《高二数学回归分析》PPT课件
合集下载
回归分析实例PPT课件

通过各种统计检验来评估 模型的拟合效果,如残差 分析、R方检验、F检验等。
线性回归分析的应用
预测
使用线性回归模型来预测因变 量的值,基于给定的自变量值
。
解释变量关系
通过线性回归分析来了解自变 量与因变量之间的数量关系和 影响程度。
控制变量效应
在实验或调查中,控制自变量 的影响,以观察因变量的变化 情况。
模型的建立和检验
模型的建立
首先需要收集数据,并进行数据 清洗和预处理,然后选择合适的 自变量和因变量,建立逻辑回归
模型。
模型的检验
通过多种检验方法对模型进行评 估,包括参数估计、假设检验、 模型诊断等,以确保模型的准确
性和可靠性。
模型的优化
根据检验结果对模型进行调整和 优化,包括参数调整、变量筛选
详细描述
收集产品在过去一段时间的销售数据,包括销售额、销售量等,作为自变量, 将未来某一段时间的产品销量作为因变量,建立回归模型。通过模型预测未来 产品销量,为企业制定生产和销售计划提供依据。
实例三:疾病风险预测
总结词
基于个人健康数据和疾病历史,建立回归模型预测疾病风险。
详细描述
收集个人的健康数据和疾病历史,包括血压、血糖、胆固醇等生理指标以及家族 病史等信息,作为自变量,将未来患某种疾病的风险作为因变量,建立回归模型 。通过模型预测个人患某种疾病的风险,为预防和早期干预提供参考。
线性关系的假设
自变量x与因变量y之间存在线性关系, 即随着x的增加(或减少),y也相应 地增加(或减少)。
模型的建立和检验
01
02
03
数据收集与整理
收集相关数据,并进行必 要的整理和清洗,以确保 数据的质量和可靠性。
线性回归分析的应用
预测
使用线性回归模型来预测因变 量的值,基于给定的自变量值
。
解释变量关系
通过线性回归分析来了解自变 量与因变量之间的数量关系和 影响程度。
控制变量效应
在实验或调查中,控制自变量 的影响,以观察因变量的变化 情况。
模型的建立和检验
模型的建立
首先需要收集数据,并进行数据 清洗和预处理,然后选择合适的 自变量和因变量,建立逻辑回归
模型。
模型的检验
通过多种检验方法对模型进行评 估,包括参数估计、假设检验、 模型诊断等,以确保模型的准确
性和可靠性。
模型的优化
根据检验结果对模型进行调整和 优化,包括参数调整、变量筛选
详细描述
收集产品在过去一段时间的销售数据,包括销售额、销售量等,作为自变量, 将未来某一段时间的产品销量作为因变量,建立回归模型。通过模型预测未来 产品销量,为企业制定生产和销售计划提供依据。
实例三:疾病风险预测
总结词
基于个人健康数据和疾病历史,建立回归模型预测疾病风险。
详细描述
收集个人的健康数据和疾病历史,包括血压、血糖、胆固醇等生理指标以及家族 病史等信息,作为自变量,将未来患某种疾病的风险作为因变量,建立回归模型 。通过模型预测个人患某种疾病的风险,为预防和早期干预提供参考。
线性关系的假设
自变量x与因变量y之间存在线性关系, 即随着x的增加(或减少),y也相应 地增加(或减少)。
模型的建立和检验
01
02
03
数据收集与整理
收集相关数据,并进行必 要的整理和清洗,以确保 数据的质量和可靠性。
高二数学回归分析课件

应注意以下两个问题:
I 模型的合理性; II 在模型合理的情况下,如何估计a,b.
问题:有时散点图的各点并不集中在
一条直线的附近,仍然可以按照求回
归直线方程的步骤求回归直线,显然
这样的回归直线没有实际意义。在怎
样的情况下求得的回归直线方程才有
实际意义?
即建立的线性回归 模型是否合理?
需要对x,y 的线性相关
? (1i)=1|r|≤1.
i=1
n
__
? xiyi ? n x y
i?1
? ? ? n
? ? ? i?1
xi2
?
n??x_
2
? ?
??
???? ????
n i?1
y
2 i
?
n
??
_
y
?
2
? ? ?
?? ??
? (2)|r| 越接近于 1,x,y相关程度越强; |r|越接近于 0,x,y相关 程度越弱.
