导数判断出()g x 单调递减,利用单调性解不等式.【详解】设()()e xg x f x =,则()()()()()()e e e x x x g x f x f x f x f x '''=+=+,因为()()0f x f x '+<,所以()0g x '<在R 上恒成立,所以()g x 单调递减,又()00f =得()00g =,由()0f x <等价于()0g x <,所以0x >,即()0f x <的解集是()0,∞+.故答案为:()0,∞+5.若定义在R 上的函数()f x 满足()()1f x f x '+>,()04f =,则不等式()31xf x e >+(e 为自然对数的底数)的解集为()A .(0,)+∞B .(,0)(3,)-∞⋃+∞C .(,0)(0,)-∞+∞D .(3,)+∞【答案】A 【解析】【分析】把不等式()31x f x e>+化为()3x x e f x e >+,构造函数令()()3x xF x e f x e =--,利用导数求得函数()F x 的单调性,结合单调性,即可求解.【详解】由题意,不等式()31x f x e>+,即()3x x e f x e >+,令()()3x x F x e f x e =--,可得()()()()()[1]x x x xF x e f x e f x e e f x f x '''=+-=+-,因为()()1f x f x '+>且0x e >,可知()0F x '>,所以()F x 在R 上单调递增,又因为()()()00003040F e f e f =--=-=,所以()0F x >的解集为(0,)+∞.故选:A.【点睛】本题主要考查了利用导数研究函数的单调性及其应用,以及导数的四则运算的逆用,其中解答中结合题意构造新函数,利用导数求得新函数的单调性是解答的关键,着重考查构造思想,以及推理与运算能力.题型四:构造对数函数型解不等式【例1】(2022·江西·赣州市赣县第三中学高二阶段练习(文))定义在(0,+∞)的函数f (x )满足()10xf x '-<,()10f =,则不等式()e 0x f x -<的解集为()A .(-∞,0)B .(-∞,1)C .(0,+∞)D .(1,+∞)【答案】C【解析】【分析】根据题干条件构造函数()()ln F x f x x =-,0x >,得到其单调递减,从而求解不等式.【详解】设()()ln F x f x x =-,0x >则()()()110xf x F x f x x x-=-=''<',所以()()ln F x f x x =-在()0,∞+上单调递减,因为()10f =,所以()()11ln10F f =-=,且()()ee xxF f x =-,所以由()e 0x f x -<得:()()e 1xF F <结合单调性可得:e 1x >,解得:0x >,故选:C【例2】已知函数()f x 的定义域为R ,图象关于原点对称,其导函数为()f x ',若当0x >时()()ln 0x x f x f x +⋅'<,则不等式()()44x f x f x ⋅>的解集为______.【答案】()(),10,1-∞-⋃【解析】【分析】依据函数单调性和奇偶性把抽象不等式转化为整式不等式去求解即可.【详解】当0x >时,()()()()()ln 0ln 0ln 0f x f x x x f x x f x x f x x'''+⋅<⇔+⋅<⇔⋅<⎡⎤⎣⎦,故函数()()ln g x x f x =⋅在()0,∞+上单调递减,易知()10g =,故当()0,1x ∈时,()0g x >,()0f x <,当()1,x ∈+∞时,()0g x <,()0f x <;而()()()44440x xf x f x f x ⎡⎤⋅>⇔⋅->⎣⎦,而()()44xh x f x ⎡⎤=⋅-⎣⎦为奇函数,则当0x >时,当()440xf x ⎡⎤⋅->⎣⎦的解为01x <<,故当x ∈R 时,()440xf x ⎡⎤⋅->⎣⎦的解为1x <-或01x <<,故不等式()()44xf x f x ⋅>的解集为()(),10,1-∞-⋃.故答案为:()(),10,1-∞-⋃【例3】已知()f x 是定义在(,0)(0,)-∞+∞ 上的奇函数,()'f x 是()f x 的导函数,(1)0,f ≠且满足:()()ln 0,f x f x x x⋅+<'则不等式(1)()0x f x -⋅<的解集为()A .(1,)+∞B .(,1)(0,1)-∞- C .(),1-∞D .()(,01),-∞⋃+∞【答案】D 【解析】【分析】根据给定含导数的不等式构造函数()()ln g x f x x =,由此探求出()f x 在(0,)+∞上恒负,在(,0)-∞上恒正,再解给定不等式即可.【详解】令()()ln g x f x x =,0x >,则()()()ln 0f x g x f x x x''=+<,()g x 在(0,)+∞上单调递减,而(1)0g =,因此,由()0>g x 得01x <<,而ln 0x <,则()0f x <,由()0g x <得1x >,而ln 0x >,则()0f x <,又(1)0f <,于是得在(0,)+∞上,()0f x <,而()f x 是(,0)(0,)-∞+∞ 上的奇函数,则在(,0)-∞上,()0f x >,由(1)()0x f x -⋅<得:10()0x f x ->⎧⎨<⎩或10()0x f x -<⎧⎨>⎩,即10x x >⎧⎨>⎩或10x x <⎧⎨<⎩,解得0x <或1x >,所以不等式(1)()0x f x -⋅<的解集为(,0)(1,)-∞⋃+∞.