高中数学专题讲义-回归分析

合集下载

高三数学回归分析知识点

高三数学回归分析知识点

高三数学回归分析知识点回归分析是数学中一种重要的数据分析方法,主要用于研究变量之间的关系以及预测未来的趋势。

它在高三数学中也是一个重要的知识点。

本文将介绍高三数学回归分析的基本概念、方法和应用。

一、回归分析的基本概念回归分析是通过对一组相关变量的观测数据进行统计分析,建立一个数学模型,从而揭示变量之间的关系和规律。

在回归分析中,通常将一个或多个自变量与一个因变量进行关联,通过构建回归方程来描述这种关系。

回归分析可以帮助我们理解和预测变量之间的相互作用。

二、回归分析的方法1. 简单线性回归分析简单线性回归分析是回归分析的最基本形式,它研究两个变量之间的关系。

在简单线性回归中,假设自变量和因变量之间存在一个线性关系。

通过最小化残差平方和来确定最佳拟合直线,从而建立回归方程。

2. 多元线性回归分析多元线性回归分析是简单线性回归的扩展,它研究多个自变量与一个因变量之间的关系。

在多元线性回归中,需要选择合适的自变量,并进行变量筛选和模型检验,以建立具有良好拟合度和预测能力的回归方程。

3. 非线性回归分析非线性回归分析是在回归分析的基础上,考虑变量之间的非线性关系。

它通常通过将自变量进行变换或引入非线性项来拟合数据。

非线性回归可以更好地适应非线性数据的变化,提高模型的拟合度。

三、回归分析的应用1. 预测分析回归分析在预测分析中有着广泛的应用。

通过建立回归模型,我们可以根据已有的数据来预测未来的趋势和结果。

这在金融、经济学、市场营销等领域都有重要的应用价值。

2. 产品开发和优化回归分析可以用于产品开发和优化过程中。

通过分析自变量与因变量之间的关系,可以确定对于产品性能的重要影响因素,从而改进产品的设计和质量。

3. 策略制定在管理和决策层面,回归分析可以帮助制定策略和决策。

通过分析不同变量之间的关系,可以找到最佳决策方案,并预测其效果。

四、总结高三数学回归分析是一门重要的知识点,它可以帮助我们理解和分析变量之间的关系,并应用于实际问题的解决。

高中数学 1.1《回归分析》课件 北师大版选修1-2

高中数学 1.1《回归分析》课件 北师大版选修1-2

100
6400
800
4
20
130
400
16900
2600
5
30
160
900
25600
4800
6
40
170
1600
28900
6800
7
50
190
2500
36100
9500
8
60
250
3600
62500
15000
9
65
250
4225
62500
16250
10
90
290
8100
84100
26100
11
120
最佳形式为:
y ˆ f(x ,c ˆ 1 ,c ˆ 2 , ,c ˆ N )
如不存在测量误差,则:
(5-3) 最佳估计值
y i f ( x i , c 1 , c 2 , , c N ) i 1 , 2 , m (5-4)
由于存在测量误差,因而式(5-3)与(5-4)不相重合,即有:
e i y i y ˆ i
yˆ 与 x 的关系大致呈直线关系,但并不是确定性的 关系,而是一种相关关系:
回归系数
yˆ abx (5—11)
最佳估计值应使其残差平方和最小,残差为:
ei yi (abix ) (5—12)
图5—2、表5—1 表5-1 试验数据
时 间 , x m i n3 5 1 0 2 0 3 0 4 0 5 0 6 0 6 5 9 0 1 2 0 腐 蚀 深 度 , yu 4 0 6 0 8 0 1 3 0 1 6 0 1 7 0 1 9 0 2 5 0 2 5 0 2 9 0 4 6 0

高中数学 统计 板块六 回归分析完整讲义(学生版)

高中数学 统计 板块六 回归分析完整讲义(学生版)