选修1-2
(二)
复习回顾
求线性回归方程的步骤:
(1)计算平均数 x , y
n
(2)计算 x i 与y i 的积,求 ? x i y i
n
n
(3)计算 ?
? x
2 i
,
y
2 i
i?1
i?1
i?1
(4)将上述有关结果代入公式,求b、a,
写出回归直线方程.
对于线性回归模型 y ? a ? bx ? ?
154 157 158 159 160 161 162 163 155 156 159 162 161 164 165 166
制作人
? 注:b 与 r 同号
? 问题:达到怎样程度, x、y线性相关呢?它们的相关程度怎样呢?
I 模型的合理性; II 在模型合理的情况下,如何估计a,b.
问题:有时散点图的各点并不集中在
一条直线的附近,仍然可以按照求回
归直线方程的步骤求回归直线,显然
这样的回归直线没有实际意义。在怎
样的情况下求得的回归直线方程才有
实际意义?
即建立的线性回归 模型是否合理?
需要对x,y 的线性相关
? (1i)=1|r|≤1.
i=1
n
__
? xiyi ? n x y
i?1
? ? ? n
? ? ? i?1
xi2
?
n??x_
2
? ?
??
???? ????
n i?1
y
2 i
?
n
??
_
y
?
2
? ? ?
?? ??
? (2)|r| 越接近于 1,x,y相关程度越强; |r|越接近于 0,x,y相关 程度越弱.
选修1-2
(二)
复习回顾
求线性回归方程的步骤:
(1)计算平均数 x , y
n
(2)计算 x i 与y i 的积,求 ? x i y i
n
n
(3)计算 ?
? x
2 i
,
y
2 i
i?1
i?1
i?1
(4)将上述有关结果代入公式,求b、a,
写出回归直线方程.
对于线性回归模型 y ? a ? bx ? ?
154 157 158 159 160 161 162 163 155 156 159 162 161 164 165 166
制作人
? 注:b 与 r 同号
? 问题:达到怎样程度, x、y线性相关呢?它们的相关程度怎样呢?
人教版 高二数学下册下册 课件《回归分析》 课件

i 1
i 1
i 1
i 1
r具有以下性质:r ≤1,并且 r 越接近1,线性相关程度越强;
r 越接近0,线性相关程度越弱.
检验的步骤如下:
1.作统计假设:x与Y不具有线性相关关系. 2.根据小概率0.05与n - 2在附表中查出r的一个临界值r0.05. 3.根据样本相关系数计算公式算出r的值. 4.作统计推断.如果 r > r0.05,表明有95%的把握认为x与Y之间 具有线性相关关系. 如果 r r0.05,我们没有理由拒绝原来的假设.这时寻找回归 直线方程是毫无意义的.
思考:你能由以上数据,估测一名身高在 172cm的女大学生体重大约为多少吗?
本节课,我们就一起来学习怎样解决此类问题!
1. 通过收集现实问题中两个有关联变量的数据作出散 点图,并利用散点图直观认识变量间的相关关系.
2. 能根据给出的线性回归方程系数公式建立线性回归 方程.
3. 会进行相关性检验,了解回归分析的基本思想与方 法,并能进行初步的应用.(重点、难点)
探究点2 相关性检验
例2 为了了解某地母亲身高x与女儿身高Y的相关关系, 随机测得10对母女的身高如下表所示:
母亲身高 x(cm)
女儿身高 Y(cm)
159 160 160 163 159 154 159 158 159 157 158 159 160 161 161 155 162 157 162 156
显示解题过程
分析:从散点图可以直观地看出变量x与Y之间有无 线性相关关系,为此把这8对数据描绘在平面直角坐 标系中,得到平面上8个点,如图所示:
1.25 1.3
x1 y1 x2 y2 … xn yn
n
xi yi nx y
高中数学选修1-2-回归分析第一节.ppt

=
,a^ = y -b^ x ,
n
xi- x 2
n
x2i -n x 2
i=1
i=1
其中 x =1ni=n1xi, y =1ni=n1yi,( x , y )称为样本点的中心.
课前探究学习
课堂讲练互动
(3)解释变量和预报变量 线性回归模型与一次函数模型的不同之处是增加了随机误差项e, 因变量y由 自变量x 和 随机误差e 共同确定,即自变量x只解 释部分y的变化,在统计中,我们也把自变量x称为解释变量,因变 量y称为预报变量.