故选:D 【题型专练】1.(2022·陕西汉中·高二期末(文))定义在(0,)+∞上的函数()f x 满足()()110,2ln 2f x f x '+>=,则不等式()e 0xf x +>的解集为___________.【答案】(ln 2,)+∞【解析】【分析】令()()ln (0)g x f x x x =+>,根据题意得到函数()g x 在(0,)+∞上为单调递增,把不等式()e 0xf x +>,可得()()e 2x g g >,结合函数()g x 的单调性,即可求解.【详解】由题意,函数()f x 满足()()110,2ln 2f x f x '+>=,令()()ln (0)g x f x x x =+>,可得()()10g x f x x''=+>所以函数()g x 在(0,)+∞上为单调递增,且()()22ln 20g f =+=,又由不等式()e 0x f x +>,可得()()e 2xg g >,所以e 2x >,解得ln 2x >,即不等式()e 0xf x +>的解集为(ln 2,)+∞.故答案为:(ln 2,)+∞.2.(2022·河北·石家庄二中高二期末)已知定义域为R 的函数()f x 满足()()114f x f x ++-=,且当1x >时()0f x '≥,则不等式()()2ln 10f x x ⎡⎤-->⎣⎦的解集为()A .()2,+∞B .()1,+∞C .()1,2D .()22,e【答案】A 【解析】【分析】由条件得出()f x 关于()1,2成中心对称,进一步得出函数的单调性,然后再根据题意可得()()ln 102x f x ⎧->⎪⎨>⎪⎩,或()()ln 102x f x ⎧-<⎪⎨<⎪⎩,从而可得出答案.【详解】由()()114f x f x ++-=得()f x 关于()1,2成中心对称.令0x =,可得()12f =当1x >时()0f x '≥,则()f x 在[)1,∞+上单调递增.由()f x 关于()1,2成中心对称且()12f =,故()f x 在R 上单调递增由()()2ln 10f x x ⎡⎤-->⎣⎦,则()()ln 102x f x ⎧->⎪⎨>⎪⎩,或()()ln 102x f x ⎧-<⎪⎨<⎪⎩解得21x x >⎧⎨>⎩,或121x x <<⎧⎨<⎩,故2x >故选:A3.(多选)已知函数()f x 的定义域是()0,∞+,其导函数是()f x ',且满足()()1ln 0x f x f x x'⋅+⋅>,则下列说法正确的是()A .10e f ⎛⎫> ⎪⎝⎭B .10e f ⎛⎫< ⎪⎝⎭C .()e 0f >D .()e 0f <【答案】AC 【解析】【分析】根据题意,构造()()ln g x f x x =⋅,由题意,得到()g x 单调递增,进而利用()g x 的单调性,得到1(1)()eg g >,再整理即可求解【详解】设()()ln g x f x x =⋅,可得()()1'()ln 0g x x f x f x x'=⋅+⋅>,()g x 单调递增,又因为(e)(e)ln e (e)g f f =⋅=,1111(()ln ()e e e e g f f =⋅=-,(1)(1)ln10g f =⋅=,且 1e 1e >>,1(e)(1)()e g g g ∴>>,得(e)0f >,110()()e eg f >=-,整理得1(0e f >,AC 正确;故选:AC题型五:构造三角函数型解不等式【例1】已知偶函数()f x 的定义域为,22ππ⎛⎫- ⎪⎝⎭,其导函数为()'f x ,当02x π<<时,有()cos ()sin 0f x x f x x '+<成立,则关于x 的不等式()cos 4f x x π⎛⎫<⋅ ⎪⎝⎭的解集为()A .,42ππ⎛⎫ ⎪⎝⎭B .,2442ππππ⎛⎫⎛⎫--⋃ ⎪ ⎪⎝⎭⎝⎭C .,00,44ππ⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭D .,0,442πππ⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭【答案】B【分析】由题意,设()()cosf xg xx=,利用导数求得()g x在0,2π⎛⎫⎪⎝⎭上单调递减,且为偶函数,再把不等式()cos4f x f xπ⎛⎫< ⎪⎝⎭,转化为()(4g x gπ<,结合单调性,即可求解.【详解】由题意,设()()cosf xg xx=,则2()cos()sin()cosf x x f x xg xx'+'=,当02xπ<<时,因为()cos()sin0f x x f x x'+<,则有()0g x'<,所以()g x在0,2π⎛⎫⎪⎝⎭上单调递减,又因为()f x在,22ππ⎛⎫- ⎪⎝⎭上是偶函数,可得()()()()cos()cosf x f xg x g xx x--===-,所以()g x是偶函数,由()cos4f x f xπ⎛⎫< ⎪⎝⎭,可得()()cos4f xxπ<,即()()4cos cos4ππ<ff xx,即()(4g x gπ<又由()g x为偶函数,且在0,2π⎛⎫⎪⎝⎭上为减函数,且定义域为,22ππ⎛⎫- ⎪⎝⎭,则有||4xπ>,解得24xππ-<<-或42xππ<<,即不等式的解集为,,2442ππππ⎛⎫⎛⎫--⋃⎪ ⎪⎝⎭⎝⎭,故选:B.