学而思高中完整讲义:统计.板块六.回归分析.学生版一.随机抽样1.随机抽样:满足每个个体被抽到的机会是均等的抽样,共有三种经常采用的随机抽样方法:⑴简单随机抽样:从元素个数为N的总体中不放回地抽取容量为n的样本,如果每一次抽取时总体中的各个个体有相同的可能性被抽到,这种抽样方法叫做简单随机抽样.抽出办法:①抽签法:用纸片或小球分别标号后抽签的方法.②随机数表法:随机数表是使用计算器或计算机的应用程序生成随机数的功能生成的一张数表.表中每一位置出现各个数字的可能性相同.随机数表法是对样本进行编号后,按照一定的规律从随机数表中读数,并取出相应的样本的方法.简单随机抽样是最简单、最基本的抽样方法.⑵系统抽样:将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本的抽样方法.抽出办法:从元素个数为N的总体中抽取容量为n的样本,如果总体容量能被样本容量整除,设Nkn=,先对总体进行编号,号码从1到N,再从数字1到k中随机抽取一个数s作为起始数,然后顺次抽取第2(1)s k s k s n k+++-L,,,个数,这样就得到容量为n的样本.如果总体容量不能被样本容量整除,可随机地从总体中剔除余数,然后再按系统抽样方法进行抽样.系统抽样适用于大规模的抽样调查,由于抽样间隔相等,又被称为等距抽样.⑶分层抽样:当总体有明显差别的几部分组成时,要反映总体情况,常采用分层抽样,使总体中各个个体按某种特征分成若干个互不重叠的几部分,每一部分叫做层,在各层中按层在总体中所占比例进行简单随机抽样,这种抽样方法叫做分层抽样.分层抽样的样本具有较强的代表性,而且各层抽样时,可灵活选用不同的抽样方法,应用广泛.2.简单随机抽样必须具备下列特点:⑴简单随机抽样要求被抽取的样本的总体个数N是有限的.⑵简单随机样本数n小于等于样本总体的个数N.⑶简单随机样本是从总体中逐个抽取的.⑷简单随机抽样是一种不放回的抽样.⑸简单随机抽样的每个个体入样的可能性均为nN.3.系统抽样时,当总体个数N恰好是样本容量n的整数倍时,取Nkn =;若Nn不是整数时,先从总体中随机地剔除几个个体,使得总体中剩余的个体数能被样本容量n整除.因为每个个体被剔除的机会相等,因而整个抽样过程中每个个体被抽取的机会仍然相等,为Nn.二.频率直方图列出样本数据的频率分布表和频率分布直方图的步骤:①计算极差:找出数据的最大值与最小值,计算它们的差;知识内容②决定组距与组数:取组距,用极差组距决定组数; ③决定分点:决定起点,进行分组;④列频率分布直方图:对落入各小组的数据累计,算出各小数的频数,除以样本容量,得到各小组的频率.⑤绘制频率分布直方图:以数据的值为横坐标,以频率组距的值为纵坐标绘制直方图,知小长方形的面积=组距×频率组距=频率.频率分布折线图:将频率分布直方图各个长方形上边的中点用线段连接起来,就得到频率分布折线图,一般把折线图画成与横轴相连,所以横轴左右两端点没有实际意义.总体密度曲线:样本容量不断增大时,所分组数不断增加,分组的组距不断缩小,频率分布直方图可以用一条光滑曲线()y f x =来描绘,这条光滑曲线就叫做总体密度曲线.总体密度曲线精确地反映了一个总体在各个区域内取值的规律.三.茎叶图制作茎叶图的步骤:①将数据分为“茎”、“叶”两部分;②将最大茎与最小茎之间的数字按大小顺序排成一列,并画上竖线作为分隔线; ③将各个数据的“叶”在分界线的一侧对应茎处同行列出.四.统计数据的数字特征用样本平均数估计总体平均数;用样本标准差估计总体标准差. 数据的离散程序可以用极差、方差或标准差来描述.极差又叫全距,是一组数据的最大值和最小值之差,反映一组数据的变动幅度; 样本方差描述了一组数据平均数波动的大小,样本的标准差是方差的算术平方根. 一般地,设样本的元素为12n x x x L ,,,样本的平均数为x , 定义样本方差为222212()()()n x x x x x x s n-+-++-=L ,样本标准差s =简化公式:22222121[()]n s x x x nx n=+++-L .五.独立性检验1.两个变量之间的关系;常见的有两类:一类是确定性的函数关系;另一类是变量间存在关系,但又不具备函数关系所要求的确定性,它们的关系是带有一定随机性的.当一个变量取值一定时,另一个变量的取值带有一定随机性的两个变量之间的关系叫做相关关系.2.散点图:将样本中的n 个数据点()(12)i i x y i n =L ,,,,描在平面直角坐标系中,就得到了散点图.散点图形象地反映了各个数据的密切程度,根据散点图的分布趋势可以直观地判断分析两个变量的关系.3.如果当一个变量的值变大时,另一个变量的值也在变大,则这种相关称为正相关;此时,散点图中的点在从左下角到右上角的区域.反之,一个变量的值变大时,另一个变量的值由大变小,这种相关称为负相关.此时,散点图中的点在从左上角到右下角的区域.散点图可以判断两个变量之间有没有相关关系.4.统计假设:如果事件A 与B 独立,这时应该有()()()P AB P A P B =,用字母0H 表示此式,即0:()()()H P AB P A P B =,称之为统计假设. 5.2χ(读作“卡方”)统计量:统计学中有一个非常有用的统计量,它的表达式为22112212211212()n n n n n n n n n χ++++-=,用它的大小可以用来决定是否拒绝原来的统计假设0H .如果2χ的值较大,就拒绝0H ,即认为A 与B 是有关的.2χ统计量的两个临界值:3.841、6.635;当2 3.841χ>时,有95%的把握说事件A 与B 有关;当2 6.635χ>时,有99%的把握说事件A 与B 有关;当2 3.841χ≤时,认为事件A 与B 是无关的.独立性检验的基本思想与反证法类似,由结论不成立时推出有利于结论成立的小概率事件发生,而小概率事件在一次试验中通常是不会发生的,所以认为结论在很大程度上是成立的. 1.独立性检验的步骤:统计假设:0H ;列出22⨯联表;计算2χ统计量;查对临界值表,作出判断.2.几个临界值:222()0.10( 3.841)0.05( 6.635)0.01P P P χχχ≈≈≈≥2.706,≥,≥.22⨯联表的独立性检验:如果对于某个群体有两种状态,对于每种状态又有两个情况,这样排成一张22⨯的表,如下:如果有调查得来的四个数据111221224个数据来检验上述的两种状态A 与B 是否有关,就称之为22⨯联表的独立性检验.六.回归分析1.回归分析:对于具有相关关系的两个变量进行统计分析的方法叫做回归分析,即回归分析就是寻找相关关系中这种非确定关系的某种确定性. 回归直线:如果散点图中的各点都大致分布在一条直线附近,就称这两个变量之间具有线性相关关系,这条直线叫做回归直线. 2.最小二乘法:记回归直线方程为:ˆy a bx =+,称为变量Y 对变量x 的回归直线方程,其中a b ,叫做回归系数.ˆy是为了区分Y 的实际值y ,当x 取值i x 时,变量Y 的相应观察值为i y ,而直线上对应于i x 的纵坐标是ˆi i ya bx =+. 设x Y ,的一组观察值为()i i x y ,,12i n =L ,,,,且回归直线方程为ˆya bx =+, 当x 取值i x 时,Y 的相应观察值为i y ,差ˆ(12)i i y yi n -=L ,,,刻画了实际观察值i y 与回归直线上相应点的纵坐标之间的偏离程度,称这些值为离差.我们希望这n 个离差构成的总离差越小越好,这样才能使所找的直线很贴近已知点. 记21()ni i i Q y a bx ==--∑,回归直线就是所有直线中Q 取最小值的那条.这种使“离差平方和为最小”的方法,叫做最小二乘法.用最小二乘法求回归系数a b ,有如下的公式:1221ˆni ii nii x ynxy bxnx ==-=-∑∑,ˆˆa y bx =-,其中a b ,上方加“^”,表示是由观察值按最小二乘法求得的回归系数.3.线性回归模型:将用于估计y 值的线性函数a bx +作为确定性函数;y 的实际值与估计值之间的误差记为ε,称之为随机误差;将y a bx ε=++称为线性回归模型. 产生随机误差的主要原因有:①所用的确定性函数不恰当即模型近似引起的误差; ②忽略了某些因素的影响,通常这些影响都比较小; ③由于测量工具等原因,存在观测误差. 4.线性回归系数的最佳估计值:利用最小二乘法可以得到ˆˆab ,的计算公式为 1122211()()()()nnii iii i nniii i xx y y x ynxybxx xn x ====---==--∑∑∑∑$,ˆˆa y bx =-,其中11n i i x x n ==∑,11nii y y n ==∑ 由此得到的直线ˆˆya bx =+$就称为回归直线,此直线方程即为线性回归方程.