课前探究学习
课堂讲练互动
【变式1】 以下是某地搜集到的新房屋的销售价格y和房屋的面积x 的数据:
房屋面积/m2 115 110 80 135 105 销售价格/万元 24.8 21.6 18.4 29.2 22
(1)画出数据对应的散点图; (2)求线性回归方程,并在散点图中加上回归直线; (3)据(2)的结果估计当房屋面积为150 m2时的销售价格.
1.1 回归分析的基本思想及其初步应用
课前探究学习
课堂讲练互动
【课标要求】 1.了解随机误差、残差、残差分析的概念; 2.会用残差分析判断线性回归模型的拟合效果; 3.掌握建立回归模型的步骤; 4.通过对典型案例的探究,了解回归分析的基本思想方法
和初步应用.
课前探究学习
课堂讲练互动
【核心扫描】 1.利用散点图分析两个变量是否存在相关关系,求线性回归方
6
所以
(yi-y^ i)2≈0.013
6
18,
(yi- y )2=14.678 4.
i=1
i=1
所以,R2=1-01.40.16378184≈0.999 1, 回归模型的拟合效果较好.
,a^ = y -b^ x ,
n
xi- x 2
n
x2i -n x 2
i=1
i=1
其中 x =1ni=n1xi, y =1ni=n1yi,( x , y )称为样本点的中心.
课前探究学习
课堂讲练互动
(3)解释变量和预报变量 线性回归模型与一次函数模型的不同之处是增加了随机误差项e, 因变量y由 自变量x 和 随机误差e 共同确定,即自变量x只解 释部分y的变化,在统计中,我们也把自变量x称为解释变量,因变 量y称为预报变量.
课前探究学习
课堂讲练互动
【变式1】 以下是某地搜集到的新房屋的销售价格y和房屋的面积x 的数据:
房屋面积/m2 115 110 80 135 105 销售价格/万元 24.8 21.6 18.4 29.2 22
(1)画出数据对应的散点图; (2)求线性回归方程,并在散点图中加上回归直线; (3)据(2)的结果估计当房屋面积为150 m2时的销售价格.
1.1 回归分析的基本思想及其初步应用
课前探究学习
课堂讲练互动
【课标要求】 1.了解随机误差、残差、残差分析的概念; 2.会用残差分析判断线性回归模型的拟合效果; 3.掌握建立回归模型的步骤; 4.通过对典型案例的探究,了解回归分析的基本思想方法
和初步应用.
课前探究学习
课堂讲练互动
【核心扫描】 1.利用散点图分析两个变量是否存在相关关系,求线性回归方
6
所以
(yi-y^ i)2≈0.013
6
18,
(yi- y )2=14.678 4.
i=1
i=1
所以,R2=1-01.40.16378184≈0.999 1, 回归模型的拟合效果较好.
《回归分析 》课件

参数显著性检验
通过t检验或z检验等方法,检验模型中各个参数的显著性,以确定 哪些参数对模型有显著影响。
拟合优度检验
通过残差分析、R方值等方法,检验模型的拟合优度,以评估模型是 否能够很好地描述数据。
非线性回归模型的预测
预测的重要性
非线性回归模型的预测可以帮助我们了解未来趋势和进行 决策。
预测的步骤
线性回归模型是一种预测模型,用于描述因变 量和自变量之间的线性关系。
线性回归模型的公式
Y = β0 + β1X1 + β2X2 + ... + βpXp + ε
线性回归模型的适用范围
适用于因变量和自变量之间存在线性关系的情况。
线性回归模型的参数估计
最小二乘法
最小二乘法是一种常用的参数估计方法,通过最小化预测值与实 际值之间的平方误差来估计参数。
最大似然估计法
最大似然估计法是一种基于概率的参数估计方法,通过最大化似 然函数来估计参数。
梯度下降法
梯度下降法是一种迭代优化算法,通过不断迭代更新参数来最小 化损失函数。
线性回归模型的假设检验
线性假设检验
检验自变量与因变量之间是否存在线性关系 。
参数显著性检验
检验模型中的每个参数是否显著不为零。
残差分析
岭回归和套索回归
使用岭回归和套索回归等方法来处理多重共线性问题。
THANKS
感谢观看
04
回归分析的应用场景
经济学
研究经济指标之间的关系,如GDP与消费、 投资之间的关系。