【点睛】本题主要考查了导数在函数中的综合应用,其中解答中构造新函数,求得函数的奇偶性和利用题设条件和导数求得新函数的单调性,结合函数的单调性求解是解答的关键,着重考查构造思想,以及推理与运算能力,属于中档试题.【例2】已知函数()f x的定义域为,22ππ⎛⎫- ⎪⎝⎭,其导函数是()'f x.有()cos()sin0f x x f x x'+<,则关于x的不()2cos6x f xπ⎛⎫< ⎪⎝⎭的解集为()A.,32ππ⎛⎫⎪⎝⎭B.,62ππ⎛⎫⎪⎝⎭C.,63ππ⎛⎫--⎪⎝⎭D.,26ππ⎛⎫--⎪⎝⎭【答案】B【分析】令()()cos f x F x x =,根据题设条件,求得()F'0x <,得到函数()()cos f x F x x =在,22ππ⎛⎫- ⎪⎝⎭内的单调递减函数,再把不等式化为()6cos cos 6f f x x ππ⎛⎫⎪⎝⎭<,结合单调性和定义域,即可求解.【详解】由题意,函数()f x 满足()()'cos sin 0f x x f x x +<,令()()cos f x F x x =,则()()()2'cos sin '0cos f x x f x xF x x +=<函数()()cos f x F x x=是定义域,22ππ⎛⎫- ⎪⎝⎭内的单调递减函数,由于cos 0x >,关于x()2cos 6x f x π⎛⎫< ⎪⎝⎭可化为()6cos cos 6f f x x ππ⎛⎫⎪⎝⎭<,即()6F x F π⎛⎫< ⎪⎝⎭,所以22x ππ-<<且6x π>,解得26x ππ>>,()2cos 6x f x π⎛⎫< ⎪⎝⎭的解集为,62ππ⎛⎫ ⎪⎝⎭.故选:B 【点睛】方法点睛:构造法求解()f x 与()f x '共存问题的求解策略:对于不给出具体函数的解析式,只给出函数()f x 和()f x '满足的条件,需要根据题设条件构造抽象函数,再根据条件得出构造函数的单调性,应用单调性解决问题,常见类型:(1)()()()()f x g x f x g x ''±型;(2)()()xf x nf x '+型;(3)()()(f x f x λλ±为常数)型.【题型专练】1.已知可导函数()f x 是定义在ππ,22⎛⎫- ⎪⎝⎭上的奇函数.当π0,2x ⎛⎫∈ ⎪⎝⎭时,()()tan 0f x f x x '+>,则不等式()πcos sin 02x f x x f x ⎛⎫⋅++⋅-> ⎪⎝⎭的解集为()A .ππ,26⎛⎫-- ⎪⎝⎭B .π,06⎛⎫- ⎪⎝⎭C .ππ,24⎛⎫-- ⎪⎝⎭D .π,04⎛⎫- ⎪⎝⎭【答案】D 【解析】【分析】构造函数()sin xf x ,并依据函数()sin xf x 的单调性去求解不等式()πcos sin 02x f x x f x ⎛⎫⋅++⋅-> ⎪⎝⎭的解集.【详解】当π0,2x ⎛⎫∈ ⎪⎝⎭时,()()tan 0f x f x x '+>,则()()cos sin 0xf x f x x '+>则函数()sin xf x 在π0,2⎛⎫ ⎪⎝⎭上单调递增,又可导函数()f x 是定义在ππ,22⎛⎫- ⎪⎝⎭上的奇函数则()sin xf x 是ππ,22⎛⎫- ⎪⎝⎭上的偶函数,且在π,02⎛⎫- ⎪⎝⎭单调递减,由πππ222ππ22x x ⎧-<+<⎪⎪⎨⎪-<-<⎪⎩,可得π,02x ⎛⎫∈- ⎪⎝⎭,则ππ0,22x ⎛⎫+∈ ⎪⎝⎭,π0,2x ⎛⎫-∈ ⎪⎝⎭则π,02x ⎛⎫∈- ⎪⎝⎭时,不等式()πcos sin 02x f x x f x ⎛⎫⋅++⋅-> ⎪⎝⎭可化为()()ππsin sin 22x f x x f x ⎛⎫⎛⎫+⋅+>-⋅- ⎪ ⎪⎝⎭⎝⎭又由函数()sin xf x 在π0,2⎛⎫⎪⎝⎭上单调递增,且π0,2x ⎛⎫-∈ ⎪⎝⎭,ππ0,22x ⎛⎫+∈ ⎪⎝⎭,则有ππ022x x >+>->,解之得π04x -<<故选:D2.已知函数()f x 是定义在,22ππ⎛⎫- ⎪⎝⎭上的奇函数.当0,2x π⎡⎫∈⎪⎢⎣⎭时,()'()tan 0f x f x x +>,则不等式cos sin ()02x f x x f x π⎛⎫⋅++⋅-> ⎪⎝⎭的解集为()A .,42ππ⎛⎫⎪⎝⎭B .,42ππ⎛⎫- ⎪⎝⎭C .,04π⎛⎫- ⎪⎝⎭D .,24ππ⎛⎫-- ⎪⎝⎭【答案】C 【解析】【分析】构造函数()()sin g x f x x =,则经变形后得[]'()()'()tan cos g x f x f x x x =+⋅,进而得到()g x 在0,2x π⎡⎫∈⎪⎢⎣⎭时单增,结合()f x 单调性证出()g x 是定义在,22ππ⎛⎫- ⎪⎝⎭上的偶函数,再去“f ”,即可求解【详解】令()()sin g x f x x =,[]'()()cos '()sin ()'()tan cos g x f x x f x x f x f x x x =+=+⋅,当0,2x π⎡⎫∈⎪⎢⎣⎭时,()'()tan 0f x f x x +>,'()0g x ∴>,即函数()g x 单调递增.又(0)0g =,0,2x π⎡⎫∈⎪⎢⎣⎭∴时,()()sin 0g x f x x =>,()f x 是定义在,22ππ⎛⎫-⎪⎝⎭上的奇函数,()g x ∴是定义在,22ππ⎛⎫- ⎪⎝⎭上的偶函数.不等式cos sin ()02x f x x f x π⎛⎫⋅++⋅-> ⎪⎝⎭,即sin sin ()22x f x xf x ππ⎛⎫⎛⎫++> ⎪⎪⎝⎭⎝⎭,即()2g x g x π⎛⎫+> ⎪⎝⎭,||2x x π∴+>,4x π∴>-①,又222x πππ-<+<,故0x π-<<②,由①②得不等式的解集是,04π⎛⎫- ⎪⎝⎭.