其中ˆa ,b $分别为a ,b 的估计值,ˆa称为回归截距,b $称为回归系数,ˆy 称为回归值. 5.相关系数:()()nnii i ixx y y x ynx yr ---==∑∑6.相关系数r 的性质:⑴||1r ≤;⑵||r 越接近于1,x y ,的线性相关程度越强; ⑶||r 越接近于0,x y ,的线性相关程度越弱.可见,一条回归直线有多大的预测功能,和变量间的相关系数密切相关. 7.转化思想:根据专业知识或散点图,对某些特殊的非线性关系,选择适当的变量代换,把非线性方程转化为线性回归方程,从而确定未知参数. 8.一些备案①回归(regression )一词的来历:“回归”这个词英国统计学家Francils Galton 提出来的.1889年,他在研究祖先与后代的身高之间的关系时发现,身材较高的父母,他们的孩子也较高,但这些孩子的平均身高并没有他们父母的平均身高高;身材较矮的父母,他们的孩子也较矮,但这些孩子的平均身高却比他们父母的平均身高高.Galton 把这种后代的身高向中间值靠近的趋势称为“回归现象”.后来,人们把由一个变量的变化去推测另一个变量的变化的方法称为回归分析. ②回归系数的推导过程:22222[()]222i i i i i i i i Q y a bx y a y na b x y ab x b x =--=-+-++∑∑∑∑∑∑ 22222()2i i i i i i na a b x y b x b x y y =+-+-+∑∑∑∑∑,把上式看成a 的二次函数,2a 的系数0n >,因此当2()2i i i ib x y y b x a n n--=-=∑∑∑∑时取最小值.同理,把Q 的展开式按b 的降幂排列,看成b 的二次函数,当2i iiix y a xb x-=∑∑∑时取最小值.解得:12221()()()ni iii i niii x ynxyx x y y b x x xnx==---==--∑∑∑∑,a y bx =-, 其中1i y y n =∑,1i x x n=∑是样本平均数. 9. 对相关系数r 进行相关性检验的步骤: ①提出统计假设0H :变量x y ,不具有线性相关关系;②如果以95%的把握作出推断,那么可以根据10.950.05-=与2n -(n 是样本容量)在相关性检验的临界值表中查出一个r 的临界值0.05r (其中10.950.05-=称为检验水平); ③计算样本相关系数r ;④作出统计推断:若0.05||r r >,则否定0H ,表明有95%的把握认为变量y 与x 之间具有线性相关关系;若0.05||r r ≤,则没有理由拒绝0H ,即就目前数据而言,没有充分理由认为变量y 与x 之间具有线性相关关系. 说明:⑴对相关系数r 进行显著性检验,一般取检验水平0.05α=,即可靠程度为95%.⑵这里的r 指的是线性相关系数,r 的绝对值很小,只是说明线性相关程度低,不一定不相关,可能是非线性相关的某种关系.⑶这里的r 是对抽样数据而言的.有时即使||1r =,两者也不一定是线性相关的.故在统计分析时,不能就数据论数据,要结合实际情况进行合理解释.题型一 线性相关及回归【例1】 已知变量y 与x 之间的相关系数是0.872r =-,查表得到相关系数临界值0.050.482r =,要使可靠性不低于95%,则变量y 与x 之间( )A .不具有线性相关关系B .具有线性相关关系C .线性相关关系还待进一步确定D .具有确定性关系【例2】 当相关系数0r =时,表明( )A 现象之间完全无关B 相关程度较小C 现象之间完全相关D 无直线相关关系【例3】 下列结论中,能表示变量,x y 具有线性相关关系的是( )A .0.05r r ≥B .0.05r r ≤C .0.05r r >D .0.05r r <【例4】 下列现象的相关密切程度最高的是( )A .某商店的职工人数与商品销售额之间的相关系数0.87B .流通费用水平与利润率之间的相关关系为0.94-C .商品销售额与利润率之间的相关系数为0.51D .商品销售额与流通费用水平的相关系数为0.81-典例分析【例5】 在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是( )①若2χ的值为6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;②从独立性检验可知有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患有肺病;③若从统计量中求出有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得判断出现错误;④以上三种说法都不正确.【例6】 设两个变量x 和y 之间具有线性相关关系,它们的相关系数是r ,y 关于x 的回归直线的斜率是b ,纵截距是a ,那么必有( ) A .b 与r 的符号相同 B .a 与r 的符号相同 C .b 与r 的相反 D .a 与r 的符号相反【例7】 定义:点()i i x y ,与直线$y bx a =+的“纵向距离”为()i i y bx a -+.已知(00)(01)(11)A B C -,,,,,三点,存在直线l ,使A B C ,,三点到直线l 的“纵向距离的平方和”Q 最小.⑴求直线l 的方程和Q 的最小值;⑵判断点1(0)3D ,与直线l 的位置关系.【例8】 (2020宁夏海南卷理)对变量x ,y 有观测数据()11x y ,()1210i =L ,,,,得散点图1;对变量u ,v 有观测数据()11u v ,()1210i =L ,,,,得散点图2. 由这两个散点图可以判断.A .变量x 与y 正相关,u 与v 正相关B .变量x 与y 正相关,u 与v 负相关C .变量x 与y 负相关,u 与v 正相关D .变量x 与y 负相关,u 与v 负相关【例9】 为了考查两个变量x 和y 之间的线性关系,甲、乙两位同学各自独立做了10次和15次的试验,并且利用线性回归方法求得回归直线分别为12l l ,,已知两人得到的试验数据中,变量x 和y 的数据的平均值都对应相等,那么下列说法正确的是( ) A .直线1l 和2l 一定有交点 B .直线1l 一定平行于直线2l C .直线1l 一定与2l 重合 D .以上都不对【例10】 某地高校教育经费()x 与高校学生人数()y 连续6年的统计资料如下:【例11】 一家庭问题研究机构想知道是否夫妻所受的教育越高越不愿生孩子,现随机抽样了8对夫妻,计算夫妻所受教育的总年数x 与孩子数y ,得结果如下试求【例12】 某种产品的广告费支出x 与销售额y (单位:百万元)之间有如下对应数据:【例13】某五星级大饭店的住屋率(%)()x与每天每间客房的成本(元)()y如下:⑴试求⑵若y的表示不变,x以小数表示(如75%表为0.75),求新的回归直线.【例14】某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:线性回归方程,再用被选取的2组数据进行检验.⑴若选取的1月与6月的两组数据,请根据2至5月份的数据,求出y关于x的线性回归方程;⑵若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?【例15】 某种产品的产量与单位在成本的资料如下:⑴计算相关系数r ; ⑵y 对x 直线回归方程;⑶指出产量每增加1000件时,单位成本平均下降了多少元?【例16】 求回归直线方程以下是收集到的某城市的新房屋销售价格y 与房屋的大小x 的数据:⑵用最小二乘法求回归直线方程;⑶估计该城市一个90平米的房屋销售价格大约为多少? ⑷写一个程序,计算出()Q a b ,和(20.2)Q ,的值,再比较大小.【例17】 (07广东)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y (吨标准煤)的几组对照数据⑵请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程ˆˆy bx a =+;⑶已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值:3 2.543546 4.566.5⨯+⨯+⨯+⨯=)【例18】 测定某肉鸡的生长过程,每两周记录一次鸡的重量,数据如下表:由经验知生长曲线为1xy Ae λ-=+,试求y 对x 的回归曲线方程.【例19】 为了研究某种细菌随时间x 变化的繁殖个数,收集数据如下:⑵求出y 对x 的回归方程.。