市场营销
预测产品销量、客户行为等,帮助制定营销 策略。
生物统计学
研究生物学特征与疾病、健康状况之间的关 系。
通过t检验或z检验等方法,检验模型中各个参数的显著性,以确定 哪些参数对模型有显著影响。
拟合优度检验
通过残差分析、R方值等方法,检验模型的拟合优度,以评估模型是 否能够很好地描述数据。
非线性回归模型的预测
预测的重要性
非线性回归模型的预测可以帮助我们了解未来趋势和进行 决策。
预测的步骤
线性回归模型是一种预测模型,用于描述因变 量和自变量之间的线性关系。
线性回归模型的公式
Y = β0 + β1X1 + β2X2 + ... + βpXp + ε
线性回归模型的适用范围
适用于因变量和自变量之间存在线性关系的情况。
线性回归模型的参数估计
最小二乘法
最小二乘法是一种常用的参数估计方法,通过最小化预测值与实 际值之间的平方误差来估计参数。
最大似然估计法
最大似然估计法是一种基于概率的参数估计方法,通过最大化似 然函数来估计参数。
梯度下降法
梯度下降法是一种迭代优化算法,通过不断迭代更新参数来最小 化损失函数。
线性回归模型的假设检验
线性假设检验
检验自变量与因变量之间是否存在线性关系 。
参数显著性检验
检验模型中的每个参数是否显著不为零。
残差分析
岭回归和套索回归
使用岭回归和套索回归等方法来处理多重共线性问题。
THANKS
感谢观看
04
回归分析的应用场景
经济学
研究经济指标之间的关系,如GDP与消费、 投资之间的关系。
市场营销
预测产品销量、客户行为等,帮助制定营销 策略。
生物统计学
研究生物学特征与疾病、健康状况之间的关 系。
回归分析法PPT课件

线性回归模型的参数估计
最小二乘法
通过最小化误差平方和的方法来估计 模型参数。
最大似然估计
通过最大化似然函数的方法来估计模 型参数。
参数估计的步骤
包括数据收集、模型设定、参数初值、 迭代计算等步骤。
参数估计的注意事项
包括异常值处理、多重共线性、自变 量间的交互作用等。
线性回归模型的假设检验
假设检验的基本原理
回归分析法的历史与发展
总结词
回归分析法自19世纪末诞生以来,经历 了多个发展阶段,不断完善和改进。
VS
详细描述
19世纪末,英国统计学家Francis Galton 在研究遗传学时提出了回归分析法的概念 。后来,统计学家R.A. Fisher对其进行了 改进和发展,提出了线性回归分析和方差 分析的方法。随着计算机技术的发展,回 归分析法的应用越来越广泛,并出现了多 种新的回归模型和技术,如多元回归、岭 回归、套索回归等。
回归分析法的应用场景
总结词
回归分析法广泛应用于各个领域,如经济学、金融学、生物学、医学等。
详细描述
在经济学中,回归分析法用于研究影响经济发展的各种因素,如GDP、消费、投资等;在金融学中,回归分析法 用于股票价格、收益率等金融变量的预测;在生物学和医学中,回归分析法用于研究疾病发生、药物疗效等因素 与结果之间的关系。
梯度下降法
基于目标函数对参数的偏导数, 通过不断更新参数值来最小化目 标函数,实现参数的迭代优化。
非线性回归模型的假设检验
1 2
模型检验
对非线性回归模型的适用性和有效性进行检验, 包括残差分析、正态性检验、异方差性检验等。
参数检验
通过t检验、z检验等方法对非线性回归模型的参 数进行假设检验,以验证参数的显著性和可信度。
人教版高中数学选修《回归分析》课件ppt课件

3.相关系数与R2 (1)R2是相关系数的平方,其变化范围为[0,1],而相 关系数的变化范围为[-1,1]. (2)相关系数可较好地反映变量的相关性及正相关或 负相关,而R2反映了回归模型拟合数据的效果. (3)当|r|接近于1时说明两变量的相关性较强,当|r| 接近于0时说明两变量的相关性较弱,而当R2接近于1 时,说明线性回归方程的拟合效果较好.
②观测与计算(用 $b $a 代替b a)产生的误差;
③省略了一些因素的影响(如生活习惯等) 产生的误差.
在线性回归模型中,e为用bx+a的预报真实值y的随机 误差,它是一个不可观测的量,那么应该怎样研究随 机误差?