故选:C 【点睛】本题考查利用构造函数法解不等式,导数研究函数的增减性的应用,一般形如()()()()0f a g a f b g b ±>的式子,先构造函数()()()h x f x g x =⋅,再设法证明()h x 的奇偶性与增减性,进而去“f ”解不等式3.奇函数()f x 定义域为()(),00,ππ-U ,其导函数是()f x ',当0πx <<时,有()()sin cos 0f x x f x x '->,则关于x 的不等式()2()sin 6f x f x π<的解集为A .(,0)(,)66πππ-B .(,0)(0,)66ππ-⋃C .(,)(,)66ππππ--⋃D .(,)(0,)66πππ--⋃【答案】D 【解析】【详解】根据题意,可构造函数()f x g x sinx=(),其导数()()2f x sinx f x cosxg x sin x'-'=()当0x π∈(,)时,有’0f x sinx f x x -()()>,其导数0g x g x '()>,()在0π(,)上为增函数,又由f x ()为奇函数,即f x f x -=-()(),则()()()()f x f xg x g x sin x sin x --===-()(),即函数g x ()为偶函数,当0x π∈(,)时,0sinx >,不等式()12()6626f x f x f sinx fg x g sinx πππ⇒⇒()<()<()<(),又由函数g x ()为偶函数且在0π(,)上激增,则66g x g x ππ⇒()<()<,解得 66x ππ-<<此时x 的取值范围为06(,)π;当0x π∈-(,)时,0sinx <,不等式()()62162f f x f x f sinx sinx ππ⇒()<(>6g x g π⇒()>(),同理解得此时x 的取值范围为6ππ--(,);综合可得:不等式的解集为,0,66πππ⎛⎫⎛⎫--⋃ ⎪ ⎪⎝⎭⎝⎭故选D .【点睛】本题考查函数的导数与函数单调性的关系,解题的关键是根据题意构造新函数()f x g x sinx=(),,并利用导数分析g x ()的单调性.题型六:构造()kx x f +型函数解不等式【例1】设函数()f x 在R 上存在导函数()f x ',对任意的实数x 都有()()24f x x f x =--,当(),0x ∈-∞时,()142f x x '+<.若()()3132f m f m m +≤-++,则实数m 的取值范围是A .1,2⎡⎫-+∞⎪⎢⎣⎭B .3,2⎡⎫-+∞⎪⎢⎣⎭C .[)1,-+∞D .[)2,-+∞【答案】A 【解析】【详解】构造函数法令2()()2F x f x x =-,则1()()402F x f x x ''=-<-<,函数()F x 在(,0)-∞上为减函数,因为2()()()()40F x F x f x f x x -+=-+-=,即()()F x F x -=-,故()F x 为奇函数,于是()F x 在(,)-∞+∞上为减函数,而不等式3(1)()32f m f m m +≤-++可化为(1)()F m F m +≤-,则1m m +≥-,即12m ≥-.选A.【例2】设函数()f x 在R 上存在导数()f x ',对任意的R x ∈,有()()2cos f x f x x +-=,且在[)0,+∞上有()sin f x x '>-,则不等式()cos sin 2f x f x x x π⎛⎫--≥- ⎪⎝⎭的解集是()A .,4π⎛⎤-∞ ⎥⎝⎦B .,4π⎡⎫+∞⎪⎢⎣⎭C .,6π⎛⎤-∞ ⎥⎝⎦D .,6π⎡⎫+∞⎪⎢⎣⎭【答案】B 【解析】构造函数,由已知得出所构造的函数的单调性,再利用其单调性解抽象不等式,可得选项.【详解】设()()cos F x f x x =-,∵()()2cos f x f x x +-=,即()()cos cos f x x x f x -=--,即()()F x F x =--,故()F x 是奇函数,由于函数()f x 在R 上存在导函数()f x ',所以,函数()f x 在R 上连续,则函数()F x 在R 上连续.∵在[)0,+∞上有()sin f x x '>-,∴()()sin 0F x f x x ''=+>,故()F x 在[)0,+∞单调递增,又∵()F x 是奇函数,且()F x 在R 上连续,∴()F x 在R 上单调递增,∵()cos sin 2f x f x x x π⎛⎫--≥- ⎪⎝⎭,∴()cos sin cos 222f x x f x x f x x πππ⎛⎫⎛⎫⎛⎫-≥--=--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即()2F x F x π⎛⎫≥- ⎪⎝⎭,∴2x x π≥-,故4x π≥,故选:B .【点睛】本题考查运用导函数分析函数的单调性,从而求解抽象不等式的问题,构造合适的函数是解决问题的关键,属于较难题.【例3】(2022·重庆八中高二期末)已知函数()f x 满足:R x ∀∈,()()2cos f x f x x +-=,且()sin 0f x x '+<.若角α满足不等式()()0f f παα++,则α的取值范围是()A .,2π⎡-+∞⎫⎪⎢⎣⎭B .,2π⎛⎤-∞- ⎥⎝⎦C .,22ππ⎡⎤-⎢⎥⎣⎦D .0,2π⎡⎤⎢⎥⎣⎦【答案】A。