高中数学回归讲解教案

高中数学回归讲解教案

高中数学回归讲解教案
教案主题:回归分析
教学目标:
1. 了解回归分析的基本概念和原理
2. 掌握简单线性回归分析和多元线性回归分析的计算方法
3. 能够应用回归分析方法解决实际问题
4. 培养学生的数理统计思维和分析能力
教学内容:
1. 回归分析的概念和基本原理
2. 简单线性回归分析
3. 多元线性回归分析
4. 实际问题的回归分析方法应用
教学步骤:
第一步:导入(5分钟)
介绍回归分析的基本概念和作用,引起学生对回归分析的兴趣和重要性。

第二步:简单线性回归分析(20分钟)
1. 讲解简单线性回归的定义和公式
2. 演示简单线性回归的计算方法
3. 给出一个简单线性回归的实例,让学生自行计算
第三步:多元线性回归分析(20分钟)
1. 讲解多元线性回归的定义和公式
2. 演示多元线性回归的计算方法
3. 给出一个多元线性回归的实例,让学生自行计算
第四步:实际问题应用(15分钟)
1. 给出一个实际问题,让学生利用回归分析方法进行分析
2. 引导学生思考回归分析在实际问题中的应用价值
第五步:总结(10分钟)
1. 总结回归分析的基本原理和方法
2. 强调回归分析在实际问题中的重要性和应用价值
3. 解答学生的问题并进行互动交流
教学反思:
通过本节课的教学,学生了解了回归分析的基本概念和原理,掌握了简单线性回归和多元线性回归的计算方法,并通过实际问题的应用进行了综合训练。

同时,也培养了学生的数理统计思维和分析能力,提高了他们解决实际问题的能力。

希望学生能够在今后的学习和工作中,充分运用回归分析方法,发挥其应用价值。

新教材高中数学第8章第2课时回归分析及非线性回归模型pptx课件新人教A版选择性必修第三册

新教材高中数学第8章第2课时回归分析及非线性回归模型pptx课件新人教A版选择性必修第三册

2.在两个变量y与x的回归模型中,分别选择了4个不同的模型,它
们的决定系数R2如下,其中拟合效果最好的模型是(
2为0.98
A.模型1的决定系数R

B.模型2的决定系数R2为0.80
C.模型3的决定系数R2为0.50
D.模型4的决定系数R2为0.25
A
[R2越大拟合效果越好.]
)
3.从某省“双一流”大学中随机选出8名女大学生,得到其身高
残差图
观测值等,这样作出的图形称为______.在残差图中,残差点比较
均匀地落在水平的带状区域中,说明选用的模型比较合适,这样的
带状区域的宽度____,说明模型拟合精度越高.
越窄
残差
(3)残差分析:____是随机误差的估计结果,通过对残差的分析可以
判断模型刻画数据的效果,以及判断原始数据中是否存在可疑数据
建立两个变量间的非线性经验回归方程.
1.思考辨析(正确的画“√”,错误的画“×”)
(1)残差平方和越接近0,线性回归模型的拟合效果越好.
(√ )
(2)在画两个变量的散点图时,响应变量在x轴上,解释变量在y轴
上.
( × )
(3)R2越小,线性回归模型的拟合效果越好.
( × )
(4)在残差图中,纵坐标为残差,横坐标可以选为样本编号.( √ )
和幂函数模型的求解过程.(数学运算、数学建模)
01
必备知识·
情境导学探新知
设某幼苗从观察之日起,第x天的高度为y cm,测得的一些数据如表
所示:
第x天
1
4
9
16
25
36
49
高度y/cm
0
4
7
9