在实际应用中,我们用 $y $bx $a 估计 bx+a
所以 e y-bx a 的估计量为 $e y $y
具有较好的线性相关关系
2.根据线性回归的系数公式, 求回归直线方程 $y =0.849x-85.712
3.由线性回归方程可以估计其位 置值为 $y =60.316(千克)左右。
ቤተ መጻሕፍቲ ባይዱ
$b
n i1
xi x yi y
n
2
xi x
i1
$a y $bx.
4
6
8
10
12
-4000
通过残差 eˆ1,eˆ2,eˆ3,.....eˆn,来判断模型拟合的效果这种
分析工作称为残差分析
通过残差表或残差图判断模型拟合的效果是直观判 断,如何精确判断模型拟合的效果?
n yi $yi 2
引入参数R2R2
1
i1 n
来精确该画模型拟合效果
2
yi y
回归分析法PPT课件

现代应用
随着大数据时代的到来,回归分析法在各个领域的应用越来越广泛,同 时也面临着新的挑战和机遇。
02
线性回归分析
线性回归模型
线性回归模型
描述因变量与自变量之间线性关 系的数学模型。
模型形式
(Y = beta_0 + beta_1X_1 + beta_2X_2 + cdots + beta_pX_p + epsilon)
解释
非线性回归模型可以用于解释因变量和解释变量之间的关系,通过模型参数和图 形化展示来解释关系。
04
多元回归分析
多元回归模型
01
02
03
多元线性回归模型
描述因变量与多个自变量 之间的关系,通过最小二 乘法估计参数。
非线性回归模型
描述因变量与自变量之间 的非线性关系,通过变换 或使用其他方法实现。
教育研究
在教育学研究中,回归分析法可用于研究教育成果和教育 质量,通过分析学生成绩和教学质量等因素,提高教育水 平。
其他领域的应用案例
市场调研
在市场营销中,回归分析法可用于分析消费者行为和市场趋 势,帮助企业制定更有效的营销策略。
农业研究
在农业研究中,回归分析法可用于研究作物生长和产量影响 因素,提高农业生产效率。
线性回归模型的预测与解释
预测
使用已建立的线性回归模型预测因变量的值。
解释
通过解释模型参数的大小和符号来理解自变量对因变量的影响程度和方向。
03
非线性回归分析
非线性回归模型
线性回归模型的局限性
非线性回归模型的定义
线性回归模型在解释变量与因变量之间的 关系时可能不够准确,无法描述它们之间 的非线性关系。
随着大数据时代的到来,回归分析法在各个领域的应用越来越广泛,同 时也面临着新的挑战和机遇。
02
线性回归分析
线性回归模型
线性回归模型
描述因变量与自变量之间线性关 系的数学模型。
模型形式
(Y = beta_0 + beta_1X_1 + beta_2X_2 + cdots + beta_pX_p + epsilon)
解释
非线性回归模型可以用于解释因变量和解释变量之间的关系,通过模型参数和图 形化展示来解释关系。
04
多元回归分析
多元回归模型
01
02
03
多元线性回归模型
描述因变量与多个自变量 之间的关系,通过最小二 乘法估计参数。
非线性回归模型
描述因变量与自变量之间 的非线性关系,通过变换 或使用其他方法实现。
教育研究
在教育学研究中,回归分析法可用于研究教育成果和教育 质量,通过分析学生成绩和教学质量等因素,提高教育水 平。
其他领域的应用案例
市场调研
在市场营销中,回归分析法可用于分析消费者行为和市场趋 势,帮助企业制定更有效的营销策略。
农业研究
在农业研究中,回归分析法可用于研究作物生长和产量影响 因素,提高农业生产效率。
线性回归模型的预测与解释
预测
使用已建立的线性回归模型预测因变量的值。
解释
通过解释模型参数的大小和符号来理解自变量对因变量的影响程度和方向。
03
非线性回归分析
非线性回归模型
线性回归模型的局限性
非线性回归模型的定义
线性回归模型在解释变量与因变量之间的 关系时可能不够准确,无法描述它们之间 的非线性关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分析:先画图
年份 0 542 5 603 10 672 15 705 20 807 25 909 30 975 35 1035 40 1107 45 1177 50 1246
人口 数/ 百 万
2019/1/2
例题2.一个车间为了规定工时定额,需要确定 加工零件所花费的时间,为此进行了10次试验, 测得数据如下:
2. 求出b,a的值。
3. 求回归直线方程 4. 用回归直线方程解决应用问题
2019/1/2
思考:在时刻x=9s时,质点运动位置 一定是22.6287cm吗?