高中数学专题:抽象函数常见题型解法

高中数学专题:抽象函数常见题型解法

抽象函数常见题型解法综述抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数。

由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一。

一、定义域问题例1. 已知函数)(2x f 的定义域是[1,2],求f (x )的定义域。

例2. 已知函数)(x f 的定义域是]21[,-,求函数)]3([log 21x f -的定义域。

二、求值问题例 3. 已知定义域为+R 的函数f (x ),同时满足下列条件:①51)6(1)2(==f f ,;②)()()(y f x f y x f +=⋅,求f (3),f (9)的值。

三、值域问题例4. 设函数f (x )定义于实数集上,对于任意实数x 、y ,)()()(y f x f y x f =+总成立,且存在21x x ≠,使得)()(21x f x f ≠,求函数)(x f 的值域。

解:令0==y x ,得2)]0([)0(f f =,即有0)0(=f 或1)0(=f 。

若0)0(=f ,则0)0()()0()(==+=f x f x f x f ,对任意R x ∈均成立,这与存在实数21x x ≠,使得)()(21x f x f ≠成立矛盾,故0)0(≠f ,必有1)0(=f 。

由于)()()(y f x f y x f =+对任意R y x ∈、均成立,因此,对任意R x ∈,有)]2([)2()2()22()(2≥==+=xf x f x f x x f x f下面来证明,对任意0)(≠∈x f R x ,设存在Rx ∈0,使得)(0=x f ,则)()()()0(0000=-=-=x f x f x x f f这与上面已证的0)0(≠f 矛盾,因此,对任意0)(≠∈x f R x , 所以0)(>x f评析:在处理抽象函数的问题时,往往需要对某些变量进行适当的赋值,这是一般向特殊转化的必要手段。

四、解析式问题例5. 设对满足10≠≠x x ,的所有实数x ,函数)(x f 满足x x x f x f +=-+1)1()(,求f (x )的解析式。

抽象函数解题-题型大全(例题-含答案)

抽象函数解题-题型大全(例题-含答案)

高考抽象函数技巧总结由于函数概念比较抽象,学生对解有关函数记号()f x 的问题感到困难,学好这部分知识,能加深学生对函数概念的理解,更好地掌握函数的性质,培养灵活性;提高解题能力,优化学生数学思维素质。

现将常见解法及意义总结如下: 一、求表达式: 1.换元法:即用中间变量表示原自变量x 的代数式,从而求出()f x ,这也是证某些公式或等式常用的方法,此法解培养学生的灵活性及变形能力。

例1:已知 ()211xf x x =++,求()f x . 解:设1x u x =+,则1u x u =-∴2()2111u u f u u u -=+=--∴2()1xf x x-=- 2.凑合法:在已知(())()f g x h x =的条件下,把()h x 并凑成以()g u 表示的代数式,再利用代换即可求()f x .此解法简洁,还能进一步复习代换法。

例2:已知3311()f x x x x+=+,求()f x解:∵22211111()()(1)()(()3)f x x x x x x x x x x+=+-+=++-又∵11||||1||x x x x +=+≥ ∴23()(3)3f x x x x x =-=-,(|x |≥1)3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。

例3. 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x .解:设()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+=22222()24ax bx a c x x +++=++比较系数得2()41321,1,2222a c a abc b +=⎧⎪=⇒===⎨⎪=⎩∴213()22f x x x =++ 4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式.例4.已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x解:∵()f x 为奇函数,∴()f x 的定义域关于原点对称,故先求x <0时的表达式。

高一数学抽象函数常见题型解法综述

高一数学抽象函数常见题型解法综述

抽象函数常见题型解法综述抽象函数是指没有给出函数的具体解析式,只给出了一些表达函数特征的式子的一类函数。

由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一。

本文就抽象函数常见题型及解法评析如下:一、定义域问题例1.函数f(x2)的定义域是[1,2],求f〔x〕的定义域。

22解:f()的定义域是[1,2],是指1x2,所以() xfx中的22x满足1x4从而函数f〔x〕的定义域是[1,4]评析:一般地,函数f((x))的定义域是A,求f〔x〕的定义域问题,相当于f((x))中x的取值范围为A,据此求(x)的值域问题。

例2.函数f(x)的定义域是[1,2],求函数[log1(3x)]f的定义域。

2解:f(x)的定义域是[1,2],意思是凡被f作用的对象都在[1,2]中,由此可得1log11211(3x)2()3x()1x2221111所以函数f[log1(3x)]的定义域是][1,42评析:这类问题的一般形式是:函数f〔x〕的定义域是A,求函数f((x))的定义域。

正确理解函数符号及其定义域的含义是求解此类问题的关键。

这类问题实质上相当于(x)的值域B,且BA,据此求x的取值范围。

例2和例1形式上正相反。

二、求值问题例3.定义域为R的函数f〔x〕,同时满足以下条件:①1f(2)1,f(6);②f(x y)f(x)f(y),5求f〔3〕,f〔9〕的值。

解:取x2,y3,得f(6)f(2)f(3)因为1f(2)1,f(6),所以54f(3)又取xy3,得5f(9)f(3)f(3)评析:通过观察与未知的联系,巧妙地赋值,取x2,y3,这样便把条件1f(2)1,f(6)与5欲求的f〔3〕沟通了起来。

赋值法是解此类问题的常用技巧。

三、值域问题例4.设函数f〔x〕定义于实数集上,对于任意实数x、y,f(x y)f(x)f(y)总成立,且存在x1x,使2得()()fx1fx,求函数f(x)的值域。

2解:令xy0,得f(0)[f(0)]2,即有f(0)0或f(0)1。

抽象函数常见解法及意义总结

抽象函数常见解法及意义总结

含有函数记号“()f x ”有关问题解法由于函数概念比较抽象,学生对解有关函数记号()f x 的问题感到困难,学好这部分知识,能加深学生对函数概念的理解,更好地掌握函数的性质,培养灵活性;提高解题能力,优化学生数学思维素质。

现将常见解法及意义总结如下:一、求表达式: 1.换元法:即用中间变量表示原自变量x 的代数式,从而求出()f x ,这也是证某些公式或等式常用的方法,此法解培养学生的灵活性及变形能力。

例1:已知()211xf x x =++,求()f x . 解:设1x u x =+,则1u x u =-∴2()2111u uf u u u-=+=--∴2()1xf x x-=- 2.凑合法:在已知(())()f g x h x =的条件下,把()h x 并凑成以()g u 表示的代数式,再利用代换即可求()f x .此解法简洁,还能进一步复习代换法。

例2:已知3311()f x x x x+=+,求()f x解:∵22211111()()(1)()(()3)f x x x x x x x x x x+=+-+=++-又∵11||||1||x x x x +=+≥ ∴23()(3)3f x x x x x =-=-,(|x |≥1)3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。

例3. 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x .解:设()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+=22222()24ax bx a c x x +++=++比较系数得2()41321,1,2222a c a abc b +=⎧⎪=⇒===⎨⎪=⎩∴213()22f x x x =++ 4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式. 例4.已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x解:∵()f x 为奇函数,∴()f x 的定义域关于原点对称,故先求x <0时的表达式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5归纳抽象函数常见题型及解法抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数•由于抽象函数表现 形式的抽象性,使得这类问题是函数内容的难点之一,其性质常常是隐而不漏,但一般情况下大多是以学过的常见 函数为背景,对函数性质通过代数表述给出•抽象函数的相关题目往往是在知识网络的交汇处设计,高考对抽象函 数的要求是考查函数的概念和知识的内涵及外延的掌握情况、逻辑推理能力、抽象思维能力和数学后继学习的潜 能•为了扩大读者的视野,特就抽象函数常见题型及解法评析如下.一、函数的基本概念问题 1 •抽象函数的定义域问题2 例1 已知函数f(x )的定义域是[1 , 2],求f (X)的定义域.2 2解:由f(x )的定义域是[1 , 2],是指1 ≤ X ≤ 2 ,所以1 ≤x ≤ 4, 即函数f(x)的定义域是[1 , 4] • 评析:一般地,已知函数 f [ (X)]的定义域是A,求f (X)的定义域问题,相当于已知 f [ (X)]中X 的取值范围为A 据此求 (X)的值域问题.例2已知函数f (X)的定义域是[—1, 2],求函数f [log 1(3 X)]的定义域.2解:由f (X)的定义域是[—1, 2],意思是凡被f 作用的对象都在[—1 , 2]中,由此易得 f(x)的定义域是A,求函数f ( (X))的定义域.正确理解函数符号及其定义域的含义是求解此类问题的关键•一般地,若函数f (X)的定义域是A,则X 必须是A 中的元素,而不能是 A以外的元素,否则,f (X)无意义.因此,如果f(χo )有意义,则必有x o A 所以,这类问题实质上相当于已知 (X)的值域是A,据此求X 的取值范围,即由(X) A 建立不等式,解出 X 的范围•例2和例1形式上正相反.2 •抽象函数的求值问题1例3已知定义域为R 的函数f(x),同时满足下列条件:①f(2) = 1, f (6)=1:②f(x y)=f(x) + f(y),求 f(3)、f(9)的值.—1≤ log 1 (3 — X )≤ 2 (1) 2 ≤ 3 — X ≤( 1) 12 2111 ≤ X ≤4•••函数f[∣og 1(3X )]的定义域是[1 , 7]评析:这类问题的一般形式是:已知函数解:取 X = 2 , y = 3 ,得 f(6)= f(2) + f (3),1 4•• f(2) = 1 , f(6)= ,∙∙∙ f(3)=-5 5又取 X = y = 3 ,得 f (9) = f (3) + f (3) =- 8.51评析:通过观察已知与未知的联系,巧妙地取X = 2 , y = 3 ,这样便把已知条件f (2) = 1 , f (6)= 与欲求的5f(3)沟通了起来.这是解此类问题的常用技巧.3.抽象函数的值域问题例4设函数f (x)定义于实数集上,对于任意实数 X 、y, f (x + y) = f (x) f (y)总成立,且存在 X I ≠χ设存在 X 0 ∈ R 使得 f ( X 0) = 0 ,则 f (0) = f ( X 0 — x 0) = f ( X 0) f ( — x 0) = 0 这与f (0) ≠0矛盾,因此,对任意 X∈ R f (x) ≠0. 所以 f (x) > 0.4 .抽象函数的解析式问题1 2x 一 1f (———)=,⑵使得f (X 1 ) ≠ f ( X 2 ),求函数f (X)的值域.解:令 X = y = 0 ,得 f (0) = f 2(0),即有 f (0) = 0若 f (0) = 0 ,贝U f (X) = f (X + 0) = f (X) f (0) 由于 f (X + y)==f (X)f (y) 对任意X 、 y ∈R 均成立, XZX X 上,x 、 r X2f (X) = f (- + —) =(―) f (―)=[f (―)] 2 ≥2 22 22下面只需证明,对任意x ∈ R f (0) ≠0 即可.或 f (0) = 1 .,对任意X ∈R 均成立,这与存在实数 X I ≠χ 2 ,使得因此,对任意 x∈ R 有评析:在处理抽象函数的问题时, 往往需要对某些变量进行适当的赋值,这是 般向特殊转化的必要手段.式.解:在 设对满足 X≠0, X≠1的所有实数X,函数f (X)满足f (X) + f (X 1)=1 + X ,求f (X)的解析Xf (X) + f (+ X , (1)X 1中以 代换其中X ,得:Xf (x 1 ) ≠ f ( X 2 )成立矛盾•故 f (0) ≠0,即 f (0) =1X 1 X1 1 X 2再在(1)中以一——代换X,得:f(———)+ f (X)= ------------------- , ⑶X 1 X 1 X 13 2 1(1) — (2) + ⑶ 化简得:f(x) = -__X——.2X(X— 1)X 1评析:如果把X和-一1分别看作两个变量,怎样实现由两个变量向一个变量的转化是解题关键•通常情况下,X给某些变量适当赋值,使之在关系中“消失”,进而保留一个变量,是实现这种转化的重要策略.二、寻觅特殊函数模型问题1 •指数函数模型例6 设f (X)定义于实数集 R上,当x>0时,f (X) > 1 ,且对于任意实数 X、y ,有f (x + y) = f (X)∙ f (y),同时f (1) = 2 ,解不等式f (3x — X2 ) >4•联想:因为a x y= a X∙a y(a > 0,a≠ 1),因而猜测它的模型函数为f(x) = a x (a > 0,a≠ 1)(由f(1) = 2 ,还可以猜想f (X) = 2 x) •思路分析:由f(2)= f (1 1)=f(1)∙ f (1)= 4 ,需解不等式化为f(3x — X2 ) > f (2) •这样,证明函数f(x) 的(由f (X) = 2 X ,只证明单调递增)成了解题的突破口.解:由f (x + y) = f (x) ∙ f (y)中取 X =y = 0 2得f (0) = f (0),若f (O) = 0 ,令 x> 0 , y = 0 ,则f(X)=0 ,与f (X) > 1 矛盾.∙∙∙ f (0) ≠ 0 ,即有f (0)= 1当X > 0时,f (X) > 1 > 0 ,当XV 0 时,—X > 0 , f ( — X) > 1> 0 ,而f(X) •f ( — x) = f (0) = 1∙∙∙ f(X)=1 > 0 •f( X)又当X = 0 时,f (0) = 1 > 0 ,∙ X∈R , f (X) > 0 •设一∞V X I V X 2 V +∞ ,贝y X 2 —X 1 > 0 ,f ( X 2 —X I) > 1•∙ f ( X 2) =f [ X I + ( X 2 - X1 )]= :f (X1) f ( X 2 — X1 ) > f ( X I ) •∙∙∙ y = f在R上为增函数(X)又∙∙∙ f! ,∙ f (3x — X2) > f (1) • f (1) = f (1 + 1) = f (2),由f (X)的单调递增性质可得: (1) = 23x — x 2> 2,解得 K XV 2. 2. 对数函数模型1例7已知函数f (X)满足:⑴f (1) = 1;⑵函数的值域是[—1, 1];⑶在其定义域上单调递减;⑷ f (X) +2I I1 1f(y)= f (X ∙ y)对于任意正实数x 、y 都成立•解不等式 f (x) ∙ f () ≤ 1 X 2以猜测它的模型函数为 f (X) =log I X 且f 1 (x)的模型函数为f 1(x) = (1)x .22思路分析:由条件⑵、⑶知,f(x)的反函数存在且在定义域 [—1, 1]上递减,由⑴知f 1(1) =- •剩下的只需2由f 1(x)的模型函数性质和运算法则去证明 f 1(X 1) ∙ f 1(X 2) = f 1(X 1 X 2),问题就能解决了.解:由已知条件⑵、⑶知,f (x)的反函数存在,且 f 1(1)=—,又在定义域[—1 , 1]上单调递减.2设 y 1= f 1 (X 1), y 2 = f 1(X 2),则有 χ1=f (yj , χ2=f ( y 2),1∙∙∙χ 1 + X 2 =f (y 1) + f ( y 2) = f (y 1y 2),即有 yd 2=f (X 1 + X 2).∙∙∙ f 1(x 1) ∙ f 1(x 2) = f 1(X 1 X 2),于是,原不等式等价于:11 11f (X )f (1),X11 X1 X1 ,11 X 1 ,1 X1,1 X1 XX = 0 .1 X 1,1 X 1,111 - 1 .1 1 . 1 X1 X故原不等式的解集为{0}.解这类冋题可以通过化抽象为具体的方法,即通过联想、分析,然后进行类比猜测,经过带有非逻辑思维成份的推理,即可寻觅出它的函数模型,由这些函数模型的性质、法则来探索此类问题的解题思路.3 •幕函数模型例8 已知函数f (x)对任意实数x 、y 都有f (Xy) = f (x) ∙ f (y),且f( 1) =1, f (27) =9,当0≤XV 1时, 0≤f (x) V 1 时.⑴判断f(x)的奇偶性;联想:因为 Iog a (X ∙ y) = Iog X + log a y,而 Iog1 丄=1 , y = Iog2 21 X 在其定义域[—1, 1]内为减函数,所 2⑵判断f (X)在[0,+∞ )上的单调性,并给出证明;⑶若a≥0且f (a 1) ≤ 39 ,求a的取值范围.2 联想:因为X n∙y n = (X ∙ y)n,因而猜测它的模型函数为 f (x) = X n (由f(27)=9,还可以猜想f (x) = X ).2思路分析:由题设可知 f (X)是幕函数y = X1的抽象函数,从而可猜想 f (X)是偶函数,且在[O,+∞ )上是增函数.解:⑴令 y = -1 ,则f( X) = f(X) ∙f( 1),∙∙∙ f( 1)=1,∙∙∙ f ( X)= f(X),即f (X)为偶函数.⑵若X≥0,贝y f(X)= f (、. X X) = f X) ∙ f (、. x) =[ f ( '一X)] 2≥0.设 0≤χ I VX2 ,则 0≤ 0 V 1,X2X1X1∙ f (X I)= f (一X2)=f( I)∙ f (X2 ),X2X2∙.∙当 x≥0 时f (x) ≥0,且当0≤X V 1 时,0≤ f (x) V 1.∙0≤ f (XI) V 1, ∙ f (x1) V f (X2),故函数f (x)在[0 ,+∞ )上是增函数.X2⑶∙∙∙ f (27)=9 ,又f(3 9)= f (3) ∙f(9)=f(3) ∙f(3) ∙f(3) = [ f (3) ] 3,∙ 9 = [ f(3)] 3 ,∙∙∙ f(3) =39 ,∙∙∙ f (a 1) ≤ 39 ,∙ f (a 1) ≤ f(3),τa≥0 , (a + 1), 3 [0 , +∞ ),函数在[0 , +∞ )上是增函数.∙a+ 1 ≤ 3,即a≤ 2 ,又a≥0,故0≤a≤2.三、研究函数的性质问题1•抽象函数的单调性问题例9 设f (x)定义于实数集上,当x>0时,f(X)> 1 ,且对于任意实数 X、y ,有f (x + y) = f (x) ∙ f (y), 求证:f (X)在R上为增函数.证明:由f (x + y) = f (x) f (y)中取 X = y = 0 ,得f (O) = f 2(0),若f (O) = O ,令 x> O, y = O,贝U f (x) = O ,与f(X)> 1 矛盾..∙. f (O) ≠0,即有f (O) = 1 .当 X>O 时,f (X) > 1 > O,当 X V O 时,一X>O, f ( — x) > 1> O,1而f (X) ∙ f ( — X) = f (O) = 1 ------------------ ,∙∙∙ f (X) = > O .f( X)又当 X = O 时,f (O) = 1 > O ,∙ X ∈ R f (x) > O.设一∞V X I Vx2 V +∞,贝U x2— X I >O, f ( X 2— X I ) > 1.∙ f ( X 2) = f [ X I + ( X 2 — x1 )] = f (X 1 ) f ( X 2 — x1 ) > f ( X I ).∙ y = f (X)在R上为增函数.评析:一般地,抽象函数所满足的关系式,应看作给定的运算法则,而变量的赋值或变量及数值的分解与组合都应尽量与已知式或所给关系式及所求的结果相关联.2.抽象函数的奇偶性问题例1O已知函数f (x) (X ∈ R, x≠O)对任意不等于零实数x1' X2都有f (x 1∙χ 2 ) = f (x 1) + f (x 2 ), 试判断函数f (X)的奇偶性.解:取 X I =— 1, X2 = 1 得:f( — 1) = f ( — 1) + f (1) , ∙ f (1) = O .又取 x1 = X 2 =— 1 得:f (1) = f ( — 1) + f ( — 1) , ∙ f ( — 1) = O .再取 x1 = X , X 2 = — 1 则有f( — x) = f ( — 1) + f (x),即f( — x) = f (x),∙∙∙ f (X)为非零函数,∙ f (X)为偶函数.3.抽象函数的周期性问题例11函数f(X)定义域为全体实数,对任意实数a、b,有f (a + b) + f (a — b) =2 f (a) ∙ f (b),且存在C C> O,使得f( ) = O ,求证f (x)是周期函数.2联想:因为 cos(a + b) + cos(a — b) = 2cosacosb ,且cos — = 0,因而得出它的模型函数为y = CoSX ,由y = CoSX2的周期为2 ,可猜想2C为f(x)的一个周期.思路分析:要在证明2C为f (X)的一个周期,则只需证 f (X 2C) = f (X),而由已知条件f (C) = 0和f (a +Cb) + f (a — b) =2 f (a) ∙ f (b)知,必须选择好a、b的值,是得条件等式出现f()和f (χ).2C C证明:令 a = X + , b = ,代入f (a + b) + f (a — b) = 2 f (a) ∙ f (b)可得2 2f (X + C ) = —f (x).∙∙∙ f (X + 2C ) = f [(x + C) + C ] = —f (X + C ) = f (X),即f (X)是以 2C 为周期的函数.评析:如果没有余弦函数作为模型,就很难想到2C就是所求函数的周期,解题思路是难找的•由此可见,寻求或构造恰当的模型函数,可以为思考与解题定向,是处理开放型问题的一种重要策略.4•抽象函数的对称性问题例 12 已知函数 y = f (X)满足f (X) + f ( X) = 2002 ,求f 1(χ)+f 1(2002 χ)的值.解:由已知,在等式f (a X) + f (a X) = 2b中a = 0 , b = 2002 ,所以,函数y = f (X)关于点(0 , 2002)对称,根据原函数与其反函数的关系,知函数y = f 1(X)关于点(2002 , 0)对称.∙ f 1(X 1001)+ f 1(1001 X) = 0 ,将上式中的 X用 x— 1001 换,得f 1(x)+ f 1(2002 X)= 0 .评析:这是同一个函数图象关于点成中心对称问题,在解题中使用了下述命题:即:设a、b均为常数,函数y=f (X)对一切实数X都满足f(a X)+ f (a X) = 2b ,则函数y = f (x)的图象关于点(a , b)成中心对称图形.四、抽象函数中的网络综合问题例13定义在R上的函数f (x)满足:对任意实数 m n,总有f (m n)=f(m)∙f(n),且当x>0时,0v f (x) V 1.⑴判断f (X)的单调性;⑵设 A = {(x , y)| f(x2) ∙ f (y2) > f(1)}, B = {(x , y)| f (ax y ,2) = 1 , a R},若 A B =,试确定 a的取值范围.解:⑴在f (m n)=f(m) ∙f(n)中,令 m= 1, n = 0 ,得f(1)=f(1) ∙ f (0),因为f(1) ≠ 0,所以f (0) = 1.在f(m n)=f(m) ∙f(n)中,令 m = X , n = — X,■/当 x> 0 时,0V f (x) V 1,∙当 XV 0 时,一X > 0, 0V f ( x) V 1,又当X = 0 时,f (0) = 1 > 0,所以,综上可知,对于任意X ∈ R 均有f (X)> 0.设一∞v X I V X 2 V +∞ ,贝y X 2 — X I > 0, 0v f ( X 2 — X I ) V1.∙∙∙ f ( X 2) = f [ X 1 + ( X 2 — X 1 )] = f (X 1 ) ∙ f ( X 2 — X 1 ) V f ( X 1 ).∙∙∙ y = f (X)在R 上为减函数.2 2 2 2 2 2⑵由于函数y = f (X)在R 上为减函数,所以 f (X ) ∙ f(y)=f(χ + y ) > f (1),即有X + y V 1. 又f (ax y ',2) = 1 = f (0),根据函数的单调性,有ax — y + -, 2 = 0 ._/2由A I B =,所以,直线ax — y+ 2 = 0与圆面X 2+ y 2V 1无公共点,因此有:_ ------------ ≥ 1,解得一1≤a≤ 1.评析:⑴要讨论函数的单调性必然涉及到两个问题,一是f (0)的取值问题,二是 f (X) > 0的结论都成为解题的关键性步骤,完成这些又在抽象函数式中进行,由特殊到一般的解题思想,联想类比思维都有助于问题的思考和 解决.而 f (X)f ( - x) = f (0) = 1 , f (χ)=> 1> 0f( X)。

相关文档
最新文档