高考回归分析知识点

高考回归分析知识点

高考回归分析知识点回归分析是统计学中一种重要的分析方法,用于研究变量之间的关系和预测。

在高考数学中,回归分析也是一个重要的知识点。

本文将介绍高考中常见的回归分析知识点,并结合具体例子进行解析。

一、简单线性回归1. 定义:简单线性回归是指在研究两个变量之间关系时,其中一个变量为自变量,另一个变量为因变量,且二者之间存在线性关系的情况。

2. 公式:简单线性回归模型的数学表示为:Y = α + βX + ε,其中Y为因变量,X为自变量,α和β为常数,ε为误差项。

3. 参数估计:通过最小二乘法可以估计出回归系数α和β的值,从而建立回归方程。

示例:假设我们想研究学生的学习时间与考试分数之间的关系。

我们收集了一组数据,学习时间(自变量X)和考试分数(因变量Y)的数值如下:学习时间(小时):[5, 10, 15, 20, 25, 30]考试分数(分数):[60, 70, 75, 80, 85, 90]通过简单线性回归分析,我们可以建立回归方程为:Y = 55 + 0.75X,说明学习时间对考试分数有正向影响。

二、多元线性回归1. 定义:多元线性回归是指在研究多个自变量与一个因变量之间关系时的回归分析方法。

它可以用来探究多个因素对因变量的影响程度,并进行预测和解释。

2. 公式:多元线性回归模型的数学表示为:Y = α + β₁X₁ + β₂X₂+ ... + βₚXₚ + ε,其中Y为因变量,X₁、X₂、...、Xₚ为自变量,α和β₁、β₂、...、βₚ为常数,ε为误差项。

3. 参数估计:同样通过最小二乘法可以估计出回归系数α和β₁、β₂、...、βₚ的值,从而建立回归方程。

示例:我们想研究学生的考试分数与学习时间、家庭收入、家庭教育水平等因素之间的关系。

我们收集了一组数据,学习时间(自变量X₁)、家庭收入(自变量X₂)、家庭教育水平(自变量X₃)和考试分数(因变量Y)的数值如下:学习时间(小时):[5, 10, 15, 20, 25, 30]家庭收入(万元):[8, 10, 12, 15, 18, 20]家庭教育水平(年):[10, 12, 14, 16, 18, 20]考试分数(分数):[60, 70, 75, 80, 85, 90]通过多元线性回归分析,我们可以建立回归方程为:Y = 50 +0.7X₁ + 1.2X₂ + 1.5X₃,说明学习时间、家庭收入和家庭教育水平都对考试分数有正向影响。

高中数学选修1-2-回归分析第一节.ppt

高中数学选修1-2-回归分析第一节.ppt

,a^ = y -b^ x ,
n
xi- x 2
n
x2i -n x 2
i=1
i=1
其中 x =1ni=n1xi, y =1ni=n1yi,( x , y )称为样本点的中心.
课前探究学习
课堂讲练互动
(3)解释变量和预报变量 线性回归模型与一次函数模型的不同之处是增加了随机误差项e, 因变量y由 自变量x 和 随机误差e 共同确定,即自变量x只解 释部分y的变化,在统计中,我们也把自变量x称为解释变量,因变 量y称为预报变量.
课前探究学习
课堂讲练互动
【变式1】 以下是某地搜集到的新房屋的销售价格y和房屋的面积x 的数据:
房屋面积/m2 115 110 80 135 105 销售价格/万元 24.8 21.6 18.4 29.2 22
(1)画出数据对应的散点图; (2)求线性回归方程,并在散点图中加上回归直线; (3)据(2)的结果估计当房屋面积为150 m2时的销售价格.
1.1 回归分析的基本思想及其初步应用
课前探究学习
课堂讲练互动
【课标要求】 1.了解随机误差、残差、残差分析的概念; 2.会用残差分析判断线性回归模型的拟合效果; 3.掌握建立回归模型的步骤; 4.通过对典型案例的探究,了解回归分析的基本思想方法
和初步应用.
课前探究学习
课堂讲练互动
【核心扫描】 1.利用散点图分析两个变量是否存在相关关系,求线性回归方
6
所以
(yi-y^ i)2≈0.013
6
18,
(yi- y )2=14.678 4.
i=1
i=1
所以,R2=1-01.40.16378184≈0.999 1, 回归模型的拟合效果较好.

高中数学第3章统计案例3.2回归分析课件新人教B版选修2_3

高中数学第3章统计案例3.2回归分析课件新人教B版选修2_3
^
解 由②中线性回归方程当 x=9 时,y =0.7×9-2.3=4,
预测记忆力为 9 的同学的判断力约为 4.
要点二 相关性检验 例2 下面的数据是从年龄在40到60岁的男子中随机抽出的6个 样本,分别测定了心脏的功能水平y(满分100)以及每天花在看电 视上的平均时间x(小时).
看电视的平均时间x 4.4 4.6 2.7 5.8 0.2 4.6
i=1
a^= y -b^ x ≈67.8-0.625×73.2=22.05. 所以 y 对 x 的回归直线方程是y^=0.625x+22.05.
(3)一名学生的数学成绩是96,试预测他的物理成绩. 解 x=96,则y^=0.625×96+22.05≈82, 即可以预测他的物理成绩是82.
规律方法 (1)散点图是定义在具有相关关系的两个变量基 础上的,对于性质不明确的两组数据,可先作散点图,在图 上看它们有无关系,关系的密切程度,然后再进行相关回归 分析. (2)求回归直线方程,第一应注意到,只有在散点图大致呈 线性时,求出的回归直线方程才有实际意义,否则,求出的 回归直线方程毫无意义.
学科
学生 A B CDE
数学成绩(x)
88 76 73 66 63
物理成绩(y)
78 65 71 64 61
(1)画出散点图; 解 散点图如图.
(2)求物理成绩y对数学成绩x的回归直线方程; 解 x =15×(88+76+73+66+63)=73.2, y =15×(78+65+71+64+61)=67.8.
2.回归分析中,利用线性回归方程求出的函数值一定是真实 值吗? 答 不一定是真实值,利用线性回归方程求的值,在很多时 候是个预报值,例如,人的体重与身高存在一定的线性关系, 但体重除了受身高的影响外,还受其他因素的影响,如饮食、 是否喜欢运动等.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一.随机抽样1.随机抽样:满足每个个体被抽到的机会是均等的抽样,共有三种经常采用的随机抽样方法:⑴简单随机抽样:从元素个数为N 的总体中不放回地抽取容量为n 的样本,如果每一次抽取时总体中的各个个体有相同的可能性被抽到,这种抽样方法叫做简单随机抽样. 抽出办法:①抽签法:用纸片或小球分别标号后抽签的方法.②随机数表法:随机数表是使用计算器或计算机的应用程序生成随机数的功能生成的一张数表.表中每一位置出现各个数字的可能性相同. 随机数表法是对样本进行编号后,按照一定的规律从随机数表中读数,并取出相应的样本的方法.简单随机抽样是最简单、最基本的抽样方法.⑵系统抽样:将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本的抽样方法.抽出办法:从元素个数为N 的总体中抽取容量为n 的样本,如果总体容量能被样本容量整除,设Nk n=,先对总体进行编号,号码从1到N ,再从数字1到k 中随机抽取一个数s 作为起始数,然后顺次抽取第2(1)s k s k s n k +++-L ,,,个数,这样就得到容量为n 的样本.如果总体容量不能被样本容量整除,可随机地从总体中剔除余数,然后再按系统抽样方法进行抽样.系统抽样适用于大规模的抽样调查,由于抽样间隔相等,又被称为等距抽样.⑶分层抽样:当总体有明显差别的几部分组成时,要反映总体情况,常采用分层抽样,使总体中各个个体按某种特征分成若干个互不重叠的几部分,每一部分叫做层,在各层中按层在总体中所占比例进行简单随机抽样,这种抽样方法叫做分层抽样.分层抽样的样本具有较强的代表性,而且各层抽样时,可灵活选用不同的抽样方法,应用广泛.2.简单随机抽样必须具备下列特点:⑴简单随机抽样要求被抽取的样本的总体个数N 是有限的. ⑵简单随机样本数n 小于等于样本总体的个数N . ⑶简单随机样本是从总体中逐个抽取的. ⑷简单随机抽样是一种不放回的抽样.⑸简单随机抽样的每个个体入样的可能性均为nN.3.系统抽样时,当总体个数N 恰好是样本容量n 的整数倍时,取Nk n=;若Nn不是整数时,先从总体中随机地剔除几个个体,使得总体中剩余的个体数能被样本容量n 整除.因为每个个体被剔除的机会相等,因而整个抽样过程中每个个体被抽取的机会仍知识内容板块六.回归分析然相等,为N n.二.频率直方图列出样本数据的频率分布表和频率分布直方图的步骤:①计算极差:找出数据的最大值与最小值,计算它们的差;②决定组距与组数:取组距,用极差组距决定组数;③决定分点:决定起点,进行分组;④列频率分布直方图:对落入各小组的数据累计,算出各小数的频数,除以样本容量,得到各小组的频率.⑤绘制频率分布直方图:以数据的值为横坐标,以频率组距的值为纵坐标绘制直方图,知小长方形的面积=组距×频率组距=频率.频率分布折线图:将频率分布直方图各个长方形上边的中点用线段连接起来,就得到频率分布折线图,一般把折线图画成与横轴相连,所以横轴左右两端点没有实际意义.总体密度曲线:样本容量不断增大时,所分组数不断增加,分组的组距不断缩小,频率分布直方图可以用一条光滑曲线()y f x =来描绘,这条光滑曲线就叫做总体密度曲线.总体密度曲线精确地反映了一个总体在各个区域内取值的规律.三.茎叶图制作茎叶图的步骤:①将数据分为“茎”、“叶”两部分;②将最大茎与最小茎之间的数字按大小顺序排成一列,并画上竖线作为分隔线; ③将各个数据的“叶”在分界线的一侧对应茎处同行列出.四.统计数据的数字特征用样本平均数估计总体平均数;用样本标准差估计总体标准差. 数据的离散程序可以用极差、方差或标准差来描述.极差又叫全距,是一组数据的最大值和最小值之差,反映一组数据的变动幅度; 样本方差描述了一组数据平均数波动的大小,样本的标准差是方差的算术平方根. 一般地,设样本的元素为12n x x x L ,,,样本的平均数为x , 定义样本方差为222212()()()n x x x x x x s n-+-++-=L ,样本标准差s =简化公式:22222121[()]n s x x x nx n=+++-L .五.独立性检验1.两个变量之间的关系;常见的有两类:一类是确定性的函数关系;另一类是变量间存在关系,但又不具备函数关系所要求的确定性,它们的关系是带有一定随机性的.当一个变量取值一定时,另一个变量的取值带有一定随机性的两个变量之间的关系叫做相关关系. 2.散点图:将样本中的n 个数据点()(12)i i x y i n =L ,,,,描在平面直角坐标系中,就得到了散点图.散点图形象地反映了各个数据的密切程度,根据散点图的分布趋势可以直观地判断分析两个变量的关系.3.如果当一个变量的值变大时,另一个变量的值也在变大,则这种相关称为正相关;此时,散点图中的点在从左下角到右上角的区域.反之,一个变量的值变大时,另一个变量的值由大变小,这种相关称为负相关.此时,散点图中的点在从左上角到右下角的区域.散点图可以判断两个变量之间有没有相关关系.4.统计假设:如果事件A 与B 独立,这时应该有()()()P AB P A P B =,用字母0H 表示此式,即0:()()()H P AB P A P B =,称之为统计假设. 5.2χ(读作“卡方”)统计量:统计学中有一个非常有用的统计量,它的表达式为22112212211212()n n n n n n n n n χ++++-=,用它的大小可以用来决定是否拒绝原来的统计假设0H .如果2χ的值较大,就拒绝0H ,即认为A 与B 是有关的.2χ统计量的两个临界值:3.841、6.635;当2 3.841χ>时,有95%的把握说事件A 与B 有关;当2 6.635χ>时,有99%的把握说事件A 与B 有关;当2 3.841χ≤时,认为事件A 与B 是无关的.独立性检验的基本思想与反证法类似,由结论不成立时推出有利于结论成立的小概率事件发生,而小概率事件在一次试验中通常是不会发生的,所以认为结论在很大程度上是成立的. 1.独立性检验的步骤:统计假设:0H ;列出22⨯联表;计算2χ统计量;查对临界值表,作出判断.2.几个临界值:222()0.10( 3.841)0.05( 6.635)0.01P P P χχχ≈≈≈≥2.706,≥,≥.22⨯联表的独立性检验:如果对于某个群体有两种状态,对于每种状态又有两个情况,这样排成一张22⨯的表,如下:如果有调查得来的四个数据11122122n 4个数据来检验上述的两种状态A 与B 是否有关,就称之为22⨯联表的独立性检验.六.回归分析1.回归分析:对于具有相关关系的两个变量进行统计分析的方法叫做回归分析,即回归分析就是寻找相关关系中这种非确定关系的某种确定性. 回归直线:如果散点图中的各点都大致分布在一条直线附近,就称这两个变量之间具有线性相关关系,这条直线叫做回归直线. 2.最小二乘法:记回归直线方程为:ˆy a bx =+,称为变量Y 对变量x 的回归直线方程,其中a b ,叫做回归系数.ˆy是为了区分Y 的实际值y ,当x 取值i x 时,变量Y 的相应观察值为i y ,而直线上对应于i x 的纵坐标是ˆi i ya bx =+. 设x Y ,的一组观察值为()i i x y ,,12i n =L ,,,,且回归直线方程为ˆya bx =+, 当x 取值i x 时,Y 的相应观察值为i y ,差ˆ(12)i i y y i n -=L ,,,刻画了实际观察值i y 与回归直线上相应点的纵坐标之间的偏离程度,称这些值为离差.我们希望这n 个离差构成的总离差越小越好,这样才能使所找的直线很贴近已知点. 记21()ni i i Q y a bx ==--∑,回归直线就是所有直线中Q 取最小值的那条.这种使“离差平方和为最小”的方法,叫做最小二乘法.用最小二乘法求回归系数a b ,有如下的公式:1221ˆni ii nii x ynxy bxnx ==-=-∑∑,ˆˆa y bx =-,其中a b ,上方加“^”,表示是由观察值按最小二乘法求得的回归系数.3.线性回归模型:将用于估计y 值的线性函数a bx +作为确定性函数;y 的实际值与估计值之间的误差记为ε,称之为随机误差;将y a bx ε=++称为线性回归模型. 产生随机误差的主要原因有:①所用的确定性函数不恰当即模型近似引起的误差; ②忽略了某些因素的影响,通常这些影响都比较小; ③由于测量工具等原因,存在观测误差. 4.线性回归系数的最佳估计值:利用最小二乘法可以得到ˆˆab ,的计算公式为 1122211()()()()nnii iii i nniii i xx y y x ynxybxx xn x ====---==--∑∑∑∑$,ˆˆa y bx =-,其中11n i i x x n ==∑,11nii y y n ==∑ 由此得到的直线ˆˆya bx =+$就称为回归直线,此直线方程即为线性回归方程.其中ˆa ,b $分别为a ,b 的估计值,ˆa称为回归截距,b $称为回归系数,ˆy 称为回归值. 5.相关系数:()()nnii i ixx y y x ynx yr ---==∑∑6.相关系数r 的性质:⑴||1r ≤;⑵||r 越接近于1,x y ,的线性相关程度越强; ⑶||r 越接近于0,x y ,的线性相关程度越弱.可见,一条回归直线有多大的预测功能,和变量间的相关系数密切相关. 7.转化思想:根据专业知识或散点图,对某些特殊的非线性关系,选择适当的变量代换,把非线性方程转化为线性回归方程,从而确定未知参数. 8.一些备案 ①回归(regression )一词的来历:“回归”这个词英国统计学家Francils Galton 提出来的.1889年,他在研究祖先与后代的身高之间的关系时发现,身材较高的父母,他们的孩子也较高,但这些孩子的平均身高并没有他们父母的平均身高高;身材较矮的父母,他们的孩子也较矮,但这些孩子的平均身高却比他们父母的平均身高高.Galton 把这种后代的身高向中间值靠近的趋势称为“回归现象”.后来,人们把由一个变量的变化去推测另一个变量的变化的方法称为回归分析.②回归系数的推导过程:22222[()]222i i i i i i i i Q y a bx y a y na b x y ab x b x =--=-+-++∑∑∑∑∑∑ 22222()2i i i i i i na a b x y b x b x y y =+-+-+∑∑∑∑∑,把上式看成a 的二次函数,2a 的系数0n >,因此当2()2i i i ib x y y b x a n n --=-=∑∑∑∑时取最小值. 同理,把Q 的展开式按b 的降幂排列,看成b 的二次函数,当2i iiix y a xb x-=∑∑∑时取最小值.解得:12221()()()ni iii i niii x ynxyx x y y b x x xnx==---==--∑∑∑∑,a y bx =-, 其中1i y y n =∑,1i x x n=∑是样本平均数. 9. 对相关系数r 进行相关性检验的步骤: ①提出统计假设0H :变量x y ,不具有线性相关关系;②如果以95%的把握作出推断,那么可以根据10.950.05-=与2n -(n 是样本容量)在相关性检验的临界值表中查出一个r 的临界值0.05r (其中10.950.05-=称为检验水平); ③计算样本相关系数r ;④作出统计推断:若0.05||r r >,则否定0H ,表明有95%的把握认为变量y 与x 之间具有线性相关关系;若0.05||r r ≤,则没有理由拒绝0H ,即就目前数据而言,没有充分理由认为变量y 与x 之间具有线性相关关系. 说明:⑴对相关系数r 进行显著性检验,一般取检验水平0.05α=,即可靠程度为95%.⑵这里的r 指的是线性相关系数,r 的绝对值很小,只是说明线性相关程度低,不一定不相关,可能是非线性相关的某种关系.⑶这里的r 是对抽样数据而言的.有时即使||1r =,两者也不一定是线性相关的.故在统计分析时,不能就数据论数据,要结合实际情况进行合理解释.题型一 线性相关及回归【例1】 已知变量y 与x 之间的相关系数是0.872r =-,查表得到相关系数临界值0.050.482r =,要使可靠性不低于95%,则变量y 与x 之间( )A .不具有线性相关关系B .具有线性相关关系C .线性相关关系还待进一步确定D .具有确定性关系【例2】 当相关系数0r =时,表明( )A 现象之间完全无关B 相关程度较小C 现象之间完全相关D 无直线相关关系【例3】 下列结论中,能表示变量,x y 具有线性相关关系的是( )A .0.05r r ≥B .0.05r r ≤C .0.05r r >D .0.05r r <典例分析【例4】 下列现象的相关密切程度最高的是( )A .某商店的职工人数与商品销售额之间的相关系数0.87B .流通费用水平与利润率之间的相关关系为0.94-C .商品销售额与利润率之间的相关系数为0.51D .商品销售额与流通费用水平的相关系数为0.81-【例5】 在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是( )①若2χ的值为6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;②从独立性检验可知有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患有肺病;③若从统计量中求出有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得判断出现错误;④以上三种说法都不正确.【例6】 设两个变量x 和y 之间具有线性相关关系,它们的相关系数是r ,y 关于x 的回归直线的斜率是b ,纵截距是a ,那么必有( )A .b 与r 的符号相同B .a 与r 的符号相同C .b 与r 的相反D .a 与r 的符号相反【例7】 定义:点()i i x y ,与直线$y bx a =+的“纵向距离”为()i i y bx a -+.已知(00)(01)(11)A B C -,,,,,三点,存在直线l ,使A B C ,,三点到直线l 的“纵向距离的平方和”Q 最小.⑴求直线l 的方程和Q 的最小值;⑵判断点1(0)3D ,与直线l 的位置关系.【例8】 (2009宁夏海南卷理)对变量x ,y 有观测数据()11x y ,()1210i =L ,,,,得散点图1;对变量u ,v 有观测数据()11u v ,()1210i =L ,,,,得散点图2. 由这两个散点图可以判断.A .变量x 与y 正相关,u 与v 正相关B .变量x 与y 正相关,u 与v 负相关C .变量x 与y 负相关,u 与v 正相关D .变量x 与y 负相关,u 与v 负相关【例9】 为了考查两个变量x 和y 之间的线性关系,甲、乙两位同学各自独立做了10次和15次的试验,并且利用线性回归方法求得回归直线分别为12l l ,,已知两人得到的试验数据中,变量x 和y 的数据的平均值都对应相等,那么下列说法正确的是( ) A .直线1l 和2l 一定有交点 B .直线1l 一定平行于直线2l C .直线1l 一定与2l 重合 D .以上都不对【例10】 某地高校教育经费()x 与高校学生人数()y 连续6年的统计资料如下:【例11】 一家庭问题研究机构想知道是否夫妻所受的教育越高越不愿生孩子,现随机抽样了8对夫妻,计算夫妻所受教育的总年数x 与孩子数y ,得结果如下试求【例12】某种产品的广告费支出x与销售额y(单位:百万元)之间有如下对应数据:⑴【例13】某五星级大饭店的住屋率(%)()x与每天每间客房的成本(元)()y如下:⑴试求⑵若y的表示不变,x以小数表示(如75%表为0.75),求新的回归直线.【例14】某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.⑴若选取的1月与6月的两组数据,请根据2至5月份的数据,求出y关于x的线性回归方程;⑵若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想? 【例15】某种产品的产量与单位在成本的资料如下:⑴计算相关系数r;⑵y对x直线回归方程;⑶指出产量每增加1000件时,单位成本平均下降了多少元?【例16】求回归直线方程以下是收集到的某城市的新房屋销售价格y与房屋的大小x的数据:⑵用最小二乘法求回归直线方程;⑶估计该城市一个90平米的房屋销售价格大约为多少?⑷写一个程序,计算出()Q,的值,再比较大小.,和(20.2)Q a b【例17】(07广东)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y (吨标准煤)的几组对照数据⑴⑵请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程ˆˆy bx a =+;⑶已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值:3 2.543546 4.566.5⨯+⨯+⨯+⨯=)【例18】 测定某肉鸡的生长过程,每两周记录一次鸡的重量,数据如下表:由经验知生长曲线为1xy Aeλ-=+,试求y 对x 的回归曲线方程.【例19】 为了研究某种细菌随时间x 变化的繁殖个数,收集数据如下:⑴⑵求出y 对x 的回归方程.。

相关文档
最新文档