4、线性回归模型
y a bx
其中a+bx是确定性函数, 是随机误差
注: 产生的主要原因:
(1)所用确定性函数不恰当; (2)忽略了某些因素的影响; (3)观测误差。
位置观测 值 y/
15.69
16.12
16.98
21.06
2019/1/2
25 20 15 10 5 0 0 2 4 6 8 10 系列1
i xi yi x iy i x i2
2019/1/2
1
1 5.54 5.54 1
2
2 7.52 15.04 4
3
3 10.02 30.06 9
统计的基本思想
实际 抽 样
样本
y = f(x)
模 分 析 拟
y = f(x)
y = f(x)
2019/1/2
问题1:现实生活中两个变量间的关系有哪 些呢? 不相关 1、两个变量的关系
函数关系 相关 关系
线性相关 非线性相关
2019/1/2
相关关系:对于两个变量,当自变量取值一定 时,因变量的取值带有一定随机性的两个变量 之间的关系。
作散点图如下:不难看出x,y成线性相关。
150 100 系列1 50 0 0
2019/1/2
50
100
150
解(1)列出下表:
i 1 2 3 4 5 6 7 8 9 10
xi
10
20
30
40
50
60
70
80
90
100
yi
62
68
75
81
89
95
102
108
115
122
xiyi
620
1360
2250
ˆ a ˆ bx ˆ y
ˆ b
( x X )( y
i 1 i n i 1
n
i
Y )
2 ( X X ) i
ˆ ˆ Y bX a
2019/1/2
例如: 对一作直线运动的质点的运动过程作了8次观 测,得到下表,试估计x=9s时的位置y的值。
时刻x/s
1
2
3
4
5
6
7
8
请看下节课分解
2019/1/2
零件数(x) 10 个
20
30
40
50
60
70
80
90
100
加工时间 y
62
68
75
81
89
95
102
108
115
122
(1)y与x是否具有线性相关?
(2)若y与x具有线性相关关系,求回归直线方程
(3)预测加工200个零件需花费多少时间?
2019/1/2
分析:这是一个回归分析问题,应先进行 线性相关检验或作散点图来判断x与y是否 具有线性相关才可以求解后面的问题。
选修1-2
(一)
2019/1/2
必修3(第二章 统计)知识结构
收集数据
(随机抽样)
整理、分析数据 估计、推断 用样本估计总体 变量间的相关关系
简 单 随 机 抽 样
2019/1/2
分 层 抽 样
系 统 抽 样
用样本 的频率 分布估 计总体 分布
用样本 数字特 征估计 总体数 字特征
线 性 回 归 分 析
2019/1/2
对于线性回归模型
y a bx
应注意以下两个问题: I 模型的合理性; II 在模型合理的情况下,如何估计a,b.
2019/1/2
例1.下表给出我国从1949至1999年人口数 据资料,试根据表中数据估计我国2004年 的人口数。
年份 49 542 54 603 59 672 64 705 69 807 74 909 79 975 84 1035 89 1107 94 1177 99 1246 人口 数/百 万
3240
4450
5700
7140
8640
10350
12200
2019/1/2
问题:有时散点图的各点并不集中在 一条直线的附近,仍然可以按照求回 归直线方程的步骤求回归直线,显然 这样的回归直线没有实际意义。在怎 样的情况下求得的回归直线方程才有 实际意义? 即建立的线性回归模型是否合理?
如何对一组数据之间的线性相关程 度作出定量分析?
4
4 11.73 46.92 16
5
5 15.69 78.45 25
6
6 16.12 96.72 36
7
7 16.98 118.9 49
8
8 21.06 168.5 64 4.50 13.08 560.1 204
3、回归分析的基本步骤:
画散点图
求回归方程
预报、决策
2019/1/2
数学3——统计
1. 画散点图
思考:相关关系与函数关系有怎样的 不同?
函数关系中的两个变量间是一种确定性关系 相关关系是一种非确定性关系 函数关系是一种理想的关系模型 相关关系在现实生活中大量存在,是更一般的情况
2019/1/2
问题2:对于线性相关的两个变量用什么方法 来刻划之间的关系呢? 2、最小二乘估计 最小二乘估计下的线性回归方程: